
fluids

Article

PyDA: A Hands-On Introduction to Dynamical Data
Assimilation with Python

Shady E. Ahmed, Suraj Pawar and Omer San *

School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA;
shady.ahmed@okstate.edu (S.E.A.); supawar@okstate.edu (S.P.)
* Correspondence: osan@okstate.edu; Tel.: +1-405-744-2457; Fax: +1-405-744-7873

Received: 1 November 2020; Accepted: 26 November 2020; Published: 29 November 2020 ����������
�������

Abstract: Dynamic data assimilation offers a suite of algorithms that merge measurement data with
numerical simulations to predict accurate state trajectories. Meteorological centers rely heavily on
data assimilation to achieve trustworthy weather forecast. With the advance in measurement systems,
as well as the reduction in sensor prices, data assimilation (DA) techniques are applicable to various
fields, other than meteorology. However, beginners usually face hardships digesting the core ideas
from the available sophisticated resources requiring a steep learning curve. In this tutorial, we lay
out the mathematical principles behind DA with easy-to-follow Python module implementations
so that this group of newcomers can quickly feel the essence of DA algorithms. We explore a series
of common variational, and sequential techniques, and highlight major differences and potential
extensions. We demonstrate the presented approaches using an array of fluid flow applications with
varying levels of complexity.

Keywords: data assimilation; variational and sequential methods; Kalman filtering;
forward sensitivity; measurements fusion

1. Introduction

Data assimilation (DA) refers to a class of techniques that lie at the interface between
computational sciences and real measurements, and aim at fusing information from both sides to
provide better estimates of the system’s state. One of the very mature applications that significantly
utilize DA is weather forecast, that we rely on in our daily life. In order to predict the weather (or the
state of any system) in the future, a model has to be solved, most often by numerical simulations.
However, a few problems rise at this point and we refer to only few of them here. First, for accurate
predictions, these simulations need to be initiated from the true initial condition, which is never known
exactly. For large scale systems, it is almost impossible to experimentally measure the full state of the
system at a given time. For example, imagine simulating the atmospheric or oceanic flow, then you need
to measure the velocity, temperature, density, etc. at every location corresponding to your numerical
grid! Even in the hypothetical case when this is possible, measurements are always contaminated
by noise, reducing the fidelity of your estimation. Second, the mathematical model that completely
describes all the underlying processes and dynamics of the system is either unknown or hard to
deal with. Then, approximate and simplified models are adopted instead. Third, the computational
resources always constrain the level of accuracy in the employed schemes and enforce numerical
approximations. Luckily, DA appears at the intersection of all these efforts and introduces a variety
of approaches to mitigate these problem, or at least reduce their effects. In particular, DA techniques
combines possibly incomplete dynamical models, prior information about initial system’s state and
parameterization, and sparse and corrupted measurement data to yield optimized trajectory in order
to describe the system’s dynamics and evolution.

Fluids 2020, 5, 225; doi:10.3390/fluids5040225 www.mdpi.com/journal/fluids

http://www.mdpi.com/journal/fluids
http://www.mdpi.com
http://dx.doi.org/10.3390/fluids5040225
http://www.mdpi.com/journal/fluids
https://www.mdpi.com/2311-5521/5/4/225?type=check_update&version=2

Fluids 2020, 5, 225 2 of 48

As indicated above, dynamical data assimilation techniques have a long history in computational
meteorology and geophysical fluid dynamics sciences [1–3]. Then comes the question: why do we write
such an introductory tutorial about a historical topic? Before answering this question, we highlight a
few points. DA borrows ideas from numerical modeling and analysis, linear algebra, optimization,
and control. Although these topics are taught separately in almost every engineering discipline,
their combination is rarely presented. We believe that incorporating DA course in engineering curricula
is important nowadays as it provides a variety of global tools and ideas that can potentially be
applied in many areas, not just meteorology. This was proven while administering a graduate
class on “Data Assimilation in Science and Engineering” at Oklahoma State University, as students
from different disciplines and backgrounds were astonished by the feasibility and utility of DA
techniques to solve numerous inverse problems they are working on, not related to weather forecast.
Nonetheless, the availability of beginner-friendly resources has been the major shortage that students
suffered from. The majority of textbooks either derives DA algorithms from their very deep roots or
surveys their historical developments, without focus on actual implementations. On the other hand,
available packages are presented in a sophisticated way that optimizes data storage and handling,
computational cost, and convergence. However, this level of sophistication takes a steep learning
curve to understand the computational pipeline as well as the algorithmic steps, and a lot of learners
fall hopeless during this journey.

Therefore, the main objective of this tutorial paper is to familiarize beginning researchers and
practitioners with basic DA ideas along with easy-to-follow pieces of codes to feel the essence of DA
and trigger the priceless “aha” moments. With this in mind, we choose Python as the coding language,
being a popular, interpreted language, and easy to understand even with minimum programming
background, although not the most computationally favored language in high performance computing
(HPC) environments. Moreover, whenever possible, we utilize the built-in functions and libraries to
minimize the user coding efforts. In other words, the provided codes are presented for demonstrative
purposes only using an array of academic test problems, and significant modifications should be
incorporated before dealing with complex applications. Meanwhile, this tutorial will give the reader a
jump-start that hopefully shortens the learning curve of more advanced packages. A Python-based
DA testing suite has been also designed to compare different methodologies [4].

Dynamical data assimilation techniques can be generally classified into variational DA and
sequential DA. Variational data assimilation which works by setting an optimization problem defined
by a cost functional along with constraints that collectively incorporate our knowledge about the
system. The minimizer of the cost functional represents the DA estimate of the unknown system’s
variables and/or parameters. On the other hand, in sequential methods (also known as statistical
methods), the system state is evolved in time using background information until observations become
available. At this instant, an update (correction) to the system’s variables and/or parameters is
estimated and the solver is re-initialized with this new updated information until new measurements
are collected, and so on. We give an overview of both approaches as well as basic implementation.
In particular, we briefly discuss the three dimensional variational data assimilation (3DVAR) [5,6],
the four dimensional variational data assimilation (4DVAR) [7–12], and forward sensitivity method
(FSM) [13,14] as examples of variational approaches. Kalman filtering and its variants [15–22] are
the most popular applications of sequential methods. We introduce the main ideas behind standard
Kalman filter and its extensions for nonlinear and high-dimensional problems. The famous Lorenz
63 is utilized to illustrate the merit of all presented algorithms, being a simple low-order dynamical
system that exhibit interesting dynamics. This is to help readers to digest the different pieces of
codes and follow the computational pipeline. Then, the paper is concluded with a section that
provides the deployment of selected DA approaches for dynamical systems with increasing levels
of dimensionality and complexity. We highlight here that the primary purpose of this paper is
to provide an introductory tutorial on the data assimilation for educational purposes. All Python

Fluids 2020, 5, 225 3 of 48

implementations of the presented algorithms as well as the test cases are made publicly accessible at
our GitHub repository https://github.com/Shady-Ahmed/PyDA.

2. Preliminaries

2.1. Notation

Before we dive into the technical details of dynamical data assimilation approaches, we briefly
present and describe our notations and assumptions. In general, we assume that all vector-valued
functions or variables are written as a column vector. Unless stated otherwise, boldfaced lowercase
letters are used to denote vectors and boldface uppercase letters are reserved to matrices. We suppose
that the system state at any time t is denoted as u(t) = [u1(t), u2(t), . . . , un(t)]T ∈ Rn, where n is the
state-space dimension. The dynamics of the system are governed by the following differential equation

du
dt

= f(u; θ), (1)

where f : Rn ×Rp → Rn encapsulates the model’s dynamics, with θ ∈ Rp being the vector of model’s
parameters and p being the number of these parameters. With a time-integration scheme applied,
the discrete-time model can be written as follows,

u(tk+1) = M(u(tk); θ), (2)

where M is the one-time step transition map that evolves the state at time tk to time tk+1 = tk + ∆t,
with ∆t being the time step length.

We denote the true value of the state variable as ut, which is assumed to be unknown and a
good approximation of it is sought. Our prior information about the state u is called the background,
with a subscript of b as ub. This represents our beginning knowledge, which might come from
historical data, numerical simulations, or just an intelligent guess. The discrepancy between this
background information and true state is denoted as ξb = ut − ub, resulting from imperfect
model, inaccurate model’s initialization, incorrect parameterization, numerical approximations, etc.
From probabilistic point of view, we suppose that the background error has a zero mean and a
covariance matrix of B. This can be represented as E[ξb] = 0 and E[ξbξT

b] = B, where B ∈ Rn×n

is a symmetric and positive-definite matrix and the superscript T refers to the transpose operation.
Moreover, we assume that unknown true state has a multivariate Gaussian distribution with a mean
ub and a covariance matrix B (i.e., ut = N (ub, B)).

We define the set of the collected measurements at a specific time tk as w(tk) ∈ Rm, where m is
the dimension of observation-space. We highlight that the observed quantity need not be the same as
the state variable. For instance, if the state variable that we are trying to resolve is the temperature of
sea surface, we may have access only to radiance measurements by satellites. However, those case be
related to each other through Planch–Stefan’s law, for instance. Formally, we can relate the observables
and the state variables as

w(tk) = h(ut(tk)) + ξm, (3)

where h : Rn → Rm defines the mapping from state-space to measurement-space and ξm ∈ Rm denotes
the measurement noise. The mapping h can refer to the sampling (and probably interpolation) of
state variables at the measurements locations, relating different quantities of interest (e.g., relating see
surface temperature to emitted radiance), or both! The model’s map M and observation operator h can
be linear, nonlinear, or a combination of them. Similar to the background error, the observation noise
ξm is assumed to possess a multivariate normal distribution, with a zero mean and a covariance matrix
R ∈ Rm×m, i.e., ξm = N (0, R). An extra grounding assumption is that the measurement noise and the
state variables (either true or background) are uncorrelated. Furthermore, all noises are assumed to be

https://github.com/Shady-Ahmed/PyDA

Fluids 2020, 5, 225 4 of 48

temporally uncorrelated (i.e., white noise). Even though we consider only Gaussian distribution for
the background error, and observation noise, we emphasize that there has been a lot of studies dealing
with non-Gaussian data assimilation [23–26].

The objective of data assimilation is to provide an algorithm that fuses our prior information ub
and measurement data w to yield a better approximation of the unknown true state. This better
approximation is called the analysis, and denoted as ua. The difference between this better
approximation and the true state is denoted as ξa = ut − ua.

2.2. Twin Experiment Framework

In a realistic situation, the true state values are unknown and noisy measurements are collected by
sensing devices. However, for testing ideas, the ground truth need to be known beforehand such that
the convergence and accuracy of the developed algorithm can be evaluated. In this sense, the concept
of twin experiment has been popular in data assimilation (and inverse problems, in general) studies.
First, a prototypical test case (all called toy problems!) is selected based on the similarities between its
dynamics and real situations. Similar to your first “Hello World!” program, the Lorenz 63 and Lorenz
96 are often used in numerical weather forecast investigations, the one-dimensional Burgers equation is
explored in computational fluid dynamics developments, the two-dimensional Kraichnan turbulence
and three-dimensional Taylor–Green vortex are analyzed in turbulence studies, and so on. A reference
true trajectory is computed by fixing all parameters and running the forward solver until some final
time is reached. Synthetic measurements are then collected by sampling the true trajectory at some
points in space and time. A mapping can be applied on the true state variables and arbitrary random
noise is artificially added (e.g., a white Gaussian noise). Finally, the data assimilation technique of
interest is implemented starting from false values of the state variables or the model’s parameters
along with the synthetic measurement data. The output trajectory of the algorithm is thus compared
against the reference solution, and the performance can be evaluated. It is always recommended
that researchers get familiar with twin experiment frameworks as they provide well-structured and
controlled environments for testing ideas. For instance, the influence of different measurement sparsity
and/or level of noise can be cheaply assessed, without the need to locate or modify sensors.

3. Three Dimensional Variational Data Assimilation

The three dimensional variational data assimilation (3DVAR) framework can be derived from
either an optimal control or Bayesian analysis points of view. The interested readers can be referred to
other resources for mathematical foundations (e.g., [27]). In order to compute a good approximation of
the system state, the following cost functional can be defined,

J(u) =
1
2
(w− h(u))TR−1(w− h(u)) +

1
2
(u− ub)

TB−1(u− ub), (4)

where the first term penalizes the discrepancy between the actual measurement w and the state variable
mapped into the observation space h(u) (also called the model predicted measurement). The second
term aims at incorporating the prior information, weighted by the inverse of the covariance matrix to
reflect our confidence in this background. We highlight that all terms in Equation (4) are evaluated at
the same time, and thus the 3DVAR can be referred to as a stationary case.

The minimizer of J(u) (i.e., the analysis) can be obtained by setting the gradient of the cost
functional to zero as follows,

∇J(u) = −DT
h (ua)R−1(w− h(ua)) + B−1(ua − ub) = 0, (5)

where Dh(u) ∈ Rm×n is the Jacobian matrix of the operator h(u). The difficulty of solving Equation (5)
depends on the form of h(ua) as it can either be linear, or highly nonlinear.

Fluids 2020, 5, 225 5 of 48

3.1. Linear Case

For linear observation operator (i.e., h(u) = Hu, and Dh(u) = H, where H is an m× n matrix),
the evaluation of the analysis ua in Equation (5) reduces to solving the following linear system
of equations

(B−1 + HTR−1H)ua = (B−1ub + HTR−1w). (6)

We note that (B−1 + HTR−1H) on the left-hand side is an n× n matrix, and hence this is called
the model-space approach to 3DVAR. Furthermore, a popular incremental form can be derived from
Equation (6) by adding and subtracting HTR−1Hua to/from the right-hand side and rearranging to
get the following form,

ua = ub + (B−1 + HTR−1H)−1HTR−1(w−Hub). (7)

Moreover, the Sherman–Morrison–Woodbury inversion formula can be used to derive an
observation-space solution to the 3DVAR problem (for details, see [27], page 327) as follows,

ua = ub + BHT(R + HBHT)−1(w−Hub). (8)

Note that (R + HBHT) is an m×m matrix, compared to (B−1 + HTR−1H) being an n× n matrix.
Thus, Equation (7) or Equation (8) might be computationally favored based on the values of n and
m. We also highlight that in either cases, matrix inversion is rarely (almost never) computed directly,
and efficient linear system solvers should be utilized, instead. An example of a Python function for the
implementation of the 3DVAR algorithm with a linear operator is shown in Listing 1.

Listing 1. Implementation of 3DVAR for with a linear observation operator.� �
import numpy as np
def Lin3dvar(ub,w,H,R,B,opt):

The solution of the 3DVAR problem in the linear case requires
the solution of a linear system of equations.
Here, we utilize the built-in numpy function to do this.
Other schemes can be used, instead.
if opt == 1: #model-space approach
Bi = np.linalg.inv(B)
Ri = np.linalg.inv(R)
A = Bi + (H.T)@Ri@H
b = Bi@ub + (H.T)@Ri@w
ua = np.linalg.solve(A,b) #solve a linear system

elif opt == 2: #model-space incremental approach
Bi = np.linalg.inv(B)
Ri = np.linalg.inv(R)
A = Bi + (H.T)@Ri@H
b = (H.T)@Ri@(w-H@ub)
ua = ub + np.linalg.solve(A,b) #solve a linear system

elif opt == 3: #observation-space incremental approach
A = R + H@B@(H.T)
b = (w-H@ub)
ua = ub + B@(H.T)@np.linalg.solve(A,b) #solve a linear system

return ua� �

Fluids 2020, 5, 225 6 of 48

3.2. Nonlinear Case

On the other hand, if h(u) is a nonlinear function, Equation (5) implies the solution of a system of
nonlinear equations. Unlike linear systems, few algorithms are available to directly solve nonlinear
systems and their convergence and stability are usually questionable. Alternatively, we can use
Taylor series to expand h(u) around an initial estimate of ua, denoted as uc, where ua = uc + ∆u.
The first-order approximation of h(ua) can be written as

h(ua) ≈ h(uc) + Dh(uc)∆u, (9)

and Equation (5) can be approximated as

DT
h (uc)R−1(w− h(uc)−Dh(uc)∆u) = B−1(uc + ∆u− ub). (10)

Thus, the correction to the initial guess of ua can be computed by solving the following system of
linear equations(

B−1 + DT
h (uc)R−1Dh(uc)

)
∆u =

(
B−1(ub − uc) + Dh(uc)

TR−1(w− h(uc))

)
, (11)

and a new guess of ua is estimated as uc + ∆u, which is then plugged back into Equation (11) and
the computations are repeated until convergence is reached. Python implementation of the 3DVAR
in nonlinear observation operator is presented in Listing 2 Although we only present the first order
approximation of h(u), higher order expansions can be utilized for increased accuracy [27].

Listing 2. Implementation of the 3DVAR for with a nonlinear observation operator,
using first-order approximation.� �

import numpy as np
def NonLin3dvar(ub,w,ObsOp,JObsOp,R,B):

The solution of the 3DVAR problem in the nonlinear case requires
the solution of a linear system of equations.
Here, we utilize the built-in numpy function to do this.
Other schemes can be used, instead.
Bi = np.linalg.inv(B)
Ri = np.linalg.inv(R)
ua = np.copy(ub)
for iter in range(100):
Dh = JObsOp(ua)
A = Bi + (Dh.T)@Ri@Dh
b = Bi@(ub-ua) + (Dh.T)@Ri@(w-ObsOp(ua))
du = np.linalg.solve(A,b) #solve a linear system
ua = ua + du
if np.linalg.norm(du) <= 1e-4:
break
return ua� �

Fluids 2020, 5, 225 7 of 48

3.3. Example: Lorenz 63 System

The Lorenz 63 equations have been utilized as a toy problem in data assimilation studies, capturing
some of the interesting mechanisms of weather systems. The three-equation model can be written as

dx
dt

= σ(y− x),

dy
dt

= x(ρ− z)− y,

dz
dt

= xy− βz,

(12)

where the values of σ = 10, β = 8/4, ρ = 28 are usually used to exhibit a chaotic behavior. If we like to
put Equation (12) with the notations introduced in Section 2, we can write u = [x, y, z]T with n = 3,
and θ = [σ, β, ρ]T with p = 3. A Python function describing the dynamics of the Lorenz 63 system is
given in Listing 3.

Listing 3. A Python function for the Lorenz 63 dynamics.� �
import numpy as np
def Lorenz63(state,*args): #Lorenz 96 model
sigma = args[0]
beta = args[1]
rho = args[2]
x, y, z = state #Unpack the state vector
f = np.zeros(3) #Derivatives
f[0] = sigma * (y - x)
f[1] = x * (rho - z) - y
f[2] = x * y - beta * z
return f� �

Equation (12) describe the continuous-time evolution of the Lorenz system. In order to obtain the
discrete-time mapping M(·; ·), a temporal integration scheme has to be applied. In Listing 4, one-step
time integration functions are provided in Python using the first-order Euler and the fourth-order
Runge–KuKutta schemes. Note that these functions requires a right-hand side function as input, this is
mainly the continuous-time model f (u) (e.g., Listing 3).

Listing 4. Python functions for the time integration using the 1st Euler and the 4th
Runge–Kutta schemes.� �

import numpy as np
def euler(rhs,state,dt,*args):
k1 = rhs(state,*args)
new_state = state + dt*k1
return new_state

def RK4(rhs,state,dt,*args):
k1 = rhs(state,*args)
k2 = rhs(state+k1*dt/2,*args)
k3 = rhs(state+k2*dt/2,*args)
k4 = rhs(state+k3*dt,*args)
new_state = state + (dt/6)*(k1+2*k2+2*k3+k4)
return new_state� �

For twin experiment testing, we suppose a true initial condition of ut(0) = [1, 1, 1]T and
measurements are collected each 0.2 time units for a total time of 2. We suppose that we measure

Fluids 2020, 5, 225 8 of 48

the full system state (i.e., h(u) = u, m = 3, and H = I3, where I3 is the 3 × 3 identity matrix).
Measurements are considered to be contaminated by a white Gaussian noise with a zero mean and
a covariance matrix R = Diag(σ2

1 , σ2
2 , σ2

3). For simplicity, we let σ1 = σ2 = σ3 = 0.15. For data
assimilation testing, we assume that we begin with a perturbed initial condition of u(0) = [2, 3, 4]T .
Then, background state values are computed at t = 0.2 by time integration of Equation (12) starting
from this false initial condition. Observations at t = 0.2 are assimilated to provide the analysis at
t = 0.2. After that, background state values are computed at t = 0.4 by time integration of Equation (12)
starting from the analysis at t = 0.2, and so on. A sample implementation of the 3DVAR framework
is presented in Listing 5, where a fixed background covariance matrix B = Diag(0.01, 0.01, 0.01) is
assumed. Solution trajectories are presented in Figure 1 for a total time of 10, where observations are
only available up to t = 2.

Listing 5. Implementation of the 3DVAR for the Lorenz 63 system.� �
import numpy as np
import matplotlib.pyplot as plt

#%% Application: Lorenz 63
parameters
sigma = 10.0
beta = 8.0/3.0
rho = 28.0
dt = 0.01
tm = 10
nt = int(tm/dt)
t = np.linspace(0,tm,nt+1)

u0True = np.array([1,1,1]) # True initial conditions

############################ Twin experiment ##################################
np.random.seed(seed=1)
sig_m= 0.15 # standard deviation for measurement noise
R = sig_m**2*np.eye(3) #covariance matrix for measurement noise
H = np.eye(3) #linear observation operator

dt_m = 0.2 #time period between observations
tm_m = 2 #maximum time for observations
nt_m = int(tm_m/dt_m) #number of observation instants

#t_m = np.linspace(dt_m,tm_m,nt_m) #np.where((t<=2) & (t%0.1==0))[0]
ind_m = (np.linspace(int(dt_m/dt),int(tm_m/dt),nt_m)).astype(int)
t_m = t[ind_m]

#time integration
uTrue = np.zeros([3,nt+1])
uTrue[:,0] = u0True
km = 0
w = np.zeros([3,nt_m])
for k in range(nt):
uTrue[:,k+1] = RK4(Lorenz63,uTrue[:,k],dt,sigma,beta,rho)
if (km<nt_m) and (k+1==ind_m[km]):
w[:,km] = H@uTrue[:,k+1] + np.random.normal(0,sig_m,[3,])
km = km+1

plt.plot(t,uTrue[0,:])

Fluids 2020, 5, 225 9 of 48

plt.plot(t_m,w[0,:],’o’)

########################### Data Assimilation #################################
u0b = np.array([2.0,3.0,4.0])
sig_b= 0.1
B = sig_b**2*np.eye(3)

#time integration
ub = np.zeros([3,nt+1])
ub[:,0] = u0b
ua = np.zeros([3,nt+1])
ua[:,0] = u0b
km = 0
for k in range(nt):
ub[:,k+1] = RK4(Lorenz63,ub[:,k],dt,sigma,beta,rho)
ua[:,k+1] = RK4(Lorenz63,ua[:,k],dt,sigma,beta,rho)

if (km<nt_m) and (k+1==ind_m[km]):
ua[:,k+1] = Lin3dvar(ua[:,k+1],w[:,km],H,R,B,3)
km = km+1

############################### Plotting ######################################
import matplotlib as mpl
mpl.rc(’text’, usetex=True)
mpl.rcParams[’text.latex.preamble’]=[r"\usepackage{amsmath}"]
mpl.rcParams[’text.latex.preamble’] = [r’\boldmath’]
font = {’family’ : ’normal’,
’weight’ : ’bold’,
’size’ : 20}
mpl.rc(’font’, **font)

fig, ax = plt.subplots(nrows=3,ncols=1, figsize=(10,8))
ax = ax.flat

for k in range(3):
ax[k].plot(t,uTrue[k,:], label=r’\bf{True}’, linewidth = 3)
ax[k].plot(t,ub[k,:], ’:’, label=r’\bf{Background}’, linewidth = 3)
ax[k].plot(t[ind_m],w[k,:], ’o’, fillstyle=’none’, \
label=r’\bf{Observation}’, markersize = 8, markeredgewidth = 2)
ax[k].plot(t,ua[k,:], ’--’, label=r’\bf{Analysis}’, linewidth = 3)
ax[k].set_xlabel(r’t’,fontsize=22)
ax[k].axvspan(0, tm_m, color=’y’, alpha=0.4, lw=0)

ax[0].legend(loc="center", bbox_to_anchor=(0.5,1.25),ncol =4,fontsize=15)

ax[0].set_ylabel(r’$x(t)$’)
ax[1].set_ylabel(r’$y(t)$’)
fig.subplots_adjust(hspace=0.5)� �

Fluids 2020, 5, 225 10 of 48

Figure 1. Results of 3DVAR implementation for the Lorenz 63 system.

4. Four Dimensional Variational Data Assimilation

We highlighted in Section 3 that the 3DVAR can be referred to as a stationary case since the
observations, background, and analysis all correspond to a fixed time instant. In other words,
the optimization problem that minimizes Equation (4) takes place in the spatial state-space only. As an
extension, the four dimensional variational data assimilation (4DVAR) aims to solve the optimization
in both space and time, proving a non-stationary framework. In particular, the model’s dynamics are
incorporated into the optimization problem to relate different points in time to each other. The cost
functional for the 4DVAR Can be written as follows,

J(u(t0)) = ∑
tk∈T

1
2
(w(tk)− h(u(tk)))

TR−1(tk)(w(tk)− h(u(tk))), (13)

where w(tk) is the measurement at time tk and T defines the set of time instants where observations
are available. Note that the argument of this cost functional is the initial condition u(t0). In other
words, the purpose of the 4DVAR algorithm is to evaluate an initial state estimate, which if evolved in
time, would produce a trajectory that is as close to the collected measurements as possible (weighted
by the inverse of the covariance matrix of interfering noise). This is the place where the model’s
dynamics comes into play to relate initial condition to future predictions when measurements are
accessible. In other words, the values of u(tk)) are constrained by the underlying model. Instead of
presenting the linear and nonlinear mappings separately, we will focus on the general case of both
nonlinear model mapping and nonlinear observation operator, where simplification to linear cases
should be straightforward.

Fluids 2020, 5, 225 11 of 48

In Equation (2), we introduced the one-step transition map and here, we can extend it to the k-step
transition case by applying Equation (2) recursively as

u(tk) = M(k)(u(t0); θ) = M(M(k−1) (u(t0); θ); θ) , (14)

where M(1)(u(t0); θ) = M(u(t0); θ). Now, we consider a base trajectory given by u(tk) for k = 1, 2, . . .
generated from an initial condition of u(t0). A perturbed trajectory (u(tk) for k = 1, 2, . . . ,) can be
obtained by correcting the initial condition as u(t0) = u(t0) + ∆u0 and the difference between the
perturbed and based trajectories can be written as

u(tk)− u(tk) = M(k)(u(t0) + ∆u0; θ)−M(k)(u(t0); θ). (15)

A first-order Taylor expansion of M(u(t0) + ∆u0; θ) around u(t0) can be given as follows

M(u(t0) + ∆u0; θ) ≈ M(u(t0); θ) + DM(u(t0))∆u0, (16)

where DM(u(tk)) is the Jacobian of the model M(u; θ), evaluated at u(tk), also known as the tangent
linear operator. Note that M(u(t0); θ) = u(t1) and M(u(t0) + ∆u0; θ) = u(t1), thus ∆u1 = u(t1)−
u(t1) ≈ DM(u(t0))∆u0. Similarly, we can expand M(u(t1) + ∆u1; θ) around u(t1) as follows,

M(u(t1) + ∆u1; θ) ≈ M(u(t1); θ) + DM(u(t1))∆u1, (17)

where u(t2 = M(u(t1); θ) ≈ M(u(t1) + ∆u1; θ) and u(t2) = M(u(t1); θ). Consequently,
∆u2 = u(t2)− u(t2) ≈ DM(u(t1))∆u1, which can be generalized as,

∆uk+1 ≈ DM(u(tk))∆uk, (18)

with u(tk) ≈ ∆uk + u(tk). It is customary to call Equation (18) as the perturbation equation, or the
tangent linear system (TLS). Equation (18) can be related to ∆u0 by recursion as follows,

∆uk+1 ≈ DM(u(tk))∆uk

≈ DM(u(tk))DM(u(tk−1))∆uk−1

≈ DM(u(tk))DM(u(tk−1))DM(u(tk−2))∆uk−2

≈ DM(u(tk))DM(u(tk−1))DM(u(tk−2))DM(u(tk−3)) . . . DM(u(t0))∆u0,

which can be short-handed as ∆uk+1 ≈ DM(u(tk:0))∆u0 (please, notice the order of matrix
multiplication and the subscript “k : 0”).

Now, we investigate the first order variation ∆J of the cost functional J(u(t0)) induced by the
perturbation ∆u0 in the initial condition. This can be approximated as below,

∆J = ∆uT
0∇J(u(t0)) (19)

= − ∑
tk∈T

∆uT
k DT

h
(
u(tk)

)
R−1(tk)

(
w(tk)− h(u(tk))

)
. (20)

Given that ∆uk ≈ DM(u(tk−1:0))∆u0, then ∆uT
k ≈ ∆uT

0 DT
M(u(t0))DT

M(u(t1)) . . . DT
M(u(tk−1)) =

∆uT
0 DT

M(u(t0:k−1)) and Equation (20) can be rewritten as

∆J = − ∑
tk∈T

∆uT
0 DT

M(u(t0:k−1))D
T
h
(
u(tk)

)
R−1(tk)

(
w(tk)− h(u(tk))

)
. (21)

Fluids 2020, 5, 225 12 of 48

By comparing Equations (19) and (21), the gradient of the cost functional can be approximated as

∇J(u(t0)) = − ∑
tk∈T

DT
M(u(t0:k−1))D

T
h
(
u(tk)

)
R−1(tk)

(
w(tk)− h(u(tk))

)
(22)

= − ∑
tk∈T

DT
M(u(t0:k−1))f(tk), (23)

where f(tk) = DT
h
(
u(tk)

)
R−1(tk)

(
w(tk) − h(u(tk))

)
. If we denote the time instants at which

measurements are available as T = {tO1, tO2, . . . , tON}, Equation (23) can be expanded as

∇J(u(t0)) = −
{

DT
M(u(t0:O1−1))f(tO1) + DT

M(u(t0:O2−1))f(tO2) + · · ·+ DT
M(u(t0:ON−1))f(tON)

}
. (24)

Now, defining a sequence of λk ∈ Rn as below,

λk =

fk, if tk = tON

DT
M(u(tk))λk+1 + fk, if tk ∈ {tO1, tO2, . . . , tON−1}

DT
M(u(tk))λk+1, otherwise.

(25)

It can be verified that ∇J(u(t0)) = −λ0 (assume some numbers and you can see this relation
holds!). Therefore, in order to obtain the gradient of the cost functional, λ0 has to be computed,
which depends on the evaluation of λ1. In turn, the computation of λ1 requires λ2 and so on.
Equation (25) is known as the first-order adjoint equation, as it implies the evaluation of λk sequence
from tk+1 to tk (i.e., reverse order).

Therefore, the first-order approximation of the 4DVAR works as follows. Starting from a prior
guess of the initial condition, the base trajectory is computed by solving the model forward in time
until the final time corresponding the last observation point (i.e., k = 0, 1, 2, . . . , ON). Then, the value
of λON = fON is evaluated at final time. After that, λk is evolved backward in time using Equation (25)
until ∇J(u(t0)) = −λ0 is obtained. This value of the gradient is thus utilized to update the initial
condition and a new base trajectory is generated. The solution of the 4DVAR problem requires the
solution of the model dynamics forward in time and adjoint problem backward in time until to
compute the gradient of the cost functional and update the initial condition. The process is thus
repeated until convergence takes place. Listing 6 shows a sample function to compute the gradient
of the cost functional ∇J(u(t0)) corresponding to a base trajectory generated from a guess of the
initial condition u(t0). We highlight that, in practice, the storage of the base trajectory as well as the λ

sequence at every time instant might be overwhelming. However, we are not addressing such issues
in these introductory tutorials to data assimilation techniques.

Listing 6. Computation of the gradient of the cost functional with the 4DVAR using the first-order
adjoint algorithm.� �

def Adj4dvar(rhs,Jrhs,ObsOp,JObsOp,t,ind_m,u0b,w,R,opt,*args):

The solution of the 4DVAR problem requires the evaluation of
the forward model to generate base trajectory and
the Jacobian of the model to solve the adjoint problem.
Inputs:
#rhs: defines the right-hand side of the continuous time forward model f
#Jrhs: defines the Jacobian matrix of rhs D_f(u)
#ObsOp: defines the observation operator h(u)
#JObsOp: defines the Jacobian of the observation operator D_h(u)
#t: vector of time
#ind_m: indices of measurement instants

Fluids 2020, 5, 225 13 of 48

#u0b: initial condition for base trajectory
#w: matrix of measurements
#R: covariance matrix of measurement noise
#opt: [0=euler] or [1=RK4] defines the time integration scheme to
#comptue the discrete-time forward map and its Jacobian
Output: The Jacobian of the cost functional

n = len(u0b)
#determine the assimilation window
t = t[:ind_m[-1]+1] #cut the time till the last observatino point
nt = len(t)-1
dt = t[1] - t[0]
ub = np.zeros([n,nt+1]) #base trajectory
lam = np.zeros([n,nt+1]) #lambda sequence
fk = np.zeros([n,len(ind_m)])

Ri = np.linalg.inv(R)

ub[:,0] = u0b
if opt == 0: #Euler
#forward model
for k in range(nt):
ub[:,k+1] = euler(rhs,ub[:,k],dt,*args)

#backward adjoint
k = ind_m[-1]
fk[:,-1] = (JObsOp(ub[:,k])).T @ Ri @ (w[:,-1]-ObsOp(ub[:,k]))
lam[:,k] = fk[:,-1] #lambda_N = f_N

km = len(ind_m)-2
for k in range(ind_m[-1],0,-1):
DM = Jeuler(rhs,Jrhs,ub[:,k-1],dt,*args)
lam[:,k-1] = (DM).T @ lam[:,k]
if k-1 == ind_m[km]:
fk[:,km] =(JObsOp(ub[:,k-1])).T @ Ri @ (w[:,km]-ObsOp(ub[:,k-1]))
lam[:,k-1] = lam[:,k-1] + fk[:,km]
km = km - 1

elif opt == 1: #RK4
forward model
for k in range(nt):
ub[:,k+1] = RK4(rhs,ub[:,k],dt,*args)

#backward adjoint
k = ind_m[-1]
fk[:,-1] = (JObsOp(ub[:,k])).T @ Ri @ (w[:,-1]-ObsOp(ub[:,k]))
lam[:,k] = fk[:,-1] #lambda_N = f_N

km = len(ind_m)-2
for k in range(ind_m[-1],0,-1):
DM = JRK4(rhs,Jrhs,ub[:,k-1],dt,*args)
lam[:,k-1] = (DM).T @ lam[:,k]
if k-1 == ind_m[km]:
fk[:,km] = (JObsOp(ub[:,k-1])).T @ Ri @(w[:,km]-ObsOp(ub[:,k-1]))
lam[:,k-1] = lam[:,k-1] + fk[:,km]

Fluids 2020, 5, 225 14 of 48

km = km - 1

dJ0 = -lam[:,0]
return dJ0� �

The gradient∇J(u(t0)) should be used in a minimization algorithm to update the initial condition
for the next iteration. One simple algorithm is the simple gradient descent where an updated value
of the initial state is computed as u(t0))

new = u(t0))
old − βn∇J(u(t0)

old), where βn is some step

parameter. This can be normalized as u(t0))
new = u(t0))

old − β
∇J(u(t0)

old)

‖∇J(u(t0)old)‖
. The value of β might

be predefined, or more efficiently updated at each iteration using an additional optimization algorithm
(e.g., line-search). For the sake of completeness, we present a line-search routine in Listing 7 using the
Golden search algorithm. This is based on the definition of the cost functional in Listing 8.

Listing 7. A line-search Python function using the Golden search method.� �
def GoldenAlpha(p,rhs,ObsOp,t,ind_m,u0,w,R,opt,*args):

p is the optimization direction
a0=0
b0=1
r=(3-np.sqrt(5))/2

uncert = 1e-5 # Specified uncertainty

a1= a0 + r*(b0-a0);
b1= b0 - r*(b0-a0);
while (b0-a0) > uncert:

if loss(rhs,ObsOp,t,ind_m,u0+a1*p,w,R,opt,*args) < loss(rhs,ObsOp,t,\
ind_m,u0+b1*p,w,R,opt,*args):
b0=b1;
b1=a1;
a1= a0 + r*(b0-a0);
else:
a0=a1;
a1=b1;
b1= b0 - r*(b0-a0);
alpha = (b0+a0)/2

return alpha� �
Listing 8. Computation of the cost functional defined in Equation (13).� �

cost functional (w-h(u))^T * R^{-1} * (w-h(u))
def loss(rhs,ObsOp,t,ind_m,u0,w,R,opt,*args):

n = len(u0)
#determine the assimilation window
t = t[:ind_m[-1]+1] #cut the time till the last observation point
nt = len(t)-1
dt = t[1] - t[0]
u = np.zeros([n,nt+1]) #trajectory

u[:,0] = u0

Fluids 2020, 5, 225 15 of 48

Ri = np.linalg.inv(R)
floss = 0
km = 0
nt_m = len(ind_m)
if opt == 0: #Euler
#forward model
for k in range(nt):
u[:,k+1] = euler(rhs,u[:,k],dt,*args)

if (km<nt_m) and (k+1==ind_m[km]):
tmp = w[:,km] - ObsOp(u[:,k+1])
tmp = tmp.reshape(-1,1)
floss = floss + np.linalg.multi_dot((tmp.T, Ri , tmp))
km = km + 1

elif opt == 1: #RK4
forward model
for k in range(nt):
u[:,k+1] = RK4(rhs,u[:,k],dt,*args)
if (km<nt_m) and (k+1==ind_m[km]):
tmp = w[:,km] - ObsOp(u[:,k+1])
tmp = tmp.reshape(-1,1)
floss = floss + np.linalg.multi_dot((tmp.T, Ri , tmp))
km = km + 1

floss = floss[0,0]/2
return floss� �

Example: Lorenz 63 System

Similar to the 3DVAR demonstration, we apply the described 4DVAR using the first-order
adjoint method on the Lorenz 63 system. We also begin with the same erroneous initial condition of
u(0) = [2, 3, 4]T and observations are collected each 0.2 time units, contaminated with a Gaussian
noise with diagonal covariance matrix defined as R = σ2

mI3, where σm = 0.15 is the standard deviation
for measurement noise. Moreover, we simply define a linear observation operator defined as h(u) = u,
with a Jacobian of identity matrix. We utilize the simple gradient descent for minimizing the cost
functional, equipped by a Golden search method for learning rate optimization. A maximum number
of iterations is set to 1000, but we highlight that this is highly dependent on the adopted minimization
algorithm as well as the line-search technique. In practice, the evaluation of each iteration might be
too computationally expensive, so the number of iterations need to be as low as possible. We define
two criteria for convergence, and iterations stop whenever any one of them is achieved. The first one
is based on the change in the value of the cost or loss functional and the second one is based on the
magnitude of its gradient. Extra criteria might be supplied as well.

Results for running Listing 9 is shown in Figure 2, where we can notice the significant
improvement of predictions, compared to the background trajectories. Moreover, we highlight the
correction to the initial conditions in Figure 2 which resulted in the analysis trajectory. This is opposed
to the 3DVAR implementation, where correction is applied locally at measurements instants only as
seen in Figure 1.

Fluids 2020, 5, 225 16 of 48

Listing 9. Implementation of 4DVAR using the first-order adjoint method for the Lorenz 63 system.� �
import numpy as np
import matplotlib.pyplot as plt

#%% Application: Lorenz 63
parameters
sigma = 10.0
beta = 8.0/3.0
rho = 28.0
dt = 0.01
tm = 10
nt = int(tm/dt)
t = np.linspace(0,tm,nt+1)

############################ Twin experiment ##################################
def h(u): # Observation operator
w = u
return w

def Dh(u): #Jacobian of observation operator
n = len(u)
D = np.eye(n)
return D

u0True = np.array([1,1,1]) # True initial conditions
np.random.seed(seed=1)
sig_m= 0.15 # standard deviation for measurement noise
R = sig_m**2*np.eye(3) #covariance matrix for measurement noise

dt_m = 0.2 #time period between observations
tm_m = 2 #maximum time for observations
nt_m = int(tm_m/dt_m) #number of observation instants

ind_m = (np.linspace(int(dt_m/dt),int(tm_m/dt),nt_m)).astype(int)
t_m = t[ind_m]

#time integration
uTrue = np.zeros([3,nt+1])
uTrue[:,0] = u0True
km = 0
w = np.zeros([3,nt_m])
for k in range(nt):
uTrue[:,k+1] = RK4(Lorenz63,uTrue[:,k],dt,sigma,beta,rho)
if (km<nt_m) and (k+1==ind_m[km]):
w[:,km] = h(uTrue[:,k+1]) + np.random.normal(0,sig_m,[3,])
km = km+1

########################### Data Assimilation #################################
u0b = np.array([2.0,3.0,4.0])
u0a = u0b
J0 = loss(Lorenz63,h,t,ind_m,u0a,w,R,1,sigma,beta,rho)
for iter in range(1000):

#computing the gradient of cost functional with base trajectory

Fluids 2020, 5, 225 17 of 48

dJ = Adj4dvar(Lorenz63,JLorenz63,h,Dh,t,ind_m,u0a,w,R,1,sigma,beta,rho)
#minimization direction
p = -dJ/np.linalg.norm(dJ)
#Golden method for linesearch
alpha = GoldenAlpha(p,Lorenz63,h,t,ind_m,u0a,w,R,1,sigma,beta,rho)
#update initial condition with gradient descent
u0a = u0a + alpha*p

J = loss(Lorenz63,h,t,ind_m,u0a,w,R,1,sigma,beta,rho)

if np.abs(J0-J) < 1e-2:
print(’Convergence: loss function’)
break
else:
J0=J
if np.linalg.norm(dJ) < 1e-4:
print(’Convergence: gradient of loss function’)
break

##################### Time Integration [Comparison] ###########################
ub = np.zeros([3,nt+1])
ub[:,0] = u0b
ua = np.zeros([3,nt+1])
ua[:,0] = u0a
km = 0
for k in range(nt):
ub[:,k+1] = RK4(Lorenz63,ub[:,k],dt,sigma,beta,rho)
ua[:,k+1] = RK4(Lorenz63,ua[:,k],dt,sigma,beta,rho)

#%%
############################### Plotting ######################################
import matplotlib as mpl
mpl.rc(’text’, usetex=True)
mpl.rcParams[’text.latex.preamble’]=[r"\usepackage{amsmath}"]
mpl.rcParams[’text.latex.preamble’] = [r’\boldmath’]
font = {’family’ : ’normal’,
’weight’ : ’bold’,
’size’ : 20}
mpl.rc(’font’, **font)

fig, ax = plt.subplots(nrows=3,ncols=1, figsize=(10,8))
ax = ax.flat

for k in range(3):
ax[k].plot(t,uTrue[k,:], label=r’\bf{True}’, linewidth = 3)
ax[k].plot(t,ub[k,:], ’:’, label=r’\bf{Background}’, linewidth = 3)
ax[k].plot(t[ind_m],w[k,:], ’o’, fillstyle=’none’, \
label=r’\bf{Observation}’, markersize = 8, markeredgewidth = 2)
ax[k].plot(t,ua[k,:], ’--’, label=r’\bf{Analysis}’, linewidth = 3)
ax[k].set_xlabel(r’t’,fontsize=22)
ax[k].axvspan(0, tm_m, color=’y’, alpha=0.4, lw=0)

ax[0].legend(loc="center", bbox_to_anchor=(0.5,1.25),ncol =4,fontsize=15)
ax[0].set_ylabel(r’$x(t)$’)
ax[1].set_ylabel(r’$y(t)$’)

Fluids 2020, 5, 225 18 of 48

ax[2].set_ylabel(r’$z(t)$’)
fig.subplots_adjust(hspace=0.5)� �

Figure 2. Results of 4DVAR implementation for the Lorenz 63 system.

Before we move to other data assimilation techniques, we highlight a few remarks regarding our
presentation of the 4DVAR

• In Listing 9, we utilize the gradient descent approach to minimize the cost function. Readers are
encouraged to apply other optimization techniques (e.g., conjugate gradient) that achieve higher
convergence rate.

• The determination of the learning rate can be further optimized using more efficient line-search
methods, rather than the simple Golden search.

• The Lagrangian multiplier method can be applied to solve the 4DVAR problem instead of the
adjoint method, similar results should be obtained.

• The presented algorithm relies on the definition of the cost functional given in Equation (13),
based on the discrepancy between measurements and model’s predictions. When extra
information is available, it can be incorporated into the cost functional. For instance, similar
to Equation (4), a term that penalizes the correction magnitude can be added, weighted by the
background covariance matrix. Furthermore, symmetries or other physical knowledge can be
enforced as hard or weak constraints.

• The first-order adjoint algorithm requires the computation of the Jacobian DM(u) of the
discrete-time model map M(u; θ). This can be computed by plugging the model f (u; θ) in
a time integration scheme and rearranging everything to rewrite M(u; θ) as explicit function
of u and differentiating with respect to components of u. For Lorenz 63 and 1st Euler scheme,

Fluids 2020, 5, 225 19 of 48

this can be an easy task. However, for a higher dimensional system and more accurate time
integrators, this would be cumbersome. Instead, the chain rule can be utilized to compute DM(u)
as presented in Listing 10, which takes as input the right-hand side of the continuous-time
dynamics f (·; ·) (described in Listing 3 for Lorenz 63 system) as well as its Jacobian (given in
Listing 11 for Lorenz 63).

Listing 10. Python functions for computing the Jacobian DM(u) of the discrete-time model map
M(u; θ) using the 1st Euler and the 4th Runge–Kutta schemes with chain rule.� �

import numpy as np
def Jeuler(rhs,Jrhs,state,dt,*args):
n = len(state)
k1 = rhs(state,*args)
dk1 = Jrhs(state,*args)
DM = np.eye(n) + dt*dk1
return DM

def JRK4(rhs,Jrhs,state,dt,*args):
n = len(state)
k1 = rhs(state,*args)
k2 = rhs(state+k1*dt/2,*args)
k3 = rhs(state+k2*dt/2,*args)
dk1 = Jrhs(state,*args)
dk2 = Jrhs(state+k1*dt/2,*args) @ (np.eye(n)+dk1*dt/2)
dk3 = Jrhs(state+k2*dt/2,*args) @ (np.eye(n)+dk2*dt/2)
dk4 = Jrhs(state+k3*dt,*args) @ (np.eye(n)+dk3*dt)
DM = np.eye(n) + (dt/6) * (dk1+2*dk2+2*dk3+dk4)
return DM� �

Listing 11. A Python function for the Jacobian of the continuous-time Lorenz 63 dynamics.� �
import numpy as np
def JLorenz63(state,*args): #Jacobian of Lorenz 96 model
sigma = args[0]
beta = args[1]
rho = args[2]
x, y, z = state #Unpack the state vector
df = np.zeros([3,3]) #Derivatives

df[0,0] = sigma * (-1)
df[0,1] = sigma * (1)
df[0,2] = sigma * (0)

df[1,0] = 1 * (rho - z)
df[1,1] = -1
df[1,2] = x * (-1)

df[2,0] = 1 * y
df[2,1] = x * 1
df[2,2] = - beta
return df� �

Fluids 2020, 5, 225 20 of 48

5. Forward Sensitivity Method

We have seen in Section 4 that the minimization of the cost functional via the 4DVAR algorithm
requires the solution of the adjoint problem at each iteration, which incurs a significant computational
burden for high dimensional systems. Alternatively, Lakshmivarahan and Lewis [13] proposed the
forward sensitivity method (FSM) to derive an expression for the correction vector in terms of the
forward sensitivity matrices [14]. In their development, simultaneous correction to the initial condition
u(t0) and the model parameters θ is treated. For conciseness and consistency with the methods
introduced here, we only consider erroneous initial conditions and assume model parameters are
perfectly known. Given the discrete-time model map M(u; θ) in Equation (2), the forecast sensitivity
at time tk+a to the initial conditions u(t0) can be defined as follows,

∂ui(tk+1)

∂uj(t0)
=

n

∑
q=1

(
∂Mi(u(tk); θ)

∂uq(tk)

)(
∂uq(tk)

∂uj(t0)

)
, 1 6 i, j 6 n, (26)

where M(u(tk); θ) = [M1(u(tk); θ), M2(u(tk); θ), . . . , Mn(u(tk); θ)]T . Recall that the Jacobian of the
model M(u(tk); θ) is defined by the matrix DM(u(tk)) ∈ Rn×n whose (i, j)th entry is defined as
∂Mi(u(tk); θ)

∂uj(tk)
. We also define U(tk) as the forward sensitivity matrix of u(tk) ∈ Rn×n with respect to

initial state u(t0), where [U(tk)]i,j =
∂ui(tk)

∂uj(t0)
for 1 6 i, j 6 n. Thus, Equation (26) can be rewritten in

matrix form as,

U(tk+1) = DM(u(tk))U(tk). (27)

Equation (27) provides the dynamic evolution of the forward sensitivity matrix in a recursive
manner, initialized by U(t0) = In, that can be used to relate the prediction error at any time step to the
initial condition.

Given the measurement w(tk) at time tk ∈ T , the forecast error e(tk) is defined as the difference
between the model forecast and measurements as

e(tk) = w(tk)− h(u(tk)). (28)

This is commonly called the innovation in DA terminology. The cost functional in Equation (13)
can be rewritten as

J(u(t0)) = ∑
tk∈T

1
2
‖e(tk)‖2

R−1(tk)
= ∑

tk∈T

1
2

e(tk)
TR−1(tk)e(tk). (29)

With the assumption that the dynamical model is perfect (i.e., correctly encapsulates all the
relevant processes) and the model parameters are known, the deterministic part of the forecast error
can be attributed to the inaccuracy in the initial condition u(t0), defined as ∆u0 = ut(t0)− ub(t0),
where ut(t0) denotes the true initial conditions.

Considering a base trajectory u(tk) for k = 1, 2, . . . generated from the initial condition of
u(t0), related to the corrected trajectory (u(tk) for k = 1, 2, . . . ,) obtained by correcting the initial
condition as u(t0) = u(t0) + ∆u0, we define the difference between both trajectories at any time tk as
∆uk = u(tk)− u(tk). We highlight that u(tk) is a function of both the initial condition (with the model
parameters being known), the first-order Taylor expansion of u(tk) around the base trajectory can be
written as u(tk) ≈ u(tk) + U(tk)∆u0, leading to the following relation

∆uk ≈ U(tk)∆u0. (30)

Fluids 2020, 5, 225 21 of 48

If we let the perturbed (corrected) trajectory to be the sought true trajectory, Equation (3) can be
rewritten as

w(tk) = h(u(tk) + ∆uk) + ξm, (31)

and a first order expansion of w(tk) (neglecting the measurement noise) will be as follows,

w(tk) ≈ h(u(tk)) + Dh(u(tk))∆uk, (32)

and the forecast error at the base trajectory can be approximated as

e(tk) = Dh(u(tk))∆uk. (33)

Equations (30) and (33) can be combined to yield the following,

e(tk) = Dh(u(tk))U(tk)∆u0, (34)

which relates the forecast error at any time tk and the discrepancy between the true and erroneous initial
condition in a linear relationship. In order to account for all the time instants at which observations are
available (T = {tO1, tO2, . . . , tON}), Equation (34) can be concatenated at different times and written
as a linear system of equations as follows,

Q∆u0 = eF, (35)

where the matrix QNm×n and the vector eF ∈ RNm are computed as,

Q =

Dh(u(tO1))U(tO1)

Dh(u(tO2))UtO2)

...

Dh(u(tON))U(tON)

, eF =

e(tO1)

e(tO2)

...

e(tON)

. (36)

Depending on the value of Nm relative to n, Equation (35) can give rise to either an
over-determined or an under-determined linear inverse problem. In either case, the inverse problem
can be solved in a weighted least squares sense to find a first-order estimation of the optimal correction
or perturbation to the initial condition ∆u0, with R−1 being the weighting matrix, where R is a
block-diagonal matrix constructed as follows,

R =

R(tO1)

R(tO2)

. . .

R(tON)

, (37)

and the solution of Equation (35) can be written as ∆u0 =
(
QTR−1Q

)−1 QTR−1eF for the
over-determined case. This first order approximation progressively yields better results by repeating
the entire process for multiple iterations until convergence with certain tolerance [13]. In essence,
the FSM is an alternative to the 4DVAR algorithm, replacing the solution of the adjoint problem
backward in time (i.e., Equation (25)), by the successive matrix evaluation in Equation (27). However,
we highlight that in the 4DVAR approach, the actual forecast error is computed as ek = w(tk)− h(u(tk))

Fluids 2020, 5, 225 22 of 48

while its first-order approximation is utilized in the FSM development. The duality between the two
approaches is further discussed in [13].

A Python implementation of the FSM approach is presented in Listing 12. We note that we solve
the Equation (35) using the built-in numpy least-squares function. However, more efficient iterative
schemes can be adopted in practice.

Listing 12. Python function for computing the correction vector ∆u0 using the forward sensitivity
method with first-order approximation.� �

import numpy as np
from scipy.linalg import block_diag
from scipy.linalg import sqrtm

def fsm1st(rhs,Jrhs,ObsOp,JObsOp,t,ind_m,u0b,w,R,opt,*args):

Implementation of the first-order forward sensitivity method (FSM) to
correct the initial conditions based on the forecast sensitivity matrices
Inputs:
#rhs: defines the right-hand side of the continuous time forward model f
#Jrhs: defines the Jacobian matrix of rhs D_f(u)
#ObsOp: defines the observation operator h(u)
#JObsOp: defines the Jacobian of the observation operator D_h(u)
#t: vector of time
#ind_m: indices of measurement instants
#u0b: initial condition for base trajectory
#w: matrix of measurements
#R: covariance matrix of measurement noise
#opt: [0=euler] or [1=RK4] defines the time integration scheme to
#comptue the discrete-time forward map and its Jacobian
Output: the correction vector du0

n = len(u0b)
#determine the assimilation window
t = t[:ind_m[-1]+1] #cut the time till the last observation point
nt = len(t)-1
dt = t[1] - t[0]
ub = np.zeros([n,nt+1]) #base trajectory
Ri = np.linalg.inv(R)

ub[:,0] = u0b
U = np.eye(n,n) #Initialization of U
Q = np.zeros((1,n)) #Dh*U
ef = np.zeros((1,1)) #w-h(u)
W = np.zeros((1,1)) #weighting matrix
km = 0
nt_m = len(ind_m)
if opt == 0: #Euler
#forward model
for k in range(nt):
ub[:,k+1] = euler(rhs,ub[:,k],dt,*args)
DM = Jeuler(rhs,Jrhs,ub[:,k],dt,*args)
U = DM @ U
if (km<nt_m) and (k+1==ind_m[km]):
tmp = w[:,km] - ObsOp(ub[:,k+1])
ek = tmp.reshape(-1,1)

Fluids 2020, 5, 225 23 of 48

ef = np.vstack((ef,ek))
Qk = JObsOp(ub[:,k+1]) @ U
Q = np.vstack((Q,Qk))
W = block_diag(W,Ri)
km = km + 1
elif opt == 1: #RK4
forward model
for k in range(nt):
ub[:,k+1] = RK4(rhs,ub[:,k],dt,*args)
DM = JRK4(rhs,Jrhs,ub[:,k],dt,*args)
U = DM @ U
if (km<nt_m) and (k+1==ind_m[km]):
tmp = w[:,km] - ObsOp(ub[:,k+1])
ek = tmp.reshape(-1,1)
ef = np.vstack((ef,ek))
Qk = JObsOp(ub[:,k+1]) @ U
Q = np.vstack((Q,Qk))
W = block_diag(W,Ri)
km = km + 1
Q = np.delete(Q, (0), axis=0)
ef = np.delete(ef, (0), axis=0)
W = np.delete(W, (0), axis=0)
W = np.delete(W, (0), axis=1)

solve weighted least-squares
W1 = sqrtm(W)
du0 = np.linalg.lstsq(W1@Q, W1@ef, rcond=None)[0]

return du0.ravel()� �
Example: Lorenz 63 System

We apply the described FSM to estimate the initial conditions for the Lorenz 63 system, using the
same parameters and setup as described in Section 4. Sample code is presented in Listing 13.
We highlight that instead of adding the correction vector ∆u0 directly to the base value u(t0),
we multiply it with a learning rate to mitigate the effects of first-order approximations. We utilize the
golden search method to update this learning rate at each iteration.

Listing 13. Implementation of the FSM for the Lorenz 63 system.� �
#%% Application: Lorenz 63
########################### Data Assimilation #################################
u0b = np.array([2.0,3.0,4.0])
u0a = u0b
J0 = loss(Lorenz63,h,t,ind_m,u0a,w,R,1,sigma,beta,rho)
for iter in range(200):

#computing the correction vector
du0 = fsm1st(Lorenz63,JLorenz63,h,Dh,t,ind_m,u0a,w,R,1,sigma,beta,rho)
#minimization direction
p = du0#/np.linalg.norm(du0)
#Golden method for linesearch
alpha = GoldenAlpha(p,Lorenz63,h,t,ind_m,u0a,w,R,1,sigma,beta,rho)
#update initial condition with gradient descent
u0a = u0a + alpha*p

Fluids 2020, 5, 225 24 of 48

J = loss(Lorenz63,h,t,ind_m,u0a,w,R,1,sigma,beta,rho)
if np.abs(J0-J) < 1e-2:
print(’Convergence: loss function’)
break
#else:
J0=J
if np.linalg.norm(du0) < 1e-4:
print(’Convergence: correction vector’)
break

##################### Time Integration [Comparison] ###########################

ub = np.zeros([3,nt+1])
ub[:,0] = u0b
ua = np.zeros([3,nt+1])
ua[:,0] = u0a
km = 0
for k in range(nt):
ub[:,k+1] = RK4(Lorenz63,ub[:,k],dt,sigma,beta,rho)
ua[:,k+1] = RK4(Lorenz63,ua[:,k],dt,sigma,beta,rho)� �

Prediction results are provided in Figure 3, where we notice a large discrepancy at the estimated
initial conditions. However, the predicted trajectory perfectly match the true one for the rest of
the testing time window. This is largely affected by the nature of the Lorenz system itself and the
attachment to its attractor. Furthermore, this can be partially attributed to the lack of background
information and its contribution to the cost functional. Moreover, this can be highly improved by
adding more observations close to the initial time since the correction vector is estimated based on
the forecast error computed at observation times. Anyhow, we see that the analysis trajectory is
significantly more accurate than the background one, with iterative first-order approximations of the
forward sensitivity method, even for long time predictions.

Figure 3. Results of FSM implementation for the Lorenz 63 system.

Fluids 2020, 5, 225 25 of 48

6. Kalman Filtering

The idea behind Kalman filtering techniques is to propagate the mean as well as the covariance
matrix of the system’s state sequentially in time. That is, in addition to providing an improved state
estimate (i.e., the analysis), it also gives some information about the statistical properties of this state
estimate. This is one main difference between Kalman filtering and variational methods, which often
assumes a fixed (stationary) background covariance matrices. Kalman filters are also very popular in
systems engineering, robotics, navigation, and control. Almost all modern control systems use the
Kalman filter. It assisted the guidance of the Apollo 11 lunar module to the moon’s surface, and most
probably will do the same for next generations of aircraft as well.

Although most application in fluid dynamics involve nonlinear systems, we first describe the
standard Kalman filter developed for the linear dynamical system case with linear observation operator
described as

ut(tk+1) = Mkut(tk) + ξp(tk+1), (38)

w(tk) = Hkut(tk) + ξm(tk) (39)

where M ∈ Rn×n is a non-singular system matrix defining the underlying governing processes and
ξp ∈ Rn describes the process noise (or model error). H ∈ Rm×n represents the measurement system
with a measurement noise of ξm ∈ Rm.

As presented in Section 2, the true state ut(tk) is assumed to be a random variable with known
mean E[ut(tk)] = ub(tk) and covariance matrix of E[(ut(tk) − ub(tk))(ut(tk) − ub(tk))

T] = Bk.
In Kalman filtering, we note that the covariance matrix evolves in time, and thus appears the subscript.
We also assume that the process noise is unbiased with zero mean and a covariance matrix Q. That is
E(ξp(tk)) = 0 and E(ξp(tk)ξp(tk)

T) = Qk.
Thus, the goal of the filtering problem is to find a good estimate (analysis) ua(tk) of the true

system’s state ut(tk) given a dynamical model a set of noisy observation {w(ti)} collected at some
time instants ti ∈ (0, tk]. The optimality of the estimate ua(tk) is defined as the one which minimizes
E[(ut(tk)−ua(tk))

T(ut(tk)−ua(tk))]. This filtering process generally consists of two steps: the forecast
step and the data assimilation step.

The forecast step is performed using the predictable part of the given dynamical model starting
from the best known information at time tk (denoted as ûb(tk)) to produce a forecast or background
estimate ub(tk+1) = Mkûb(tk). The difference between the background forecast and true state at tk+1
can be written as follows,

ξb(tk+1) = ut(tk+1)− ub(tk+1)

= (Mkut(tk) + ξp(tk+1))−Mkûb(tk)

= Mk(ut(tk)− ûb(tk)) + ξp(tk+1)

= Mk ξ̂b(tk) + ξp(tk+1),

where ξ̂b(tk) = (ut(tk)− ûb(tk)) is the error estimate at tk, with zero mean and covariance matrix of B̂k.
The covariance matrix of the background estimate at tk+1 can be evaluated as Bk+1 =

E[ξb(tk+1)ξb(tk+1)
T] = E

[(
Mk ξ̂b(tk) + ξp(tk+1)

)(
Mk ξ̂b(tk) + ξp(tk+1)

)T
]

. Since, ξ̂b(tk) and

ξp(tk+1) are assumed to be uncorrelated (i.e., E[ξ̂b(tk)ξp(tk+1)
T] = 0), the background covariance

matrix at tk+1 can be computed as follows,

Bk+1 = MkB̂kMT
k + Qk+1. (40)

Fluids 2020, 5, 225 26 of 48

Now, with the forecast step, we have a background estimate at tk+1 defined as ub(tk+1) with a
covariance matrix Bk+1. Then, measurements w(tk+1) are collected at tk+1 with a linear operator Hk+1
and measurement noise ξm(tk+1) with zero mean a covariance matrix of Rk+1. Thus, we would like
to fuse these pieces of information to create an optimal unbiased estimate (analysis) ua(tk+1) with a
covariance matrix Pk+1. This can be defines as linear function of ub(tk+1) and w(tk+1) as follows,

ua(tk+1) = ub(tk+1) + Kk+1

(
w(tk+1)−Hk+1ub(tk+1)

)
, (41)

where
(

w(tk+1)−Hk+1ub(tk+1)

)
is the innovation vector and K ∈ Rn×m is called the Kalman gain

matrix. We highlight that Kalman gain matrix is defined in such a way to minimize E[(ut(tk+1)−
ua(tk+1))

T(ut(tk+1)− ua(tk+1))] = tr(Pk+1). This can be written as [27]

Kk+1 = Bk+1HT
k+1

(
Hk+1Bk+1HT

k+1 + Rk+1

)−1

, (42)

resulting in an analysis covariance matrix defined as

Pk+1 = (In −Kk+1Hk+1)Bk+1, (43)

where In is the n × n identity matrix. The resulting analysis ua(tk+1) is known as the best linear
unbiased estimate (BLUE). We highlight that information at tk might correspond to the analysis (i.e.,
ûb(tk) = ua(tk)) obtained from the last data assimilation implementation, or just from previous forecast
if no other information is available. Thus, the Kalman filtering process can be summarized as follows,

Inputs: ûb(tk), B̂k, Mk, Qk+1, w(tk+1), Rk+1, Hk+1

Forecast: ub(tk+1) = Mkûb(tk)

Bk+1 = MkB̂kMT
k + Qk+1

Kalman gain: Kk+1 = Bk+1HT
k+1

(
Hk+1Bk+1HT

k+1 + Rk+1

)−1

Analysis: ua(tk+1) = ub(tk+1) + Kk+1

(
w(tk+1)−Hk+1ub(tk+1)

)
Pk+1 = (In −Kk+1Hk+1)Bk+1,

where the inputs at tk are defined as

(ûb(tk), B̂k) =

{
(ua(tk), Pk) if w(tk), is available,

(ub(tk), Bk) otherwise.

Listing 14 describes a basic Python implementation of the data assimilation step using the KF
algorithm described before. Although efficient matrix inversion routines that benefit from specific
matrix properties can be utilized, we use the standard built-in Numpy matrix inversion function.

Listing 14. Implementation of the KF with linear dynamics and observation operator.� �
import numpy as np
def KF(ub,w,H,R,B):

The analysis step for the Kalman filter in the linear case
i.e., linear model M and linear observation operator H

n = ub.shape[0]

Fluids 2020, 5, 225 27 of 48

compute Kalman gain
D = H@B@H.T + R
K = B @ H @ np.linalg.inv(D)

compute analysis
ua = ub + K @ (w-H@ub)
P = (np.eye(n) - K@H) @ B
return ua, P� �

Different forms for evaluating the Kalman gain and the covariance matrices are presented in
literature. Some of them are favored for computational cost aspects, while others maintain desirable
properties (e.g., symmetry and positive definiteness) for numerically stable implementation [27].
Since we are more interested in nonlinear dynamical models, we shall discuss extensions for standard
Kalman filters to account for nonlinearity in the following sections.

7. Extended Kalman Filter

Instead of dealing with linear stochastic dynamics, we look at the nonlinear case with general
(nonlinear) observation operator written as

ut(tk+1) = M(ut(tk); θ) + ξp(tk+1), (44)

w(tk) = h(ut(tk)) + ξm(tk). (45)

The first challenge of applying Kalman filter for this system is the propagation of the background
covariance matrix in the forecast step. The main clue behind the extended Kalman filter (EKF) to
address this issue is to locally linearize M(u(tk)) by expanding it around the estimate ûb(tk) at tk using
the first-order Taylor series as follows,

M(ut(tk); θ) ≈ M(ûb(tk); θ) + DM(ûb(tk))ξ̂b(tk), (46)

where DM(ûb(tk)) is the Jacobian (also known as the tangent linear operator) of the forward
model M(·; ·) evaluated at ûb(tk) and ξ̂b(tk) = (ut(tk) − ûb(tk)) defining the error estimate at tk,
with zero mean and covariance matrix of B̂k. Thus, the difference between the background forecast
and true state at tk+1 can be written as follows,

ξb(tk+1) = ut(tk+1)− ub(tk+1)

= M(ut(tk); θ) + ξp(tk+1)−M(ûb(tk); θ)

≈ M(ûb(tk); θ) + DM(ûb(tk))ξ̂b(tk) + ξp(tk+1)−M(ûb(tk); θ)

≈ DM(ûb(tk))ξ̂b(tk) + ξp(tk+1).

Similar to the derivation in the linear case, with the assumption of uncorrelation between ξ̂b(tk) and
ξp(tk+1), the background covariance matrix at tk+1 can be computed as follows,

Bk+1 = DM(ûb(tk))B̂kMT
k + Qk+1. (47)

The next challenge regarding the analysis step is the computation of the Kalman gain in case of
nonlinear observation operator. Again, h(ut(tk+1)) is linearized using Talylor series expansion around
ub(tk+1) (i.e., the background forecast) as follows,

h(ut(tk+1)) ≈ h(ub(tk+1)) + Dh(ub(tk+1))ξb(tk+1), (48)

Fluids 2020, 5, 225 28 of 48

where Dh(ub(tk+1)) is the Jacobian of the observation operator h, computed with the forecast ub(tk+1).
The Kalman gain is thus computed using this first-order approximation of h as follows,

Kk+1 = Bk+1Dh(ub(tk+1))
T
(

Dh(ub(tk+1))Bk+1Dh(ub(tk+1))
T + Rk+1

)−1

, (49)

with an analysis estimate and analysis covariance matrix defined as

ua(tk+1) = ub(tk+1) + Kk+1

(
w(tk+1)− h(ub(tk+1))

)
, (50)

Pk+1 =

(
In −Kk+1Dh(ub(tk+1))

)
Bk+1. (51)

A summary of the EKF algorithm is described as follows,

Inputs: ûb(tk), B̂k, M(·; ·), Qk+1, w(tk+1), Rk+1, h(·)
Forecast: ub(tk+1) = M(ûb(tk); θ)

Bk+1 = DM(ûb(tk))B̂kDM(ûb(tk))
T + Qk+1

Kalman gain: Kk+1 = Bk+1Dh(ub(tk+1))
T
(

Dh(ub(tk+1))k+1Bk+1Dh(ub(tk+1))
T + Rk+1

)−1

Analysis: ua(tk+1) = ub(tk+1) + Kk+1

(
w(tk+1)− h(ub(tk+1))

)
Pk+1 = (In −Kk+1Dh(ub(tk+1)))Bk+1,

and a Python implementation of the data assimilation step is presented in Listing 15.

Listing 15. Implementation of the (first-order) EKF with nonlinear dynamics and nonlinear
observation operator.� �

import numpy as np
def EKF(ub,w,ObsOp,JObsOp,R,B):
The analysis step for the extended Kalman filter with nonlinear dynamics
and nonlinear observation operator
n = ub.shape[0]
compute Jacobian of observation operator at ub
Dh = JObsOp(ub)
compute Kalman gain
D = Dh@B@Dh.T + R
K = B @ Dh.T @ np.linalg.inv(D)

compute analysis
ua = ub + K @ (w-ObsOp(ub))
P = (np.eye(n) - K@Dh) @ B
return ua, P� �

Example: Lorenz 63 System

The first-order approximation of the Kalman filter in nonlinear case, known as extended Kalman
filter, is applied for the test case of Lorenz 63 system. The computation of model Jacobian DM(·)
is presented in Listings 10 and 11 in Section 4. We use the same parameters and initial conditions
for the twin experiment framework as before. The sequential implementation of the forecast and
analysis steps is shown in Listing 16 and results are illustrated in Figure 4. We adopt the 4th order
Runge–Kutta scheme for time integration. For demonstration purposes, we consider zero process

Fluids 2020, 5, 225 29 of 48

noise (i.e., Q = 0). However, we have found that assuming non-zero process noise (e.g., Q = 0.01I3)
yields better performance.

Listing 16. Implementation of the EKF for the Lorenz 63 system.� �
#%% Application: Lorenz 63
########################### Data Assimilation #################################
u0b = np.array([2.0,3.0,4.0])
sig_b= 0.1
B = sig_b**2*np.eye(3)
Q = 0.0*np.eye(3)
#time integration
ub = np.zeros([3,nt+1])
ub[:,0] = u0b
ua = np.zeros([3,nt+1])
ua[:,0] = u0b
km = 0
for k in range(nt):
Forecast Step
#background trajectory [without correction]
ub[:,k+1] = RK4(Lorenz63,ub[:,k],dt,sigma,beta,rho)
#EKF trajectory [with correction at observation times]
ua[:,k+1] = RK4(Lorenz63,ua[:,k],dt,sigma,beta,rho)
#compute model Jacobian at t_k
DM = JRK4(Lorenz63,JLorenz63,ua[:,k],dt,sigma,beta,rho)
#propagate the background covariance matrix
B = DM @ B @ DM.T + Q
if (km<nt_m) and (k+1==ind_m[km]):
Analysis Step
ua[:,k+1],B = EKF(ua[:,k+1],w[:,km],h,Dh,R,B)
km = km+1� �

Figure 4. EKF results for the Lorenz 63 system with the assumption of zero process noise.

Fluids 2020, 5, 225 30 of 48

8. Ensemble Kalman Filter

Despite the sound mathematical and theoretical foundation of Kalman filters (both linear and
nonlinear cases), they are not widely utilized in geophysical sciences. The major bottleneck in the
computational pipeline of Kalman filtering is the update of background covariance matrix. In
typical implementation, the cost of this step is O(n3), where n is the size of the state vector. For
systems governed by ordinary differential equations (ODES), n can be manageable (e.g., 3 in the
Lorenz 63 model). However, fluid flows are often governed by partial differential equations. Thus,
spatial discretization schemes (e.g., finite difference, finite volume, and finite element) are applied,
resulting in a semi-discrete system of ODEs. In geophysical flow dynamics applications (e.g., weather
forecast), a dimension of millions or even billions is not uncommon, which hinders the feasible
implementation of standard Kalman filtering techniques.

Alternatively, reduced rank algorithms that provides low-order approximation of the covariance
matrices are usually adopted. A very popular approach is the ensemble Kalman filter (EnKF),
introduced by Evensen [17,28,29] based on the Monte Carlo estimation methods.

The main procedure for these methods is to create an ensemble of size N of the system state
denoted as {u(tk)

(i)|1 ≤ i ≤ N} and apply the filtering algorithm to each member of the established
ensemble. The statistical properties of the forecast and analysis are thus extracted from the ensemble
using the standard Monte Carlo framework. In the previous discussions, the forecast (background)
and analysis covariances are defined as follows,

B = E[ξbξT
b] = E[(ut − ub)(ut − ub)

T],

P = E[ξaξT
a] = E[(ut − ua)(ut − ua)

T].

Alternatively, those can be approximated by the ensemble covariances, given as

B ≈ 1
N − 1

N

∑
i=1

(u(i)
b − ub)(u

(i)
b − ub)

T ,

P ≈ 1
N − 1

N

∑
i=1

(u(i)
a − ua)(u

(i)
a − ua)

T ,

where the bar denotes the ensemble average defined as u =
1
N ∑N

i=1 u(i). Thus, an interpretation of
EnKF is that the ensemble mean is the best estimate of the state and the spreading of the ensemble
around the mean is a definition of the error in this estimate. A larger ensemble size N yields a better
approximation of the state estimate and its covariance matrix. In the following, we describe the typical
steps for applying the EnKF algorithm.

We begin by creating an initial ensemble {û(i)
b (tk)|1 ≤ i ≤ N} at time tk drawn from the

distribution N (ûb(tk), B̂k), where ûb(tk) represents our best-known estimate at tk. It can be verified
that the ensemble mean and covariance converge to ûb(tk) and Bk as N → ∞. Then, the forecast step
is applied to each member of the enesemble as follows,

u(i)
b (tk+1) = M(û(i)

b (tk); θ) + ξ
(i)
p (tk+1), (52)

Fluids 2020, 5, 225 31 of 48

where ξ
(i)
p (tk+1) is drawn from the multivariate Gaussian distribution with zero mean and covariance

matrix of Qk+1 representing the process noise applied to each member. The sample mean of the
forecast ensemble can be thus computed, along with the corresponding covaiance matrix as,

ub(tk+1) ≈ ub(tk+1) =
1
N

N

∑
i=1

u(i)
b (tk+1), (53)

ξ
(i)
b (tk+1) = u(i)

b (tk+1)− ub(tk+1), (54)

Bk+1 ≈
1

N − 1

N

∑
i=1

ξ
(i)
b (tk+1)ξ

(i)
b (tk+1)

T , (55)

which provides an approximation for the background covariance at tk+1 without actually propagating
the covariance matrix, as is the case in standard Kalman filtering.

An enesmble of observations {w(i)(tk+1)|1 ≤ i ≤ N}, also called virtual observations, is created
assuming a Gaussian distribution with a mean equal to the actual observation w(tk+1) and a covariance
matrix Rk+1. In other words, random Gaussian perturbations with zero mean and covariance matrix
Rk+1 are added to the actual measurements to create perturbed measurements. The Kalman gain
matrix can be computed as before (repeated here for completeness),

Kk+1 = Bk+1Dh(ub(tk+1))
T
(

Dh(ub(tk+1))Bk+1Dh(ub(tk+1))
T + Rk+1

)−1

. (56)

Then, the analysis step is applied for each member in the ensemble cloud as below,

u(i)
a = u(i)

b (tk+1) + Kk+1

(
w(i)(tk+1)− h(u(i)

b (tk+1))

)
, (57)

and the analyzed estimate at tk+1 is computed as the sample mean of the analysis ensemble along with
its covariance matrix as follows,

ua(tk+1) ≈ ua(tk+1) =
1
N

N

∑
i=1

u(i)
a (tk+1), (58)

ξ
(i)
a (tk+1) = u(i)

a (tk+1)− ua(tk+1), (59)

Pk+1 ≈
1

N − 1

N

∑
i=1

ξ
(i)
a (tk+1)ξ

(i)
a (tk+1)

T . (60)

We observe that the EnKF algorithm provides approximations of the background and analysis
covariance matrices, without the need to evaluate the computationally expensive propagation
equations. This comes with the expense of having to evolve an ensemble of system’s states.
However, the size of the ensemble N is usually smaller than the system’s dimension n. Moreover,
with parallelization and high performance computing (HPC) frameworks, the forecast step can be
distributed efficiently and computational speed-ups can be achieved. A summary of the EnKF
algorithm is described as follows,

Fluids 2020, 5, 225 32 of 48

Inputs: ûb(tk), B̂k, M(·; ·), Qk+1, w(tk+1), Rk+1, h(·)

Ensemble initialization: û(i)
b (tk) = ûb(tk) + e(i)b , e(i)b ∼ N (0, B̂k)

Virtual observations: w(i)(tk+1) = w(i)(tk+1) + e(i)m , e(i)m ∼ N (0, Rk+1)

Forecast: u(i)
b (tk+1) = M(û(i)

b (tk); θ) + ξ
(i)
p (tk+1)

ξ
(i)
b (tk+1) = u(i)

b (tk+1)− ub(tk+1)

Bk+1 ≈
1

N − 1

N

∑
i=1

ξ
(i)
b (tk+1)ξ

(i)
b (tk+1)

T

Kalman gain: Kk+1 = Bk+1Dh(ub(tk+1))
T
(

Dh(ub(tk+1))k+1Bk+1Dh(ub(tk+1))
T + Rk+1

)−1

Analysis: u(i)
a (tk+1) = u(i)

b (tk+1) + Kk+1

(
w(i)(tk+1)− h(u(i)

b (tk+1))

)
ua(tk+1) ≈ ua(tk+1)

ξ
(i)
a (tk+1) = u(i)

a (tk+1)− ua(tk+1)

Pk+1 ≈
1

N − 1

N

∑
i=1

ξ
(i)
a (tk+1)ξ

(i)
a (tk+1)

T

and Listing 17 provides a Python execution of the presented EnKF approach.

Listing 17. Implementation of the EnKF with virtual observations.� �
import numpy as np
def EnKF(ubi,w,ObsOp,JObsOp,R,B):

The analysis step for the (stochastic) ensemble Kalman filter
with virtual observations

n,N = ubi.shape # n is the state dimension and N is the size of ensemble
m = w.shape[0] # m is the size of measurement vector

compute the mean of forecast ensemble
ub = np.mean(ubi,1)
compute Jacobian of observation operator at ub
Dh = JObsOp(ub)
compute Kalman gain
D = Dh@B@Dh.T + R
K = B @ Dh @ np.linalg.inv(D)

wi = np.zeros([m,N])
uai = np.zeros([n,N])
for i in range(N):
create virtual observations
wi[:,i] = w + np.random.multivariate_normal(np.zeros(m), R)
compute analysis ensemble
uai[:,i] = ubi[:,i] + K @ (wi[:,i]-ObsOp(ubi[:,i]))

compute the mean of analysis ensemble
ua = np.mean(uai,1)
compute analysis error covariance matrix
P = (1/(N-1)) * (uai - ua.reshape(-1,1)) @ (uai - ua.reshape(-1,1)).T
return uai, P� �

Fluids 2020, 5, 225 33 of 48

We highlight a few remarks regarding the EnKF as below,

• Ensemble methods have gained significant popularity because of their simple conceptual
formulation and relative ease of implementation. No optimization problem is required to be solved.
They are considered non-intrusive in the sense that current solvers can be easily incorporated
with minimal modification, as there is no need to derive model Jacobians or adjoint equations.

• The analysis ensemble can be used as initial ensemble for the next assimilation cycle (in which
case, we need not compute Pk+1). Alternatively, new ensemble can be built, by sampling
from multivariate Gaussian distribution with a mean of ua(tk+1) and covariance matrix of Pk+1
(i.e., using ua(tk+1) and Pk+1 in lieu of ûb(tk+1) and B̂k+1, respectively).

• After virtual observations are made-up, an ensemble measurement error covariance matrix can be
arbitrarily computed as an alternative to the actual one [17]. This is especially valuable when the
actual measurement noise covariance matrix is poorly known.

• Perturbed observations are needed in EnKF derivation and guarantees that the posterior (analysis)
covariance is not underestimated. For instance, in case of small corrections to the forecast,
the traditional EnKF without virtual observations yields a error covariance that is about twice
smaller than that is needed to match Kalman filter [30]. In other words, the use of virtual
observations forces the ensemble posterior covariance to be the same as that of the standard
Kalman filter in the limit of very large N. Thus, the same Kalman gain matrix relation is borrowed
from standard Kalman filter.

• Instead of assuming virtual observations, alternative formulations of ensemble Kalman filters
have been proposed in literature, giving a family of deterministic ensemble Kalman filter (DEnKF),
as opposed to the aforementioned (stochastic) ensemble Kalman filer (EnKF). One such variant is
briefly discussed in Section 8.1.

8.1. Deterministic Ensemble Kalman Filter

The use of an ensemble of perturbed observations in the EnKF leads to a match between the
analysis error covariance and its theoretical value given by Kalman filter. However, this is in a statistical
sense only when the ensemble size is large. Unfortunately, this perturbation introduces sampling error,
which renders the filter suboptimal, particularly for small ensembles [31]. Alternative formulations
that do not require virtual observations can be found in literature, including ensemble square root
filters [31,32]. We focus here on a simple formulation proposed by Sakov and Oke [30] that maintains
the numerical effectiveness and simplicity EnKF without the need to virtual observations, denoted as
deterministic ensemble Kalman filter (DEnKF).

Without measurement perturbation, it can be derived that the resulting analysis error covariance
matrix is given as follows,

Pk+1 = (In −Kk+1Dh(ub(tk+1)))Bk+1(I−KDh(ub(tk+1)))
T

= Bk+1 −Kk+1Dh(ub(tk+1))Bk+1 − Bk+1Dh(ub(tk+1))
TKT

k+1

+ Kk+1Dh(ub(tk+1))Bk+1Dh(ub(tk+1))
TKT

k+1.

With the definition of the Kalman gain, it can be seen that Kk+1Dh(ub(tk+1))Bk+1 =

Bk+1Dh(ub(tk+1))
TKT

k+1. Thus,

Pk+1 = Bk+1 − 2Kk+1Dh(ub(tk+1))Bk+1 + Kk+1Dh(ub(tk+1))Bk+1Dh(ub(tk+1))
TKT

k+1.

For small values of Kk+1Dh(ub(tk+1)), this form converges to Pk+1 = Bk+1 −
2Kk+1Dh(ub(tk+1))Bk+1 up to the quadratic term. It can be seen that this asymptotically match
the theoretical value of analysis covariance matrix in standard Kalman filtering (i.e., Pk+1 = (In −
Kk+1Dh(ub(tk+1)))Bk+1 = Bk+1−Kk+1Dh(ub(tk+1))) by dividing the Kalman gain by two. Therefore,
it can be argued that the DEnKF linearly recovers the theoretical analysis error covariance matrix.

Fluids 2020, 5, 225 34 of 48

This is achieved by applying the analysis equation separately to the forecast mean ub(tk+1) ≈ ub(tk+1)

with the Kalman gain matrix and ensemble of anomalies ξ
(i)
b (tk+1) = u(i)

b (tk+1)− ub(tk+1) using half
of the standard Kalman gain matrix. These steps are summarized as follows,

Inputs: ûb(tk), B̂k, M(·; ·), Qk+1, w(tk+1), Rk+1, h(·)

Ensemble initialization: û(i)
b (tk) = ûb(tk) + e(i)b , e(i)b ∼ N (0, B̂k)

Forecast: u(i)
b (tk+1) = M(û(i)

b (tk); θ) + ξ
(i)
p (tk+1)

ub(tk+1) ≈ ub(tk+1)

ξ
(i)
b (tk+1) = u(i)

b (tk+1)− ub(tk+1)

Bk+1 ≈
1

N − 1

N

∑
i=1

ξ
(i)
b (tk+1)ξ

(i)
b (tk+1)

T

Kalman gain: Kk+1 = Bk+1Dh(ub(tk+1))
T
(

Dh(ub(tk+1))k+1Bk+1Dh(ub(tk+1))
T + Rk+1

)−1

Analysis: ua(tk+1) = ub(tk+1) + Kk+1

(
w(tk+1)− h(ub(tk+1))

)
ξ
(i)
a (tk+1) = ξ

(i)
b (tk+1)−

1
2

Kk+1

(
h(ξ(i)b (tk+1))

)
u(i)

a (tk+1) = ua(tk+1) + ξ
(i)
a (tk+1)

Pk+1 ≈
1

N − 1

N

∑
i=1

ξ
(i)
a (tk+1)ξ

(i)
a (tk+1)

T

and Listing 18 provides a Python execution of the presented DEnKF approach. Note that the ensemble
of observations is not created in this case, compared to the EnKF.

Listing 18. Implementation of DEnKF without virtual observations.� �
import numpy as np
def DEnKF(ubi,w,ObsOp,JObsOp,R,B):

The analysis step for the (stochastic) ensemble Kalman filter
with virtual observations

n,N = ubi.shape # n is the state dimension and N is the size of ensemble
m = w.shape[0] # m is the size of measurement vector

compute the mean of forecast ensemble
ub = np.mean(ubi,1)
compute Jacobian of observation operator at ub
Dh = JObsOp(ub)
compute Kalman gain
D = Dh@B@Dh.T + R
K = B @ Dh @ np.linalg.inv(D)

compute analysis of mean
ua = ub + K @ (w-ObsOp(ub))

xbi = np.zeros([n,N]) #ensemble of forecast anomalies
xai = np.zeros([n,N]) #ensemble of analysis anomalies

for i in range(N):
forecast anomalies
xbi[:,i] = ubi[:,i] - ub

Fluids 2020, 5, 225 35 of 48

analysis of anomalies
xai[:,i] = xbi[:,i] - (1/2) * K @ ObsOp(xbi[:,i])

compute analysis ensemble
uai = xai + ua.reshape(-1,1)

compute analysis error covariance matrix
P = (1/(N-1)) * (xai) @ (xai).T
return uai, P� �

8.2. Example: Lorenz 63 System

The same Lorenz 63 system is used to showcase the performance of both the EnKF and DEnKF.
In Listing 19, we show the Python application of the EnKF algorithm. In general, the size of ensemble
N is much smaller than the state dimension n for the implementation of EnKF to be computationally
feasible. However, the state dimension in the Lorenz 63 is 3, and an ensemble of size 3 or less is trivial.
The uncertainty in the covariance approximation via the Monte Carlo framework with such small
ensemble becomes very high and resulting predictions are unreliable. There exists various approaches
that help to increase the fidelity of small ensembles, including localization and inflation. In Section 9.2,
we describe simple application of inflation factor and its impact with small ensembles. Here, we stick
with the basic implementation with an ensemble size of 10 for both EnKF and DEnKF.

Listing 19. Implementation of EnKF for the Lorenz 63 system.� �
#%% Application: Lorenz 63
########################### Data Assimilation #################################
u0b = np.array([2.0,3.0,4.0])
sig_b= 0.1
B = sig_b**2*np.eye(3)
Q = 0.0*np.eye(3)
#time integration
ub = np.zeros([3,nt+1])
ub[:,0] = u0b
ua = np.zeros([3,nt+1])
ua[:,0] = u0b
n = 3 #state dimension
m = 3 #measurement dimension
ensemble size
N = 10
#initialize ensemble
uai = np.zeros([3,N])
for i in range(N):
uai[:,i] = u0b + np.random.multivariate_normal(np.zeros(n), B)

km = 0
for k in range(nt):
Forecast Step
#background trajectory [without correction]
ub[:,k+1] = RK4(Lorenz63,ub[:,k],dt,sigma,beta,rho)
#EnKF trajectory [with correction at observation times]
for i in range(N): # forecast ensemble
uai[:,i] = RK4(Lorenz63,uai[:,i],dt,sigma,beta,rho) \
+ np.random.multivariate_normal(np.zeros(n), Q)
compute the mean of forecast ensemble
ua[:,k+1] = np.mean(uai,1)

Fluids 2020, 5, 225 36 of 48

compute forecast error covariance matrix
B = (1/(N-1))*(uai-ua[:,k+1].reshape(-1,1))@(uai-ua[:,k+1].reshape(-1,1)).T
if (km<nt_m) and (k+1==ind_m[km]):
Analysis Step
uai,B = EnKF(uai,w[:,km],h,Dh,R,B)
compute the mean of analysis ensemble
ua[:,k+1] = np.mean(uai,1)
km = km+1� �

Figure 5 shows the EnKF results for the Lorenz 63 system. We see that the analysis trajectory is
close to the true one and more accurate than the background. Readers are encouraged to play with
the codes to explore the effect of increasing or decreasing the ensemble size with different levels of
noise. Furthermore, different observation operators can be defined (for instance, observe only 1 or
2 variables, or assume some nonlinear function h(·)).

Figure 5. EnKF results for the Lorenz 63 system with virtual observations.

For the sake of completeness, we also sketch the DEnKF predictions in Figure 6. The same
implementation in Listing 19 can be adopted, but calling the DEnKF function framed in Listing 18
instead of EnKF. Although different approaches might give slightly dissimilar results, we are not
trying to benchmark them in this introductory presentation since we are only showing very simple
implementation, with idealized twin experiments.

Fluids 2020, 5, 225 37 of 48

Figure 6. DEnKF results for the Lorenz 63 system without virtual observations.

9. Applications

In this section, we gradually increase the complexity of the test cases using fluid dynamics
applications. In Section 9.1, we slightly increase the dimensionality of the system from 3 (as in Lorenz
63 system) to 36 using the Lorenz 96 system and demonstrate the capability of DA algorithms to treat
uncertainty in initial conditions. This is further extended in Section 9.2, where we show that DA can
recover the hidden underlying processes and provide closure effects using the two-level variant of
the Lorenz 96 model. We also introduce the utilization of an inflation factor and its impact to mitigate
ensemble collapse and account for a slight under-representation of covariance due to the use of a small
ensemble in EnKF and DEnKF. In Section 9.3, we illustrate the application of DA on systems governed
by partial differential equations (PDEs) using the Kuramoto–Sivashinsky equation. We highlight
that for each application, we only show results for a few selected algorithms and extensions to other
approaches covered in this tutorial are left to readers as computer projects. We also emphasize that we
are demonstrating the implementation and capabilities of the presented DA algorithms, not assessing
their performance nor benchmarking different approaches against each other.

9.1. Lorenz 96 System

The Lorenz 96 model [33] is a system of ordinary differential equations that describes an arbitrary
atmospheric quantity as it evolves on a circular array of sites, undergoing forcing, dissipation,
and rotation invariant advection [34]. The Lorenz 96 dynamical model can be written as

dXi
dt

= (Xi+1 − Xi−2)Xi−1 − Xi + F, i = 1, 2, . . . , n, (61)

Fluids 2020, 5, 225 38 of 48

where Xi is the state of the system at the ith location and F represents a forcing constant. Periodicity is
enforced by assuming that X−1 = Xn−1, X0 = Xn, and Xn+1 = X1. In the present study, we use n = 36,
and F = 8 defining a forcing term. In order to obtain a valid initial condition, we begin at t = −5 using
equilibrium conditions defined as (Xi = F for i = 1, 2, . . . , n) and adding a small perturbation to the
20th state variable as X20 = F + 0.01. Then, ODE integrator is run up to t = 0 and solution at t = 0
is treated at the true initial conditions for our twin experiment. We assume a background erroneous
initial condition by contaminating the true one with Gaussian noise with zero mean and standard
deviation of 1.

A total time window of 20 time units is considered, with a time step of ∆t = 0.01 and the RK4
schemes is adopted for time integration. Synthetic measurements are collected at every 0.2 time unit
(i.e., each 20 time integration steps) sampled at 9 equidistant locations (i.e., at i ∈ {4, 8, 12, . . . , 36})
from true trajectory assuming that sensors add a white noise with zero mean and a standard deviation
of 0.1. We also assume a process noise drawn from a multivariate Gaussian distribution with zero
mean and covariance matrix Q defined as Q = 0.12I36. We first apply the EKF approach to correct the
solution trajectory, which yields very good results as shown in Figure 7. For visualization, we only plot
the time evolution of X9, X18, and X36. We see that the Lorenz 96 is sensitive to the initial conditions
and small perturbation is sufficient to produce a very different trajectory (e.g., background solution).

Figure 7. EKF results for the Lorenz 96 system. The trajectories of X9, X18, and X36 are shown.

The second approach to test is the stochastic version of EnKF. We create an ensemble of
50 members to approximate the covariance matrices. Results are depicted in Figure 8 for X9,
X18, and X36. We highlight that observations appear only in the X36 plot because observations
are collected at i = 4, 8, 12, . . . , 36 (neither X9 nor X18 are measured). We highlight that, generally
speaking, increasing the size of ensemble improves the predictions. However, this comes on the

Fluids 2020, 5, 225 39 of 48

expense of the solution of the forward nonlinear model for each added member. Thus, a compromise
between the accuracy and computational burden is in place.

Figure 8. EnKF results for the Lorenz 96 system using an ensemble of 50 members.

9.2. Two-Level Lorenz 96 System

In this section, we describe the two-level variant of the Lorenz 96 model proposed by Lorenz [33].
The two-level Lorenz 96 model can be written as

dXi
dt

= −Xi−1(Xi−2 − Xi+1)− Xi −
hc
b

J

∑
j=1

Yj,i + F, (62)

dYj,i

dt
= −cbYj+1,i(Yj+2,i −Yj−1,i)− cYj,i +

hc
b

Xi, (63)

where Equation (62) represents the evolution of slow, high-amplitude variables Xi (i = 1, . . . , n),
and Equation (63) provides the evolution of a coupled fast, low-amplitude variable Yj,i (j = 1, . . . , J).
We use n = 36 and J = 10 in our computational experiments. We utilize c = 10 and b = 10,
which implies that the small scales fluctuate 10 times faster than the larger scales. Furthermore, the
coupling coefficient h between two scales is equal to 1 and the forcing is set at F = 10 to make both
variables exhibit the chaotic behavior.

We utilize the fourth-order Runge–Kutta numerical scheme with a time step ∆t = 0.001 for
temporal integration of the Lorenz 96 model. We apply the periodic boundary condition for the slow
variables, i.e., Xi−n = Xi+n = Xi. The fast variables are extended by letting Yj,i−n = Yj,i+n = Yj,i,
Yj−J,i = Yj,i−1, and Yj+J,i = Yj,i+1. The physical initial condition is computed by starting with an
equilibrium condition at time t = −5 for slow variables. The equilibrium condition for slow variables
is Xi = F for i ∈ 1, 2, . . . , n. We perturb the equilibrium solution for the 18th state variable as

Fluids 2020, 5, 225 40 of 48

X18 = F + 0.01. At the time t = −5, the fast variables are assigned with random numbers between
−F/10 to F/10. We integrate a two-level Lorenz 96 model by solving both Equations (62) and (63) in a
coupled manner up to time t = 0. The solution at time t = 0 represent the true initial condition. For our
twin experiment, we obtain observations by adding noise drawn from the Gaussian distribution with
zero mean and σ2

o = 1.0. We assume that observations are sparse in space and are collected at every
10th time step.

The motivation behind this example is to demonstrate how covariance inflation can be utilized
to account for the model error. Usually the imperfections in the forecast model is taken into account
by adding a Gaussian noise to the forecast model. Another method to account for model error is
covarinace inflation. It also helps in alleviating the effect finite number of ensemble members in
practical data assimilation and addresses the problem of covariance underestimation in the EnKF
algorithm. We use the multiplicative inflation [35] where the ensemble members are pushed away
from the ensemble mean by a given inflation factor and mathematically it can be expressed as

u(i)
b (tk+1)← ua(tk+1) + λ · (u(i)

b (tk+1)− u(i)
a (tk+1)), (64)

where λ is the inflation factor. The inflation factor can be a constant scalar over the entire domain at all
time step or it can space and time dependent.

In this example, we discard parameterizations of fast variables in the forecast model. The forecast
model for two-level Lorenz system with no parameterizations is equivalent to setting the coupling
coefficient h = 0 in Equation (62) and it reduces to one-level Lorenz 96 model as presented in Section 9.1.
We note here that the observations used for data assimilation are obtained by solving a two-level
Lorenz 96 model in a coupled manner (i.e., without discarding fast-variables). Therefore, the effect of
unresolved scales is embedded in observations. The parameterization of fast variables (i.e., hc

b ∑J
j=1 Yj,i

term in Equation (62)) can be considered as an added noise to the true state of the system for a one-level
Lorenz 96 model. Figure 9 displays the RMSE for a two-level Lorenz system when 18 observations are
used for DA with different number of ensemble members and inflation factors for EnKF and DEnKF
algorithms. Figure 10 shows the full state trajectory of two-level Lorenz system corresponding to
minimum RMSE, which is obtained with 50 ensemble members and inflation factor λ = 1.04 for the
EnKF algorithm. The parameters corresponding to minimum RMSE for the DEnKF algorithm are
45 ensemble members and λ = 1.05.

Figure 9. RMSE for a two-level Lorenz model for different combinations of number of ensembles and
inflation factor.

Fluids 2020, 5, 225 41 of 48

Figure 10. Full state trajectory of the multiscale Lorenz 96 model with no parameterizations in the
forecast model. The EnKF algorithm uses the inflation factor λ = 1.04 and N = 50 and the DEnKF uses
the inflation factor λ = 1.05 and N = 45. The observation data for both EnKF an DEnKF algorithm is
obtained by adding measurement noise to the exact solution of the two-level Lorenz 96 system.

9.3. Kuramato Sivashinsky

In this section, we describe the Kuramoto–Sivashinsky (K-S) equation derived by Kuramoto [36],
which is used as a turbulence model for different flows. The one-dimensional K-S equation can be
written as

∂u
∂t

= −ν
∂4u
∂x4 −

∂2u
∂x2 − u

∂u
∂x

, (65)

where ν is the viscosity coefficient. The K-S equation is characterized by the second-order unstable
diffusion term responsible for an instability at large scales, the fourth-order stabilizing viscous term
that provides damping at small scales, and a quadratic nonlinear term which transfers energy between
large and small scales. We use the computational domain extending from 0 to L, i.e., x ∈ [0, L] and
time t ∈ [0, ∞]. We impose the Dirichlet and Neumann boundary conditions as given below

u(0, t) = u(L, t) = 0, (66)

∂u
∂x

∣∣∣
x=0

=
∂u
∂x

∣∣∣
x=L

= 0. (67)

We spatially discretize the domain with the grid size ∆x = L/(n− 1), where n is the degrees
of freedom. We set L = 50 and n = 129 for our numerical experiments. The state of the system
at discretized grid is denoted as ui = u((i − 1)∆x) for i = 1, . . . , n. Using the second-order finite
difference discretization, the discretized K-S equation can be written as

dui
dt

= −ν
ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2

∆x4 − ui+1 − 2ui + ui−1

∆x2 − 1
2

u2
i+1 − u2

i−1
2∆x

. (68)

Fluids 2020, 5, 225 42 of 48

The first term on the right hand side is computed by utilizing ghost nodes and the Neumann
boundary condition is assigned for ghost points. We impose u0 = u2 and un+1 = un−1 using the
second-order discretization for Equation (67) at boundary points u1 and un, respectively.

We use the fourth-order Runge–Kutta scheme for time integration with a time step ∆t = 0.25.
To generate an initial condition for the forward run we start with an equilibrium condition at time
t = −50 and integrate up to time t = 0. The equilibrium condition for the model is ui = 0.1 for
j ∈ {1, . . . , n}. Once the true initial condition is generated, we run the forward solver up to time t = 50.
We test the prediction capability of sequential data assimilation algorithms for forecast up to t = 50.
The K-S equation exhibits different levels of chaotic behavior depending on the value of viscosity
coefficient ν. The chaos depends upon the bifurcation parameter L̃ = L/2π

√
ν. We utilize ν = 1/2

which represent the less chaotic behaviour. The observations for twin experiments are obtained
by adding some noise to the true state of the system to account for experimental uncertainties and
measurement errors. The observations are also sparse in time, meaning that the time interval between
two observations can be different from the time step of the forecast model. For our twin experiments,
we assume that observations are recorded at every 10th time step of the model for ν = 1/2. Therefore,
the time difference between two observations is δt = 2.5 for the K-S equation. We present results for the
EnKF algorithm with three sets of observations. The first set of observations is very sparse with only
12.5% of the full state of the system. The first set utilizes observations for states [u8, u16, . . . , u128] ∈ R16.
In a second set of observations we employ observations at [u4, u8, . . . , u128] ∈ R32 for the assimilation.
The third set of observations consists of 50% of the full state of the system, i.e., observations at states
[u2, u4, . . . , u128] ∈ R64 for the assimilation. We apply σ2

o = 1.0× 10−2 and σ2
i = 1.0× 10−2 as the

variance of observation noise and initial condition uncertainty, respectively.
In Figure 11, we present the time evolution of selected states for three different number of

observations included in the assimilation of the EnKF algorithm. There is an excellent agreement
between true and assimilated states u51 and u101, for which observations are not present. We also
provide the full state trajectory of the K-S equation in Figure 12. The results obtained clearly indicate
that the EnKF algorithm is able to determine the correct state trajectory even when the observation
data are very sparse, i.e., m = 16. With an increase in the number of observations, the prediction of the
full state trajectory gets smoother, and almost the exact state is recovered with 50% observations.

Figure 11. Selected trajectories of the Kuramoto–Sivashinsky model (ν = 1/2) with
the analysis performed by the ensemble Kalman filter (EnKF) using observations from
m = 16 (left), m = 32 (middle), and m = 64 (right) state variables at every 10 time steps.

Fluids 2020, 5, 225 43 of 48

Figure 12. Full state trajectory of the Kuramoto–Sivashinsky model (ν = 1/2) with
the analysis performed by the ensemble Kalman filter (EnKF) using observations from
m = 16 (left), m = 32 (middle), and m = 64 (right) state variables at every 10 time steps.

9.4. Quasi-Geostrophic (QG) Ocean Circulation Model

We consider a simple single-layer QG model to illustrate the application of sequential data
assimilation for two-dimensional flows. Specifically, we use the deterministic ensemble Kalman filter
(DenKF) algorithm discussed in Section 8.1 to improve the prediction of the single-layer QG model.
The wind-driven oceanic flows exhibit a vast range of spatio-temporal scales and modeling of these
scales with all the relevant physics has always been challenging. The barotropic vorticity equation
(BVE) with various dissipative and forcing terms is one of the most commonly used models for
geostrophic flows [37,38]. The dimensionless vorticity-streamfunction formulation for the BVE [39]
with forcing and dissipative terms can be written as

∂ω

∂t
+ J(ω, ψ)− 1

Ro
∂ψ

∂x
=

1
Re
∇2ω +

1
Ro

sin(πy), (69)

where ω is the vorticity, ψ is the streamfunction, ∇2 is the standard two-dimensional Laplacian
operator, Re is the Reynolds number, and Ro is the Rossby number. The kinematic relation between
vorticity and streamfunction is given by the following Poisson equation

∇2ψ = −ω. (70)

The nonlinear convection term is given by the Jacobian as follows

J(ω, ψ) =
∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y
. (71)

The computational domain for the QG model is (x, y) ∈ [0, 1]× [−1, 1] and is discretized using
128× 256 grid resolution. Therefore, the QG model has the dimension of about 3.2× 104. We utilize
the homogeneous Dirichlet boundary condition for the vorticity and streamfunction at all boundaries.
The vorticity and streamfunction is initialized from quiescent state, i.e., ωt=0 = ψ|t=0 = 0. The QG model is
numerically solved by discretizing Equation (69) using second-order finite difference scheme. The nonlinear
Jacobian term is discretized with the energy-conserving Arakawa [40] numerical scheme. A third-order
total-variation-diminishing Runge–Kutta scheme is used for the temporal integration and a fast sine transform

Fluids 2020, 5, 225 44 of 48

Poisson solver is utilized to update streamfunction from the vorticity [41]. For the physical parameters,
we use values of Re = 100 and Ro = 1.75× 10−3.

The QG model is integrated with a constant time step of 5× 10−5 from time t = 0 to t = 0.25 to generate
the true initial condition at final time t = 0.25. Then the data assimilation is conducted from time t = 0.25
to t = 0.4 with observations getting assimilated at every tenth time step. The synthetic observations are
generated by sampling vorticity field on 16 equidistant points in x and y directions respectively and then
adding the Gaussian noise, i.e., vk ∼ N (0, Rk), where Rk = σ2

b I. We set the observation noise variance at
σ2

b = 5. The typical vorticity and streamfunction field along with the locations of measurements are shown
in Figure 13.

Figure 13. A Typical vorticity (left) and streamfunction (right) field for the single-layer QG model.
The dots shows the locations of observations.

We employ 20 ensemble members for the DEnKF algorithm. The initialization of the ensemble members
is an important step to get accurate prediction with any type of the EnKF algorithm. We initialize different
ensemble members by randomly selecting the vorticity field snapshots between time t = 0.24 to t = 0.25.
The other methods such as adding a random perturbation from the Gaussian distribution to the true initial
condition can also be adopted. Figure 14 displays the vorticity field and the predicted vorticity field at
three different time instances along with the difference (error) between the two. We can see that the true
and analysis field are similar at all time instances and the magnitude of error is also small. We recall that
we observe only around 2% of the system (i.e., observations at 16× 32 locations). With more observations,
the quality of the results can be further improved.

Figure 14. Snapshots of the true vorticity field (left), analysis estimate of the DEnKF algorithm (middle),
and the difference (error) between the two fields (right) obtained for a particular run of the single-layer
QG model. The snapshots of vorticity field are plotted at t = 0.3, 0.35, 0.4 (from top to bottom).

Fluids 2020, 5, 225 45 of 48

10. Concluding Remarks

In this tutorial paper, we provided a 101 introduction to common data assimilation techniques.
In particular, we briefly covered the relevant mathematical foundation and the algorithmic steps for
three dimensional variational (3DVAR), four dimensional variational (4DVAR), forward sensitivity
method (FSM), and Kalman filtering approaches. Since it is considered as a first exposure to
DA, we focused on the simplest implementations that anybody can easily follow. For example,
to treat nonlinearity (e.g., in 3DVAR, 4DVAR, FSM and EKF), we only presented the first order
Taylor expansions. We demonstrated the execution of the covered approaches with a series of
Python modules that can be linked to each other easily. Again, we preferred to keep our codes
as concise and simple as possible, even if it comes on the expense of computational efficiency.
The Python codes used to generate this tutorial are publicly available through our GitHub repository
https://github.com/Shady-Ahmed/PyDA.

Since it is introductory exploration, we should admit that we have bypassed a few important
analyses and shortcut some key derivations. Interested readers are referred to well-established
textbooks that offer in-depth discussions about various DA techniques [14,27,29,42–47]. Likewise,
more advanced topics such as the particle filters [48], maximum likelihood ensemble filters [49,50],
optimal sensor placement [51,52], higher-order analysis of variational methods [53], or hybrid
methods [54–59] are omitted in our current presentation.

Author Contributions: Data curation, S.E.A., S.P., and O.S.; Supervision, O.S.; Writing—original draft, S.E.A.,
and S.P.; and Writing—review and editing, S.E.A., S.P., and O.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research under Award Number DE-SC0019290. Omer San gratefully
acknowledges their support. Disclaimer: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or any agency thereof.

Acknowledgments: We thank Sivaramakrishnan Lakshmivarahan for his insightful comments as well as his
archival NPTEL lectures [60] on dynamic data assimilation that greatly helped us in developing the PyDA module.
Special thanks go to Ionel Michael Navon for providing his lecture notes on data assimilation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Navon, I.M. Data assimilation for numerical weather prediction: A review. In Data Assimilation for
Atmospheric, Oceanic and Hydrologic Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 21–65.

2. Blum, J.; Le Dimet, F.X.; Navon, I.M. Data assimilation for geophysical fluids. Handb. Numer. Anal.
2009, 14, 385–441.

3. Le Dimet, F.X.; Navon, I.M.; Ştefănescu, R. Variational data assimilation: Optimization and
optimal control. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III); Springer:
Berlin/Heidelberg, Germany, 2017; pp. 1–53.

4. Attia, A.; Sandu, A. DATeS: A highly extensible data assimilation testing suite v1.0. Geosci. Model Dev.
2019, 12, 629–649. [CrossRef]

5. Lorenc, A.C. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc. 1986, 112, 1177–1194.
[CrossRef]

6. Parrish, D.F.; Derber, J.C. The National Meteorological Center’s spectral statistical-interpolation
analysis system. Mon. Weather Rev. 1992, 120, 1747–1763. [CrossRef]

https://github.com/Shady-Ahmed/PyDA
http://dx.doi.org/10.5194/gmd-12-629-2019
http://dx.doi.org/10.1002/qj.49711247414
http://dx.doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2

Fluids 2020, 5, 225 46 of 48

7. Courtier, P. Dual formulation of four-dimensional variational assimilation. Q. J. R. Meteorol. Soc.
1997, 123, 2449–2461. [CrossRef]

8. Rabier, F.; Järvinen, H.; Klinker, E.; Mahfouf, J.F.; Simmons, A. The ECMWF operational implementation
of four-dimensional variational assimilation. I: Experimental results with simplified physics. Q. J. R.
Meteorol. Soc. 2000, 126, 1143–1170. [CrossRef]

9. Elbern, H.; Schmidt, H.; Talagrand, O.; Ebel, A. 4D-variational data assimilation with an adjoint air quality
model for emission analysis. Environ. Model. Softw. 2000, 15, 539–548. [CrossRef]

10. Courtier, P.; Thépaut, J.N.; Hollingsworth, A. A strategy for operational implementation of 4D-Var, using an
incremental approach. Q. J. R. Meteorol. Soc. 1994, 120, 1367–1387. [CrossRef]

11. Lorenc, A.C.; Rawlins, F. Why does 4D-Var beat 3D-Var? Q. J. R. Meteorol. Soc. 2005, 131, 3247–3257.
[CrossRef]

12. Gauthier, P.; Tanguay, M.; Laroche, S.; Pellerin, S.; Morneau, J. Extension of 3DVAR to 4DVAR:
Implementation of 4DVAR at the Meteorological Service of Canada. Mon. Weather Rev. 2007, 135, 2339–2354.
[CrossRef]

13. Lakshmivarahan, S.; Lewis, J.M. Forward sensitivity approach to dynamic data assimilation. Adv. Meteorol.
2010, 2010, 375615. [CrossRef]

14. Lakshmivarahan, S.; Lewis, J.M.; Jabrzemski, R. Forecast Error Correction Using Dynamic Data Assimilation;
Springer: Cham, Switzerland, 2017.

15. Houtekamer, P.L.; Mitchell, H.L. Data assimilation using an ensemble Kalman filter technique.
Mon. Weather Rev. 1998, 126, 796–811. [CrossRef]

16. Burgers, G.; Jan van Leeuwen, P.; Evensen, G. Analysis scheme in the ensemble Kalman filter. Mon. Weather Rev.
1998, 126, 1719–1724. [CrossRef]

17. Evensen, G. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean. Dyn.
2003, 53, 343–367. [CrossRef]

18. Houtekamer, P.L.; Mitchell, H.L. A sequential ensemble Kalman filter for atmospheric data assimilation.
Mon. Weather Rev. 2001, 129, 123–137. [CrossRef]

19. Houtekamer, P.L.; Mitchell, H.L. Ensemble kalman filtering. Q. J. R. Meteorol. Soc. 2005, 131, 3269–3289.
[CrossRef]

20. Treebushny, D.; Madsen, H. A new reduced rank square root Kalman filter for data assimilation in
mathematical models. In Proceedings of the International Conference on Computational Science, Melbourne,
Australia, 2 June 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 482–491.

21. Buehner, M.; Malanotte-Rizzoli, P. Reduced-rank Kalman filters applied to an idealized model of the
wind-driven ocean circulation. J. Geophys. Res. Ocean. 2003, 108. [CrossRef]

22. Lakshmivarahan, S.; Stensrud, D.J. Ensemble Kalman filter. IEEE Control. Syst. Mag. 2009, 29, 34–46.
23. Apte, A.; Hairer, M.; Stuart, A.; Voss, J. Sampling the posterior: An approach to non-Gaussian

data assimilation. Phys. Nonlinear Phenom. 2007, 230, 50–64. [CrossRef]
24. Bocquet, M.; Pires, C.A.; Wu, L. Beyond Gaussian statistical modeling in geophysical data assimilation.

Mon. Weather Rev. 2010, 138, 2997–3023. [CrossRef]
25. Vetra-Carvalho, S.; Van Leeuwen, P.J.; Nerger, L.; Barth, A.; Altaf, M.U.; Brasseur, P.;

Kirchgessner, P.; Beckers, J.M. State-of-the-art stochastic data assimilation methods for high-dimensional
non-Gaussian problems. Tellus Dyn. Meteorol. Oceanogr. 2018, 70, 1–43. [CrossRef]

26. Attia, A.; Moosavi, A.; Sandu, A. Cluster sampling filters for non-Gaussian data assimilation. Atmosphere
2018, 9, 213. [CrossRef]

27. Lewis, J.M.; Lakshmivarahan, S.; Dhall, S. Dynamic Data Assimilation: A Least Squares Approach;
Cambridge University Press: Cambridge, UK, 2006; Volume 104.

28. Evensen, G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo
methods to forecast error statistics. J. Geophys. Res. Ocean. 1994, 99, 10143–10162. [CrossRef]

29. Evensen, G. Data Assimilation: The Ensemble Kalman Filter; Springer: Berlin/Heidelberg, Germany, 2009.
30. Sakov, P.; Oke, P.R. A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble

square root filters. Tellus Dyn. Meteorol. Oceanogr. 2008, 60, 361–371. [CrossRef]
31. Whitaker, J.S.; Hamill, T.M. Ensemble data assimilation without perturbed observations. Mon. Weather Rev.

2002, 130, 1913–1924. [CrossRef]

http://dx.doi.org/10.1002/qj.49712354414
http://dx.doi.org/10.1002/qj.49712656415
http://dx.doi.org/10.1016/S1364-8152(00)00049-9
http://dx.doi.org/10.1002/qj.49712051912
http://dx.doi.org/10.1256/qj.05.85
http://dx.doi.org/10.1175/MWR3394.1
http://dx.doi.org/10.1155/2010/375615
http://dx.doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
http://dx.doi.org/10.1007/s10236-003-0036-9
http://dx.doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
http://dx.doi.org/10.1256/qj.05.135
http://dx.doi.org/10.1029/2001JC000873
http://dx.doi.org/10.1016/j.physd.2006.06.009
http://dx.doi.org/10.1175/2010MWR3164.1
http://dx.doi.org/10.1080/16000870.2018.1445364
http://dx.doi.org/10.3390/atmos9060213
http://dx.doi.org/10.1029/94JC00572
http://dx.doi.org/10.1111/j.1600-0870.2007.00299.x
http://dx.doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2

Fluids 2020, 5, 225 47 of 48

32. Tippett, M.K.; Anderson, J.L.; Bishop, C.H.; Hamill, T.M.; Whitaker, J.S. Ensemble square root filters.
Mon. Weather Rev. 2003, 131, 1485–1490. [CrossRef]

33. Lorenz, E.N. Predictability: A problem partly solved. In Proceedings of the Seminar on Predictability,
Reading, UK, 9–11 September 1996; Volume 1.

34. Kerin, J.; Engler, H. On the Lorenz’96 Model and Some Generalizations. arXiv 2020, arXiv:2005.07767.
35. Anderson, J.L.; Anderson, S.L. A Monte Carlo implementation of the nonlinear filtering problem to produce

ensemble assimilations and forecasts. Mon. Weather Rev. 1999, 127, 2741–2758. [CrossRef]
36. Kuramoto, Y. Diffusion-induced chaos in reaction systems. Prog. Theor. Phys. Suppl. 1978, 64, 346–367.

[CrossRef]
37. Majda, A.; Wang, X. Nonlinear Dynamics and Statistical Theories for basic Geophysical Flows;

Cambridge University Press: New York, NY, USA, 2006.
38. Greatbatch, R.J.; Nadiga, B.T. Four-gyre circulation in a barotropic model with double-gyre wind forcing.

J. Phys. Oceanogr. 2000, 30, 1461–1471. [CrossRef]
39. San, O.; Staples, A.E.; Wang, Z.; Iliescu, T. Approximate deconvolution large eddy simulation of a barotropic

ocean circulation model. Ocean. Model. 2011, 40, 120–132. [CrossRef]
40. Arakawa, A. Computational design for long-term numerical integration of the equations of fluid motion:

Two-dimensional incompressible flow. Part I. J. Comput. Phys. 1997, 135, 103–114. [CrossRef]
41. Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes; Cambridge University Press:

New York, NY, USA, 1989.
42. Cacuci, D.G.; Navon, I.M.; Ionescu-Bujor, M. Computational Methods for Data Evaluation and Assimilation;

CRC Press: New York, NY, USA, 2013.
43. Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press:

New York, NY, USA, 2003.
44. Law, K.; Stuart, A.; Zygalakis, K. Data Assimilation: A Mathematical Introduction; Springer: Cham, Switzerland, 2015.
45. Asch, M.; Bocquet, M.; Nodet, M. Data Assimilation: Methods, Algorithms, and Applications; SIAM:

Philadelphia, PA, USA, 2016.
46. Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; John Wiley & Sons:

Hoboken, NJ, USA, 2006.
47. Labbe, R. Kalman and bayesian filters in Python. Chap 2014, 7, 246.
48. Van Leeuwen, P.J.; Künsch, H.R.; Nerger, L.; Potthast, R.; Reich, S. Particle filters for high-dimensional

geoscience applications: A review. Q. J. R. Meteorol. Soc. 2019, 145, 2335–2365. [CrossRef] [PubMed]
49. Zupanski, M. Maximum likelihood ensemble filter: Theoretical aspects. Mon. Weather Rev.

2005, 133, 1710–1726. [CrossRef]
50. Zupanski, M.; Navon, I.M.; Zupanski, D. The Maximum Likelihood Ensemble Filter as a non-differentiable

minimization algorithm. Q. J. R. Meteorol. Soc. 2008, 134, 1039–1050. [CrossRef]
51. Kang, W.; Xu, L. Optimal placement of mobile sensors for data assimilations. Tellus Dyn. Meteorol. Oceanogr.

2012, 64, 17133. [CrossRef]
52. Mons, V.; Chassaing, J.C.; Sagaut, P. Optimal sensor placement for variational data assimilation of unsteady

flows past a rotationally oscillating cylinder. J. Fluid Mech. 2017, 823, 230–277. [CrossRef]
53. Le Dimet, F.X.; Navon, I.M.; Daescu, D.N. Second-order information in data assimilation. Mon. Weather Rev.

2002, 130, 629–648. [CrossRef]
54. Lorenc, A.C.; Bowler, N.E.; Clayton, A.M.; Pring, S.R.; Fairbairn, D. Comparison of hybrid-4DEnVar and

hybrid-4DVar data assimilation methods for global NWP. Mon. Weather Rev. 2015, 143, 212–229. [CrossRef]
55. Desroziers, G.; Camino, J.T.; Berre, L. 4DEnVar: Link with 4D state formulation of variational assimilation

and different possible implementations. Q. J. R. Meteorol. Soc. 2014, 140, 2097–2110. [CrossRef]
56. Wang, X.; Barker, D.M.; Snyder, C.; Hamill, T.M. A hybrid ETKF–3DVAR data assimilation scheme for the

WRF model. Part I: Observing system simulation experiment. Mon. Weather Rev. 2008, 136, 5116–5131.
[CrossRef]

57. Buehner, M.; Morneau, J.; Charette, C. Four-dimensional ensemble-variational data assimilation for global
deterministic weather prediction. Nonlinear Process. Geophys. 2013, 20, 669–682. [CrossRef]

58. Kleist, D.T.; Ide, K. An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP
GFS. Part I: System description and 3D-hybrid results. Mon. Weather Rev. 2015, 143, 433–451. [CrossRef]

http://dx.doi.org/10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2
http://dx.doi.org/10.1143/PTPS.64.346
http://dx.doi.org/10.1175/1520-0485(2000)030<1461:FGCIAB>2.0.CO;2
http://dx.doi.org/10.1016/j.ocemod.2011.08.003
http://dx.doi.org/10.1006/jcph.1997.5697
http://dx.doi.org/10.1002/qj.3551
http://www.ncbi.nlm.nih.gov/pubmed/31598012
http://dx.doi.org/10.1175/MWR2946.1
http://dx.doi.org/10.1002/qj.251
http://dx.doi.org/10.3402/tellusa.v64i0.17133
http://dx.doi.org/10.1017/jfm.2017.313
http://dx.doi.org/10.1175/1520-0493(2002)130<0629:SOIIDA>2.0.CO;2
http://dx.doi.org/10.1175/MWR-D-14-00195.1
http://dx.doi.org/10.1002/qj.2325
http://dx.doi.org/10.1175/2008MWR2444.1
http://dx.doi.org/10.5194/npg-20-669-2013
http://dx.doi.org/10.1175/MWR-D-13-00351.1

Fluids 2020, 5, 225 48 of 48

59. Kleist, D.T.; Ide, K. An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the
NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Weather Rev. 2015, 143, 452–470. [CrossRef]

60. Lakshmivarahan, S. Video Lectures on Dynamic Data Assimilation; NPTEL Program; IIT Madras:
Chennai, India, 2016. Available online: https://nptel.ac.in/courses/111/106/111106082/ (accessed on
November 28, 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1175/MWR-D-13-00350.1
https://nptel.ac.in/courses/111/106/111106082/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Notation
	Twin Experiment Framework

	Three Dimensional Variational Data Assimilation
	Linear Case
	Nonlinear Case
	Example: Lorenz 63 System

	Four Dimensional Variational Data Assimilation
	Forward Sensitivity Method
	Kalman Filtering
	Extended Kalman Filter
	Ensemble Kalman Filter
	Deterministic Ensemble Kalman Filter
	Example: Lorenz 63 System

	Applications
	Lorenz 96 System
	Two-Level Lorenz 96 System
	Kuramato Sivashinsky
	Quasi-Geostrophic (QG) Ocean Circulation Model

	Concluding Remarks
	References

