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Abstract: This work aims at investigating numerically the effects of channel corrugation in two-
phase flows with single and multiples drops subject to buoyancy-driven motion. A state-of-the-
art model is employed to accurately compute the dynamics of the drop’s interface deformation
using a modern moving frame/moving mesh technique within the arbitrary Lagrangian–Eulerian
framework, which allows one to simulate very large domains. The results reveal a complex and
interesting dynamics when more than one drop is present in the system, leading eventually in
coalescence due to the amplitude of the corrugated sinusoidal channel and distance between drops.

Keywords: moving mesh; surface tension; corrugated micro channels; arbitrary Lagrangian–
Eulerian; two-phase flows; porous media

1. Introduction

Two-phase flows with variable cross section still remain a challenging subject with
great interest from the scientific community and industry related to the efficient cooling
of computer parts and biomedical devices. Moreover, channels with different corrugation
patterns seem to considerably improve the effect of heat dissipation by modifying the
drop’s dynamics and thus the liquid film thickness of the two-phase system. Corrugated
channel is a class of variable cross section channels that present a periodic pattern along
its length and has strong impact in the fluid flow, changing its behavior by increasing
recirculation zones and eventually leading to onset of boundary layer detachment. Note
that the presence of a deformable interface due to the presence of more fluid phases brings
an extra degree of complexity in the fluid flow system. Additionally, the periodic pattern
of the corrugated channels requires very large domains to be analyzed, thus dramatically
increasing the costs associated to the experiment assembling or the numerical simulations.

Single-phase flows with heat transfer were experimentally analyzed in [1,2], where
the effects of several key parameters were studied such as channel wavy amplitude and
flow velocity in periodic wavy passages. Numerically, several authors have investigated
single-phase flows in corrugated channels. For instance, in [3] a numerical study was done
for transition regimes from laminar to turbulent when convective heat transfer plays an
important role in those flows. They concluded that the Nusselt number for the wavy wall
channel was directly affected when compared to those for a straight channels, while in [4],
a 2-dimensional laminar steady and time-dependent fluid flow solver was developed for
heat transfer in periodic wavy channels with sinusoidal and arc shapes. It was concluded
that the arc-shaped periodic channel enhances heat transfer due to a higher friction
factor when compared to the sinusoidal channel, specially beyond the critical value of
the Reynolds number for the unsteady regime. Another interesting numerical approach
was suggested by the authors of [5], where the coordinate transformation method and
the spline alternating-direction implicit method was used to study the rates of heat
transfer for flow through a sinusoidally curved converging–diverging channel. The steady
streamfunction vorticity formulation was used to model the fluid flow with the energy
equation using the finite difference method. Several channel amplitude wavelengths were
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tested at different Reynolds number, and it was found that at a sufficiently larger value
of amplitude wavelength ratio the corrugated channel increases heat transfer for large
Reynolds numbers. Turbulent forced convection in a wavy channel using a two-phase
model was studied in [6] for water-Al2O3 nanofluids using a 2-dimensional numerical
solver. It has been seen that if the channel amplitude increases, as well as the Reynolds
number and volume fraction of nanoparticles, the Nusselt number is directly affected,
leading to a higher value. Additionally, it was observed that the more nanoparticles
added to the solution, the higher pressure drop in corrugated channels is seen.

It is already known that two-phase flows bring another level of challenges numeri-
cally and experimentally due to the presence of an interface between fluids and different
phases in the system. In [7], a comparative analysis of two-phase flow in sinusoidally
corrugated channels was carried out with application to polymer electrolyte membrane
fuel cells. Different patterns of corrugated channels were used to numerically analyze
single and multiples bubbles dynamics in air–water systems through a 3-dimensional
simulation using the Volume-of-Fluid (VOF) method. The authors concluded that the
two-phase flow performance in the sinusoidal channels can be substantially improved,
decreasing the radius of curvature at the bends and making the confining walls extremely
hydrophobic. On the other hand, in [8], experimental and numerical approaches have
been used to tackle CO2 bubble behavior flowing in a methanol solution in sinusoidally
corrugated channels for fuel cell purposes. A detailed investigation of key two-phase
flow parameters was undertaken, and a thermal analysis was made regarding when a
single bubble travels along sinusoidal channels under pressure differences between the
inlet and outlet regions of the channel. Additionally, a comparison of the same flow
condition was carried out for a straight channel. The results reveals that the effect of
flow disturbance structure is negligible with small values of channel amplitude and
angular frequency of corrugation for the studied two-phase system. Sinusoidal channels
with one and more wavy patterns were numerically simulated using the front-tracking
and the finite volume methods in [9]. Two-phase 2-dimensional flow simulations were
carried out to investigate single buoyant drops in channel constrictions and expansions
and the interaction between two small drops in different simulation conditions with the
newly implemented numerical code. Results have been successfully reported for various
constricted channels.

The current study is based upon the experiments in [10], where the authors have
studied experimentally the effects of buoyancy-driven motion of drops in a periodically
constricted capillary. Several two-phase systems were used in the experiment such as
glycerol–water, diethylene glycol, and diethylene glycol–glycerol as suspending fluid,
and silicon oil, Dow Corning fluids, and UCON fluid emollient as drop fluids, and an
extensive study has been reported for sinusoidal shape channels with fixed dimensionless
amplitude A = 0.07 and wavelength λ = 4 for single drops. However, no further inves-
tigation has been conducted for different channel amplitude and its effect on interface
break-up for single and multiple drops. Additionally, it is clear from the literature review
presented above that much is still required for the complete understanding of two-phase
flows in short and large periodic arrays with different corrugation levels. It is indeed of
great significance that single and multiple buoyant drops in sinusoidal channels deliver
another level of flow complexity due to the possible significant channel amplitude pertur-
bation in the two-phase system, leading eventually to drop coalescence and/or interface
breakup. The aim of this work is to investigate numerically two-phase flow key param-
eters such as the drop’s rising velocity, film thickness, and interface perimeter change
for one and three drops in buoyancy-driven motion for a diethylene glycol/UCON-1145
(DEG3) two-phase system in sinusoidal channels with dimensionless wavelength λ = 4
and wave amplitude A = 0.14. Additionally, a parametric study is also carried out to
investigate the influence of channel wavelength and drop volume in coalescence during
slug flows. A state-of-the-art model is employed to accurately compute the dynamics
of the drop’s interface motion using a modern moving frame/moving mesh technique
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within the arbitrary Lagrangian–Eulerian framework. The presented results show the
drop’s dynamics in large periodic channels and coalescence even for large liquid slug
distances.

This article is organized with a literature review of single- and two-phase corrugated
channels, followed by the mathematical description of the modeling equations in axisym-
metric formulation based on the Finite Element Method (FEM). The next section provides
details concerning the numerical modeling used to discretize the mathematical equations,
followed by the result section where several important test cases are presented to assess
and analyze the dynamics of two-phase flow in corrugated channels with single and
multiples bubbles. Finally, this text ends with remarks in the conclusion section.

2. Mathematical Description
2.1. Two-Phase Flow Equations in the ALE Context

Momentum and continuity equations are used as the model for incompressible
motion of two-phase flows in the context of a “one-fluid” description where one set of
equations is used domain-wise and a jump in fluid properties is assumed at the interface.
The dimensionless form of the momentum and continuity equations respectively is shown
in cylindrical coordinates for axisymmetric flows with gravity g and surface tension force
f accounted in as

ρ(x)
[

∂v
∂t

+
(
v− v̂

)
· ∇v

]
= −∇p +

1
N1/2∇ · µ(x)

[
∇v +∇Tv

]
+ ρ(x)g +

1
Eo

fst (1)

∇ · v = 0 (2)

where x is the position vector with radial r and axial x coordinates. v is the velocity vector
with components vr and vx, v̂ is the mesh velocity vector with components v̂r and v̂x.
The velocity difference v− v̂ is due to the arbitrary Lagrangian–Eulerian framework;
otherwise, only v is found when a fixed frame (Eulerian) is established. ρ(x) is the fluid
density, µ(x) is the fluid dynamic viscosity spatially distributed with a jump condition
at the interface Γ, f is the surface tension with radial fstr and axial fstx components,
respectively, p is pressure and t is time. Note here that the fluid properties µ(x) and ρ(x)
are dimensionless and they appear in the two-phase flow equation since both are usually
different among phases; however in single-phase flows both are constant and equal to the
unity, thus vanishing from the momentum equation. As flow is buoyancy-drive driven,
the dimensionless groups Archimedes (N) and Eötvös (Eo) appear in the momentum
equation according to the standard dimensional analysis and are both defined as follows,

N =
ρ2

0g0D3
0

µ2
0

Eo =
∆ρg0D2

0
σ0

(3)

where the subscript 0 stands for the reference values of dynamic viscosity µ, surface
tension σ, gravity g = 9.81m/s2, and channel diameter D. ∆ρ is defined as the difference
of densities among phases.

2.2. Axisymmetric Differential Operators

The dimensionless axisymmetric strain tensor in the momentum equation does
not account for the mesh motion itself; however, in two-phase flows, both the velocity
gradient (∇v) and the gradient transpose (∇Tv) shall be considered due to fluid properties
transition at interface, resulting in nonuniform spatially variation in density ρ(x) and
µ(x). Therefore, it is written according to the following expression,
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∇ · µ(x)
[
∇v +∇Tv

]
=


2
r

∂

∂r
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∂vr

∂r
+

∂

∂x
µ

∂vx

∂r
− 2vr

r
+

∂
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µ

∂vr

∂x
1
r

∂
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∂r
+

1
r

∂
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µr

∂vr

∂x
+ 2

∂

∂x
µ

∂vx
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(4)

The divergent (∇·) and transpose gradient (∇T) defined as follows,

∇· =
[1

r
∂

∂r
r;

∂

∂x
]

∇T =
[ ∂

∂r
;

∂

∂x
]

(5)

3. Numerical Simulation
3.1. General Description of Two-Phase Flow Solver

The current numerical methodology is based on the works in [11–13], and a short
description is given for the sake of completeness, with detailed explanation of the triangle
finite element used in this work, as well as the geometrical parameters used to assemble
the numerical test sections and the finite element mesh treatment. The current numerical
code has been implemented in C/C++ language using object-oriented programming with
aid of PETSc framework ([14]) for the linear system solvers and preconditioners, the finite
element mesh generator GMsh [15] for initial interface and boundary mesh setup, and
the triangle mesh generator package Triangle [16] for adaptive remeshing support.

The classical Galerkin method has been used as approximating method to the varia-
tional formulation of the governing equations resulting in the discretization of all terms
except the nonlinear advection term (v− v̂) · ∇v. Such a term is known to be the source of
undesired spurious modes that may cause numerical instabilities if the Galerkin method
is used. Thus, to overcome such an undesired issue, the semi-Lagrangian method [17,18]
has been successfully employed in this work. The idea of representing the acceleration
field by a Lagrangian framework instead of the commonly found Eulerian framework.
Note that such a method is applied to the ALE convective velocity difference v− v̂ within
the ALE framework. For each time step the nodes move towards the flow characteris-
tics and a re-initialization of the system coordinates is performed, thus recovering the
initial mesh. The substantial derivative with the ALE velocity difference is evaluated in
the strong form along the characteristic trajectory, by estimating the position of a point
and solving the vectorial equation Dx/Dt backwards in time with the initial condition
x(tn+1) = xi, where xi is the mesh node coordinate, than an integration method is used
to evaluate the previous node position in the triangle unstructured mesh. A first order
discretization scheme is adopted assuming the trajectory is linear.

The numerical domain is discretized using an unstructured triangle mesh with a LLB-
stable mini-element with details given in the next section. Once the discretization of the
domain is accomplished, the system matrices are assembled and the solution of the time
dependent 2-dimensional axisymmetric equations is then found by successively solving
the linear system using PETSc framework in each time step for pressure and velocity.
However, due to the strong coupling between pressure and velocity, the numerical
procedure implemented to solve the mentioned linear system uses the Projection method
based on the LU decomposition, which was first introduced by [19]. The aim of this
method is to uncouple pressure and velocity and solve each quantity separately, thus
reducing the large linear system size into smaller ones. The solution of the linear system
for pressure is given by a direct solver based on LU decomposition, and the velocity is
solved by the conjugated gradient method using the incomplete Cholesky factorization
as preconditioner as the associated linear system is positive symmetric definite.

3.2. Choice of the Finite Element

The linear element with cubic bubble function uses three shape functions that are
interpolated at the vertex of the element supplemented by a cubic bubble function, which
is interpolated at the element centroid. As only four degrees of freedom are used for a
cubic polynomial, the shape functions of this element are incomplete. This element is
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also know as mini element. Such a scheme gives an LBB stable element without having
to introduce too many degrees of freedom. The shape functions, in terms of barycentric
coordinates, are

Ni = λi − 9λ1λ2λ3 i = 1, 2, 3

N4 = 27λ1λ2λ3

where Ni are the shape functions of the corner nodes of the mini-triangle element
Figure 1b, and N4 is the shape functions of the triangle centroid node. The associated
boundary element is a linear line element and its shape functions are simply the functions
of the barycentric coordinates λb

1 and λb
2. As can be seen in Figure 1, the combination of

both triangles generates the well-known mini-element, which is LBB stable and does not
require any additional term in the fluid motion equations. The linear element was used
to evaluate pressure at the corner nodes and mesh update procedure, while the mini and
linear boundary elements were used to evaluate velocity at all element nodes.

(a) linear: pressure, mesh
motion

(b) mini: velocity

(c) linear: boundary pres-
sure

(d) linear: boundary ve-
locity

Figure 1. Interpolation nodes for the triangle finite elements and boundary finite elements used in
the current work. The linear element was used to evaluate pressure at the corner nodes and mesh
update, while the mini and linear boundary element were used to evaluate velocity at all element
nodes. The combination of these two triangle elements generates the P1 + P1 finite element.

3.3. Test Sections

Two numerical test sections were used in the present work, namely, straight and
sinusoidal channels. Each test section was tested with single-drop flow and consecutive
three-drop flow with different liquid slug thickness s, as can be seen in Figure 2; thus,
resulting in a simplified slug flow pattern where the center drop’s flow is directly affected
by the front and rear drop’s motion. If the amplitude A of the sinusoidal channel is set to
A = 0.00, one achieves the straight channel, and the same numerical method and mesh
can be used; therefore, allowing the investigation of the influence of channel wall into the
drop’s dynamics. The sinusoidal wall profile is set through the harmonic wave equation:

rn+1
wall =

D
2
+ Asin

[
2π

λ
(x + xn+1

re f )− φ

]
(6)

where D is the channel’s diameter and D/2 is its radius; A is the wave amplitude
that was set to A = {0.00, 0.14} for the straight and sinusoidal channels, respectively;
λ is the wavelength; and φ is its phase. The axial coordinate is x, while xre f refers to
the drop’s referential point. The moving boundary approach has been discussed in
details in [12], where the drop or drops center of mass remain fixed in space while the
boundary moves according to its position increment with time. Such a procedure has
been successfully proven to be efficient and allowing large periodic domain to be simulate
with low computational costs. Additionally, four dimensionless liquid slug lengths,
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s, have been used: s = {0.375, 0.875, 1.375, 1.875}, thus varying significantly the axial
distance between drops. The drop’s size factor κd = 1.72 relative to the channel’s radius
(D/2) was used to set the drop’s dimension for all simulations presented in this work.
The chosen drop’s size factor implies a drop with a radius of 1.72 times the channel’s
radius by considering the equivalent radius of a spherical drop with same volume. It is
important to note that the initial drop’s shape presents a approximated drop’s shape
found in two-phase flows in channels (see, e.g., in [20–22]).

moving wall

suspending fluid

drop

gravity
D

/2

numerical domain length: 15D

slug s

(a) Straight channel, amplitude A = 0.00

moving wall

suspending fluid

drop

gravity

D
/2

numerical domain length: 15D

slug s

(b) Sinusoidal channel, wavelength λ = 4, amplitude A = 0.14

Figure 2. Geometries of the straight and sinusoidal channels used in this work. Note that the
straight channel is obtained by setting the amplitude of the sinusoidal channel to A = 0.00. One
and three drops were used in this work, with liquid slug s of 0.375 ≤ s ≤ 1.875 where D is the
drop’s diameter. κd = 1.75 is the drop’s size factor relative to the channel’s radius (D/2) where
the following relation remains Rd = κdD/2, with Rd as the drop’s radius. All parameters are
dimensionless.

3.4. Mesh Treatment

The numerical code solves the fluid motion equations using a moving mesh tech-
nique within the ALE framework, which requires an efficient adaptive mesh refinement
when large mesh deformation occurs. It is important to note that the current code im-
plementation moves the mesh nodes and decides whether deletion or insertion of nodes
and elements is required; however, the connective matrix needed by the FEM solver
is generated using the package Triangle. The spatial mesh node distribution is given
through the solution of the generalized Helmholtz equation for the whole domain, and
the decision whether to insert or delete nodes is performed based upon a given predefined
tolerance. The solution is numerically obtained using the FE method using the classical
discrete operators with the triangle linear element.

Figure 3 presents a detailed view of the unstructured triangle finite element mesh
using during the simulation of three drops flow in axisymmetric sinusoidal channel,
where the bottom boundary stands for the axis of symmetry. It illustrates in details the
resulting mesh during the corrugated channel passage of two sequential drops with large
interface deformation. Furthermore, recall that an extra centroid node is used in the
calculation of the velocity field that is not appearing in the current figure. As can be
seen, the minimum liquid film thickness in the front drop is covered by a minimum of 5
triangle elements and 9 nodes; thus, capturing accurately the dynamics within such an
important region in two-phase flows. Not less important, the unstructured triangle mesh
is updated every time step due to the Lagrangian motion of the interface nodes as well
as the phase nodes, both using the mesh velocity v̂. It is indeed noticeable that insertion
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and deletion of nodes as well as flipping of triangle edges are required to complete the
mesh treatment and maintain consistence of the numerical algorithm thus resulting in an
accurate method to track interface motion under high deformation.

Figure 3. Unstructured triangle finite element mesh detailed of slug flow in sinusoidal channel.
This figure illustrates, in detail, the resulting mesh during the corrugated channel passage of two
sequential drops. The left hand side drop is deformed during the convergent section, while the
right hand side is stretched out when passing by the convergent section. Black lines of triangles
represent the inner region (drops) and the others stand for the outer region (suspending fluid).

4. Results

We present the results of single and multiples drops rising in channels with two
levels of corrugation amplitude (A = {0.00, 0.14}) obtained with the ALE-FE Two-Phase
flow solver for axisymmetric coordinate system. Note that such a code has been exten-
sively validated against several single and two-phase flows problems and have been
reported in different well-recognized international journals. All numerical results pre-
sented here refers to fluid the two-phase system diethylene glycol/UCON-1145 from [10]
also known as DEG3 system. According to the experiments, the drop fluid (UCON-1145)
presented the dynamic viscosity of µin = 530 mPa and density of ρin = 995 kg/m3.
The suspending fluid (diethylene–glycol) presented dynamic viscosity and density of
µout = 28 mPa and ρout = 1110 kg/m3, respectively. Gravity was set to standard condi-
tion: g = 9.81 m/s. The surface tension coefficient was set to σ = 0.332 mN/m, which
is approximately 10 times lower than the original value found in the aforementioned
reference (σr = 3.2 mN/m), thus meaning the dimensionless parameters used at all simu-
lations were the Archimedes number N = 15,417 and the Eötvös number Eo = 340.284.
These dimensionless numbers were chosen to allow large drop deformation due to low
surface tension force while keeping numerical stability with large time steps. The initial
mesh to all test cases had approximately 16,500 nodes including centroid and 10,060 tri-
angle elements and finished with 43,000 nodes including centroid and 28,200 triangle
elements due to the adaptive remeshing described in the previous section.

A total of 10 test cases using the geometries presented in Figure 2 for the straight
channel (A = 0.00) and sinusoidal channel (A = 0.14) with single and three consecutive
drops were made, namely, single drop in straight channel, single drop in sinusoidal channel,
slug flows in straight channel with initial slug length, and slug flows in sinusoidal channel, both
with initial slug length ranging from s = {0.375, 0.875, 1.375, 1.875}; thus, the same slug
lengths s were used as comparison between different channel shapes. Additionally, 14 test
cases were carried out to investigate drop’s coalescence time tc in slug flows, varying
systematically the drop’s size factor κd = {0.86, 1.29, 1.72, 2.15} and keeping constant
the wavelength λ = 4 and the initial slug length s = 1.375, and varying systematically
the channel’s wavelength λ = {1, 2, 4, 6, 8} and keeping constant the drop’s size factor
κd = 1.72 and the initial slug length s.

The unsteady behavior of all flows in sinusoidal channel can be easily noted at all
plots presented below due to their wavy response with respect to the evolution with time
of drop rising velocity and minimum film thickness, which is the minimum distance
between any interface node to the closest wall node. On the other hand, the straight
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channel flow presents negligible shape variation after a short initial transient regime and
one can be noted by checking out the full straight lines in the same images colored in
red and blue. Furthermore, recall that the initial bubble shape at all simulations were the
equal with drop’s size factor κd = Rd/(D/2) = 1.72 and a short transient period for all
test cases were expected with time 0.0 ≤ t ≤ 28.0 for the straight channel with single and
multiples drops and 0.0 ≤ t ≤ 21.0 for all sinusoidal channels simulations.

Figure 4 shows the steady shape of a single drop in straight channel with blue color
representing the suspending fluid (diethylene–glycol) and the drop fluid (UCON-1145).
As can be seen, the large minimum film thickness at the tail of the drop stabilizes the
flow and no further variation in its shape is seen. Additionally, due to the size of the
drop relative to the channel’s diameter, the channel wall constricts the drop’s shape to
an elongated drop with a round nose due to the hydrodynamics and compacts the tail
from which the minimum liquid film thickness δ is measured. The drop’s shape, drop’s
velocity, and the minimum liquid film thickness remain constant for t > 28.0.

Figure 4. Single-drop shape evolution with time in straight channel with A = 0.00 where a drop presents a steady state
shape with no further topological change. All parameters are dimensionless.

A more challenging test case is presented in Figure 5 where a single drop shape
evolution with time in sinusoidal channel can be seen during its passage in one corru-
gated length where the drop undergoes severe topological change. The amplitude of the
wavy channel wall is A = 0.14, and a detailed description of the geometry is presented
in Figure 2. At time t = 1375.775, the drop leaves one divergent section and approaches
the convergent section; however, the channel’s constriction, where the minimum cross-
sectional area is found, stretches out the drop’s shape to its minimum thickness where the
interface approaches considerably the symmetry wall; therefore, suggesting a possible
topological change due to the interface breakup. However, for the two-phase system
numerically investigated here, no breakup has been seen for any of the presented simula-
tions with viscosity ratio µin/µout = 18.92. According to the work in [10], the breakup
of drops was observed in systems with lower viscosity ratios, more specifically in GW5
systems with (µin/µout = 0.22). Later, with time t = 1390.774, the drops shrinks to its
minimum shape length and reaches the minimum film thickness to the wall before the
convergent section begins. In time t = 1418.696 the drop stretches over again and a fixed
periodic shape motion is noted with time t→ ∞.

(a) t = 1375.775

(b) t = 1390.774

(c) t = 1418.696

Figure 5. Single drop shape evolution with time in sinusoidal channel with amplitude A = 0.14 during its passage in one
corrugated length where the drop undergoes severe topological change due to the variation of channel’s cross-sectional
area. All parameters are dimensionless.

Slug flow is now analyzed, and the drop’s shape evolution with time in straight
channel with amplitude A = 0.00 and initial liquid slug length s = 1.875 is presented
in Figure 6. As can be noted, the center drop (green color) approaches the front drop
(red color) at time t = 908.634, where coalescence takes place. It can also be seen that
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before drops collision, the center drop elongates and the minimum liquid film thickness δ
becomes larger if compared to time t = 584.694. Such a behavior is due to the increase
of drop’s velocity as result of lower pressure behind the front drop. The same physical
process was also seen when the initial slug length s is smaller, i.e., s = {0.375, 0.875, 1.375}.
However, the due to the smaller initial distance of the initial slug, the coalescence time
is shorter; therefore, for s = {0.375, 0.875, 1.375}, the following coalescence times were
computed: tc = {105.857, 228.373, 498.582}, respectively. The drop shapes of the rear and
front drops remained fairly constant during the simulations.

(a) t = 7.326

(b) t = 594.694

(c) t = 908.634

Figure 6. Drops shape evolution with time in straight channel with amplitude A = 0.00 and initial liquid slug length
s = 1.875. The rear drop is green color, the center drop is yellow and the front drop is red. The center drop is hydrodynami-
cally affected by the presence of the front and rear drops, thus simulating a complex slug flow. Drop’s coalescence is noted
between the front and center drops in time tc = 908.634. All parameters are dimensionless.

A slug flow is analyzed in a corrugated channel with amplitude A = 0.14, and the
drop’s shape evolution with time is presented in Figure 7 for the initial liquid slug length
s = 1.875. The center drop (green color) approaches the front drop (red color) at time
t = 758.822, where coalescence takes place, which is faster than the straight channel
with same initial conditions. The same physical process was also seen when the initial
slug length s was smaller, i.e., s = {0.375, 0.875, 1.375}. As seen in the straight channel,
due to the smaller initial distance of the initial slug, the coalescence time is shorter,
therefore for s = {0.375, 0.875, 1.375} the following coalescence time were computed
tc = {17.692, 113.149, 404.622} respectively. The drop shapes of the rear and front drops
presented fairly the same dynamical shape of the single drop in sinusoidal channel of
Figure 5.

(a) t = 14.016

(b) t = 357.397

(c) t = 756.071

Figure 7. Drops shape evolution with time in sinusoidal channel with amplitude A = 0.14 and initial liquid slug length
s = 1.875. The rear drop is green color, the center drop yellow, and the front drop red. The center drop is affected by the
presence of the front and rear drops, thus simulating a complex slug flow. Drop coalescence is noted between the front and
center drops in time tc = 757.822. All parameters are dimensionless.

The evolution of the drop’s rising velocity with time is presented for all test cases
simulated in this work in Figure 8. The subplots are divided according to the initial
slug length s, and the single drop flow in straight and sinusoidal channels is used as a
reference at all plots. As can be seen, the smaller is the initial slug length s, the faster the



Fluids 2021, 6, 13 10 of 16

coalescence takes place, thus resulting in topological change of the two front drops. The
drops flow in sinusoidal presented same wavy pattern of velocity variation with time
to all test cases. The full lines were used to represent the drop velocity of single drop in
straight channel (red color) and sinusoidal (blue color) and the others line types were
used for the slug flows in both channels.
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Figure 8. Center of mass rising velocity as function of time for drops in channels with amplitudes A = 0.00 (straight channel,
red color) and A = 0.14 (sinusoidal, blue color). The figures stand for different drop’s distance compared to single drop
simulations with initial liquid slug length: (a) s = 0.375, (b) s = 0.875, (c) s = 1.375, and (d) s = 1.875. All parameters are
dimensionless.

Two more interesting results are presented in Figure 9 for initial slug length s = 1.875,
where the variation of the ratio of the drop’s perimeter P relative to its initial perimeter
Pinit is investigated in two corrugated lengths in Figure 9a, and the minimum film
thickness δ evolution is presented for two corrugated lengths in Figure 9b. As reference,
the single drop flow in the straight channel (red color) and the sinusoidal channel (blue
color) is plotted against the slug flow in sinusoidal channel. As can be noted, the drop’s
perimeter ratio P/Pinit of the slug flow differs to that of the single drop flow (blue color)
when the liquid film thickness hits its maximum length; however, its evolution returns to
the same behavior of the single drop flow. On the other hand, the liquid film thickness in
the slug flow do not present significant variations if compared to the single drop flow
in sinusoidal channel; however, it can be noted that the sinusoidal channel geometry
reduces considerably the mean liquid film thickness when compared to the single drop in
straight channel (red color).
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Figure 9. Single and multiple drops flow in channels with amplitudes A = 0.00 (straight channel, red color) and A = 0.14
(sinusoidal, blue color) in two corrugated lengths for (a) change in drop’s perimeter ratio P relative to its initial perimeter Pinit

and (b) film thickness evolution. The figures stand for slug flow with drop’s initial slug lengths of s = 1.875. All parameters
are dimensionless.

The axisymmetric streamlines ψ are plotted along with the velocity components
vr = −(1/r)∂ψ/∂x and vx = (1/r)∂ψ/∂r and pressure p in Figure 10a to highlight the
wake structure of center and front drop’s before coalescence in slug flow with drop’s
initial slug lengths s = 1.875. In Figure 10b,c the velocity components, vx and vr, and
pressure are interpolated axially between 9.3 ≤ x ≤ 9.7 at radius r = 0.1, respectively,
showing the variation of drop’s velocity and the pressure drop between the center and
front drops.
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Figure 10. Wake structure of two consecutive drops before coalescence with drop’s initial slug lengths of s = 1.875.
(a) Axisymmetric streamlines ψ of the center and front drops, (b) velocity components vx and vr interpolated axially
between 9.3 ≤ x ≤ 9.7 at radius r = 0.1, and (c) pressure distribution interpolated axially between 9.3 ≤ x ≤ 9.7 at radius
r = 0.1.

Figure 11 depicts the trend of the coalescence time tc relative to the initial slug length
s for the straight and sinusoidal channels. As can be noted, for initial slug length s ≥ 0.875,
the coalescence time increases linearly as s increases. Additionally, as noted previously,
the sinusoidal channel anticipates the coalescence time for the same flow parameters of
the straight channel.
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Figure 11. Trend of the coalescence time relative to the initial slug length s for the straight and
sinusoidal channels. For initial slug length s ≥ 0.875, the coalescence time increases linearly as s
increases. All parameters are dimensionless.

Parametric study: wavelength λ

In the first parametric study, the wavelength λ has been systematically changed
for values λ = {1, 2, 4, 6, 8} while keeping constant the drop’s size factor κd = 1.72
and all dimensionless numbers used at all simulations for two initial slug lengths
s = {1.375, 1.875}. The standard test case for this parametric study is the straight channels
with A = 0.00 in which the wavelength approaches infinity, where the coalescence time
was tc = {500.268, 909.507}, respectively, for the initial slug lengths s = {1.375, 1.875}. In
the sinusoidal channels, the wavelength parameters λ = {1, 2, 4, 6, 8} presented coales-
cence time of tc = {130.783, 771.516, 407.099, 571.755, 36.190}, respectively, indicating that
the coalescence time is not linearly related to the channel’s wavelength as can be seen in
Figure 13.

In Figure 12, the final solution before coalescence is shown for all wavelength tested
in this parametric study for initial slug length s = 1.375 and the respective coalescence
time. For the wavelength λ = 2, no coalescence between the drops took place for time
t < 1060; therefore, such a wavelength seems to be critical for the simulation parameters
used in this work. All the others wavelengths have presented lower coalescence time
relative to the straight channel with same parameters.

Figure 13 reveals the coalescence time tc for the straight A = 0.00 and sinusoidal
A = 0.14 channels relative to the wavelengths. Is is clear that the wavelength λ = 2 is
critical for the presented simulation parameters where the coalescence time tc is much
larger than the straight channels with same simulation parameters. On the other hand, all
the others wavelengths anticipates the coalescence process when compared to the straight
channels.
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(a) λ = 1, tc = 130.783

(b) λ = 2, t < 1060.000 (no coalescence)

(c) λ = 4, tc = 407.009

(d) λ = 6, tc = 57.175

(e) λ = 8, tc = 36.190

(f) λ→ ∞, t = 500.268

Figure 12. Slug flow of three consecutive drops in channels with amplitude A = 0.14, drop size factor κd = 1.72, wavelength
λ = {1, 2, 4, 6, 8, ∞}, and initial slug length s = 1.375. For subfigure (e), wavelength λ = 8 in the rear and center drops
coalesces in time tc = 36.190, while in the others the coalescence takes place between the center and front drops. It is also
noted that in subfigure (b) at wavelength λ = 2 no coalescence took place in time t <= 1060.000.
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Figure 13. Trend of the coalescence time tc relative to the channel’s wavelength λ for the straight
A = 0.00 and the sinusoidal A = 0.14 channels. It is noted that for wavelength λ = 2, the
coalescence time tc is higher than the coalescence time for the straight channel with same parameters.
The others wavelengths have presented smaller coalescence time. All parameters are dimensionless.

Parametric study: drop’s size factor κd

In the last parametric study, the drop size factor is systematically changed for values
κd = {0.86, 1.29, 1.72, 2.15}while keeping constant the channel’s wavelength λ = 4, initial
slug length s = 1.375, and amplitude A = 0.14 for the corrugated channel as well as
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for the straight channel A = 0.00. In Figure 14, the center drop’s perimeter ratio P/Pinit
within two corrugated lengths is presented. As expected, the larger is the drop’s size
factor κd, the larger is the perimeter ratio variation.
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Figure 14. Center drop’s perimeter ratio P/Pinit within two corrugated lengths for sinusoidal
with amplitude A = 0.14, initial slug length s = 1.375 and drop size factor for several drops:
κd = {0.86, 1.29, 1.72, 2.15}. As expected, the the larger is the drop’s size factor κd, the larger is the
perimeter ratio variation.

Figure 15 presents a parametric study of coalescence time tc between drops in slug
flow for the sinusoidal channel with amplitude A = 0.14, initial slug length s = 1.375,
and several drop’s size factor κd = 0.86, 1.29, 1.72, 2.15. For κd = 0.86 the rear and center
drops coalesce, where for the others, the coalescence takes place between the center and
front drops. Before coalescence, the drop geometries are similar for κd > 1.29 and it takes
place in the same channel region. The drop’s body increases and the drop’s size factor
increases.

(a) κd = 0.86, tc = 212.550

(b) κd = 1.29, tc = 529.549

(c) κd = 1.72, tc = 407.099

(d) κd = 2.15, tc = 375.564

Figure 15. Parametric study of coalescence time tc between drops in slug flow for the sinusoidal channel with amplitude
A = 0.14, initial slug length s = 1.375 and several drop’s size factor κd = 0.86, 1.29, 1.72, 2.15. In subfigure (a), the rear
and the center drops coalesce, where for the others the coalescence takes place between the center and front drops. All
parameters are dimensionless.
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Figure 16 shows the trend of the coalescence time relative to the initial slug length
s for the sinusoidal channel with amplitude A = 0.14. The drop’s size factor κd = 1.29
presented larger coalescence time tc for corrugated channels relative to the straight chan-
nels with same parameters. The others drop’s size factors presented smaller coalescence
time for the corrugated channel with amplitude A = 0.14 relative to the straight chan-
nel A = 0.00. Therefore, it is expected to have smaller coalescence time in corrugated
channels.
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Figure 16. Trend of the coalescence time relative to the initial slug length s for the sinusoidal
channel. The drop’s size factor κd = 1.29 presented larger coalescence time tc for corrugated
channels relative to the straight channels with same parameters. The others drop’s size factors
presented smaller coalescence time for the corrugated channel with amplitude A = 0.14 relative to
the straight channel A = 0.00. All parameters are dimensionless.

5. Conclusions

In this work, a numerical investigation was carried out to analyze the drop velocity,
film thickness, and shape variation for one and three drops in buoyancy-driven motion
for diethylene glycol/UCON-1145 (DEG3) two-phase system in straight and sinusoidal
channels with dimensionless wavelength λ = 4 and wave amplitude A = 0.14. A state-of-
the-art model was employed to accurately compute the dynamics of the drop’s interface
motion using a modern moving frame/moving mesh technique within the arbitrary
Lagrangian–Eulerian framework which allowed the simulation of very large domains.
Several cases with different initial slug lengths s were simulated, and we concluded
that the sinusoidal channel anticipates the coalescence of successive drops in slug flows
when compared to the straight channel with same flow parameters. Additionally, two
parametric studies have been carried out to evaluate drop coalescence time in slug flows
varying wavelength λ and drop size factor κd. It was observed that the sinusoidal channels
with amplitude A = 0.14 is likely to decrease the coalescence time relative to the straight
channels, except for wavelength λ = 2 and κd = 1.29 where a different trend has been
observed.
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