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Abstract: We present a method for computing potential flows in planar domains. Our approach is
based on a new class of techniques, known as “lightning solvers”, which exploit rational function
approximation theory in order to achieve excellent convergence rates. The method is particularly
suitable for flows in domains with corners where traditional numerical methods fail. We outline
the mathematical basis for the method and establish the connection with potential flow theory.
In particular, we apply the new solver to a range of classical problems including steady potential flows,
vortex dynamics, and free-streamline flows. The solution method is extremely rapid and usually
takes just a fraction of a second to converge to a high degree of accuracy. Numerical evaluations
of the solutions are performed in a matter of microseconds and can be compressed further with
novel algorithms.
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1. Introduction

This paper is concerned with the numerical solution of the planar Laplace equation

∇2 f (z) = 0, z ∈ D, (1)

in contexts relevant to fluid dynamics. The domain D is assumed to be unbounded and simply connected
(or periodic) and z = x + iy is the spatial co-ordinate. Laplace’s equation is sometimes considered the
simplest two-dimensional (2-D) partial differential equation but, nevertheless, its numerical solution is
challenging in many scenarios of practical interest. In particular, typical numerical methods struggle when
the boundary of the flow domain ∂D is not smooth; for example, the solution of (1) admits a singularity
where the boundary has sharp corners [1], which hinders traditional techniques such as finite element
methods [2,3] and boundary element methods [4]. Although these approaches have been successfully
adapted to account for corners (e.g., [5]), their implementation is complex and requires expert knowledge.
Recently, a new method that makes use of rational function approximation theory has been proposed
for solving Laplace’s equation in domains with corners [6,7]. Dubbed the “lightning solver” (due to the
analogy of lightning striking a corner because of a singular electric potential there), this new solution
technique is extremely fast, accurate, and straightforward to implement. Herein, we use the lightning
method to devise new strategies for solving potential flow problems in domains with corners.

Potential flows are foundational to fluid mechanics. In the fluid mechanics pedagogy, the first
problem that students encounter is often incompressible and irrotational flow past a cylinder.
Equipped with the solution to this simple flow, students progress to more complicated geometries via
conformal mappings such as the Joukowski map [8]. The ensuing solutions can usually be expressed
in closed form and are, thus, highly interpretable. Much of classical aerodynamics was built on this
approach [9–11] and the associated solutions continue to be relevant to modern aerodynamics studies
today [12,13]. Idealised flow also commonly arises as an outer region problem in asymptotic analyses,
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and can then be matched to an inner boundary layer [14]. Another way to improve the physical fidelity
of potential flows is by incorporating the effects of flow separation. The Brown–Michael equation [15]
is a popular method for modelling point vortices shed from sharp corners [16–18] whereas contour
dynamics models the shedding and roll-up of vortex sheets [19,20]. In Section 3.4, we shall see that the
lightning approach of the present work can be used to rapidly compute point vortex trajectories in
complicated domains. Free-streamline theory [21,22] provides an alternative approach to modelling
flow separation; in Section 3.5, we shall use the lightning solver to calculate the idealised, separated
flow past a flat plate.

The mathematically tractable structure of potential flows has inspired a rich mathematical
theory rooted predominantly in complex analysis. The theory of conformal mappings [23–25] has
enabled the study of potential flows in complicated domains beyond the aforementioned Joukowski
map. Moreover, a theory for multiply connected flow domains has recently been expounded by
Crowdy [26,27], and the present author adapted these studies to periodic domains [28]. Both of these
approaches make use of the transcendental Schottky–Klein prime function [29]. The prime function
also provides a closed-form expression for the Kirchhoff–Routh path function [30], which governs the
trajectories of point vortices [31]. Riemann–Hilbert problems and singular integral equations are also
relevant, and have previously been used to study flows through cascades [32], porous aerofoils [33],
and dissolution and erosion [34].

Corners are obviously ubiquitous in real-life engineering applications and are often responsible
for important physical behaviour; the local behaviour of flow past a sharp corner can have a significant
impact on the global properties of the flow. For example, the Kutta condition implies that the flow
at the sharp trailing edge of an aerofoil should depart the wing smoothly [35]. This specification
determines the circulation around the wing and, thus, its lift [36]. At the leading edge of a wing,
the leading-edge suction is critical in determining the thrust on unsteady bodies and has recently been
proposed as a tool for modelling the onset of vortex shedding [37]. This approach has been coupled
with real measurement data in order to account for absent physics via data assimilation to obtain
a model that is simultaneously fast and physically faithful [38]. In summary, the flow behaviour at
corners must be accurately modelled for physically relevant results.

The remainder of this article is arranged as follows. In Section 2, we explain the lightning
solver framework and outline the mathematical details. We then apply this framework to a range
of scenarios including potential flows, vortex dynamics, and free-streamline problems in Section 3.
Finally, we present a discussion of the results in Section 4. Most of the results that are produced in
this paper are computed using straightforward adaptations of the MATLAB code laplace.m available
at [39]. The reported solve times are based on computations performed on a 2015 MacBook Pro with a
2.9 GHz processor.

2. Method

We now present the main mathematical ideas behind the lightning method.

2.1. The Lightning Method

We are interested in solving Laplace’s equation in an unbounded 2-D domain D with corners on
the boundary ∂D. Solutions of Laplace’s equation typically exhibit singularities with behaviour zα near
corners; for example, zα represents the complex potential for flow around an infinite wedge with a
corner of interior angle π(2− 1/α). The absence of viscosity and the infinite curvature of the boundary
at the corner imply that the flow there either has infinite velocity or is stagnant. The presence of these
singularities suggests that the recently developed lightning solvers can be an efficient and accurate
method for computing potential flows.

The ideas behind the lightning method are based in rational approximation theory. A rational
function is simply a ratio of two polynomials; we say that a rational function is type (m, n) if the
numerator is a polynomial of degree at most m and the denominator is a polynomial of degree at most
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n. A detailed discussion of rational approximation can be found in chapters 22 to 27 of [40]. A principal
result of rational approximation is due to Newman [41], who showed that the absolute value function
|x| can be approximated on the interval x ∈ [−1, 1] with root-exponential accuracy. In mathematical
language, there exist constants A, C > 0 and type (n, n) rational approximants rn such that

max
−1≤x≤1

||x| − rn(x)| ≤ Ae−C
√

n. (2)

In contrast, a polynomial approximant can achieve, at best, algebraic convergence (i.e., the error
decays in proportion to n−1). Motivated by this result, Gopal and Trefethen [6] proved that similar
approximants exist for more general types of singularities of the form zα. Again, it is possible to
attain root-exponential convergence when approximating with rational functions; there exist constants
A, C > 0 and type (n, n) rational approximants rn, such that

max
z∈H
|zα − rn(z)| ≤ Ae−C

√
n (3)

where H represents the closed upper half of the unit disc. Theorem 2.3 of [6] extended this result to
prove that solutions of Laplace’s equation in convex polygons can be represented as rational functions
with root-exponential accuracy. Although the theoretical results of [6] were valid when the domain is
the interior of a convex polygon, the numerical results of the present paper indicate that they also hold
when the domain is the exterior of some bounded domain.

Crucially, the rational approximants rn in both (2) and (3) possess poles that are exponentially
clustered near zero with exponentially decreasing residues. This observation, as well as the above
theoretical results, inform a numerical scheme for Laplace’s equation by considering an ansatz with
poles clustered exponentially close to the corners of the domain. Gopal and Trefethen [6] suggest an
ansatz of the form

f (z) =
n1

∑
j=0

aj

(z− z∗)j

︸ ︷︷ ︸
Runge part

+
n2

∑
j=1

bj

z− zj
︸ ︷︷ ︸

Newman part

(4)

where z∗ is a point near the center of ∂D, {zj | j = 1, . . . , n2} is a prescribed set of poles and
{aj | j = 0, . . . , n1} and {bj | j = 1, . . . , n2} are sets of unknown, complex constants. Equation (4)
is simply a rational function in partial fraction form. Because rational functions are analytic away from
the poles, if all of the poles {zj} are outside D then (4) is a solution to Laplace’s equation. The Runge
part in (4) corresponds to the smooth part of the solution: it is a polynomial in 1/(z− z∗). If ∂D is
smooth then the Runge part is all that is necessary in the ansatz. Conversely, the Newman part takes
the singularities on the corners into account.

A key feature of the lightning method is that the poles in the Newman part {zj} are clustered
exponentially close to the corners in order to exploit the root-exponential convergence guaranteed
by (3). In particular, there is evidence to suggest that the poles should follow a “tapered” distribution
near the corners [42]. In this case, the poles that are clustered around a given corner should be
of distance

e−σ(
√

n−
√

j), 1 ≤ j ≤ n (5)

from that corner. In our numerical results we use σ = 3 although σ = 4 is also a good choice.
By the linearity of Laplace’s equation, the coefficients {aj} and {bj} can be determined by fitting

f to satisfy some prescribed linear boundary conditions. This is achieved by sampling the ansatz (4)
at a number of points on the boundary and solving for {aj} and {bj} in the least-squares sense.
The sample points should also be exponentially clustered near the corners in order to ensure that the
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poles exponentially near the corners are properly resolved. For example, if the boundary condition is
collocated at m points then the coefficients are given by

arg min
c
‖Ac− d‖2 (6)

where c ∈ R2n1+2n2+2 is the stacked vector of the real and imaginary parts of the unknown coefficients,
d ∈ Rm represents the sampled boundary condition, and A ∈ Rm×(2n1+2n2+2) represents the sampled
basis functions in (4). For example, suppose that the boundary condition is Im[ f (z)] = d(z) for some
function d. Subsequently, for an M× 1 vector of sample points Z, we have

d = d(Z), c =




Re[a]
Im[a]
Re[b]
Im[b]


 , A =

[
R N

]
(7)

where the blocks R and N correspond to the Runge and Newman parts respectively:

R =
[
0 Im

(
1

Z−z∗

)
· · · Im

(
1

(Z−z∗)n1

)
1 Re

(
1

Z−z∗

)
· · · Re

(
1

(Z−z∗)n1

)]
, (8)

N =
[
Im
(

1
Z−z1

)
· · · Im

(
1

Z−zn2

)
Re
(

1
Z−z1

)
· · · Re

(
1

Z−zn2

)]
. (9)

Thus, Im[ f (Z)] = Ac. It is important to note that the matrix R is exponentially ill-conditioned since
its columns are the real and imaginary parts of the columns of a Vandermonde matrix. To address
this issue, the Vandermonde matrix is not formed explicitly: instead, we form an equivalent matrix
with orthogonal columns via the Vandermonde with Arnoldi algorithm [43]. Using these matrix
constructions, the least-squares problem (6) can be easily solved using, for example, the backslash
operator in MATLAB. Having obtained the coefficients {aj} and {bj}, the rational approximant f can
be computed via (4). This completes the description of the lightning solver. Pseudocode describing the
main steps is included in Algorithm 1 and we refer the reader to [6] for further details.

Algorithm 1: Laplace lightning solver (Gopal and Trefethen, 2019 [6]).

Input: A domain boundary ∂D, boundary data d(z) and a tolerance ε

Output: A function handle f that is harmonic and satisfies the boundary conditions.
begin

Identify the m corners of the boundary and define the interior point z∗
for n increasing (with

√
n approximately evenly spaced) do

1 Fix n1 = O(mn) poles {zj} clustered inside the corners according to (5)
2 Fix the order n2 = O(n) inverse monomials 1, . . . , (z− z∗)−n2

3 Define O(n1 + n2) sample points on the boundary
4 Form an orthogonalised version of R using Vandermonde with Arnoldi [43]
5 Construct the data matrix A and vector d
6 Solve the least squares problem arg minc ‖Ac− d‖2

7 Exit if ‖Ac− d‖∞ < ε, n becomes too large, or the error is increasing
end
Construct the function handle f according to (4)

end

The lightning solver belongs to a broader class of techniques known as Methods of Fundamental
Solutions (MFS) [44–46]. In these methods, the solution is expanded as a distribution of free-space
solutions whose coefficients are tuned to satisfy a given boundary condition. However, the lightning
solver differs from typical MFS in two important ways. Firstly, the singularities are exponentially
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clustered near the corners, which is a new idea in MFS. Secondly, the fundamental solutions
that are used here are dipoles (1/(z − zj)), whereas traditional MFS typically use point sources
(log(z− zj)). These two qualities are essential to the root-exponential convergence of solutions that we
observe herein.

The main idea of this paper is to use the lightning solver to solve potential flow problems. We will
apply this approach to a plethora of scenarios to showcase its versatility, but as a first example,
consider uniform flow past a stationary boundary ∂D. If w represents the complex potential then
the no-flux condition states that Im[w(z)] = 0 for z ∈ ∂D and the far-field condition is w ∼ z as
|z| → ∞. Thus, we may write w(z) = z + f (z) where f is the ansatz expressed in (4). After arranging
the poles to cluster near the corners, the coefficients aj and bj are chosen in order to satisfy the no-flux
condition. The resulting streamlines are plotted in Figure 1a for a square with a circular sector removed.
The background color represents the horizontal perturbation velocity, which can be obtained by
differentiating f . In Figure 1b, we plot the convergence of the solution as the number of degrees of
freedom (N = 2(n1 + n2 + 1)) is increased. The problem is solved to six digits of accuracy in 0.5 s.
Evaluating the solution takes 20 microseconds for each point. The root-exponential convergence is
clear, and the approximation is accurate throughout the entire boundary, including the corners.

(a) Potential flow solution (b) Solution convergence

Figure 1. Incompressible, irrotational (i.e., potential) flow past a square circular sector removed.
The problem takes 0.5 s to solve to six digits of accuracy and 5 s for eight digits. In (a) the black dots
represent the poles. The background colour in (a) represents the horizontal velocity of the perturbation
to the flow from uniformity. Note that in (b) the y-axis is on a log scale whereas the x-axis is

√
N,

so that a straight line indicates root-exponential convergence.

2.2. Compression of Solutions

While the rational function representation (4) is very fast to evaluate, even faster evaluations
are possible. In certain applications—such as the vortex dynamics example we shall encounter
later—the solution f will be evaluated a large number of times and thus an inexpensive evaluation of
f is desirable.

Recently, the AAA (adaptive Antoulas–Anderson) algorithm has emerged as a robust, flexible,
and accurate tool for rational approximation and compression [47,48]. Given sets of sample points
Z and function values F = { f (z) | z ∈ Z}, the AAA algorithm returns a rational function r that
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approximates f to some specified tolerance. One important feature of the AAA algorithm is that the
rational function is expressed in barycentric form, i.e.,

r(z) =
m

∑
j=1

f jwj

z− tj

/
m

∑
j=1

wj

z− tj
. (10)

The set of support points {tj} ⊆ Z is a subset of the sample points and wj are known as the weights.
Note that r(tj) = f j so r interpolates f at the support points. The AAA algorithm selects support
points and weights by iteratively reducing the residual error. At each iteration, the next support point
is chosen “greedily” as the one with the largest residual error between the approximant and function
value. Subsequently, the weight wj is updated by solving a minimisation problem via a singular value
decomposition (SVD). When a desired accuracy is reached then the algorithm terminates—(10) consists
of m support points and thus m iterations. These features—the barycentric form, greedy selection
of support points and least-squares minimisation via SVD—are all central to the success of the
AAA algorithm. The algorithm is straightforward to implement and use: the original article [47]
contained an implementation in 40 lines of MATLAB code and a full implementation is available in
Chebfun [49] (www.chebfun.org). The author has also developed a periodic version of the AAA
algorithm, called AAAtrig [50]. The algorithm is built on the same principals as the original AAA
algorithm, except the barycentric form (10) is replaced with its periodic analogue.

Let us return to the relevance of AAA to our compression problem. Suppose that we have
computed a solution f of the form (4) to Laplace’s equation satisfying some boundary conditions. If we
evaluate f at a number of points on the boundary and run these points through the AAA/AAAtrig
algorithm then we obtain a new function r that approximates f on the boundary. If r contains no
poles in D, then r also solves Laplace’s Equation (1). Moreover, AAA/AAAtrig usually selects an
approximation that uses fewer poles than the original function and is, thus, faster to evaluate. Moreover,
by the maximum value principle, |r− f | is maximised on the boundary, so the error in D is guaranteed
to be no larger than the approximation error on the boundary.

We illustrate the effects of compression in Figure 2. The problem is uniform flow around a
rectangle with a reentrant corner. The lightning solver uses 617 poles to achieve eight digits of
accuracy. Figure 2c indicates that the algorithm attains root-exponential convergence. After a sample
of the boundary points have been passed through AAA, we obtain a rational approximant using only
412 poles. Thus, the new approximant r is faster to evaluate than the original solution f . Note that
AAA has chosen a slightly different set of poles with which to represent the function; we believe that
this alternative choice of poles is responsible for the enhanced compression. The idea of compressing
harmonic functions using AAA originated in [51].

(a) Full solution
(617 poles)

(b) Compressed solution
(412 poles)

(c) Solution convergence

Figure 2. An example of AAA compression for the flow past a rectangle with a reentrant corner.
The black dots in (a) and (b) indicate the poles used to represent the full and compressed solutions
respectively.

www.chebfun.org
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3. Results and Discussion

Having outlined the mathematical preliminaries of the lightning solver, we now consider a
number of fluid dynamics problems.

3.1. Potential Flows

The examples presented in the previous section were for simple uniform flows. The inclusion
of more complicated flows follows in an analogous manner. Suppose that a given flow—which may
consist of a background flow and a distribution of singularities in D—has a free-space solution g(z).
Subsequently, we represent the complex potential as w(z) = f (z) + g(z). Thus, f (z) is the correction
term that is induced by the boundaries and can be found using the methods of Section 2. In order for
the boundary to be a streamline, we enforce the boundary condition

Im[ f (z) + g(z)] = 0, for z ∈ ∂D. (11)

For example, suppose that we wish to calculate the potential flow that is generated by a uniform flow
of magnitude U at an angle α with a distribution of N vortices of circulations {Γj} at locations {vj}.
The free-space solution for the complex potential is

g(z) =
1

2πi

N

∑
j=1

Γj log
(
z− vj

)
+ Uze−iα. (12)

The lightning method presented in Section 2 can used to find a harmonic function that satisfies the
boundary condition (11). In Figure 3, we visualise the flow past a curved boundary embedded in
a uniform flow with two point vortices by plotting a set of streamlines and the horizontal velocity
perturbation.

The method is also valid when the boundary is not a streamline. For example, when the boundary
is rotating about the point c with angular velocity ω, (11) is replaced by

Im[ f (z) + g(z)] = Im
[

dc
dt

(z− c)
]
− ω

2
|z− c|2, for z ∈ ∂D. (13)

(a) Solution (b) Error convergence

Figure 3. Uniform flow past the polycircular domain from [52] with embedded point vortices. The lines
are the streamlines and background color is the horizontal perturbation velocity. The black dots
represent the prescribed poles of the rational function. The solution converges to five digits of accuracy
in 0.8 s and 8 digits in 6 s.
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3.2. Periodic Domains

Potential flows through periodic domains arise in a number of practical scenarios
including turbomachinery flows [32], super-hydrophobic surfaces [53], and geological flows [54].
Recently, the author proposed a “calculus” for the analytical treatment of potential flows in general
periodic domains with multiply connected period windows [28] thus extending the calculus of
vortex dynamics proposed by Crowdy [27]. The analytical solutions in that work were based
on the Schottky–Klein prime function [29]. The present lightning approach may be viewed as a
complementary approach to those analytical solutions.

We now seek solutions of Laplace’s equation that are periodic so that f (z) = f (z + 2πk) for
k ∈ Z (solutions of different periods can easily be constructed by rescaling the domain). An analogous
approach to that of Section 2 can be employed with the ansatz (4) replaced by

f (z) =
n1

∑
j=0

aj cot
(

z− z∗
2

)j
+

n2

∑
j=1

bj cot
( z− zj

2

)
. (14)

The connection between the periodic ansatz (14) and the original ansatz (4) is clarified by noting the
partial fraction expansion of cotangent:

cot(z) =
∞

∑
k=−∞

1
z− kπ

. (15)

Thus, (14) is analogous to (4) when the poles in (4) are repeated with period 2π. Similarly to the
non-periodic case, the coefficients {aj} and {bj} are found by solving the least-squares problem.

In Figure 4 we plot the streamlines and horizontal velocity perturbation for uniform flow at angle
−π/4 past a periodic array of curved boundaries with embedded point vortices. The periodicity has a
significant effect on the flow field and the vortices can be seen to deflect the flow angle. At present,
this problem cannot be solved with conformal maps, because the form of the required (polycircular)
maps has not yet been found. Indeed, the general form of periodic polygonal maps has only been
found recently [55]. Accordingly, the lightning approach provides a new method for tackling flows in
periodic domains that were previously inaccessible.

(a) Solution (b) Error convergence

Figure 4. Uniform flow past a periodic array of boundaries with embedded point vortices. The black
dots represent the prescribed poles of the rational function. The solution converges to 9 digits of
accuracy in 0.8 s.
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3.3. The Kutta Condition

In the lightning ansatz (4), the circulation around ∂D is necessarily zero. It is possible to give ∂D
arbitrary circulation Γ by replacing the ansatz (4) with

f (z) =
n1

∑
j=0

aj

(z− z∗)j +
n2

∑
j=1

bj

z− zj
+

Γ
2πi

log(z− z∗), (16)

and solving for {aj} and {bj} subject to the relevant boundary condition. However, in most
applications, the circulation is not prescribed, but must be found as part of the problem. One method
for selecting the circulation is to apply the Kutta condition [35,36]. On ∂D, a corner ẑ is nominated as
the downstream corner and the Kutta condition states that the fluid should leave ẑ smoothly. In our
potential flow framework (for a stationary boundary), this is equivalent to specifying that the corner
represents a stagnation point. In other words, the circulation must be such that the velocity vanishes at
the nominated corner, i.e.,

f ′(ẑ) + g′(ẑ) = 0, (17)

where g is the free-space solution and the prime ′ indicates differentiation with respect to z. Practically,
enforcing the Kutta condition simply involves supplementing the least-squares problem (6) with an
extra row corresponding to the vectorised form of (17). Note that only one extra row is required as (17)
is already satisfied in one direction by the no-flux condition.

In Figure 5, we illustrate the effect of the Kutta condition by computing the uniform flow past a
bullet-shaped object with and without the Kutta condition applied. Applying the Kutta condition to
the bottom right corner drastically increases the flow velocity in the vicinity of the boundary. It can
be seen that the flow departs the selected corner smoothly, thus indicating that the Kutta condition is
indeed satisfied.

(a) Kutta condition not applied (b) Kutta condition applied

Figure 5. An illustration of the effects of the Kutta condition on the flow past a bullet-shaped object.
The solutions are computed to 6 digits of accuracy; in (a) the solver takes 0.3 s and in (b) the solver
takes 0.8 s. The color scale is the same in both figures.

3.4. Vortex Dynamics

The transport of vortical structures is an important phenomenon in fluid mechanics and is
relevant to flow control, turbulence modelling, vortex shedding, and flow separation. A point vortex
may be used in order to represent a discretised quantity of vorticity as an approximation to more
complicated structures [56]. The dynamics of these point vortices—which has been described as
“a classical mathematics playground” [57]—is another area that is amenable to these lightning methods.
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The point vortex equation states that the velocity of a vortex is equal to the de-singularised
velocity field at the vortex center [58]. Mathematically, if z is the position of a vortex of circulation Γ,
then the motion of the vortex is governed by

dz
dt

= w̃′(z), (18)

where w is the complex potential and w′ is the complex velocity. In (18), the tilde indicates that the
velocity field has been de-singularised, i.e.,

w̃′(z) = lim
ẑ→z

(
dw
dẑ

(ẑ)− Γ
2πi

1
ẑ− z

)
. (19)

Accordingly, if we know the velocity field w when the vortex is at z then we can calculate the trajectory
of the vortex. We could, in principle, use the lightning method of Section 3.1 to directly calculate w
at each time step, but, since the vortices are moving, this approach would require solving a different
Laplace problem at each time step, which would become prohibitively expensive. Nevertheless, we can
still use the lightning framework to attack this problem.

Our approach is to use the lightning solver to conformally map the physical domain to a
simple domain and then analytically construct w with the method of images. There are a number of
techniques available that can be used to compute conformal mappings. The pre-eminent method is
the Schwarz–Christoffel transformation [23,55,59] which provides analytical formulae for conformal
maps to polygonal domains in terms of a number of accessory parameters that must generally be
determined numerically. To circumvent this “parameter problem”, an approach for numerically
computing conformal maps was suggested in [60]; we briefly review the approach here.

In the simply connected case, the natural domain to map into is the interior of the unit disc.
We denote the unit disc coordinate as ζ and the conformal map f , so that z = f (ζ). Figure 6 illustrates
an example of a mapping. The inverse map (from the physical domain to the circular domain) is
written as f−1, so that ζ = f−1(z).

Figure 6. An example of a conformal map computed using the method of [60]. The red dots indicate
the poles of the map and their size is proportional to their residue.
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To compute the mappings we express the inverse map as

f−1(z) =
eh(z)

z
(20)

for analytic h. Taking the logarithm of both sides and evaluating on the boundary yields

log( f−1(z)) = h(z)− log(z) = i arg(ζ), for z ∈ ∂Dz, (21)

where we have used the fact that the boundary ∂Dz maps to |ζ| = 1. Note that the logarithm on the left
side is pure imaginary since we are evaluating it on the unit circle. This imaginary function is unknown
as we do not know the image of each boundary point a priori; we only know that the boundary is
mapped to the unit circle. Accordingly, to determine f−1, we must find an analytic function who’s real
part satisfies (21). In other words, we want to solve the Laplace problem

∇2h(z) = 0, for z ∈ Dz, (22)

Re[h(z)] = log(|z|), for z ∈ ∂Dz, (23)

Im[h(z)]→ 0, as |z| → ∞. (24)

The last equation specifies a degree of freedom in the map and simplifies some of the ensuing formulae.
This type of Laplace problem is amenable to the method that is presented in Section 2: we consider an
ansatz in the form of a rational function (4) with poles clustered near the corners and then solve for
the coefficients in the least-squares sense by collocating (23) on the boundary. Given h, we obtain f−1

by (20).
Now, we may compute the forward mapping f using the approach of [51]. By sampling f−1(z)

at a number of points on the boundary z ∈ ∂Dz, we are equipped with a set of sample points {zj}
and a set of function values {ζ j} where ζ j = f−1(zj). Subsequently we construct an approximant
with the AAA algorithm using {zj} as function values and {ζ j} as sample points. Thus, provided a
rich enough sample set is selected, the approximant produced by AAA maps the boundary ∂Dζ to
∂Dz; in other words, the new approximant computed by AAA approximates the forward mapping f .
Moreover, by the maximum value principle, the accuracy of the approximation to the conformal map
is bounded by the error on the boundary. Accordingly, we are now free to accurately and quickly map
between the circular and physical domains using f and f−1.

Armed with these numerical representations of the mappings, we now transform the point vortex
Equation (18) into the circular domain Dζ . Carefully applying L’Hôpital’s rule to (18) yields

dζ

dt
=

1
| f ′(ζ)|2

(
W̃ ′(ζ)− Γ

4πi
f ′′(ζ)
f ′(ζ)

)
, (25)

where W(ζ) = w(z) is the complex potential in Dζ and W̃ ′(ζ) is the de-singularised velocity field
in Dζ :

W̃ ′(z) = lim
ζ̂→ζ

(
dW
dζ̂

(ζ̂)− Γ
2πi

1
ζ̂ − ζ

)
. (26)

The advantage of our approach is that the complex potential in the ζ-plane can be constructed
analytically. For example, the complex potential that is induced by an arrangement of N vortices of
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strengths {Γj|j = 1, . . . , N} located at positions {ζ j|j = 1, . . . , N} embedded in a background uniform
flow of strength U at angle of attack α is given by

W(ζ) =
N

∑
j=1

Γj

2πi
log

(
ζ − ζ j

|ζ j|(ζ − 1/ζ j)

)
+ aU

(
e−iα

ζ
+ eiαζ

)
. (27)

where a = eh(∞) is the residue of the simple pole of the map. In this case, the de-singularised velocity
at ζk is

W̃ ′(ζk) =
N

∑
j=1
j 6=k

Γj

2πi
1

ζk − ζ j
−

N

∑
j=1

Γj

2πi
1

ζk − 1/ζ j
+ aU

(
−e−iα

ζ2
k

+ eiα

)
. (28)

Substituting (28) into the transformed point vortex equation (25) results in an autonomous dynamical
system that can be integrated with standard numerical techniques such as the Euler method or
Runge–Kutta methods. In Figure 7, the resulting trajectories are plotted for 30 vortices outside a curved
domain. The vortices have strengths that are randomly distributed in the interval [−1, 1] and there is
no background flow. A number of vortices are shot out to infinity, but a distinct structure emerges
that traces out the boundary ∂Dz. This model could be used as, for example, an approximation for
the motion of oceanic eddies [17] around a boundary. Alternatively, on use of the Blasius theorem,
this model could provide estimates for the forces exerted on ∂Dz due to the transport of vorticity.
The sound produced by such interactions could be also analysed with the vortex sound model of
Howe [61].

This approach also applies to multiply connected domains—the analogous complex potential (27)
can be constructed in a multiply connected circular domain using the formulae of Crowdy [26,27].
Additionally, this conformal mapping method can be applied to Kirchhoff–Routh theory to study the
Hamiltonian dynamics of point vortices [58,62]. Again, analytic formulae for the multiply connected
Kirchhoff–Routh path function are readily available [31]. A further consideration is that, in reality,
a number of vortices will be shed from the sharp corners of the domain. The trajectories of these shed
vortices could be modelled using the Brown–Michael equation [15] or the other approaches discussed
in the introduction.

3.5. Free-Streamline Flows

Incompressible flow past a bluff body usually results in flow separation. This separation can
generate a downstream wake or a cavity flow and can have a significant effect on estimates of the drag
and lift coefficients. Free-streamline theory attempts to reconcile the physical reality of flow separation
with the mathematical tractability of potential flows. In these problems, the boundaries of the domain
are not known a priori—the boundary incorporates a “free streamline” whose shape must be found
as part of the problem. Thus, we cannot use a direct conformal mapping approach as in Section 3.4.
The typical approach for solving these problems is to construct mappings between auxiliary domains
and then find the shape of the streamlines by considering the relationships between the auxiliary
domains. Previous authors have presented numerical conformal mapping approaches in order to solve
these problems [22,63,64]; we now demonstrate that the lightning approach can be leveraged in order
to solve free-streamline problems.
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Figure 7. The trajectories of 30 vortices computed with the lightning method. The circulations of
the vortices are randomly distributed in the interval [−1, 1]. The initial positions of the vortices are
equispaced on a circle, as indicated by the coloured dots. The background flow is set to U = 0.

We consider a rigid body immersed in a separated flow that is uniform in the far-field. The goal is
to calculate the velocity field induced by the boundary and the shape of the separation region behind
the body. As before, we define the complex potential as w(z) = φ(z) + iψ(z) and the complex velocity
as w′(z) = u(z)− iv(z). In this situation, enforcing the Kutta condition specifies that the flow detaches
from the solid body at the edges. We assume that the fluid inside the separation region is stagnant and
it is therefore of constant pressure. The free streamlines are the curves that divide the moving fluid
from the stagnant fluid; therefore, they represent an infinitesimal shear layer. Because there can be
no pressure jump either side of shear layer, the pressure along the free streamline must be constant.
Accordingly, Bernoulli’s theorem implies that (subject to a suitable scaling) the speed of fluid along the
boundary of the wake is unity:

|w′(z)| = 1 when z is on a free streamline. (29)

Furthermore, the no-flux condition specifies that, on the surface of the solid body, the fluid velocity
must be tangent to the boundary:

6 w′(z(s)) = 6
dz
ds

(s) when z is on solid body, (30)

where s is the arc length of the boundary.
The streamfunction is piecewise constant on both the rigid boundary and the free streamlines.

We say ‘piecewise constant’ here, because there may be multiple free streamlines that correspond to
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different values of the streamfunction. Since both w and w′ are analytic functions in simply connected
domains, and assuming that they have a 1-to-1 relation, there exists a conformal map f between them:

w = f (w′). (31)

We can now connect the physical coordinate z to the complex potential w and complex velocity w′ by

z =
∫ w′ dw

dw′1

dw′1
w′1

. (32)

The above maps a complex velocity value (w′) to a physical coordinate (z). Thus, if f can be determined,
then we know z and the corresponding velocity value there. The boundary conditions on f follow
from (29) and (30), as

Im[ f (w′)] = constants for





|w′| = 1,

6 w′(z) = 6
∂z
ds

.
(33)

The precise constants that Im[ f ] attains on the boundaries are application dependent.
The problem of finding an analytic function f subject to the boundary conditions (33) may be

solved using the lightning method introduced in Section 2. The lightning method is very appropriate
to this problem, because the w′ domain typically contains corners even though the physical z domain
does not. While conventional methods struggle to resolve the singularities at the corners, the lightning
method achieves root-exponential convergence.

In Figure 8, we illustrate the procedure for the separated flow past a flat plate. The incoming flow
is inclined at an angle of −π/8. Along the free streamline, the velocity has magnitude 1 and along the
plate the flow has zero normal velocity. Accordingly, the flow domain in the w′ domain is a semicircle.
We use the lightning method to compute the mapping from the complex velocity (w′) domain to the
complex potential domain (w), such that the semicircle is a streamline and the point w′ = e−iπ/8 maps
to infinity. Poles are clustered exponentially close to the corners of the semicircle in order to exploit the
root-exponential convergence afforded by rational function approximation. In the complex potential
domain, the boundaries are the upper and lower parts of the positive real axis. Having computed
f , we may then use (32) to establish the relationship between the velocity and the spatial position
z, which is plotted at the bottom of Figure 8. This problem can actually be solved analytically by
appropriately placing image doublets in the w′ domain, but the example is included here in order to
illustrate the applicability of the lightning solver to free-streamline flows.

There are several methods available for improving the physical fidelity of free-streamline theory,
the most conspicuous of which is the approach of Wu [21]. By allowing the pressure on the free
streamline to increase monotonically, Wu [21] ensures that the free streamlines become asymptotically
parallel to the background flow at infinity. This yields favourable comparisons for the lift and drag
coefficients against experimental results. The simple example that we have presented does not allow
the pressure on the free streamline to vary, but this effect could be incorporated to improve the realism
of the model.
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Figure 8. The separated flow past a flat plate at angle of attack −π/8. The lines are the streamlines
and the colour represents the vertical velocity component.

4. Conclusions

In this paper we have presented a new method for numerically solving potential flow problems.
Our method is based on the lightning method introduced by Gopal and Trefethen [6,7], and exploits
the approximation power of rational functions. We believe that the technique will be useful to
researchers in fluid mechanics who wish to quickly compute solutions to potential flows with modest
accuracy in domains that prohibit fully analytical solutions and traditional numerical methods.
The technique is comparatively simple and does not require specialised knowledge of finite element
methods or boundary element methods. We have demonstrated that the method is valuable for
several physical problems, including steady potential flows, unsteady vortex dynamics, and free
streamline flows. Periodic domains are not an issue and are handled with a slightly different ansatz.
The solutions converge extremely fast (with root-exponential convergence) and are themselves very
fast to evaluate. When the solution is to be evaluated a large number of times, such as in the vortex
dynamics simulations presented in Section 3.4, the solutions can be compressed using the AAA or
AAAtrig algorithms.

Potential flows are mathematically elegant but neglect important physical phenomena. We have
suggested two approaches to ameliorate these effects by incorporating vortex dynamics (Section 3.4)
and flow separation (Section 3.5). The approach has also been demonstrated to apply to the
Helmholtz equation [7], which could prove useful for acoustics and aeroacoustics problems.
Additionally, there is the exciting possibility of extending the lightning solver to 3-D; apart from the
conformal mapping of Section 3.4, our approach did not use complex variables except as a convenient
coordinate system. This is a topic to be pursued in future studies.
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