
fluids

Article

An Elementary Model for a Self-Accelerating
Outward Propagating Flame Subject to the
Rayleigh–Taylor Instability: Transition to Detonation

Leonid Kagan *,† and Gregory Sivashinsky †

Sackler Faculty of Exact Sciences, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
grishas@tauex.tau.ac.il
* Correspondence: kaganleo@tauex.tau.ac.il
† These authors contributed equally to this work.

Received: 29 September 2020; Accepted: 28 October 2020; Published: 31 October 2020
����������
�������

Abstract: Within the Boussinesq approximation, an elementary model for the deflagration-to-
detonation transition triggered by self-acceleration of an expanding flame is formulated and explored.
The self-acceleration is sustained by the intrinsic Rayleigh–Taylor instability until the Deshaies–Joulin
deflagrability threshold is reached, followed by an abrupt transition to detonation. Emergence of
the threshold is caused by positive feedback between the accelerating flame and the flame-driven
pressure shock that results in the thermal runaway when the flame speed reaches a critical level.
The model offers a simple mechanism that may be responsible for the transition to detonation in
thermonuclear supernovae.
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approximation; deflagration-to-detonation transition; supernovae explosions

1. Introduction

Understanding supernovae explosions is a fundamental astrophysical issue that has frustrated
theorists since the effect was first clearly identified by Zwicky in 1933, and it is still commonly regarded
as an unsolved problem (Röpke [1]). There is a general consensus that the Type Ia supernova explosion
of a degenerate carbon white dwarf star is a manifestation of the deflagration-to-detonation transition
(DDT) triggered by an outward-propagating thermonuclear flame subjected to Darrieus–Landau (DL)
and Rayleigh–Taylor (RT) corrugations causing the flame to accelerate prior to the transition [2].

The present study offers an elementary model of the DDT event by synthesizing a weakly
nonlinear equation of the RT-instability with the Deshaies–Joulin (DJ) theory of thermal runaway [3].

Unlike terrestrial chemical flames, in thermonuclear flames the thermal expansion of reaction
products is relatively small [1,4–6], which justifies utilization of the Boussinesq distinguished limit [7].
The Boussinesq quasi-constant-density approximation, in turn, suppresses development of the
DL-instability, whose impact is generally deemed inferior to that of the RT.

In the DJ analysis [3], the upper bound for the flame speed is caused by positive feedback between
the advancing flame and the flame-driven pressure shock that results in the thermal runaway when the
flame speed reaches a critical level. The crucial point of the DJ approach is that at the DDT threshold
the corrugated flame may stay perfectly subsonic (see also [8–10]). This premise allows one to deal
with the small (yet nonzero) Mach number approximation with all the technical advantages it provides.
Moreover, the ability of a subsonic flame to trigger the transition challenges the common view that to
ensure DDT the flame should cross the threshold of the DJ-deflagration.
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2. Modelling

For the Boussinesq limit the appropriately scaled dispersion relation for an upward propagating
planar flame reads (see Zeldovich et al. [11], Equation (3.57) at α→ 1, while keeping (α− 1)g finite),
(Figure 1):
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1
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Here k is the perturbation wave-number in units of 1/lM, lM =Markstein length, ω = perturbation
growth rate in units of Ub/lM, Ub = planar flame speed relative to the burned gas under isobaric
conditions, G = 2(α− 1)glM/U2

b = buoyancy parameter, α = ratio of unburned to burned gas densities,
and g = acceleration due to gravity.
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Figure 1. Dispersion relation ω(k) defined by Equation (1); G = 0.002, k0 = 0.0045, ω0 = 0.0004.

For thermonuclear flames the Lewis number may be regarded as infinitely large [4]. Hence,
lM = 1

2 βlth [11,12], where β = Zeldovich number and lth = flame width.
Similar to the weakly nonlinear equation for the DL-instability [12,13], the analogous equation for

an upward-propagating planar flame subjected to the RT-instability may be written as
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Equations (2) and (3) are considered over a finite interval, −Λ/2 < x < Λ/2, with periodic
boundary conditions:

Φ(0) (− 1
2 Λ, t) = Φ(0) ( 1

2 Λ, t) , (4)

Φ(0)
x (− 1

2 Λ, t) = Φ(0)
x ( 1

2 Λ, t)

Here (x, t) are scaled spatio-temporal coordinates in units of lM and lM/Ub, Φ(0) = flame profile
in units of lM. The superscript in Φ(0) corresponds to the zero-Mach-number (isobaric) limit.

To accommodate the precompression-induced runaway we adopt the relation suggested by the
DJ small-Mach-number approximation [3], (Figure 2).
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Figure 2. κΣ vs. m-dependency defined by Equation (5).
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is the folding factor. The overbar means the average over the channel cross-section.

κ = 1
2 β(γ− 1)Ma (8)

is the compressibility parameter, Ma = Uu/au is the Mach number, γ = cp/cv is the adiabatic index,
and au, Uu = Ub/α are sonic and flame velocities relative to the unburned gas. The superscript in
Φ(M) corresponds to the small-Mach-number approximation.

Equation (5) readily implies that at the deflagrability (DDT) threshold, (Figure 2)

κΣDDT = e−1 (9)

Equation (8) pertains to the one-step Arrhenius kinetics and the ideal gas equation of state. For the
thermonuclear flame the structure of the compressibility parameter (κ) is more involved (Section 4)
but this should not affect the overall dynamical picture.

Following [14], for an outward propagating flame r = R(0)(ϕ, t) Equations (2) and (3) are
modified to
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Solutions of the model (10)–(12) are valid as long as R(0)(ϕ, t) remains positive.
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Similarly, Equations (6) and (7) are modified to
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In Equation (1) for ω(n/R(0)) of Equation (11) the buoyancy factor G is treated as a prescribed
R(0)-independent parameter. This premise, while not holding in stars, is presumably adequate enough
for mimicking the impact of buoyancy-induced instability.

For an outward propagating flame Equation (5) may be recast as
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This equation may be synthesized with Equation (10) yielding a unified model covering both the
RT-instability as well as the deflagrability limit:
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Note that averaging of Equation (16) over 0 < ϕ < 2π results in the relation similar to
Equation (15), but without the distinction between R(0) and R(M).

3. Numerical Experiments

This section is concerned with numerical simulations of two models based on Equations (10)
and (16). Here ∑∞

n=1 is naturally replaced by ∑N
n=1 with large enough N. The numerical method

employed is outlined in our recent study of a related problem [15].
The initial condition is specified as a weighted sum of cosines:

R(ϕ, 0) = R0 + A
N/2

∑
n=1

n2 exp (−n/10) cos (nϕ + ϕn) (17)

where A is the normalizing factor and ϕn are produced by the pseudo-random generator (Figure 3).
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Figure 3. Initial condition R(ϕ, 0) at A = 0.005, R0 = 100, N = 215.
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Parameters G and κ are specified as G = 0.002 and κ = 0.1, corresponding e.g., to α = 2,
β = 40, g = 2 · 109 cm/s2, lth = 0.1 cm, lM = 2 cm, Uu = 106 cm/s, Ub = αUu = 2 · 106 cm/s,
Ma = 0.01, au = 108 cm/s, and γ = (4/3 + 5/3)/2 = 1.5, which are quite realistic [2,4–6].

Figures 4 and 5 show the results of simulations of Equation (10). In the course of its evolution,
the flame front assumes a quasi-periodic configuration comprising forward-propagating bubble-like
structures trailed by cusps. Small bubbles gradually merge forming larger and faster advancing
bubbles, thus exhibiting a strong inverse cascade. The effect was first observed by Vladimirova
and Rosner [7] for upward-propagating flames in channels described by a set of Navier–Stokes and
advection-diffusion-reaction equations. The inverse cascade effect is also known to occur for flames
subjected to the DL-instability but, interestingly enough, not for the diffusively unstable cellular
flames [14].
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Figure 4. Flame speed D = R(0)
t vs. t for the model (10)–(12); G = 0.002, N = 215.
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Figure 5. Flame front configurations for the model (10)–(12); G = 0.002, N = 215.

Simulation was terminated when rearward moving cusps reached the center (r = 0).
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At κ = 0.1 Equation (9) readily yields ΣDDT = D = R(0)
t = 3.7, which in dimensional units

corresponds to 7.4 · 106 m/s. Here at the DDT point tDDT = 6 · 104 (0.06 s) and R(0)
DDT = 9.8 · 104

(1.96 · 105 cm).
Figures 6 and 7 correspond to Equation (16), where the deflagrative mode terminates at D = Rt =

1.9 (3.8 · 106 cm/s), tDDT = 3.5 · 104 (0.035 s), and R(0)
DDT = 4.3 · 104 (8.6 · 104 cm). In Figure 7 the last

profile corresponds to the deflagrability threshold.
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Figure 6. Flame speed D = Rt vs. t for the model (11) (12) (16); G = 0.002, κ = 0.1, N = 215.
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Figure 7. Flame front configurations for the model (11) (12) (16); G = 0.002, κ = 0.1, N = 215.

Occurrence of the inverse cascade is most graphically manifested in the channel geometry.
Figures 8 and 9 depict the developing solution of Equations (2)–(4) for Λ = 80,000. The incipient

multi-bubble structure of the accelerating flame gradually disappears, yielding a single dome-like
configuration propagating at a constant velocity.



Fluids 2020, 5, 196 7 of 8

D

t
 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  10000 20000 30000 40000 50000 60000 70000 80000 90000

Figure 8. Flame speed D = Φ(0)
t vs. t for the model (2)–(4); G = 0.002, Λ = 80,000, N = 215.
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Figure 9. Flame front configurations for the model (2)–(4); G = 0.002, Λ = 80,000, N = 215.

4. Concluding Remarks

1. The proposed weakly nonlinear models are certainly unable to capture the full morphology of the
RT-mushrooming [7]. Yet, the models proved adequate enough to imitate the buoyancy-induced
corrugations, the inverse cascade, self-acceleration of the front, and occurrence of the deflagrability
threshold—the precursor of DDT.

2. Due to the constancy of the buoyancy factor kept at G = 0.002, the spatio-temporal scales RDDT
and tDDT are likely to be grossly underestimated. Accounting for G vanishing at R → 0 is
expected to yield much larger numbers.

3. The gap between deflagrability limits based on Equations (9), (10) and (16) is quite significant but
is likely to decrease with a diminishing κ.

4. Our preliminary exploration of the problem for one-step nuclear reaction kinetics and the equation
of state for the degenerate electron gas shows that in this case the structure of the compressibility
parameter κ is much more involved. This, however, does not affect the form of Equation (16) and
the associated dynamical picture.
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