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Abstract: There are two main strategies for improving the projection-based reduced order model
(ROM) accuracy—(i) improving the ROM, that is, adding new terms to the standard ROM;
and (ii) improving the ROM basis, that is, constructing ROM bases that yield more accurate ROMs.
In this paper, we use the latter. We propose two new Lagrangian inner products that we use together
with Eulerian and Lagrangian data to construct two new Lagrangian ROMs, which we denote
α-ROM and λ-ROM. We show that both Lagrangian ROMs are more accurate than the standard
Eulerian ROMs, that is, ROMs that use standard Eulerian inner product and data to construct the
ROM basis. Specifically, for the quasi-geostrophic equations, we show that the new Lagrangian ROMs
are more accurate than the standard Eulerian ROMs in approximating not only Lagrangian fields
(e.g., the finite time Lyapunov exponent (FTLE)), but also Eulerian fields (e.g., the streamfunction).
In particular, the α-ROM can be orders of magnitude more accurate than the standard Eulerian ROMs.
We emphasize that the new Lagrangian ROMs do not employ any closure modeling to model the
effect of discarded modes (which is standard procedure for low-dimensional ROMs of complex
nonlinear systems). Thus, the dramatic increase in the new Lagrangian ROMs’ accuracy is entirely
due to the novel Lagrangian inner products used to build the Lagrangian ROM basis.

Keywords: Lagrangian reduced order model; Lagrangian inner product; quasi-geostrophic equations;
finite time Lyapunov exponent

1. Introduction

Projection-based reduced order models (ROMs) have been successful in the numerical simulation
of fluid flows [1–6]. To approximate the dynamics of a given flow variable u, the ROM strategy proceeds
as follows: (i) Collect the snapshots {u1, . . . , uM}, which are full order model (FOM) solutions at M
different time instances. (ii) Construct the snapshot correlation matrix C using the inner product (·, ·):

Cij =
(
ui , uj). (1)

(iii) Solve the eigenvalue problem for C to obtain the ROM modes {ϕ1, . . . ,ϕR}, which represent
the recurrent spatial structures in the flow. (iv) Choose the dominant modes {ϕ1, . . . ,ϕr}, r ≤ R,
as basis functions for the ROM. (v) Use a Galerkin truncation ur = ∑r

j=1 aj ϕj. (vi) Replace u with ur

in the underlying equations. (vii) Use a Galerkin projection of the PDE obtained in step (vi) onto the
ROM space Xr := span{ϕ1, . . . ,ϕr} to obtain a low-dimensional dynamical system, which represents
the ROM. (viii) In an offline stage, compute the ROM operators. (ix) In an online stage, repeatedly use
the ROM (for various parameter settings and/or longer time intervals). The low-dimensional ROMs
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can decrease the computational cost of traditional FOMs by orders of magnitude. ROMs, however,
can be inaccurate in the numerical simulation of complex flows [3,5]. There are two main approaches
to increasing ROM accuracy:

The first approach is to improve the model, that is, to add new terms to the standard projection-based
ROM. Classical examples are ROM closure (see, e.g., References [7–12]) and ROM stabilization
(see, e.g., References [13–16]). We will not follow this approach in this paper.

The second approach to improving the ROM accuracy is to improve the ROM basis, that is,
to construct ROM bases that yield more accurate ROMs. One of the earliest examples in this class
is the H1-basis proposed in Reference [17], in which the H1 inner product is used instead of the
standard L2 inner product to construct the ROM basis in order to increase the ROM stability. Similarly,
an enstrophy-based ROM for rotational flows was proposed in Reference [18], in which the inner
product is defined for vorticity instead of velocity. Other examples in this class are the ROM bases
proposed for compressible flows [17,19–21], which use new inner products and different flow variables
to construct the ROM basis (see Reference [22] for recent work on magnetohydrodynamics). Improved
ROM bases were also proposed for data assimilation [23]. The inner products used to define these
improved ROM bases are Eulerian inner products, that is, they are defined only for Eulerian data.
To our knowledge, there are only a few Lagrangian inner products, that is, inner products that are
defined on both Eulerian and Lagrangian data, that have been recently proposed. In References [24,25],
the authors proposed inner products that are defined for velocity (which is an Eulerian variable) and
the Lagrangian mesh coordinates (which are Lagrangian variables).

In this paper, we use the second strategy to improve the ROM accuracy, that is, we propose
improved ROM bases. Specifically, we propose new Lagrangian inner products that utilize both
Eulerian and Lagrangian data. In the new Lagrangian inner products, Lagrangian data steers
the resulting Lagrangian ROM basis toward an accurate approximation of Lagrangian quantities,
whereas Eulerian data helps the Lagrangian ROM basis yield an accurate approximation of Eulerian
quantities. We emphasize that the Lagrangian inner products that we propose are different from the
Lagrangian inner products in References [24,25]. As Lagrangian data, we use the finite time Lyapunov
exponents (FTLE) field, whereas References [24,25] use the Lagrangian mesh coordinates. To construct
the new Lagrangian ROMs, we utilize the new Lagrangian inner products, the resulting Lagrangian
ROM bases, and the Galerkin projection. In the numerical simulation of the quasi-geostrophic
equations [26–29] (which model large scale ocean circulation), the new Lagrangian ROMs are orders
of magnitude more accurate than standard Eulerian ROMs (i.e., ROMs that use standard Eulerian
data and inner products to build the ROM bases). Furthermore, the new Lagrangian ROMs are more
accurate than the standard Eulerian ROMs in approximating not only Lagrangian fields (e.g., the finite
time Lyapunov exponent (FTLE)), but also Eulerian fields (e.g., the streamfunction).

For complex nonlinear systems, it is well known that the low-dimensional ROMs generally need
to be equipped with a closure model (see, e.g., References [7–12,30–32]) or a stabilization mechanism
(see, e.g., References [13–15]) to model the effect of the discarded ROM modes. We emphasize, however,
that we investigate the new Lagrangian ROMs without any closure or stabilization (a challenging test)
in order to separate the ROM closure problem from the ROM basis generation, which is the main focus
of our paper. This allows us to conclude that the orders of magnitude increase in the new Lagrangian
ROMs’ accuracy over the standard Eulerian ROMs’ accuracy is entirely due to the new Lagrangian
inner products used to build the Lagrangian ROMs’ bases. Of course, we envision that using closure
modeling in addition to the novel Lagrangian inner product will increase even further the Lagrangian
ROMs’ accuracy.

The rest of the paper is organized as follows: In Section 2, we propose the novel Lagrangian
inner products and construct the new Lagrangian ROMs. In Section 3, for the quasi-geostrophic
equations, we show that the new Lagrangian ROMs increase the numerical accuracy of standard
Eulerian ROMs by orders of magnitude. Finally, in Section 4, we present conclusions and outline
future research directions.
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2. Lagrangian Reduced Order Models

In this section, we propose two new Lagrangian ROMs, which we build as follows: First, we use
the quasi-geostrophic equations (QGE) as a mathematical model (although general models,
for example, the Boussinesq and Navier-Stokes equations, could be used instead). Next, we perform
numerical simulations to generate the QGE velocity field (which is Eulerian data) and the QGE finite
time Lyapunov exponent (FTLE) field (which is Lagrangian data). (We note that other Lagrangian fields
could be used instead of the FTLE field.) Finally, we propose two new Lagrangian inner products that
use both Eulerian and Lagrangian data to construct new Lagrangian ROM bases, which yield the new
Lagrangian ROMs. For comparison purposes, we also outline standard Eulerian ROMs [33–37],
which use only Eulerian data (i.e., the velocity field) to generate the ROM basis. In Section 3,
we compare the new Lagrangian ROMs with the standard Eulerian ROM in the numerical simulation
of the QGE.

The QGE [26–29] are written as the following PDE:

∂ω

∂t
+ J(ω, ψ)− Ro−1 ∂ψ

∂x
= Re−1 ∆ω + Ro−1F , (2a)

ω = −∆ψ , (2b)

where ω is the vorticity, ψ is the streamfunction, Re is the Reynolds number, and Ro is the Rossby
number, J(ω, ψ) = ωxψy −ωyψx is the Jacobian term, and F is the forcing term. The velocity can be
computed from the streamfunction according to the following formula:

v =

(
∂ψ

∂y
,−∂ψ

∂x

)
. (3)

Details regarding the parameters and nondimensionalization of the QGE (2) are given in,
for example, References [34,35,38–40].

2.1. Finite Time Lyapunov Exponents (FTLE) Computation

Next, we briefly describe the calculation of the FTLE field (see, e.g., Reference [41] for details).
Given a velocity field v(x, t) (e.g., the QGE velocity field (3)), the trajectories are obtained from the
solutions of the ODE system ẋ = v(x, t). Each trajectory x(t; t0, x0) is a function of time, but it also
depends on the initial position x0 and the initial time t0. For a given initial time t0 and a given final
time t, the flow map is the function

x0 7→ φt
t0
(x0) = x(t; t0, x0) . (4)

Consider two particles, simultaneously released at time t0; one at location x, the other at location
x + δx. Under the effect of the flow map, the small displacement vector between two particles, δx,
changes. After an elapsed time T = t− t0, the new vector between the two particles is

δx (t0 + T) = φt0+T
t0

(x + δx)− φt0+T
t0

(x) = Dφt0+T
t0

(x) δx +O
(
‖δx (t0)‖2

)
,

where Dφt0+T
t0

= dφt0+T
t0

(x)/dx is the Jacobian of the flow map, and ‖·‖ is the usual Euclidean norm.
Consider the right Cauchy-Green strain tensor,

C (x, t0, T) = Dφt0+T
t0

(x)ᵀ Dφt0+T
t0

(x) . (5)
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The maximum possible separation between the released particles after a time interval T,
assuming a sufficiently small initial distance ‖δx (t0)‖, is

max ‖δx (t0 + T)‖ =
√

µmax (C (x, t0, T)) ‖δx (t0)‖ , (6)

where µmax the largest eigenvalue of the right Cauchy-Green strain tensor C (x, t0, T). The FTLE,
with t0 and T fixed, is considered a scalar field of the Lyapunov exponent as a function of initial
position, x,

λT
t0
(x) =

1
|T| ln

√
µmax (C (x, t0, T)). (7)

Following Reference [41], we note that µmax (C (x, t0, T)) > 1, so the FTLE in (7) is
always positive.

2.2. Eulerian Reduced Order Model (E-ROM)

To generate the ROM basis for the standard Eulerian ROM, we use the proper orthogonal
decomposition (POD) [3,5]. We emphasize, however, that the novel Lagrangian ROMs can be used with
other ROM bases [1,2,4,6,33,42]. The POD starts by collecting the snapshots {ω1

h, . . . , ωM
h }, which are,

for example, finite element (FE) approximations of the vorticity in the QGE (2) at M different time
instances. The POD seeks a low-dimensional basis that approximates the snapshots optimally with
respect to a certain norm. Probably the most popular inner product is the L2 inner product :(

ω1, ω2

)
=
∫
Ω

ω1(x)ω2(x) dx . (8)

The solution of the resulting minimization problem is equivalent to the solution of the
eigenvalue problem

YT MhY ϕ̃j = λ̃j ϕ̃j, j = 1, . . . , N, (9)

where Y denotes the snapshot matrix, whose columns correspond to the FE coefficients of the snapshots,
Mh denotes the FE mass matrix, and N is the dimension of the FE space. The eigenvalues are real
and non-negative, so they can be ordered as follows: λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃R ≥ λ̃R+1 = . . . = λN = 0.
The POD vorticity basis {ϕj}r

j=1 are obtained from the eigenfunctions in (9) that correspond to the
first r ≤ R largest eigenvalues. Thus, the ROM vorticity space is defined as Xr := span{ϕ1, . . . , ϕr}.
We follow References [34,35] and define the POD streamfunction basis as the normalized functions
{φj}r

j=1, which are chosen such that

−∆φj = ϕj , j = 1, . . . , r . (10)

The ROM approximations of the vorticity and streamfunction are

ωr(x, t) =
r

∑
j=1

aj(t) ϕj(x) , ψr(x, t) =
r

∑
j=1

aj(t) φj(x) , (11)

where {aj(t)}r
j=1 are the sought time-varying ROM coefficients. We emphasize that, with the choices

in (10) and (11), once the coefficients aj are determined from (2a), Equation (2b) is automatically
satisfied. Replacing the vorticity ω by ωr in the QGE (2a) and then using a Galerkin projection onto
Xr, we obtain the Eulerian ROM (E-ROM) for the QGE: ∀ i = 1, . . . , r,(

∂ωr

∂t
, ϕi

)
+

(
J(ω, ψ), ϕi

)
− Ro−1

(
∂ψ

∂x
, ϕi

)
+Re−1

(
∇ωr,∇ϕi

)
= Ro−1

(
F, ϕi

)
. (12)
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The E-ROM (12) yields the following autonomous dynamical system for the vector of time
coefficients, a(t):

ȧ = b + A a + a> B a, (13)

where b, A, and B correspond to the constant, linear, and quadratic terms in the numerical
discretization of the QGE (2), respectively. The finite dimensional system (13) can be written
componentwise as follows: For all i = 1, . . . , r,

ȧi(t) = bi +
r

∑
m=1

Aimam(t) +
r

∑
m=1

r

∑
n=1

Bimn am(t) an(t), (14)

where

bi = Ro−1
(

F, ϕi

)
, (15)

Aim = Ro−1
(

∂φm

∂x
, ϕi

)
− Re−1

(
∇ϕm,∇ϕi

)
, (16)

Bimn = −
(

J(ϕm, φn), ϕi

)
. (17)

The E-ROM (12) has been investigated in the numerical simulation of the QGE (2)
(see, e.g., References [34–37]), where it was shown that it can decrease the computational cost of
standard algorithms by orders of magnitude. However, the numerical simulations in References [34,35]
have also shown that a low-dimensional E-ROM is not able to produce accurate approximations of
standard Eulerian quantities, such as the streamfunction and the velocity fields. (We will also show in
Section 3 that the standard E-ROM (12) produces inaccurate approximations of Lagrangian quantities,
such as the FTLE field.) The E-ROM’s numerical inaccuracy in References [34,35] is due to the lack of a
closure model [11,12], that is, a model for the effect of the discarded ROM modes. Thus, to alleviate
its numerical inaccuracy, in References [34,35] the standard E-ROM (12) was supplemented with a
stabilizing mechanism that yielded relatively accurate results.

In the next section, we pursue a fundamentally different research avenue to improve the standard
E-ROM’s numerical accuracy. Instead of modifying the ROM (i.e., adding a closure model, as done
in Reference [35]), we propose using a novel set of basis functions that combine Lagrangian and
Eulerian data.

2.3. Lagrangian ROMs

In this section, we put forth two Lagrangian ROMs, in which both the snapshots and the inner
product use Lagrangian data (i.e., the FTLE field, λ) in addition to the Eulerian data (i.e., the vorticity
field, ω). The Eulerian data helps the resulting ROM basis yield an accurate approximation of the
Eulerian output. On the other hand, the Lagrangian data “steers” the ROM basis toward an accurate
approximation of the Lagrangian output.

The main tools that we use to construct the new Lagrangian ROMs for FTLE computation are
two novel Lagrangian inner products, which are fundamentally different from the standard L2 inner
product (8) used to develop the Eulerian ROM (i.e., the E-ROM (12)). These new inner products
are Lagrangian inner products (·, ·)FTLE, which aim at including both Eulerian data (i.e., the vorticity
field) and Lagrangian data (i.e., the FTLE field) in the ROM basis generation. We emphasize that
adding FTLE data to the snapshots is not redundant, since this yields a significantly different ROM
basis (see snapshot difference quotients used for E-ROM (12) in Reference [43] for similar behavior
in an Eulerian setting). The two new Lagrangian inner products generate ROM basis functions
that are different from the standard E-ROM modes, which are built with the standard L2 inner
product (see Figure 3). These two new bases yield two new Lagrangian ROMs, which we present in
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Sections 2.3.1 and 2.3.2. In Section 3, in the numerical simulation of the QGE, we show that these two
novel Lagrangian ROMs are more accurate than the standard E-ROM (12).

2.3.1. α-ROM

The first Lagrangian inner product that we propose is(
(ω1, λ1) , (ω2, λ2)

)
FTLE

=
∫
Ω

ω1(x)ω2(x) + α λ1(x) λ2(x) dx , (18)

where ω1 and ω2 are vorticity fields and λ1 and λ2 are FTLE fields. Thus, the Lagrangian inner
product (18) combines Lagrangian data (λ1, λ2) with Eulerian data (ω1, ω2). The parameter α in (18)
is a weighting parameter that measures the Lagrangian data’s contribution to the inner product:
When α = 0, the Lagrangian data does not play any role, so the inner product (18) is the standard L2

inner product (8) used to build the standard E-ROM (12). When α > 0, the Lagrangian data plays
a significant role: The higher the α value, the more important the Lagrangian data contribution to the
inner product (18).

Remark 1 (Nondimensional inner product). The Lagrangian inner product (18) combines data (the vorticity
field and the FTLE field) that has the same dimensional units (i.e., inverse time). Thus, the two different types
of variables (ω and λ) in (18) can be added together. Furthermore, the QGE (2) used to compute ω and λ are
nondimensionalized, so the two types of variables could be added even if they did not have the same dimensional
units. Finally, if the QGE were left in their original dimensional form, we would need to scale the variables ω

and λ appropriately.

We use the new Lagrangian inner product (18) to generate the ROM basis for a new Lagrangian
ROM. First, we collect snapshots that consist of both vorticity and FTLE approximations. (Note that
this is different from the standard E-ROM (12) basis generation, where only vorticity snapshots were
collected.) Then, we construct the new Lagrangian ROM basis that approximates the snapshots
optimally with respect to the Lagrangian norm

(
‖ω‖2 + α ‖λ‖2

) 1
2 . (19)

(Again, we note that this is different from the approach used for the standard E-ROM (12),
which utilizes the norm ‖ω‖.) Finally, from the resulting ROM basis functions, we only use their
vorticity components in the ROM (12).

The novel Lagrangian ROM for the FTLE computation is the ROM (12) in which the ROM basis is
generated by using the new Lagrangian inner product (18) instead of the standard L2 inner product (8)
used to build the E-ROM (12). In what follows, we will denote by α-ROM the resulting new Lagrangian
ROM. Since the new α-ROM includes FTLE data (through both the snapshots and the Lagrangian inner
product (18)), we expect it to yield a more accurate FTLE approximation than the standard E-ROM (12),
which does not explicitly include FTLE data.

2.3.2. λ-ROM

The second Lagrangian inner product that we propose is

(
ω1 , ω2

)
FTLE =

∫
Ω

〈λ〉(x)ω1(x)ω2(x) dx , (20)

where 〈λ〉 is the time average of the FTLE field, λ. The Lagrangian inner product (20) is similar to
the Lagrangian inner product (18) in that both use Lagrangian data (i.e., the FTLE field). We note,
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however, that the way in which Lagrangian and Eulerian data is combined in the two inner products
is different: the Lagrangian data is added to the Eulerian data in (18), whereas in (20) the Lagrangian
data is first time averaged and then it is used as a scaling factor for the Eulerian data. We also note
that in the numerical investigation in Section 3, we use a QGE setting in which the time averages of
the streamfunction and FTLE fields play an important role. Thus, we expect the Lagrangian inner
product (20) to produce accurate results in that setting. Finally, as noted in Remark 1, the data used in
the Lagrangian inner product (20) is nondimensional, so the definition (20) is appropriate.

When we use the Lagrangian inner product (20) to generate the Lagrangian ROM basis, these basis
functions approximate the snapshots optimally with respect to the norm

∫
Ω

〈λ〉(x)ω2(x) dx

 1
2

. (21)

Note that, by definition, the FTLE field (7) is always positive. Thus, the Lagrangian inner
product (20) and the associated norm (21) are well defined.

The second new Lagrangian ROM for the FTLE computation is the ROM (12) in which the ROM
basis is generated by using the new Lagrangian inner product (20) instead of the standard L2 inner
product (8) used to build the E-ROM (12). In what follows, we will denote by λ-ROM the resulting
new Lagrangian ROM. Again, since the new λ-ROM includes FTLE information, (through both
the snapshots and the Lagrangian inner product (20)), we expect it to yield a more accurate FTLE
approximation than the E-ROM (12), which does not explicitly include FTLE information.

2.4. Previous Relevant Work

To our knowledge, there is only little work on reduced order modeling for the FTLE
calculation [44–46]. We emphasize that the Lagrangian ROMs proposed in this paper are fundamentally
different from the ROMs used in References [44,45], which are Eulerian ROMs. The Lagrangian ROMs
are also different from the ROM used in Reference [46], since the FTLE field is used in Reference [46]
only to choose the number, not the actual form of ROM modes, whereas we explicitly use the FTLE
field to define the FTLE inner product (18) and, thus, to construct the ROM basis.

The Lagrangian ROMs proposed in this paper are related to ROMs that aim at tackling
the challenges posed by transport-dominated problems, for example, wave-like phenomena,
moving interfaces, and moving shocks. The ROMs for transport-dominated problems are
surveyed in References [24,25,47] and include development of, for example, local bases [48,49],
domain decomposition [50], adaptivity [51,52], symmetry and self similarity transformations [53,54],
approximated Lax pairs [55], and transport maps [47,56–62].

There are also connections between the new Lagrangian ROMs and the ROMs that preserve
Lagrangian structure [63,64] (see also References [65–69] for ROMs that preserve Hamiltonian structure)
as well as the energy-conserving ROMs for the Navier-Stokes equations [34,70–76].

We also note that including Lagrangian information to build the ROM basis is similar in spirit to
the difference quotients used in References [43,77] and collecting snapshots for the nonlinear terms
in the Empirical Interpolation Method (EIM) [78] and its discrete version, the Discrete Empirical
Interpolation Method (DEIM) [79]. Indeed, in all these methods, one collects linear combinations of
the snapshots. Of course, this does not change the rank of the snapshot matrix, but can change the
ordering of its singular values and, thus, yield different ROM bases. Adding Lagrangian information
to the set of snapshots is similar in spirit: Although the FTLE snapshots are computed from Eulerian
data, using them together with the Eulerian snapshots yields ROM basis functions that are different
from the Eulerian ROM basis functions.
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3. Numerical Results

In Section 2.3, we proposed two new Lagrangian ROMs (i.e., the α-ROM and the λ-ROM) for the
numerical simulation of the FTLE field. For clarity, Table 1 summarizes the inner products used to
build the basis functions of the two new Lagrangian ROMs, as well as the standard Eulerian ROM
(i.e., the E-ROM (12)). In this section, we perform a numerical investigation of the two new Lagrangian
ROMs. To separate the ROM closure modeling from the ROM basis generation, we investigate the two
new Lagrangian ROMs without any closure model or stabilization mechanism.

Table 1. The new Lagrangian reduced order models (ROMs) (α-ROM and λ-ROM), the standard
Eulerian ROM (E-ROM), and the inner products used to construct their bases.

Inner Product ROM Type

Equation (8) E-ROM Eulerian
Equation (18) α-ROM Lagrangian
Equation (20) λ-ROM Lagrangian

In this section, we investigate the Lagrangian α-ROM and λ-ROM in the numerical simulation
of the velocity and FTLE fields of the QGE (2). For comparison purposes, we also test the standard
Eulerian ROM (i.e., the E-ROM (12)). As a benchmark, we use the full order model (FOM), which is
outlined in Algorithm 1:

Algorithm 1 Full Order Model (FOM).

(1) Compute high resolution streamfunction ψFOM on [Tmin, Tmax].
(2) Use ψFOM in (1) and formula (3) to compute high resolution velocity vFOM on [Tmin, Tmax].
(3) Use vFOM in (2) to calculate (see § 2.1) high resolution FTLE field λFOM on [Tmin, Tmax].

In the numerical investigation of the three ROMs (i.e., α-ROM, λ-ROM, and E-ROM), we use
Algorithm 2. We also use two types of regimes: (i) the reconstructive regime; and (ii) the predictive
regime. The two regimes have fundamentally different goals: The reconstructive regime is an easier
test, in which the ROM is validated on the same time interval as the time interval used to train the
ROM. The predictive regime is a harder test case, in which the ROM is trained on a short time interval,

for example,
[

Tmin,
Tmax

2

]
and validated on a longer time interval [Tmin, Tmax].

Algorithm 2 Reduced Order Model (ROM).

(1) Compute high resolution streamfunction ψFOM on [Tmin, Tmax].
(2) Use ψFOM in (1) and formula (3) to compute high resolution velocity vFOM on [Tmin, Tmax].
(3) Use vFOM in (2) on [Tmin, Tmax] to construct Lagrangian ROMs (α-ROM and λ-ROM) and Eulerian

ROM (E-ROM).
(4) Use ROMs in (3) to compute low resolution ROM streamfunction ψROM on [Tmin, Tmax].
(5) Use low resolution streamfunction ψROM in (4) and formula (3) to compute low resolution

velocity vROM on [Tmin, Tmax].
(6) Use low resolution velocity vROM in (5) to calculate low resolution ROM-FTLE field λROM on

[Tmin, Tmax].

3.1. Test Problem Setup

As a test problem in our numerical investigation, we consider the QGE (2) with a symmetric
double-gyre wind forcing given by F = sin

(
π (y− 1)

)
, which yields a four-gyre circulation in the time
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mean. This test problem has been used in numerous studies (see, e.g., References [34,35,39,40,80–85])
as a simplified model for more realistic ocean dynamics.

We emphasize that the four-gyre QGE test problem represents a significant challenge for standard
numerical methods: Indeed, as shown in Reference [81], although a double-gyre wind forcing is used,
the long term time-average yields a four-gyre pattern (see Figure 1). On realistic coarse meshes,
classical numerical methods (e.g., finite element and finite volume methods) generally produce
inaccurate approximations to this test problem. In particular, standard numerical discretizations
fail to recover the correct four-gyre pattern (see, e.g., References [35,40]).
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Figure 1. Streamfunction contour plots at t = 40 (plot (a)), t = 60 (plot (b)), and time-averaged (plot (c)).
FTLE contour plots at t = 40 (plot (d)), t = 60 (plot (e)), and time-averaged (plot (f)). An FTLE movie
is available at https://youtu.be/JXqdcBVfhMw.

In the QGE (2), we use the same parameters as those used in References [34,35,40,82]: Re = 450
and Ro = 0.0036. The spatial domain of the QGE is [0, 1]× [0, 2]. In the FTLE field computation (7),
we use T = 0.05.

https://youtu.be/JXqdcBVfhMw
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3.2. Criteria

To investigate the numerical accuracy of the three ROMs (i.e., α-ROM, λ-ROM, and E-ROM),
we compare the ROM results with the FOM results. To this end, we use two fundamentally different
types of criteria:

The first type of criteria are Eulerian criteria. Specifically, we compute the L2 norm of the
time-averaged streamfunction errors between ψFOM obtained in Step (2) of Algorithm 1 and ψROM

obtained in Step (5) of Algorithm 2:∥∥∥∥∥ 1
M

M

∑
j=1

ψFOM(tj)−
1
M

M

∑
j=1

ψROM(tj)

∥∥∥∥∥
2

L2

. (22)

In addition to the quantitative criterion (22), we are also using the following qualitative Eulerian
criterion: We investigate whether the three ROMs can recover the four-gyre pattern of the time average
of the streamfunction in Figure 1, which represents a challenging test for standard numerical methods
at realistic low resolutions (see, e.g., References [35,40]).

The second type of criterion we use in our numerical investigation is a Lagrangian criterion.
Specifically, we compute the L2 norm of the the time-averaged FTLE errors between λFOM obtained in
Step (3) of Algorithm 1 and λROM obtained in Step (6) of Algorithm 2:∥∥∥∥∥ 1

M

M

∑
j=1

λFOM(tj)−
1
M

M

∑
j=1

λROM(tj)

∥∥∥∥∥
2

L2

. (23)

3.3. ROM Snapshot Generation

For the FOM (see Algorithm 1) spatial discretization, we use a pseudospectral method that utilizes
only odd Fourier modes (i.e., sines, since they automatically enforce the homogeneous boundary
conditions), the 3/2s rule to resolve the aliasing problem in the nonlinearity, and a 257× 513 spatial
resolution [34]. For the FOM time discretization, we utilize a time step ∆t = 0.01 and an explicit
Runge-Kutta method (Tanaka-Yamashita, an order 7 method with an embedded order 6 method
for error control) and an error tolerance of 1.0× 10−8 in time with adaptive time refinement and
coarsening [34]. These spatial and temporal discretizations yield numerical results that are similar
to the fine resolution numerical results obtained in References [35,40]. In Figure 2, we plot the time
evolution of the spatially averaged kinetic energy, E(t). Figure 2 (see also figure 1 in Reference [35])
shows that the flow converges to a statistically steady state, after a short transient interval that ends
around t = 10. Thus, in our numerical investigation, we follow References [34,35,40] and consider
the FOM results only on [Tmin, Tmax] = [10, 80]. We compute the FTLE using the FOM results in
the time window [Tmin, Tmax] = [10, 80]. In Figure 1, we display the instantaneous contour plot
for the streamfunction field at t = 40 and t = 60. We emphasize that, although t = 40 and t = 60
are well within the statistically steady state regime, the flow displays a high degree of variability.
Thus, the numerical approximation of this statistically steady regime remains challenging for the low
resolution ROMs that we investigate in this section.

To generate the ROM basis (see Section 2.2), we follow References [34,35,40] and collect
701 snapshots in the time interval [Tmin, Tmax] = [10, 80] (on which the statistically steady state
regime is attained) at equidistant time intervals.
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Figure 2. Time evolution of the spatially averaged kinetic energy of the FOM.

3.4. ROM Basis Investigation

The new Lagrangian ROM (i.e., α-ROM and λ-ROM) bases are fundamentally different from the
standard E-ROM (12) basis. Indeed, the E-ROM basis is built only from Eulerian data (i.e., the vorticity
ω) by using the standard L2 inner product (8). On the other hand, the α-ROM and λ-ROM bases are
constructed from Lagrangian data (i.e., the FTLE field λ) in addition to Eulerian data (i.e., the vorticity
ω) by using the new Lagrangian inner product (18) and the new Lagrangian inner product (20),
respectively.

To investigate whether the α-ROM and λ-ROM bases are different from the E-ROM (12) basis,
in Figure 3 we display the ROM basis functions ψ10, ψ20, and ψ30 generated with the standard L2 inner
product (8) (i.e., the E-ROM basis functions), the new Lagrangian inner product (18) (i.e., the new
α-ROM basis functions) with α = 104, and the new Lagrangian inner product (20) (i.e., the new λ-ROM
basis functions).

The α-ROM basis functions (second row of Figure 3) are completely different from the E-ROM
basis functions (first row of Figure 3) for ψ10, ψ20, and ψ30. The α-ROM basis functions are also
completely different from the λ-ROM basis functions (third row of Figure 3). The λ-ROM basis
functions (third row of Figure 3) are also different from the E-ROM basis functions (first row of
Figure 3), although this time the differences are not as dramatic as before: there are large differences
in ψ30, moderate differences in ψ20, and minor differences in ψ10. Overall, the results in Figure 3
show that the new Lagrangian inner product (18), the new Lagrangian inner product (20), and the
standard Eulerian L2 inner product (8) generate completely different bases for the Lagrangian α-ROM,
the Lagrangian λ-ROM, and the standard E-ROM, respectively. In the next section, we investigate
which of these bases yields more accurate ROMs in the FTLE field computation.
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Figure 3. ROM basis functions ψ10 (plots (a,d,g)), ψ20 (plots (b,e,h)), and ψ30 (plots (c,f,i)) for the
standard E-ROM (plots (a–c)), new Lagrangian α-ROM with α = 104 (plots (d–f)), and new Lagrangian
λ-ROM (plots (g–i)).
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3.5. ROM Numerical Accuracy

In this section, we perform a numerical investigation of the accuracy of the two Lagrangian ROMs
(i.e., α-ROM, λ-ROM). We only consider the effect of the basis functions on the ROM accuracy without
using a ROM closure model or ROM stabilization mechanism, which is a challenging test.

We compare the Lagrangian α-ROM and λ-ROM accuracy with the standard E-ROM accuracy.
As a benchmark for our comparison, we use the FOM results (Algorithm 1). In Section 3.5.1,
we perform an Eulerian investigation of the three ROMs, that is, we investigate the ROMs’ accuracy in
approximating the streamfunction (which is an Eulerian quantity). In Section 3.5.2, we perform
a Lagrangian investigation of the three ROMs, that is, we investigate the ROMs’ accuracy in
approximating the FTLE field (which is a Lagrangian quantity). For both the Eulerian and Lagrangian
investigations, we consider both the reconstructive regime and the predictive regime.

In our numerical experiments, we use the following parameter values: For the α-ROM, we use
α = 1, α = 102, α = 103, and α = 104. We choose this wide range of parameter values to elucidate
the effect of the Lagrangian data on the new α-ROM. Indeed, the parameter α in (18) is a weighting
parameter that measures the Lagrangian data’s contribution to the inner product: The higher the α

value, the more important the Lagrangian data contribution to the inner product (18). For all the ROM
simulations, we use an RK4 time discretization with ∆t = 10−3. Finally, for all the ROMs, we utilize
the following r values: 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50. We choose this wide range of values to
clarify the effect of the ROM dimension on the ROM accuracy.

3.5.1. Eulerian Investigation

In this section, we perform an Eulerian investigation of the accuracy of the two Lagrangian
ROMs (i.e., the α-ROM and λ-ROM). First, we consider the reconstructive regime and then the more
challenging predictive regime. In both regimes, we use the two Eulerian criteria described in Section 3.2:
(i) the quantitative Eulerian criterion (22), that is, the L2 norm of the the time-averaged streamfunction
errors between ψFOM obtained in Step (2) of Algorithm 1 and ψROM obtained in Step (5) of Algorithm 2;
and (ii) the qualitative Eulerian criterion based on the ability of the ROMs to recover the four-gyre
pattern of the time average of the streamfunction in Figure 1 (which is a challenging test for standard
numerical methods at realistic low resolutions [35,40]).

Reconstructive Regime:

For the reconstructive regime, we check whether the ROMs can reproduce the dynamics of the
underlying system on the same time interval as that used to generate the ROM basis functions, that is,
we validate the ROMs on the same time interval as the time interval used to train the ROM.

In Table 2, for different r values, we list the L2 norm of the errors in the time-averaged
streamfunction (22) for E-ROM, λ-ROM, and α-ROM with α = 1, α = 102, α = 103, and α = 104.
These results yield the following conclusions: The E-ROM yields inaccurate results for low r values.
As expected, the E-ROM results get better for large r values. The λ-ROM results are slightly worse than
or similar to the E-ROM results for low r values and somewhat better for large r values. The results
for α-ROM with α = 1 are generally worse than the E-ROM results. The results for α-ROM with
α = 10 and α = 102 are better than the E-ROM results for all r values except r = 10. The results
for α-ROM with α = 103 and α = 104 are dramatically better than the E-ROM results: For example,
for r = 5, the only ROM that yields acceptable results is the α-ROM with α = 104; all other ROMs
simply blow up (denoted by “N/A” in Table 2). Furthermore, for r = 10 and r = 15, the errors of
α-ROM with α = 103 and α = 104 are two orders of magnitude lower than the E-ROM error. For the
larger r values, the errors of α-ROM with α = 103 and α = 104 continue to be lower than the E-ROM
errors, although (as expected) the differences decrease as the r values increase. As expected, when the r
values increase, the results in Table 2 show that all the ROMs’ errors converge until they reach a plateau
around 5.0× 10−1 (which is probably due to the ROM truncation error). Overall, the results in Table 2
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show that the Lagrangian α-ROM yields significantly more accurate results than the standard E-ROM and
the Lagrangian λ-ROM. In particular, for the small and medium r values, the Lagrangian α-ROM with
high α values (i.e., α = 104) performs the best, while for the large r values, the Lagrangian α-ROM with
medium α values (i.e., α = 102 and α = 103) performs the best.

Table 2. Eulerian investigation, reconstructive regime: L2 norm of the errors in the time-averaged
streamfunction (22) for E-ROM (second column), λ-ROM (third column), and α-ROM for α = 1
(fourth column), α = 10 (fifth column), α = 102 (sixth column), α = 103 (seventh column), and α = 104

(eighth column).

r E-ROM λ-ROM α = 1 α = 10 α = 102 α = 103 α = 104

5 N/A N/A N/A N/A N/A N/A 1.0× 101

10 3.6× 102 4.0× 102 7.9× 102 6.2× 103 6.5× 102 2.9× 100 1.2× 100

15 1.8× 102 5.5× 102 4.1× 102 1.3× 101 1.1× 101 1.1× 100 2.3× 100

20 1.3× 101 8.0× 100 1.5× 101 4.2× 100 2.7× 100 1.1× 100 1.1× 100

25 3.3× 100 2.7× 100 4.7× 100 3.0× 100 2.1× 100 3.9× 10−1 3.4× 10−1

30 2.8× 100 2.0× 100 2.5× 100 2.5× 100 1.1× 100 5.9× 10−1 4.2× 10−1

35 1.5× 100 9.3× 10−1 1.2× 100 1.3× 100 8.6× 10−1 5.1× 10−1 3.1× 10−1

40 1.0× 100 6.1× 10−1 9.3× 10−1 9.9× 10−1 5.4× 10−1 4.6× 10−1 5.4× 10−1

45 5.4× 10−1 5.2× 10−1 7.0× 10−1 6.8× 10−1 5.1× 10−1 4.0× 10−1 7.0× 10−1

50 4.5× 10−1 5.0× 10−1 5.0× 10−1 6.2× 10−1 5.9× 10−1 6.0× 10−1 3.8× 10−1

Next, we use the qualitative Eulerian criterion to investigate the ability of the ROMs to recover the
four-gyre pattern of the time average of the streamfunction in Figure 1. In Figure 4, for r = 10, 15, 20,
and 30, we plot the mean streamfunction for E-ROM, λ-ROM, and α-ROM with α = 1 and α = 104.
These results yield the following conclusions: The E-ROM, the λ-ROM, and the α-ROM with a low
α value (i.e., α = 1) yield similar results: These ROMs cannot recover the four-gyre pattern for any
of the four r values. However, the α-ROM with a large α value (i.e., α = 104) yields dramatically
better results: This ROM can clearly capture the four-gyre pattern for r = 30; for r = 20, the pattern is
somewhat captured, although not as clearly as for r = 30; finally, for r = 10 and r = 15, only hints
of the four-gyre pattern are present. Overall, the plots in Figure 4 show that the Lagrangian α-ROM
with a large α value (i.e., α = 104) can capture the four-gyre pattern, whereas the standard E-ROM and the
Lagrangian λ-ROM cannot.

The results in Table 2 and Figure 4 consistently show that the new Lagrangian α-ROM with large
α values outperforms the standard E-ROM and the Lagrangian λ-ROM with respect to the two Eulerian
metrics used in this section. These results also show that the Lagrangian data used to construct the new
Lagrangian α-ROM play an important role: the higher the Lagrangian data contribution (i.e., the higher
the α value), the more accurate the results.
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Figure 4. Eulerian investigation, reconstructive regime: Mean streamfunction from E-ROM (plots (a–d)),
λ-ROM (plots (e–h)) α-ROM with α = 1 (plots (i–l)), and α = 104 (plots (m–p)), for r = 10
(plots (a,e,i,m)), r = 15 (plots (b,f,j,n)), r = 20 (plots (c,g,k,o)), and r = 30 (plots (d,h,l,p)).
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Predictive Regime:

For the predictive regime, we check whether the investigated ROMs can predict the dynamics
of the underlying system. Specifically, we validate the ROMs on a time interval that is twice as
long as the time interval used to train the ROMs. In Table 3, for different r values, we list the L2

norm of the errors in the time-averaged streamfunction (22) for E-ROM, λ-ROM, and α-ROM with
α = 1, α = 10, α = 102, α = 103, and α = 104. These results yield conclusions that are similar to
those drawn in the reconstructive regime: For low r values, the E-ROM yields inaccurate results.
The λ-ROM results are similar to or slightly better than the E-ROM results for all r values. The results
for α-ROM with α = 1, α = 10, and α = 102 are generally better than or similar to the E-ROM results.
The results for α-ROM with α = 103 and α = 104 are dramatically better than the E-ROM results:
For example, for r = 5, the only ROM that yields acceptable results is the α-ROM with α = 104;
all other ROMs simply blow up (this is denoted by “N/A” in Table 3). Furthermore, for r = 10,
r = 15 and r = 25, the errors of α-ROM with α = 103 and α = 104 are at least one order of magnitude
lower than the E-ROM error. For the larger r values, the errors of α-ROM with α = 103 and α = 104

continue to be lower than the E-ROM errors, although (as expected) the differences decrease as the
r values increase. Overall, the results in Table 3 show that, in the predictive regime, the Lagrangian
α-ROM yields significantly more accurate results than the standard E-ROM and the Lagrangian λ-ROM.
Specifically, for the small r values, the Lagrangian α-ROM with high α values (i.e., α = 103 and α = 104)
performs the best, while for the large r values, the Lagrangian α-ROM with small α values (i.e., α = 1)
performs the best.

Table 3. Eulerian investigation, predictive regime: L2 norm of the errors in the time-averaged
streamfunction (22) for E-ROM (second column), λ-ROM (third column), and α-ROM for α = 1
(fourth column), α = 10 (fifth column), α = 102 (sixth column), α = 103 (seventh column), and α = 104

(eighth column).

r E-ROM λ-ROM α = 1 α = 10 α = 102 α = 103 α = 104

5 N/A N/A N/A N/A N/A 2.8× 101 1.2× 101

10 2.6× 104 8.6× 103 1.6× 104 5.3× 103 4.8× 101 8.1× 100 7.7× 100

15 1.1× 101 1.8× 101 1.9× 101 2.2× 101 7.3× 100 1.8× 100 1.3× 100

20 9.0× 100 6.3× 100 8.8× 100 9.5× 100 1.7× 100 3.5× 10−1 5.8× 10−1

25 4.0× 100 2.5× 100 3.8× 100 2.7× 100 8.4× 10−1 3.3× 10−1 3.5× 10−1

30 1.0× 100 7.7× 10−1 8.8× 10−1 6.8× 10−1 6.0× 10−1 1.9× 10−1 6.2× 10−1

35 4.3× 10−1 4.9× 10−1 5.8× 10−1 5.5× 10−1 5.4× 10−1 3.4× 10−1 5.2× 10−1

40 4.8× 10−1 3.8× 10−1 3.8× 10−1 4.9× 10−1 4.4× 10−1 7.6× 10−1 5.7× 10−1

45 6.4× 10−1 4.4× 10−1 4.6× 10−1 4.9× 10−1 6.3× 10−1 7.5× 10−1 5.3× 10−1

50 4.0× 10−1 4.9× 10−1 3.52× 10−1 3.8× 10−1 6.1× 10−1 4.0× 10−1 4.3× 10−1

Next, we use the qualitative Eulerian criterion to investigate the ability of the ROMs to predict
the four-gyre pattern of the time average of the streamfunction. In Figure 5, for r = 10, 15, 20,
and 30, we plot the mean streamfunction for E-ROM, λ-ROM, and α-ROM with α = 1 and α = 104.
These results yield the following conclusions: The E-ROM, the λ-ROM, and the α-ROM with a low
α value (i.e., α = 1) yield similar results. These ROMs cannot recover the four-gyre pattern for
r = 10, 15, and 20, although they can capture the four-gyre pattern for r = 30. However, the α-ROM
with a large α value (i.e., α = 104) yields dramatically better results. This ROM can clearly capture
the four-gyre pattern not only for r = 30, but also for r = 30; for r = 15, the pattern is somewhat
captured, although not as clearly as for r = 20 and r = 30; finally, for r = 10, only hints of the four-gyre
pattern are present. Overall, the plots in Figure 5 show that the Lagrangian α-ROM with a large α

value (i.e., α = 104) can capture the four-gyre pattern, whereas the standard E-ROM and the Lagrangian
λ-ROM cannot.

The results in Table 3 and Figure 5 consistently show that, in the predictive regime, the new
Lagrangian α-ROM with large α values outperforms the standard E-ROM and the Lagrangian λ-ROM with
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respect to the two Eulerian metrics used in this section. These results also support the conclusion from
the reconstructive regime, that is, the higher the Lagrangian data contribution (i.e., the higher the α value),
the more accurate the results.
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Figure 5. Eulerian investigation, predictive regime: Mean streamfunction from E-ROM (plots (a–d)),
λ-ROM (plots (e–h)) α-ROM with α = 1 (plots (i–l)), and α = 104 (plots (m–p)), for r = 10
(plots (a,e,i,m)), r = 15 (plots (b,f,j,n)), r = 20 (plots (c,g,k,o)), and r = 30 (plots (d,h,l,p)).

3.5.2. Lagrangian Investigation

In this section, we perform a Lagrangian investigation of the accuracy of the two Lagrangian ROMs
(i.e., the α-ROM and λ-ROM). We follow the same format as that used in the Eulerian investigation in
Section 3.5.1.

Reconstructive Regime:

In Table 4, we list the L2 norm of the errors in the time-averaged FTLE (23) for E-ROM, λ-ROM,
and α-ROM for different r values. The results in Table 4 show that the α-ROM with high α values
(i.e., α = 103 and α = 104) consistently outperforms the λ-ROM and the E-ROM for all r values,
but especially for the small r values. We also note that the relatively high magnitudes of the errors in
Table 4 are due to the errors in the ROM velocity field approximations. Decreasing the magnitude of
the errors in the ROM velocity field approximations (e.g., by increasing the ROM dimension, r) would
probably decrease the magnitude of the errors in the FTLE field approximation in Table 4.

Table 4. Lagrangian investigation, reconstructive regime: L2 norm of the errors in the time-averaged
FTLE (23) for E-ROM (second column) λ-ROM (third column), and α-ROM for α = 1 (fourth column),
α = 10 (fifth column), α = 102 (sixth column), α = 103 (seventh column), and α = 104 (eighth column).

r E-ROM λ-ROM α = 1 α = 10 α = 102 α = 103 α = 104

10 6.0× 103 5.9× 103 5.4× 103 4.2× 103 5.2× 103 4.8× 101 2.5× 101

15 4.6× 102 1.2× 103 1.2× 102 8.3× 101 7.8× 101 3.2× 101 6.1× 101

20 9.8× 101 7.4× 101 8.5× 101 5.9× 101 2.2× 101 1.2× 101 1.0× 101

25 8.2× 101 6.2× 101 8.5× 101 7.6× 101 1.8× 101 1.0× 101 9.5× 100

30 9.4× 101 8.7× 101 9.2× 101 7.0× 101 1.8× 101 1.2× 101 8.3× 100

35 7.8× 101 5.8× 101 7.6× 101 5.9× 101 1.3× 101 1.1× 101 1.2× 101

40 7.5× 101 5.3× 101 5.8× 101 5.7× 101 1.3× 101 2.0× 101 2.6× 101

45 5.9× 101 5.0× 101 5.5× 101 4.9× 101 1.4× 101 2.4× 101 2.4× 101

50 4.8× 101 4.4× 101 4.6× 101 3.8× 101 1.1× 101 1.4× 101 2.2× 101

Predictive Regime:

In Table 5, we list the L2 norm of the errors in the time-averaged FTLE (23) for E-ROM, λ-ROM,
and α-ROM for different r values. The results in Table 5 show that, as in the reconstructive regime,
the α-ROM with high α values (i.e., α = 103 and α = 104) consistently outperforms the λ-ROM and the
E-ROM for all r values.
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Table 5. Lagrangian investigation, predictive regime: L2 norm of the errors in the time-averaged
FTLE (23) for E-ROM (second column) λ-ROM (third column), and α-ROM for α = 1 (fourth column),
α = 10 (fifth column), α = 102 (sixth column), α = 103 (seventh column), and α = 104 (eighth column).

r E-ROM λ-ROM α = 1 α = 10 α = 102 α = 103 α = 104

10 3.6× 103 4.4× 103 3.0× 103 4.1× 103 3.0× 103 4.4× 102 2.4× 102

15 5.7× 102 5.2× 102 4.1× 102 5.0× 102 1.0× 102 1.8× 101 1.2× 101

20 1.5× 102 8.4× 101 1.5× 102 1.7× 102 7.7× 101 1.3× 101 8.9× 100

25 1.2× 102 9.2× 101 9.5× 101 1.1× 102 5.8× 101 8.9× 100 9.3× 100

30 7.6× 101 7.3× 101 1.2× 102 6.5× 101 2.1× 101 6.6× 100 6.7× 100

35 6.7× 101 4.6× 101 5.9× 101 4.6× 101 1.6× 101 6.6× 100 5.6× 100

40 3.1× 101 2.8× 101 2.6× 101 3.0× 101 1.1× 101 1.3× 101 2.0× 101

45 2.2× 101 1.8× 101 2.0× 101 1.6× 101 9.3× 100 1.5× 101 1.9× 101

50 1.9× 101 1.6× 101 1.8× 101 1.5× 101 9.1× 100 1.4× 101 1.5× 101

3.6. ROM Computational Efficiency

In this section, we investigate the computational efficiency of the new Lagrangian ROMs
(i.e., α-ROM and λ-ROM).

3.6.1. Computational Environments

We use the following computational environments: To generate the FOM velocity fields, we run
the code on one processor (and one thread) on a Dell workstation with a 2.00 GHZ Intel Xeon CPU
running on a 64-bit Linux system. To generate the ROM velocity fields, we use one Apple laptop with
a single 2.70 GHZ CPU, running on a 64-bit Macintosh operating systems. To generate the FTLE fields,
we utilize: (i) One computing cluster composed of 5 nodes, each node comprised of dual, quad core,
hyperthreaded 2.4 GHz Intel Xeon E5620 CPUs (16 processor threads), 24 GB RAM, and a 40 Gbps
InfiniBand host card and cable; and (ii) Five nodes at 12 threads per node, for a total of 60 threads,
and 4749 mb of memory for each thread.

3.6.2. Speed-Up Factors

The FOM CPU time has two components: the CPU time of generating the velocity field; and the
CPU time of generating the FTLE field from the velocity field. The ROM CPU time has three
components: the CPU time of the offline phase (i.e., the construction of ROM operators); the CPU
time of the online phase (i.e., running the ROMs to generate the velocity field); and the CPU time of
generating the FTLE field from the velocity field.

In this section, we investigate the CPU times of the velocity computation, since this is the
main target of the proposed Lagrangian ROMs. Thus, we first investigate the ROM speed-ups in
the velocity computation and then briefly discuss the CPU times in the FTLE field computation.
Furthermore, as often done in ROM investigations, we monitor only the CPU time of the online phase
of the ROMs, since the offline CPU time is offset by running the ROMs in the predictive regime, that is,
for longer time intervals (as done in this paper) or for different parameters.

To compute the computational efficiency of the new Lagrangian ROMs, we compute the ROM
speed-up factors (S f ), which are defined as follows:

S f =
FOM CPU time
ROM CPU time

, (24)

where the FOM CPU time is the CPU time of generating the velocity field and the ROM CPU time is
the CPU time of the ROM online phase.

In Table 6, for different r values, we list the speed-up factors (24) for E-ROM, λ-ROM
(second column), and α-ROM with α = 1, α = 102, α = 103, and α = 104. These results show
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that the new Lagrangian ROMs and the standard Eulerian ROM are more than three orders of magnitude
faster than the FOM.

Table 6. Speed-up factors (24) for velocity field computation: E-ROM (second column), λ-ROM
(third column), and α-ROM for α = 1 (fourth column), α = 10 (fifth column), α = 102 (sixth column),
α = 103 (seventh column), and α = 104 (eighth column).

r E-ROM λ-ROM α = 1 α = 10 α = 102 α = 103 α = 104

10 1.4× 104 1.5× 104 1.5× 104 1.5× 104 1.5× 104 1.5× 104 1.5× 104

15 8.4× 103 8.2× 103 8.2× 103 8.3× 103 7.8× 103 8.0× 103 8.0× 103

20 5.6× 103 5.7× 103 5.7× 103 5.9× 103 6.1× 103 5.8× 103 5.8× 103

25 4.8× 103 4.6× 103 4.7× 103 4.8× 103 4.5× 103 4.6× 103 4.6× 103

30 3.7× 103 3.6× 103 3.7× 103 3.9× 103 3.6× 103 3.7× 103 3.7× 103

35 2.9× 103 2.9× 103 3.0× 103 3.0× 103 2.9× 103 2.9× 103 2.9× 103

40 2.5× 103 2.6× 103 2.6× 103 2.6× 103 2.5× 103 2.6× 103 2.5× 103

45 2.0× 103 2.0× 103 2.1× 103 2.1× 103 2.0× 103 2.0× 103 2.0× 103

50 1.7× 103 1.7× 103 1.8× 103 1.8× 103 1.7× 103 1.7× 103 1.7× 103

Although the speed-up factors for the ROM velocity computation in Table 6 are the main focus of
the proposed Lagrangian ROMs, we briefly comment on the CPU time of the ROM computation of
the FTLE field. Overall, the CPU time of the ROM computation of the FTLE field is generally slightly
higher than the CPU time of the FOM computation of the FTLE field, especially when relative low
r values are used. We also note that, for low r values, this CPU time increase is generally lower for
the new Lagrangian α-ROM with α = 103 and α = 104 than for the standard E-ROM. We believe that
the reason for this slight CPU time increase is that, as expected, the ROM velocity accuracy is lower
than the FOM velocity accuracy, which results in a slight increase in the CPU time of the FTLE field
computation. We plan to investigate this in a future study.

To conclude, the overall CPU time of the FTLE field computation is generally several times lower
for the two new Lagrangian ROMs (as well as the standard E-ROM) than for the DNS. Indeed, the two
new Lagrangian ROMs decrease the CPU time of the FOM velocity field computation by orders of
magnitude and only slightly increase the CPU time of the FOM FTLE field computation.

4. Conclusions and Outlook

In this paper, we proposed Lagrangian ROMs that use new Lagrangian inner products to build
the ROM basis. In these Lagrangian inner products, Lagrangian data “steers” the resulting Lagrangian
ROM basis toward an accurate approximation of Lagrangian quantities, whereas Eulerian data helps
the Lagrangian ROM basis yield an accurate approximation of Eulerian quantities.

For complex nonlinear systems, the low-dimensional ROMs generally need to be equipped with
closure models or stabilization mechanisms [11,12,34]. We emphasize, however, that we studied the
new Lagrangian ROMs without any closure model (a challenging test) in order to separate the ROM
closure problem from the ROM basis generation, which is the main focus of our paper.

We investigated the new Lagrangian ROMs in the numerical simulation of the QGE. We considered
both the reconstructive regime (in which the ROM is validated on the same time interval as the time
interval used to train the ROM) and the predictive regime (in which the ROM is trained on a short
time interval and validated on a longer time interval). In both the reconstructive and predictive
regimes, we showed that the new Lagrangian ROMs numerical accuracies were higher than the
standard Eulerian ROM accuracy in approximating both Eulerian fields (i.e., the velocity field) and
Lagrangian fields (i.e., the FTLE field). In some cases, the α-ROMs’ accuracies were orders of magnitude
higher than the standard Eulerian ROM accuracy. We emphasize that, since the new Lagrangian
ROMs did not employ any closure modeling, the dramatic increase in the new Lagrangian ROMs’
accuracy is entirely due to the new Lagrangian inner products used to build the Lagrangian ROM
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basis. Furthermore, we showed that, for the velocity field computations, the online CPU times of the
new Lagrangian ROMs are orders of magnitude lower than the CPU time of the corresponding FOM.

There are numerous research directions that could provide improvements both in the efficiency
and the accuracy of the new Lagrangian ROMs. Probably the most important research avenue
is the investigation of ROM closure models for the new Lagrangian ROMs. Indeed, the new
Lagrangian ROMs improved the standard Eulerian ROM’s accuracy solely by using a ROM basis
constructed with the new Lagrangian inner products. We plan to further increase the accuracy of
the new Lagrangian ROMs by adding ROM closure models for the effect of the discarded ROM
modes, for example, data-driven ROM closure models [11,12,34] or eddy viscosity ROM closure
models [35]. Another potential research direction is finding the optimal α value in the new Lagrangian
α-ROM. Although the α-ROM with higher α values yielded the most accurate results in our numerical
investigation, finding the optimal α value is still an open question. To find this optimal parameter
value, one could try to extend to the Lagrangian setting the mathematical tools developed for Eulerian
ROMs [16,77]. Another research avenue is the extension of the new Lagrangian ROMs and the novel
Lagrangian inner products to the computation of other structures that characterize transport and
mixing. For example, instead of geometric approaches (such as the FTLE field), one could approximate
probabilistic measures, such as the almost invariant sets [86,87]. An additional research direction is to
investigate whether the new Lagrangian inner products can be used not only to construct the ROM
basis, but also to build the ROM operators. Yet another research direction worthy of investigation is
the delicate interplay between the QGE data used to construct the ROM basis and the reconstructive
and predictive capabilities of the resulting Lagrangian and Eulerian ROMs. Finally, although the
new Lagrangian ROMs dramatically reduced the computational cost of velocity field computation,
we intend to explore different approaches for speeding up the FTLE field computation from available
ROM velocity data. To this end, we plan to use the new Lagrangian ROMs in conjunction with the
algorithms that have been recently proposed in References [88,89].
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