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Abstract: The planar flow of a steady moving-wall free-surface jet is examined theoretically for
moderate inertia and surface tension. The method of matched asymptotic expansion and singular
perturbation is used to explore the rich dynamics near the stress singularity. A thin-film approach is
also proposed to capture the flow further downstream where the flow becomes of the boundary-layer
type. We exploit the similarity character of the flow to circumvent the presence of the singularity.
The study is of close relevance to slot and blade coating. The jet is found to always contract near the
channel exit, but presents a mild expansion further downstream for a thick coating film. We predict
that separation occurs upstream of the exit for slot coating, essentially for any coating thickness near
the moving substrate, and for a thin film near the die. For capillary number of order one, the jet profile
is not affected by surface tension but the normal stress along the free surface exhibits a maximum that
strengthens with surface tension. In contrast to existing numerical findings, we predict the existence
of upstream influence as indicated by the nonlinear pressure dependence on upstream distance and
the pressure undershoot (overshoot) in blade (slot) coating at the exit.
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1. Introduction

We examine the free-surface flow of a planar moving-wall jet at moderate Reynolds and capillary
numbers near and far from the channel exit as encountered in coating flow. With the advent of
high-speed coating and the use of low-viscosity liquids, inertia is becoming increasingly important but
has been traditionally neglected in the modelling of coating flow. General aspects on the classification
and analyses of coating flows can be found in the reviews by Ruschak [1] and Weinstein and Ruschak [2].
The current work focuses on slot and blade coating flows which, in addition to the substrate movement,
typically involve an adverse or a favorable pressure gradient.

In slot coating, the liquid is forced into the slot die, and distributes through the narrow slot before
it emerges onto the moving substrate. A low-pressure area or vacuum is imposed upstream of the
die to facilitate a faster and more stable coating process. Consequently, part of the flow is driven
downstream by the moving substrate and part of it circulates upstream in the low-pressure area,
which causes a streamwise adverse pressure gradient to act inside the channel formed between the
downstream die and the moving substrate. In blade coating, the flow lies between a fixed blade of a
prescribed shape and a substrate moving parallel to itself. The coating liquid is dragged inside the
channel by the moving substrate, which causes a hydrodynamic pressure rise at the upstream of the
blade. The pressure rise causes the blade to reject most of the liquid, and only a fraction passes into the
narrow channel. Since the drag flow can only carry half of the coating liquid, a streamwise favorable
pressure gradient is generated to carry the rest [3]. In this case, the pressure gradient forces the coating
liquid in the same direction as the movement of the substrate inside the channel. In both slot and blade
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coating, the moving substrate drags the flow out of the channel in the form of a free-surface wall jet,
and a thin layer of liquid film is obtained. In the present work, only the pressure gradient immediately
upstream of the blade or die exit is accounted for, which is found in reality to be very close to constant.
Consequently, the flow inside the channel will be assumed to be a superposition of Couette (velocity
driven) and Poiseuille (pressure driven) flows.

Aside from its industrial importance, coating flow is fundamentally important as it spans various
flow regimes. In an effort to clearly identify these regimes, de Ryck and Quere [4] carried out different
experiments on fibre coating and used dimensional arguments, which illustrate the situation of coating
flow in general. The visco-capillary range corresponds to slow coating flow and negligible Weber
number, obeying the well-known Landau equation [5]. In this case, the film thickness results from a
balance between capillarity and viscous forces. For coating flow of liquids of low viscosity (such as
water) at higher velocity (about 1 m/s), the measurements of de Ryck and Quere were shown to deviate
considerably from the Landau law, even if the capillary number remained negligible (Ca < 0.05).
This is the visco-inertial regime, corresponding to a Weber number of order 1. At larger velocities
(We > 1), the coating flow does not seem to depend any longer on the surface tension. This observation
corroborates well findings for coating flow in general, as the thickness measurements reported by
Lee et al. [6] and Becker and Wang [7] indicate for slot coating. De Ryck and Quere [4] also point out
that the boundary-layer regime should be relevant to most industrial fibre-coating processes. Similarly,
the more recent thickness measurements of Chang et al. [8] for low-viscosity slot-coating films show
that viscous and surface tension effects become important only below a critical Reynolds number.
At low speed, the minimum wet thickness increases with increasing capillary number but becomes
independent of the capillary number for Ca > 0.3. Above the critical Reynolds number, fluid inertia
becomes dominant. In this region, the minimum wet thickness decreases as the Reynolds number
increases. Chang et al. [8] also established that inertial forces cannot be neglected in slot coating for Re
larger than 10, which roughly corresponds to a substrate speed of 1 m/s. The earlier measurements of
Carvalho and Kheshgi [9] show that the visco-capillary model remains valid at capillary numbers below
unity. Their measurements also indicate that the model becomes less and less useful as the capillary
number and the Reynolds number rise beyond unity. According to Romero et al. [10], high capillary
number (Ca ≈ 5) and Reynolds number (Re ≈ 3) occur in higher-speed coating operations. It is this
inertial regime that is of primary interest in the present study.

Although inertia has the desirable effect of lowering the flow limit and stabilizing the coating
process [9], existing studies have predominantly focused on the role of surface tension. Lee et al. [6]
and Chin et al. [11] showed that reducing the viscosity lowers the minimum thickness and increases
the maximum coating speed. They found that a higher viscosity of the coating solution tends to
be destabilizing, and a lower coating speed under high viscosity induces coating defects such as
air entrainment and ribbing. Lee et al. [6] measured the minimum wet thickness for extrusion slot
coating. In their experiment, the range of Reynolds number was low, from 0.2 to 24. They noticed that
there exists a critical capillary number beyond which the minimum wet thickness becomes constant
regardless of the value of Ca. Following the work of Lee et al. [6], and using a highly viscous fluid in
the slot coater, Yu et al. [12] found that a minimum wet thickness can be reached if a low viscous fluid
is used as a bottom carrier layer. Chang et al. [8] visualized the slot coating process for a low viscosity
fluid, and observed that beyond a critical Reynolds number (Re = 20), both viscous and surface tension
effects become negligible, with inertia dominating the flow.

Although extensive theoretical work has been devoted to the analysis of coating flow, the focus has
been primarily on inertialess flow of a non-Newtonian fluid [13]. To a much lesser extent, numerical
studies accounting for inertia were also carried out. An overview of high-speed blade coating was
given by Aidun [14], with direct relevance to paper coating. One of the earlier numerical work was
done by Saito and Scriven [15], who carried out a finite-element analysis coupled to an iterative
scheme to examine the capillary number effect on the curved meniscus close to the static contact
line in slot coating. They showed that the downstream meniscus no longer remains attached to the
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slot die at higher capillary number and lower flow rate. They found that the rate of convergence is
highly dependent on the capillary number, and became exceedingly slow for Ca > 10. Carvalho and
Kheshgi [9] and Jang and Song [16] examined the low-flow limit for slot coating in the inertial-capillary
regime. Iliopoulos and Scriven [17] examined numerically the influence of particle suspensions on
the blade and substrate. They found that the blade coating thickness increased with the Reynolds
number, for any capillary number, but the coating thickness tapered off at the higher capillary numbers.
In their study, the approximate ranges were, 0 < Re < 55 and 10 < Ca < 30. Lin et al. [18] carried out a
comparison between numerical predictions and experiment, assessing operating windows for slot
coating for their Reynolds number ranging from 0 to 100.

Perhaps the scarcity of theoretical studies on inertial coating flow is due to the stronger singularity
at the contact point (line) at higher Reynolds number. Bajaj et al. [19] reported that for surface-tension
dominated flow, a circulation appears upstream of the exit. This recirculation zone was found to
gradually shrink with increasing Reynolds number. Consequently, a geometric singularity emerges
in slot coating flow, resulting from the discontinuous slope at the contact line, which is increasingly
exposed in relatively stronger flows. The singularity is also physical as a result of the change in the
boundary condition from adherence at the die wall to the shear-free condition on the free surface
(see also below). Inertia can be used to counteract the receding action of the downstream meniscus and
the flow reversal, and delay the onset of the flow limit [9]. However, this gain will be offset by the
strengthening of the singularity, which is no longer attenuated by a dominant surface tension. In this
case, the circulation just upstream of the contact line weakens and eventually disappears altogether
with increasing inertia, causing a more abrupt drop in the shear stress and a stronger singularity.
We recall that the flow limit corresponds to a minimum coating thickness for a substrate speed or a
maximum substrate speed for a given coating thickness. Inertia helps reduce the flow limit when,
for instance, lower viscosity liquids are used, which tend to spread more easily [6]. The measurements
and theoretical predictions of Carvalho and Keshghi [9] indicate that thinner films can be obtained at
faster web speeds. Finally, the imposition of appropriate boundary conditions for free-surface inlet
and outlet flows remains an open issue, particularly for small or vanishing surface tension [20].

Coating flow is modelled as a free-surface wall jet emerging from a channel bounded by a
semi-infinite stationary (die or blade) wall and an infinite moving substrate. We assume inertia to
remain relatively important, allowing the asymptotic development of the flow field in terms of some
inverse power of the Reynolds number. The jet is assumed to be subject to a constant favorable or
adverse pressure gradient far upstream where the flow acquires a Couette–Poiseuille (CP) character,
typically as encountered in blade and slot coating. The assumption of fully developed upstream
flow and the channel flow geometry are generally reasonable and commonly adopted in numerical
simulation [15,19,21,22]. In roll coating, for instance, it is established that when the radius of the roller

is large compared to the capillary length
√
σ
ρg , then the effect of the curvature of the cylinder is very

weak and results in only small perturbations to the uniform film thickness on the roller [23]. Here σ is
the surface tension coefficient, ρ is the fluid density and g is the gravitational acceleration.

The stress singularity constitutes the major difficulty in a computational approach.
The incorporation of the singularity point and its immediate vicinity is unavoidable in this case
since the entire flow domain must be considered (discretized). The neighborhood region around the
singularity, which is crucial to the rest of the flow domain, is difficult to handle numerically. In a
numerical approach, the singularity is typically smoothed out or smeared over. The present asymptotic
approach represents a viable alternative, at least for the flow in the vicinity of the singularity, which is
avoided altogether as a result of the flow similarity in the free-surface layer and the boundary layer
near the wall. In a numerical approach, the mesh is typically refined near the singularity, thus capturing
more closely the singular behavior; the numerical difficulty resides in handling the resulting stronger
flow gradients. Mitsoulis [24] conducted a finite-element analysis of blade coating. From his figures,
we can see that both the shear stress as well as the pressure and the normal stress become singular
at the channel exit. Finally, although the flow is primarily dominated by the stress singularity close
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to the exit, this eventually influences the accuracy of the numerical predictions of the flow further
downstream and upstream.

Saito and Scriven [15] used an iterative numerical scheme to determine the free surface profile.
They reported on earlier studies [25] where convergence difficulties were encountered. This was
particularly the case for slot coating, with severe bending of the free surface. Convergence difficulties
were also encountered when inertia grows large at a fixed flow rate and dominates surface tension.
Saito and Scriven [15] were able to overcome the convergence difficulties by combining simple coordinate
parametrizations of parts of the free surface, and computing accurately the derivatives of finite-element
residuals with respect to free-surface locations along the spines. Alternatively, mapping techniques
have also been used more recently, where the governing equations and boundary conditions are
transformed to an equivalent set defined in a known reference frame [9,21,22]. The volume-of-fluid
approach has also been employed [16].

The present asymptotic approach circumvents the singularity altogether and does not require
an iterative scheme to determine the shape of the meniscus. Perhaps more importantly, the present
formulation provides a deeper insight on the flow structure and the rich dynamics near the singularity
(see Section 7 for further discussion on this point and the relation with the triple-deck approach).
We observe that the use of the singular perturbation technique also provides a procedure by which
higher-order terms could be determined to the desired accuracy [26]. The formulation is essentially
analytical, providing the steady flow solution in a manner that is completely amenable to the
implementation of a linear or nonlinear stability analysis. Generally, asymptotic analyses have
been successfully adopted for flows in the visco-capillary range [27,28]. Timoshin [29] developed a
high-Reynolds-number asymptotic theory and examined the stability of boundary-layer flow over
a coated surface. More recently, Tsang et al. [30] implemented a high-Reynolds-number asymptotic
approach to study the interaction of a boundary layer on a solid plate and the free surface above. Studies
of closer relevance to the present flow in the visco-inertial range were also conducted, but to a much
lesser extent. Tillett [31] analyzed the laminar symmetric free-jet flow near the channel exit using the
method of matched asymptotic expansions. Miyake et al. [32] carried out a similar analysis on a vertical
jet of inviscid fluid, taking into account gravity effect. Philippe and Dumargue [33] applied an analysis
similar to Tillett’s for viscous axisymmetric vertical jets, emphasizing the interplay between the effects
of gravity and inertia on the free surface shape and the velocity profile. Their approach, which is similar
to the one in the present study, was validated against experiment. A local similarity transformation
was carried out by Wilson [34] for the axisymmetric viscous-gravity jet emerging from a tube, but,
unlike the present formulation, Wilson neglected the upstream influence. Khayat and co-workers
examined the flow of a jet emerging from a channel of Newtonian [35,36] and non-Newtonian [37,38]
liquids. We refer the reader to the book by Sobey [39] on interactive boundary layer and triple-deck
theory for a perspective on asymptotic analyses, their applications and historic development.

Asymptotic analysis has also been applied to study coating flow, but the majority of the studies
focused on dominant surface tension. Ruschak [26] performed a theoretical analysis based on the
thin-film theory of Landau and Levich [5] to determine the effects of different parameters on the
flow limit of extrusion slot coating for a Newtonian fluid. Ruschak considered a very small capillary
number by setting the coating speed close to zero, and determined the film thickness in the slow
flow (negligible inertia) limit by carrying out a singular perturbation method. Ruschak observed that
film thickness becomes thinner for smaller capillary number, and noticed that gravity does not affect
the flow much in the limit considered in the study. Higgins and Scriven [40] extended Ruschak’s
analysis by incorporating the viscous effect in the coating bead (inside the channel) with variable
meniscus location. They concluded that as the coating speed increases, the dynamic contact angle
increases, resulting in an altered coating behavior. Christodoulou and Scriven [41] provided an
asymptotic analysis based on a thin-film approach in slide coating. Carvalho and Kheshgi [9] assessed
the low-flow limit for slot coating, which is defined as the maximum substrate speed possible without
any coating defects at a fixed minimum thickness or vice versa. By modifying the visco-capillary
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model, Carvalho and Kheshgi [9] developed a 2D numerical tool to study the effect of higher capillary
numbers. They observed that at higher capillary number (Ca > 0.3), inertia started to dominate the
flow, delaying the onset of the low-flow limit. Of close relevance to the present formulation is the
matched asymptotic approach used by Rushack and Scriven [42], focusing on low flow rate and high
surface-tension limits for an inertialess jet.

Other coating configurations were also analyzed. Savage [43] and, later, Gaskell et al. [44] analyzed
the meniscus roll-coating flow of an inertialess fluid. Kelmanson [45] examined the effect of inertia
in the small- and large- surface-tension limits for a coating film flowing around a rotating cylinder.
Blythe and Simpkins [46] developed an asymptotic analysis using the Landau–Levich equation to
examine the inertialess falling coating flow on a fibre. Later, Jang et al. [16] proposed a model for
slot coating by modifying the visco-capillary model to accommodate the high capillary and to some
extent inertia effects. Unlike the visco-capillary model, they accounted for the pressure variation
under the slot die, which enabled them to predict the coating thickness at high capillary and Reynolds
numbers. They observed that when Re > 10 the film thickness decreased with increasing inertia,
and visco-capillary model did not show good agreement with the simulation for Ca > 0.2.

Finally, the present work is reminiscent of the early treatment of Goldstein [47] of the flow near the
trailing edge of a semi-infinite plate, where the flow downstream of the singular edge was examined.
Later, Stewrtson [48] and Messiter [49] developed a more comprehensive treatment of the flow very
near the singularity, laying down the foundation for the triple-deck theory [39]. They established a
rational theoretical approach for the investigation of separation and other non-linear features emerging
in external flow situations. The present wall-jet flow differs fundamentally from the external separation
flow due to the absence of an external inviscid flow. The present development is somewhat of the same
level as the asymptotic treatment of Goldstein. The more complete analysis of the full Navier–Stokes
equations and the implementation of a triple-deck approach may be envisageable in a future extension.

2. Problem Formulation and the Physical Domain

We consider the planar flow of an incompressible Newtonian fluid of densityρ, viscosityµ and surface
tension σ, flowing between the semi-infinite stationary blade or slot die and the translating substrate,
separated by a distance D. The flow is induced by the simultaneous forward translation velocity V of the
substrate and an applied adverse or favorable pressure gradient g far upstream, where fully-developed
Couette–Poiseuille (CP) flow is assumed to prevail. The assumption of fully-developed flow far upstream
is commonly adopted in numerical studies on slot coating [10,15,21]. We also assume the CP flow to
hold for blade coating as the pressure gradient is sensibly constant over a sufficiently long upstream
distance [17]. Far downstream, the flow becomes uniform with speed V and film thickness T.

Non-dimensional variables are introduced by measuring the coordinates (x, z), the velocity
components (u, w), the stream function ψ and the pressure p in units of D, V, VD and ρV2, respectively.
There result three dimensionless parameters appearing in the problem, namely the Reynolds number
Re, the capillary number Ca, and the thickness-to-gap ratio Q, which are expressed as

Re =
ρVD
µ

, Ca =
µV
σ

, Q =
T
D

. (1)

A parameter related to Q, which is conveniently introduced here:

G ≡ 3− 6Q, (2)

with 2G being the dimensionless applied pressure gradient scaled by µV
D2 . Clearly, Q < 1 for coating

flow. Consequently, −3 < G = O(1) < 3. The final thickness T is typically greater than half the gap
for blade coating where G < 0. That the pressure gradient can be constant far upstream is easily
observed in blade coating for a long flat or even angled blade. We refer the reader to the numerical
studies of Iliopoulos and Scriven [17], particularly their figures for different blade angles, and Mitsoulis
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and Athanasopoulos [50]. For slot coating, the pressure gradient is commonly directly related to the
flow rate, which can be independent of the substrate speed [10]. In this case, G can be positive or
negative, and is typically assumed to be constant in numerical studies of slot coating [15,22,25]. Finally,
the value of G varies typically from −0.05 to −0.20 in blade coating [17,24,50], and from 0.05 to 0.20 in
slot coating [11,18].

Figure 1 illustrates the flow configuration schematically where dimensionless notations are used.
We conveniently choose the stationary wall (slot die or blade) to lie along the x axis at z = 0, and the
moving substrate at z = 1. The z axis lies across the channel, with the origin coinciding with the contact
line (x = z = 0) between the stationary wall and the free surface z = ζ(x). The figure depicts the
two possibilities for the flow far upstream that typically correspond to a thin or a thick coating film,
involving an adverse (G > 0) or a favorable (G < 0) pressure gradient, respectively. In both cases,
the pressure gradient is generally expected to be constant. Figure 1 also illustrates the four regions or
layers that constitute the physical domain, which will be discussed in Section 2.2.
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(
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indicate matching directions.

2.1. Governing Equations and Boundary Conditions

The problem is formulated in terms of the stream function ψ, with u = ψz and w = −ψx.
The stream function and velocity corresponding to the CP flow far upstream turn out to be the
leading-order solution in the core layer I, and are conveniently introduced here in terms of G as

ψ0(z) =
1−G

2
z2 +

G
3

z3, u0(z) = (1−G)z + Gz2. (3)

In the current study, the Reynolds number, Re, is assumed to be moderately large and G = O(1)
at most. If Q = 1/2 (G = 0), the flow is only driven by the forward substrate translation, resulting in
drag flow. For steady laminar planar flow, the non-dimensional Navier–Stokes equations take the
following form:

ψzψxz −ψxψzz = −px +
1

Re (ψxxz +ψzzz),
ψxψxz −ψzψxx = −pz −

1
Re (ψxxx +ψxzz).

(4)

Except for the stress components, a subscript with respect to x or z denotes partial differentiation.
For x > 0, the kinematic and dynamic boundary conditions at the free surface z = ζ(x) are

ψ(x > 0, z = ζ) = 0, (5)
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p(x > 0, z = ζ)ζ′ −
1

Re
(2ζ′ψxz +ψxx −ψzz)

∣∣∣∣∣
z=ζ

= −
1

ReCa
ζ′ζ′′

1 + ζ′2
, (6)

p(x > 0, z = ζ) +
1

Re
[2ψxz + ζ

′(ψzz −ψxx)]z=ζ = −
1

ReCa
ζ′′

1 + ζ′2
. (7)

Here, a prime denotes total differentiation. In addition, the following conditions must be satisfied
at the walls and far upstream:

ψz(x, z = 1) = 1, ψ(x, z = 1) = 1−
G
6

, (8)

ψz(x < 0, z = 0) = 0, (9)

ψ(x < 0, z = 0) = 0, (10)

ψ(x→ −∞, z) ∼
1−G

2
z2 +

G
3

z3. (11)

It is worth noting that in the coating literature, the pressure scale is taken as µV/D instead of the
current ρV2 scale. In the former case, the pressure becomes Rep(x, z), which we shall use as such.
The overall solution strategy of problem (4)–(11) along with the flow structure is summarized next.

2.2. The Physical Domain and the Flow Structure

The physical domain is shown schematically in Figure 1. As the fluid emerges out of the channel,
the shear stress vanishes at the channel exit, causing free-surface layer II to develop along the free surface.
The core layer I is influenced by the thin free-surface layer and the jet contraction. It is important to
recall that the core layer remains predominantly of inviscid rotational character. However, this inviscid
layer cannot extend to the stationary die or blade wall where significant viscous shearing occurs
upstream of the stress singularity (x < 0) at the exit, forcing the formation of the slip layer III in the
vicinity of the die or blade. Similarly, the core flow must also adjust to the shearing viscous flow in the
slip layer IV upstream and downstream. Consequently, the predominantly inviscid core flow profile
cannot satisfy adherence at the rigid walls, thus causing a slip layer to form with thickness that is
not expected to be significant at high Reynolds number, but can be large otherwise. It is therefore
fundamentally important to examine the flow in the slip layer and the extent of upstream influence.
In fact, the thickness of the wall layers will turn out to be of O

(
Re−1

)
. The layer IV along the moving

substrate is expected to grow rapidly with distance downstream of the channel exit.
The flow in each layer of the domain (Figure 1) is dominated by different physical mechanisms

with corresponding characteristic length scales. The flow in layers II, III and IV, near the free surface,
the die or blade and the moving substrate, respectively, is shear dominated, and is of the boundary-layer
type. In the core layer I, both shear and elongation are in balance as a result of the predominance of the
Couette–Poiseuille character of the flow upstream and downstream of the channel exit. At the channel
exit, x = 0, the shear stress undergoes a step change from a non-zero value τxz(x < 0, z = 0) ≈ 1−G at
the die or blade to zero at the free surface z = ζ(x). The effect of this drop diffuses upstream inside the
channel (x < 0) over a certain distance where fully developed Couette–Poiseuille flow is recovered,
and downstream (x > 0), toward the moving substrate. In the limit of infinite Reynolds number,
the flow retains the Couette–Poiseuille profile (3), which will turn out to be the lowest-order solution
in the core layer I. In this limit, the jet height remains horizontal, with ζ(x) = 0. In this case, the jet
does not contract, and mass remains conserved throughout the upstream channel and downstream
jet. For finite Reynolds number, the Couette–Poiseuille profile is modified when the fluid leaves the
channel in the form of the wall jet. As the fluid detaches itself from the stationary wall, the removal of
the wall stress causes the free-surface layer II to develop, where the Couette–Poiseuille profile adjusts
itself so as to satisfy the stress-free (zero-traction) condition at the free surface. At infinite Reynolds
number, the zero-traction condition would not be imposed; there is no viscous mechanism for the stress
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singularity to dissipate. In this limit, all the conditions of the problem would be satisfied since the
Couette–Poiseuille profile continues undisturbed downstream from the exit. However, as the inviscid
flow is governed by the Euler equations with no unique solution, the fully developed Couette–Poiseuille
flow can be assumed to be everywhere the proper inviscid limit. Consequently, the core flow is,
not affected by the in the free-surface layer II to lowest order; this layer, however, induces perturbations
to the Couette–Poiseuille flow when higher-order terms are included, with some upstream influence.
This assumption is similar to the one made for channel and tube flows with mild [51] and severe [52]
constrictions, where the flow field in the core region, to leading order, satisfies the inviscid equations
of motion. The reader is again referred to the book by Sobey [39] for other asymptotic analyses on
interactive boundary layers.

The analysis of the flow in the core layer I is conducted separately upstream (x < 0) and downstream
(x > 0) of the exit. The flow is obtained as a perturbation to the Couette–Poiseuille flow by solving
Equation (4) subject to the far-upstream condition (11) and the matching condition with the free-surface
layer II as the vertical double-arrow between layers I and II indicates in Figure 1. The upstream
and downstream flows in layer I are matched at x = 0 as the horizontal double-arrow indicates.
Boundary-layer solutions are sought in layers II, III and IV near the free surface and the walls, but not
all layers admit a similarity solution. For the flow downstream of the exit, a similarity solution is
possible in the free-surface layer II.

This determines completely the flow in layers I and II. The details will be given in Sections 3 and 4.
We observe that no matching is required at x = 0 between the free-surface layer II and the slip layer III.
Consequently, the singularity is entirely circumvented in the solution process, which constitutes a major
advantage of the present approach. In Section 3, we also use a thin-film approach to analyze the flow
far downstream. This is an appropriate approach since the flow is completely of the boundary-layer
type at some distance downstream from the exit. In Section 5, we examine the flow near the stationary
wall or slip layer III. The flow in layer III is matched onto the flow in the core layer I for x < 0 as the
vertical double-arrow between layers I and III indicates. Finally, the flow in the slip layer IV near the
moving substrate is examined in Section 6. The non-similarity solution is obtained separately for x < 0
and x > 0, and matched at x = 0.

3. The Flow in the Free-Surface Layer II and the Coating Film Profile Near and Far from the Exit

In this section, we examine the flow structure in the free-surface layer II. As the layer grows with
downstream distance, it eventually invades the entire film region, at which point we adopt a thin-film
approach to capture the flow far from the die or blade exit. The flows near and far downstream from
the exit are matched to obtain the profile of the coating film everywhere downstream.

3.1. The Flow in the Free-Surface Layer Close to the Die or Blade Exit

In addition to the kinematic and dynamic conditions (5)–(7) at the free surface, the matching of the
flow at the edge of the free-surface layer and the core layer also provides conditions needed to solve
for the flow near the free surface as well as the core stream function and pressure terms. The matching
process is detailed in Appendix A. For a successful application of the matching rule (A1), it is required
that the stretching transformation must be expressed in the canonical form y = εη where y = z− ζ(x)
is the near boundary transverse coordinate in the free-surface layer II. Here, ε(Re) << 1 is the small
parameter in the problem or the aspect ratio as referred to by Weinstein and Ruschak [2], which will
be defined precisely shortly. The core expansion in this case, must be written in terms of y, not z;
otherwise (A1) will be satisfied only approximately.

To examine the free-surface layer structure, we let ε = Re−α, where α is to be determined.
Anticipating that the height ζ of the free surface is of the same order of magnitude as the boundary-layer
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thickness, one can write ζ(x) = εh(x), and henceforth work with h(x), with the matching indicating that
h(x) = O(1). The following change of coordinates is introduced, namely,

x = ξ, z = y + ζ(x) = ε(η+ h). (12)

The use of ξ instead of x helps emphasize the distinction between the core region where the (x, z)
variables are used, and the free-surface layer where the (ξ,η) variables are used, and makes clearer the
mathematical development in each region. The aim is to find a solution of the problem in the (ξ, η)
plane in the form of a boundary-layer expansion in ε. In order to match this to the core (predominantly)
CP flow, it is necessary to have ψ ∼

(
1−G

2

)
ε2η2 as η→∞ in layer II, to lowest order in ε. Therefore,

ψmust be of order ε2. In order to determine the value of α, the convective and viscous terms in the
transformed momentum Equation (4) must balance. This is achieved upon taking the value of α = 1/3
similar to the case of a Newtonian jet [31–33] as well as a non-Newtonian jet [37]. The streamwise and
transverse velocity components are now expressed in terms of the stream function as u = ψz = 1

εψη
and w = −ψx = −ψξ + h′ψη, respectively. Considering the fact that the streamwise velocity u in
layer II must match the velocity in the core layer I, that is u ∼ (1−G)εη as η→∞ , it is concluded
that u is of order ε. From continuity, w is of order ε2. Consequently, the momentum conservation
Equation (4) become

ψηψξη −ψξψηη = −ε2
(
pξ − h′pη

)
+ε2ψηηη + ε

4
(
ψξξη − 2h′ψξηη + h′2ψηηη − h′′ψηη

)
,

(13)

−ψηψξξ +ψξψξη + h′′ψ2
η +h′

(
ψηψξη −ψξψηη

)
= −pη − ε

2
(
ψξηη − h′ψηηη

)
− ε4

(
∂
∂ξ − h′ ∂∂η

)3
ψ.

(14)

Similarly, the boundary conditions on the free surface, i.e., at η = 0, can be rewritten as

ψ = 0, (15)

h′p +ψηη + ε
2
(
h′′ψη + h′2ψηη

)
= −Ca−1ε4 h′h′′

1 + ε2h′2
, (16)

p + ε2
(
2ψξη − h′ψηη

)
+ ε4h′

(
2h′ψηξ + h′′ψη − h′2ψηη

)
= −Ca−1ε4 h′′

1 + ε2h′2
. (17)

The expansion for ψ in the free-surface layer II begins with a term in ε2, and precedes in powers
of ε as

ψ(ξ,η) = ε2Ψ2(ξ,η) + ε3Ψ3(ξ,η) + · · · . (18)

Similarly, h is expanded as

h(ξ) = ε−1ζ(ξ) = h0(ξ) + εh1(ξ) + · · · . (19)

From (18) and (19), it is concluded that the pressure p in the free-surface layer is of order ε4. Hence,

p(ξ,η) = ε4P4(ξ,η) + ε5P5(ξ,η) + · · · . (20)

This leaves the leading-order shear-stress term in Equation (16) to balance the surface tension
term, indicating that surface tension is of order ε

2

Ca = 1
CaRe2/3 . We shall see in Section 3.2 that for

a thin film at high Reynolds number, surface tension is of order 1
CaRe3 (refer also to Weinstein and

Ruschak [2]). Consequently, for coating flow, which behaves like a thin film far downstream of
the exit, surface tension becomes negligible when 1

CaRe3 <
1

CaRe2/3 << 1 or Ca >> 1
Re2/3 >

1
Re3 . So,

even for a relatively moderate Reynolds number, say Re = 64, Ca needs only be greater than 0.06 for
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surface tension to be negligible. In this work, we assume a moderate surface tension with Ca remaining
of order one.

Recalling that u = 1
εψη and w = −ψξ + h′ψη, then the velocity components take the following

for:
u(ξ,η) = εU1(ξ,η) + ε2U2(ξ,η) + · · · , (21)

w(ξ,η) = ε2W2(ξ,η) + ε3W3(ξ,η) + · · · (22)

In this case, U1 = Ψ2η, U2 = Ψ3η and W2 = −Ψ2ξ + h0
′Ψ2η, and so on.

We next consider the leading-order solution of problem (14) and (15). Thus, to leading order in ε,
Equation (13) reduce to:

Ψ2ηΨ2ξη −Ψ2ξΨ2ηη = Ψ2ηηη. (23)

The above problem is similar to the case of symmetric free jet [31–33] with different boundary
conditions. The conditions at the free surface are deduced from Equation (15) as

Ψ2(ξ, 0) = Ψ2ηη(ξ, 0) = 0. (24)

To complete the problem for Ψ2, another boundary condition is required, which is obtained by
matching the flow at the edge of the free-surface layer with the flow in the core layer downstream
of the channel exit. This is shown in Appendix A. To this order, there is no interaction between the
free-surface layer II and the flow in the core layer I, this latter still retaining the Couette-Poiseuille
profile. The resulting condition is conveniently written here:

Ψ2(ξ,η→∞) ∼
(1−G

2

)
η2. (25)

We observe that the growth of the free-surface layer II can be estimated by considering the
balance of the viscous and inertial terms in Equation (23) and using Equation (25), thus indicating that

η ∝ ξ
Ψ2
∼

(
2

1−G

)
ξ
η2 . This leads to y ∝

(
2

1−G

)1/3( x
Re

)1/3
or

δ ∝

( 2
1−G

x
Re

)1/3
, (26)

which suggests that the thickness of the free-surface layer for a coating film decreases like Re−1/3

with increasing Reynolds number. However, this also suggests that, for the same substrate speed
(same Reynolds number), the free-surface layer is expected to be thicker for slot coating (G > 0)
compared to blade coating (G < 0). As an interesting consequence, the surface layer grows faster for the
thinner film

(
Q < 1

2

)
in slot coating than for the thicker film

(
Q > 1

2

)
in blade coating. This fundamental

observation has an important practical significance in modelling coating film flow, which will be
discussed in Section 3.2 when the near exit flow is matched to the thin-film flow. Finally, as we shall
see, the boundary-layer growth is different along the stationary and moving walls.

We now turn to the solution of problem (23)–(25), which admits a similarity profile:
Ψ2(ξ,η) = ξ2/3f2(θ), where θ = ηξ−1/3 is the similarity variable. The problem for f2(θ) is given by

3f′′′2 + 2f2f′′2 − f′22 = 0, (27)

f2(0) = f′′2 (0) = 0, (28)

f2(θ→∞) ∼
(1−G

2

)
(θ+ c1)

2, (29)

where c1 = (1−G)−1/3d1 is a constant function of G to be determined numerically. Problem (27)–(29)
is solved as an initial-value problem using a fourth-order Runge–Kutta scheme (IMSL-DIVERK),
coupled with a shooting technique. Equation (27) is integrated subject to conditions (28) and a guessed
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value f′2(0) for the slope at the origin. The slope is adjusted until reasonable matching is achieved with
the asymptotic form (29) at large θ, or, more precisely, until f′′2 ∼ 1−G is reached. The value of c1 is then
determined upon matching the numerical solution and its asymptotic form. Matching the numerical
solution with its asymptotic behavior, we find d1 = 0.892. Moreover, the slope f′2(0) = (1−G)2/3e1

is related to the velocity at the film surface where we numerically find e1 = 1.611. We observe that
the numerical solution was carried out by scaling out the factor 1–G from the problem. The variables
were rescaled by letting f2(θ) = (1−G)1/3g2(t) and t = (1−G)1/3

θ. In this case, problem (27)–(29)

reduces to: 3g′′′2 + 2g2g′′2 − g′22 = 0, g2(0) = g′′2 (0) = 0, g2(t→∞) ∼
(t+d1)

2

2 . Pursuing the solution
and the matching process to next order, the governing equation for Ψ3(ξ,η) becomes

Ψ2ηΨ3ξη + Ψ3ηΨ2ξη −Ψ2ξΨ3ηη −Ψ3ξΨ2ηη = Ψ3ηηη, (30)

subject to the boundary conditions

Ψ3(ξ, 0) = Ψ3ηη(ξ, 0) = 0, (31)

Ψ3(ξ,η) ∼
G
3
η3 as η→∞. (32)

A similarity solution is also possible, namely Ψ3(ξ,η) = ξ f3(θ), resulting in the following problem
for f3(θ):

3f′′′3 + 2f2f′′3 − 3f′2f′3 + 3f′′2 f3 = 0, (33)

f3(0) = f′′3 (0) = 0, (34)

f3(θ→∞) ∼
G
3

[
(θ+ c1)

3
−

6
1−G

]
+ c2(θ+ c1). (35)

here c2 = G(1−G)−2/3d2, where the constant d2 = 1.654 is determined numerically. Here again,
the numerical solution is obtained for the rescaled equation and boundary conditions:

3g3
′′′ + 2g2g3

′′
− 3g2g3

′ + 3g2
′′g3 = 0, (36)

g3(0) = g3
′′ (0) = 0 , g3(t→∞) ∼

1
3

[
(t + d1)

3
− 6

]
+ d2(t + d1). (37)

We find it is helpful to summarize in Table 1 the constants and numerical values that are used in
the numerical results.

Table 1. Constants arising in the solution of f2(θ) and f3(θ).

c1 = d1

(1 − G)1/3 c2 = G
(1 − G)2/3 d2 f′2(0) = (1−G)2/3e1 f′3(0) =

G
(1−G)2/3 e2

d1 = 0.892 d2 = 1.654 e1 = 1.611 e2 = 2.85

We recall that G is directly related to the flow rate (or coating thickness) through G = 3(1− 2Q).
The height of the free surface is then obtained to the current order by substituting (A11) and (A18) into
Equation (19), yielding

ζ(x) = εc1x1/3 + ε2 c2

1−G
x2/3 = c1

( x
Re

)1/3
+

c2

1−G

( x
Re

)2/3
. (38)

This expression reveals clearly the intricate interplay between inertia and flow rate (coating
thickness). In particular, the free-surface height ζ(x) or the thickness χ(x) ≡ 1− ζ(x) can exhibit an
extremum depending on the value and signs of the constants involved. An important observation to
make here is the absence of surface-tension effect on the film profile given by Equation (38). This is
not surprising since Ca = O(1), which is relatively large. In this range of capillary number, the film
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thickness remains essentially independent of surface tension as this has been clearly demonstrated
experimentally. The reader is referred, among others, to Lee et al. [6] and Becker and Wang [7] where
film thickness measurements were reported for slot coating. In their numerical simulation.

Saito and Scriven [15] examined the influence of flow parameters, such as the flow rate, the capillary
number and the Reynolds number, on the shape of the meniscus in slot coating. They observed
that the effect of inertia was the least evident to interpret given the non-monotonic response in the
meniscus profiles as they varied the Reynolds number. A similar non-monotonic response was also
reported more recently by Carvalho and Kheshgi [9] who plotted the numerically found film profiles
for different capillary numbers for constant Re/Ca ratio. Incidentally, this ratio is the Ohnesorge number
Oh−2

≡
Re
Ca [53], and not the “Property” number as sometime referred to in the coating literature.

The non-monotonic response becomes particularly clear when the separation angle and the radius
of curvature near the contact line are plotted against Re, displaying a maximum and a minimum,
respectively, which is illustrated in Saito and Scriven [15].

At the free surface (z = ζ), the velocity becomes

u(x, z = ζ) = εx1/3f′2(0) + ε
2x2/3f′3(0) =

( x
Re

)1/3
f′2(0) +

( x
Re

)2/3
f′3(0). (39)

We note that f′3(0) = G(1−G)−2/3e2 where e2 = 2.85. Both the initial slope f′3(0) and c2 increase
with positive G values, reflecting a higher order strengthening effect of the adverse pressure gradient
on the flow near the free surface. In contrast, the trend is reversed for negative G, pointing to a higher
order weakening effect of the favorable pressure gradient on the flow close to the free surface.

It is interesting to observe that both the free-surface height (or film thickness) and the velocity
depend on x

Re rather than x. This is also the case for the pressure along the free surface of the
meniscus, which is determined by inserting Equations (18)–(20) into condition (17). To the current
order, the pressure may be written as

Re2p(ξ, 0) = −
2
3

[( x
Re

)−2/3
f′2(0) + 2

( x
Re

)−1/3
f′3(0)

]
+

2
9

We−1
(
c1

( x
Re

)−5/3
+

c2

1−G

( x
Re

)−4/3
)
. (40)

Here We = Ca/Re is the Weber number. Thus, near the exit, the pressure behaves like x−2/3 in
the absence of surface tension, which is different from the x−1/2 behavior reported by Aidun [14].
Moreover, the strength of the pressure singularity depends intricately on inertia, surface tension and
the flow rate (or upstream pressure gradient). In the absence of surface tension, the singularity weakens
with inertia and the flow rate for both slot and blade coating. As mentioned earlier. Chang et al. [8]
observed that viscous and surface-tension effects become negligible for Re > 20. One expects the
pressure to be vanishingly small along the free surface. In this case, Equation (40) gives an estimate of
pressure on the order of Re−4/3.

Although surface tension can play a significant role, not only by becoming dominant near the exit,
but also by altering the force behavior as we shall see when we discuss the normal stress distribution
shortly. For now, we consider the effects of inertia and flow rate on the film height, the velocity and the
pressure along the film surface.

Figure 2 depicts the dependence of the film height (Figure 2a), the velocity (Figure 2b) and the
pressure (Figure 2c) along the free surface, on the flow rate (or pressure gradient) and inertia. It is
evident from the figure that as the dimensionless flow rate Q increases, the film height in Figure 2a
drops as expected, signalling a thicker film and a longer relaxation distance. This behavior agrees
well with existing numerical predictions as confirmed by comparing with Saito and Scriven [15] and
Carvalho and Kheshgi [9]. Very close to the exit, the film height (Figure 2a), the velocity (Figure 2b)
as well as the pressure (Figure 2c) increase sharply and monotonically with distance, for any flow
rate, indicating a strong contraction. This behavior is the result of the dominance of the x1/3 term in
Equations (38) and (39) near the origin. Although the height and the streamwise velocity components



Fluids 2020, 5, 180 13 of 44

are continuous at the exit (as they remain equal to zero immediately before x = 0), the flow behavior
is intrinsically singular through the surface slope, transverse velocity and stress components, and is
well illustrated in the pressure behavior near x = 0 (Figure 2c). We observe from Figure 2a that the
separation angle is consistently 90 degrees for the order of capillary and Reynolds numbers considered
here. The separation angle is the angle between the normal to the stationary slot or blade wall and the
normal to the surface at the contact line (x = z = 0). Further downstream, only the film at low flow
rate, typically depicting the behavior of a film in slot coating, continues to grow, resulting in a smaller
coating thickness. While the film height grows monotonically with distance for a drag film (Q = 0.5),
the free-surface height and velocity for blade coating (Q > 0.5) exhibit a maximum before decaying,
indicating a local expansion. However, the presence of the maximum should be interpreted with
some caution. The non-monotonic behavior suggests a relatively strong influence of the higher-order
x2/3 term, which should not dominate the leading-order x1/3 term if the expansions (38) and (39) are
to remain uniformly valid. However, this does not seem to be the case for the range of flow rates
reported in Figure 2. The expansion displayed for the thicker film in blade coating (Q > 0.5) appears
to be physically real as can be established from the numerical values of the various terms. However,
the validity of (38) and (39) also depends on the thickness of the free-surface layer II (boundary layer
along the free surface), which is assumed to be small compared to the free-surface height. The curves

in Figure 2a are based on the near-exit solution (38). The error is O
(

x
Re

)2/3
, except for the Q = 0.5

(G = 0), which is O
(

x
Re

)1/3
since c2(G = 0) = 0 as per Table 1. Despite the relatively large error, the case

Q = 0.5 is included to illustrate the trend as Q increases. The more accurate prediction is given in
Section 3.2 when the far field is examined. The pressure profiles in Figure 2c are essentially monotonic;
the pressure increases and decays asymptotically to zero. A slight overshoot ahead of the decay is
observed for the thicker coating films. Despite the clear dependence of the elongation rate, the second
term on the left of (17) that yields the wild non-monotonic dynamics in Figure 2b, the monotonicity
of the pressure is mainly caused by surface tension. Although this behavior is reported for We = 1,
the same trend is predicted essentially for any moderate level of surface tension. This behavior sharply
contrasts that of the normal stress, which depends strongly on surface tension as we shall now see.
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Figure 2. Meniscus profiles (a), corresponding streamwise velocity (b) and pressure (c) along the free
surface for various coating thickness or flow rates for We = 1. The drag-out case (Q = 0.5) is also
included for reference.

The influence of flow rate and surface tension on the (negative) primary normal stress difference
τtt − τnn (Hoop stress) along the free surface is displayed in Figure 3 for Re = 10. Both the cases of slot
coating (Q < 0.5) and blade coating (Q > 0.5) are illustrated in the presence (Figure 3a) and the absence
(Figure 3b) of surface tension. Intricate non-monotonic behavior can be expected for blade coating,
resulting from the dynamics already observed in Figure 2a,b, thus allowing the possibility of extrema,
and the waviness displayed in the free surface and velocity profiles. Indeed, Figure 3a shows that
the normal stress exhibits a relatively strong localized maximum followed by an asymptotic decay
towards zero further downstream. This behavior is reminiscent of that reported by Bajaj et al. [19]
for viscoelastic creeping flow. They examined numerically the influence of Weissenberg number and
viscosity ratio on the normal stress along the free surface for dilute polymer solutions. Their figures
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also show a local maximum for τtt − τnn close to the die exit followed by a decay similar to Figure 3a.
A major difference, however, is worth noting here: the plots of Bajaj et al. [19] do not clearly display
the singularity at the origin. They do assess, on the other hand, the existence and strength of the
singularity by examining the behavior of the rate-of-strain components. As to the crucial role of surface
tension, especially near the exit, it is demonstrated in Figure 3b, where the Hoop stress is plotted in
the absence of surface tension. Comparison between Figure 3a,b clearly indicates that the dynamics
exhibited in the stress near the origin in Figure 3a are caused by surface tension. Figure 3b shows that
the Hoop stress increases essentially monotonically, exhibiting a very weak overshoot for the thicker
coating film before decaying to zero.
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Figure 4 displays the variation with the inclination angle for Re =10 and We = 0.1 of the free-surface
curvature (Figure 4a) and pressure along the free surface (Figure 4b). The abscissa is the angle of
inclination of the normal to the free surface from the z direction, as depicted in the inset of Figure 4b.
We see that the curvature rises with increasing flow rate. This is expected as the meniscus in slot
coating contracts more than in blade coating. The results in Figure 4 are overall qualitatively similar to
the numerical results of Saito and Scriven [15] and Lee et al. [21], when compared to their figures for the
slot coating flow. The agreement is particularly obvious when comparison is made with the high Ca
curves of Saito and Scriven [15]. Similar to their curve for Ca = 2, we also find that the surface curvature
exhibits a change in concavity at low inclination angle for any flow rate. At low capillary number,
Saito and Scriven [15] as well as Lee et al. [21] predict a linear growth, which remains monotonic
for very low capillary number. Saito and Scriven observed that a large portion of the curvature is
constant when the capillary number is very small; but the curvature varies more and more rapidly,
displaying a maximum, as Ca increases, a behavior that is also reflected in the rapid variation and the
maxima we see in Figure 4a, especially for blade coating (Q > 0.4). Simultaneously, the pressure in
Figure 4b displays a similar linear growth for small inclination angle as in the earlier numerical studies,
but tends to increase sharply for larger angles as the singularity is approached near φ = 90 degrees.
This behavior is also captured by Lee et al. [21].

The similarity between our high-Re results and the high-Ca results at Re = 0 of Saito and
Scriven [15] highlights the crucial role of surface tension. In this regard, it is helpful to examine the
current predictions for the curvature relative to a flow with higher surface tension. For Ca < 1, the shape
of the meniscus near the separation line has often been approximated as a static meniscus, which was
deduced by Ruschack (1976) using a quasi-static approach where the shape of the meniscus is the
arc of a circle of constant curvature as predicted by Landau and Levich (1942). The theory imposes
an upper bound on the meniscus curvature as it cannot exceed 2

1−Q (when using our dimensionless
notations). Based on the results in Figure 4a, this criterion appears to be plausible at best for the lowest
flow rate considered here (Q = 0.4). This observation corroborates well that of Saito and Scriven [15]
who found that the quasi-static assumption is valid only for large surface tension, which is not the
case here. The convective (dynamic) effects are simply too dominant for Ruschak’s approximate to
approximation hold.

3.2. The Coating Profile near and Far from the Exit

In order to capture the coating profile at any location downstream of the exit, we exploit the flow
structure as the free-surface layer II grows and invades the entire film region, at a critical location x = xc.
Downstream of this location, the flow becomes of the boundary-layer or thin-film type. We exploit this
simplification and formulate the flow using a thin-film approach, and match it at x = xc with the flow
obtained earlier near the exit. Far from the exit for x > xc, the conservation equations, adherence and
no-penetration conditions at the moving substrate z = 1, and the kinematic and dynamic conditions at
the free surface z = ζ(x) reduce to

ux + wz = 0, Re(uux + wuz) = −Repx + uzz, pz = 0, (41)

u(x, z = 1) = 1, w(x, z = 1) = 0, (42)

w(x, ζ) = u(x, ζ)ζ′(x), (43)

uz(x, ζ) = 0 p(x, ζ) =
ζ′(x)
ReCa

. (44)
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We proceed by using a Karman–Pohlhausen approach, and integrate the momentum equation

across the film, using condition (43) and noting that px(x) =
ζ′′ (x)
ReCa , to obtain

d
dx

1∫
ζ

u2dz = −
ζ′′ (1− ζ)

ReCa
+ Re−1uz(x, z = 1). (45)
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Different levels of accuracy have been adopted in the literature for the velocity profile across
the film in the presence of inertia, ranging from the simplest parabolic, cubic and quartic profiles [2]
to spectral expansions [54,55]. Another alternative would be the use of the asymptotic approach of
Higgins and Scriven [40] for visco-capillary flow, which is based on a small departure from the plug
flow that prevails far downstream. For our purpose here, we adopt the parabolic profile, which is
the simplest and most commonly used, to obtain the following velocity distribution in terms of the
thickness χ(x) ≡ 1− ζ(x) as

u(x, z) = −
3
2
χ∞ − χ(x)
χ3(x)

[
(1− z)2

− 2χ(x)(1− z)
]
+ 1, (46)

where χ∞ = χ(x→∞) = Q is the coating film thickness far downstream. The velocity along the free
surface is then u(x, z = ζ) = 1

2

(
3χ∞χ − 1

)
. Substituting (45) into Equation (46) leads to the following

equation for the thickness of the coating meniscus:

5
ReCa

χ3 d2χ

dx2 −
(
χ2
− 6χ2

∞

)dχ
dx

+
15
Re

(χ− χ∞) = 0. (47)

This equation requires two boundary conditions, which can be imposed as initial conditions at the
location x = xc, where the near-exit profile given by (38) matches the far-exit profile dictated by (47).
For this, we choose to match the surface height and its slope. This leaves xc as unknown, which we
determine by matching the concavity. In the absence of surface tension, only the height and slope need
to be matched. In this case, (47) admits an analytical solution:

χ2
− χ2

c + 2χ∞(χ− χc) − 10χ2
∞ ln

(
χ− χ∞
χc − χ∞

)
=

30
Re

(x− xc), (48)

where χc ≡ χ(x = xc) is the thickness at xc. In this case, upon matching the thickness and the slope,
xc and χc are determined by solving the following two equations:

χc = 1− c1

( xc

Re

)1/3
−

c2

(1−G)

( xc

Re

)2/3
, (49)

45
χc − χ∞

χ2
c − 6χ2

∞

+ c1

( xc

Re

)−2/3
+ 2

c2

(1−G)

( xc

Re

)−1/3
= 0. (50)

It is not difficult to deduce that the matching location turns out to be simply proportional to Re,
whereas the corresponding thickness is independent of Re. Both quantities are of course functions of
the flow rate (minimum coating thickness).

Figure 5 depicts the composite thickness (Figure 5a) and the free-surface height (Figure 5b) profiles
with downstream position for a typical minimum blade coating thickness range (0.5 ≤ Q = χ∞ ≤ 0.9)
in the absence of surface tension. Figure 5a depicts the typical monotonic decrease in thickness with
distance. The profiles appear to saturate as Q approaches one. The matching location (see Table 2)
xc for each profile coincides with the intersection of the free-surface layer with z = 1, which suggests
that matching occurs further downstream for a thicker film, which is reflected in Figure 5b where the
free-surface (boundary) layer is plotted along with the surface height. Again, the matching location
coincides with the free-surface layer II reaching the moving substrate (z = 1). We observe that G drops
from 0 to −2.4 when Q increases from 0.5 to 0.9, indicating that a drop in pressure in the blade region
yields a thicker coating film and thinner free-surface layer. The thinning of the free-surface layer with
(negatively) increasing pressure gradient is expected as the favorable pressure difference effectively
contributes additional flow inertia in blade coating, as illustrated by Iliopoulos and Scriven [17].
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Table 2. Influence of flow rate on matching location and corresponding film thickness between the
flow near the exit and the flow far from the exit.

xc/Re χc χ∞=Q G

0.0173 0.7690 0.5 0

0.0206 0.825 0.6 −0.6

0.0442 0.824 0.7 −1.2

0.1539 0.814 0.8 −1.8

0.5824 0.865 0.9 −2.4
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An estimate of the error resulting from the use of the parabolic profile can be obtained by examining
the shear stress at the moving substrate. The shear stress along the wall far downstream is generally
deduced from

τxz(x ≥ xc, z = 1) = 3
χ(x) − χ∞
χ2(x)

. (51)

We consider the case of drag flow, in the absence of pressure gradient. In this case,

τxz(x, z = 1) = 3
2

2χ(x)−1
χ2(x) . Matching the shear stress yields the following equation for the film thickness

at x = xc: 2χ2
c − 6χc + 3 = 0, leading to the only admissible root: χc =

3−
√

3
2 = 0.634, which is close to

0.769 (from Table 2) but not exactly the same as a result of the parabolic approximation (46), suggesting
an error of 20%. Consequently, the thin-film Equation (47) is based on a crude approximation of the
parabolic velocity profile (see discussion by Weinstein and Ruschak [2]). Higher-order polynomials or
spectral representation may be used for a more accurate description [54,55]. Our aim here, however, is to
demonstrate how the current asymptotic theory, which is valid upstream of the exit and downstream
close the exit, can be matched at some location with the thin-film flow to provide a formulation to
predict the flow anywhere. A more thorough approach involves adopting the asymptotic flow as
initial condition for a computational (finite-element) implementation, thus avoiding having to deal
numerically with the singularity at the exit.

4. The Flow in the Core Layer I

The flow in the core layer (region I in Figure 1) remains predominantly of inviscid rotational
character. For this reason, the flow retains predominantly the CP profile since there is little viscous
mechanism for it to develop as it approaches the exit and moves beyond the exit. The core layer is
central in the current formulation as it is matched at the edge of each of the three boundary layers:
the free-surface layer (region II), the stationary wall layer near a slot die or blade (region III), and the
moving-wall layer near the substrate or web (region IV). Since the treatment is similar to earlier
studies on the symmetric jet, only a summary of the formulation is outlined here. In fact, the present
core formulation reduces to that of Tillett [31] by setting G = −1. The formulation of Khayat [37]
is also recovered in the limit of a Newtonian fluid. Since the core flow does not satisfy adherence,
the core formulations for the current wall jet and the symmetric jet are not affected by the nature of the
boundary at z = 1, irrespective of whether it is a solid line (for the wall jet) or a symmetry line (for the
symmetric jet).

The core layer is divided into two different regions: upstream (x < 0) and downstream (x > 0)
of the exit at x = 0. The solution of problems (4) is sought in each region separately. As in the
case of the symmetric free jet [31,37], we determine ψ and p by considering a correction to the base
Couette-Poiseuille flow resulting from its interaction with the free-surface layer (II). In this case,
the dominant corrections for both the stream function and the pressure turn out to be of O

(
Re−1

)
so that

ψ(x, z) = ψ0(x, z) + Re−1ψ(x, z), p(x, z) = Re−1p(x, z). (52)

Here, we recall that ψ0 =
(

1−G
2

)
z2 + G

3 z3 is the Couette-Poiseuille stream function given in (1).

In this case, ψ(x, z) represents the deviation from the base flow due to its interaction between the core
and free-surface layer. The character of the base flow is similar to the laminar flow of a free jet [31]
and channel or tube flow with constriction [51,52,56] at high Reynolds number. In such cases, as well,
the fully developed (Poiseuille) profile is the flow to leading order. When examining the flow with
severe constriction, Smith [56] expanded (1) as in (52) above. Although Smith’s leading order terms in
(1) still satisfy the inviscid equations of motion, they do not exactly correspond to fully developed flow
as in (52). Smith adopted the free-streamline theory, and obtained the proper inviscid limiting form of
the Navier–Stokes equations [56].
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We observe that, given the ellipticity of the governing equations in the streamwise direction,
the departure from the Couette–Poiseuille profile extends upstream to include the region x < 0,
causing the upstream influence. Substituting (52) into (4) leads to

u0ψxz − u0zψx = −px + 2G, u0ψxx = pz. (53)

Upon eliminating the pressure and noting that w = −ψx, one deduces the following problem for
w(x, z) over the ranges −∞ < x < ∞ and 0 ≤ z ≤ 1:

wxx + wzz −
u′′0
u0

w = 0, (54)

w(x→ −∞, z) ∼ 0, (55)

w(x < 0, z = 0) = w(−∞ < x < ∞, z = 1) = 0, (56)

w(x > 0, z→ 0) ∼
2G

1−G
. (57)

In addition, w must remain bounded as |x| → ∞ . Condition (57) is deduced from (A22), which is
obtained from the matching between the core and the free-surface layers. The solution of problem
(54)–(57) will now be examined separately for x < 0 and x > 0.

For x < 0, it is not difficult to see that problem (54)–(57) admits a general solution of the following
form [31,37]:

w(x < 0, z) = −
∞∑

n=1

AneβnxVn(z). (58)

Here, Vn(z) and βn are orthogonal shape functions and corresponding eigenvalue governed by:

V′′n +

β2
n −

u′′0
u0

Vn = 0. (59)

Vn(0) = 0, (60)

Vn(1) = 0. (61)

The solution of (59)–(61) is obtained numerically subject to the additional normalization condition
V′n(0) = 1. Figure 6 depicts the profiles of the shape functions for the first five modes for Q
= 0.35. We observe that βn increases with n (see Appendix B). For large n, problem (59)–(61)
tends to a Sturm-Liouville problem with eigenvalues βn ∼ nπ and trigonometric shape functions

Vn(z) ∼
sin(nπz)

nπ . The profiles in Figure 6 clearly acquire the trigonometric character for larger n values.
The profiles for other Q values present the same trend.
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The stream function, velocity components and pressure to O
(
Re−1

)
are then given by

ψ(x < 0, z) = (1−G)
z2

2
+ G

z3

3
+ Re−1

∞∑
n=1

An

βn
eβnxVn(z), (62)

u(x < 0, z) = (1−G)z + Gz2 + Re−1
∞∑

n=1

An

βn
eβnxV′n(z), (63)

w(x < 0, z) = −Re−1
∞∑

n=1

AneβnxVn(z), (64)

p(x ≤ 0, z) = Re−1

2Gx−
∞∑

n=1

An

βn
eβnx

([
(1−G)z + Gz2

]
V′n − [(1−G) + 2Gz]Vn

). (65)

We observe that the pressure at the stationary die or blade (z = 0) is simply Rep(x ≤ 0, z = 0) = 2Gx,
corresponding to fully-developed flow. Additional correction is determined when we examine
the boundary layer near the stationary wall in Section 5. In this regard, we emphasize that the
solution in the core layer is predominantly inviscid rotational. Consequently, the flow field given
by (62)–(65) is not expected to satisfy adherence at the moving substrate (z = 1) and the stationary
slot or blade wall (z = 0). This becomes particularly evident when examining the velocity at the

walls: u(x < 0, z = 0) = Re−1
∞∑

n=1

An
βn

eβnx , 0 and u(x < 0, z = 1) = 1 + Re−1
∞∑

n=1

An
βn

eβnxV′n(z = 1) , 1.

This signals the presence of the slip layers III and IV in Figure 1, which will be dealt with in
Sections 5 and 6, respectively.

The coefficients An are determined by matching the inside and outside flows at the exit, x = 0,
and will therefore be determined after the outside flow is examined next. Thus, for x > 0, the solution
of problem (54)–(57) takes the following form:
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w(x > 0, z) = 2
G

1−G
V0(z) +

∞∑
n=1

Ane−βnxVn(z). (66)

The additional term V0(z) contributes to the matching of the core flow with the flow in the
free-surface layer. It satisfies the following equation and boundary conditions:

V′′0 −
u′′0
u0

V0 = 0, V0(0) = 1, V0(1) = 0, (67)

which admits an analytical solution:

V0(z) = 2kz(1 + kz) ln
∣∣∣∣∣ z
1 + kz

∣∣∣∣∣+ 1 + 2kz + z(1 + kz)
[
2k ln|1 + k| −

1 + 2k
1 + k

]
, (68)

where k = G
1−G . It is useful to examine the first contribution in (66) as it is the term that survives with

increasing downstream distance. The profiles of G
1−G V0(z) are shown in Figure 7 for 0.4 ≤ Q ≤ 0.8.

A couple of interesting distinctions can be made between slot coating (Q ≤ 0.5) and blade coating
(Q ≥ 0.5). For slot coating, G

1−G V0(z) decreases monotonically with z and remains positive. In contrast,
it exhibits a minimum and remains negative for blade coating. This behavior suggests that the vertical
flow is predominantly towards the moving substrate in slot coating, and away from it in blade coating.
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As mentioned above, the coefficients An are found by matching the flow at the exit. For this
purpose, equating the expressions (58) and (66) at x = 0 yields

V0(z) = −
1−G

G

∞∑
n=1

AnVn(z), (69)
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which is a spectral representation of V0(z) in terms of the orthogonal shape functions Vn(z).
Upon projecting and noting that 〈VnV0〉 =

1
β2

n
, where the brackets < > denote integration over

the interval 0 ≤ z ≤ 1, we have

An = −
( G

1−G

)
〈VnV0〉〈

V2
n

〉 = −
( G

1−G

) 1

β2
n

〈
V2

n

〉 . (70)

A useful relation is obtained by first noting from (68) that V′0(1) = −(1−G). Consequently,
upon differentiating (69) and evaluating it at z = 1, we have

∞∑
n=1

AnV′n(1) = G. (71)

Finally, the flow field downstream of the die or blade exit become

ψ(x > 0, z) = (1−G)z2 + G
z3

3
+ Re−1

−2
G

1−G
xV0(z) +

∞∑
n=1

An

βn
e−βnxVn(z)

, (72)

u(x > 0, z) = (1−G)z + Gz2 + Re−1

−2
G

1−G
xV′0(z) +

∞∑
n=1

An

βn
e−βnxV′n(z)

, (73)

w(x > 0, z) = Re−1

2 G
1−G

V0(z) +
∞∑

n=1

Ane−βnxVn(z)

, (74)

p(x ≥ 0, z) = −Re−1
∞∑

n=1

An

βn
e−βnx

([
(1−G)z + Gz2

]
V′n − [(1−G) + 2Gz]Vn

)
. (75)

Here again, we see that the core solution does not ensure adherence at the moving
substrate. This is clearly reflected in the value of the streamwise velocity at the moving substrate:

u(x > 0, z = 1) = 1 + Re−1
[
2Gx +

∞∑
n=1

An
βn

e−βnxV′n(1)
]
, 1, indicating the existence of a slip layer near

the substrate, which will be discussed in Section 6. Interestingly, we can further see that the streamwise

elongation rate component is also not zero since ux(x > 0, z = 1) = Re−1
[
2G−

∞∑
n=1

Ane−βnxV′n(1)
]
, 0.

In particular, using (71), we see that the exit ux(x = 0, z = 1) = GRe−1. These expressions will help
estimate the thickness of the slip layer IV (see Section 6).

Unlike the velocity, expressions (65) and (75) for the core pressure turn out to be valid everywhere:
in the core layer as well as at the stationary and the moving walls and near the free surface. The uniform
validity of the pressure can be shown by determining the composite solution across the film [31,37].
Physically, the reason for the validity of the core pressure in the boundary layers is the result of the
hydrostatic nature of the pressure in each layer and its invariability across each layer. Interestingly,
while the core pressure given by (65) and (75) yields a correction to the Poiseuille level at any location,
this correction is not felt at the stationary slot or blade wall to the current order. In fact, setting z = 0 in
(65) and recalling that Vn(0) = 0 from (60), we obtain the linear behavior: p(x ≤ 0, z = 0) = 2Re−1Gx.
The departure from the Poiseuille level will be established once we examine the pressure in the slip
layer III near the stationary wall in the next Section 5. In contrast, the departure becomes increasingly
evident for z > 0 as one approaches the moving substrate for a given x position. Indeed, evaluating the
pressure at the moving substrate (75) gives

Rep(x ≤ 0, z = 1) = 2Gx−
∞∑

n=1

An

βn
eβnxV′n(1), (76)
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Rep(x ≥ 0, z = 1) = −
∞∑

n=1

An

βn
e−βnxV′n(1). (77)

These expressions clearly signal the departure from the Poiseuille level. Figure 8 displays the
pressure distribution along the moving substrate, typically illustrating the case for slot (Figure 8a)
and blade (Figure 8b) coating. For each flow rate, the figure shows the linear behavior of the pressure
starting far upstream, dictated by the 2Gx term in (76). Upon approaching the exit, the pressure
experiences an exponential deviation, which is sustained beyond the exit as the pressure continues to
decay and relaxes eventually to zero. The rate of relaxation is slower for a thinner film in slot coating
and a thicker film in blade coating. A similar behavior is also predicted for the pressure distribution
along the centerline of a symmetric planar jet as shown by Khayat [37] for the Newtonian limit (n = 1).
Incidentally, the pressure continues to decrease for a shear-thinning fluid.

The departure from the Poiseuille level may be estimated by examining the pressure at the

exit from (76)–(77), namely Rep(x = 0, z = 1) = −
∞∑

n=1

An
βn

V′n(1). This expression, however, is not

particularly illuminating as the dependence on the flow rate is only implicit through the value of An

and βn, as well as V′n(1), as indicated in the table in Appendix B. In contrast, the influence of Q on the
departure in the pressure gradient at the exit can be determined explicitly. Indeed, since the pressure
gradient must match at the exit, then upon equating px(x = 0, z = 1) from (76) and (77), we find that

Repx(x = 0, z = 1) =
∞∑

n=1

AnV′n(1) = G = 3(1− 2Q), (78)

which explicitly reflects the dependence of the departure from the constant upstream slope
2G = 6(1− 2Q). Thus, the pressure gradient along the moving substrate evolves from 2G = 6(1− 2Q)

far upstream and reduces to G = 3(1− 2Q) at the exit, which is also reflected Figure 8. Only the drag
flow does not experience any change in the (zero) magnitude of the pressure gradient. Incidentally,
(78) shows that (71) is equivalent to matching the pressure gradient at x = 0.

Interestingly, while the core pressure near the moving substrate exhibits a departure from the
Poiseuille level, it retains the same behavior near the stationary die or blade. Another interesting
observation worth making is the absence of transverse pressure gradient near both the stationary and
moving walls. This is easily confirmed by showing from (65) and (75) that pz(x, z) vanishes at z = 0 an
z = 1. The absence of a transverse pressure gradient suggests, in turn, the existence of a boundary or
slip layer near each wall. The flow structure in each slip layer is examined in the next two sections.

5. The Flow Near the Stationary Slot and Blade Walls (Slip Layer III)

The flow structure in the boundary or slip layer III near the die or blade wall, the lower-wall
layer, is examined in this section. In this layer, similar to the free-surface layer I, the transverse
coordinate near the boundary will be taken as y = z = εη, where ε is the same small parameter used
before. To examine the structure of layer III upstream of the channel exit, the near-wall coordinates
are introduced as x = ξ and z = εη. Similar to the free-surface layer, matching with the core flow

upstream of the channel exit shows that ψ ∼ (1−G)
y2

2 = (1−G)ε
2η2

2 as η→∞ . Therefore, ψmust
be of O

(
ε2

)
close to the lower wall. In this case, the transformed Equation (4), along with conditions

(10) and (11) become (dropping the overbar):

ψηψξη −ψξψηη = −ε2pξ + ε
2ψηηη + ε

4ψξξη,

ψηψξξ −ψξψξη = pη + ε
2ψξηη + ε

4ψξξξ,

ψ(ξ,η = 0) = ψη(ξ,η = 0) = 0,

ψ(ξ→ −∞,η) ∼ (1−G)ε
2η2

2 + Gε
3η3

3 .

(79)
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The streamwise and transverse velocity components become u = 1
εψη and w = −ψξ, respectively.

Noting from the expressions (79) that p is of order ε2, the flow field expansion reads

ψ(ξ,η) = ε2Ψ2(ξ,η) + ε3Ψ3(ξ,η) + · · · , (80)

p(ξ,η) = ε2P2(ξ,η) + ε3P3(ξ,η) + · · · . (81)
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On inserting (80) and (81) in (79), we obtain a hierarchy of problems to different orders, each problem
requiring only one boundary condition in the x direction. The problem is therefore well posed by
imposing the far-upstream flow as condition. Consequently, the matching of the upstream flow with
the flow in the free-surface layer II at the channel exit (x = 0) is not necessary. Moreover, the rescaling
in the streamwise direction is not required unless one wants to capture the flow structure very close to
the exit, and the distance x is assumed to remain at least of O(1). In contrast to the flow in a constricted
(dilated) channel [51], where the streamwise direction x is rescaled in terms of the inverse power of the
indentation slope (and the Reynolds number), the flow is not captured very close to the origin in the
present formulation.

We determine the additional boundary conditions to solve the problem (79) by matching between
the lower-wall and the core layers. Proceeding as in Section 2 and Appendix A, we find that

Ψ2 ∼ (1−G)η
2

2 and Ψ3 ∼ Gη
3

3 for large η. It is not difficult to show that the solution is trivial in both
cases. Thus,

Ψ2(ξ,η) = (1−G)
η2

2
, P2(ξ,η) = 0, (82)

Ψ3(ξ,η) = G
η3

3
,P3(ξ,η) = 2Gξ. (83)

Thus, up to O
(
ε3 = Re−1

)
, the flow retains its Couette–Poiseuille character near the stationary die

or blade wall. The correction is established when considering the next order. The equations for Ψ4 and
P4 are

Ψ2ηΨ4ξη −Ψ4ξΨ2ηη = −P4ξ + Ψ4ηηη, P4η = 0. (84)

Matching with the core flow by equating E3H4ψ = H4E3ψ yields the desired matching
condition Ψ4(ξ,η→∞) ∼ ηψ3z(x, z = 0) where, upon recalling that V′n(z = 0) = 1, we obtain

ψ3z(ξ, z = 0) =
∞∑

n=1

An
βn

eβnξ from (62). By using (82) and eliminating the pressure from (84), the problem

for Ψ4(ξ,η) becomes,

(1−G)ηΨ4ξηη = Ψ4ηηηη,

Ψ4(ξ,η = 0) = Ψ4η(ξ,η = 0) = 0, Ψ4(ξ→ −∞,η) ∼ 0,

Ψ4(ξ,η→∞) ∼ η
∞∑

n=1

An
βn

eβnξ.

(85)

The solution of problem (85) is not trivial, signaling the departure from the C-P flow. We seek a

similarity solution of the form Ψ4(ξ,η) =
∞∑

n=1

An
βn

eβnξFn(η), where the functions Fn(η) are governed by

F
′′′
′

n = (1−G)ηβnF′′n ,

Fn(0) = F′n(0) = 0, F′n(∞) ∼ 1, F′′n (∞) ∼ 0.
(86)

Although an analytical solution is possible in terms of Airy functions, problem (86) can be
more conveniently solved numerically. The problem is further simplified by eliminating the
explicit dependence on G and βn by introducing the transformation η→ (1−G)1/3

β1/3
n η and

Fn → (1−G)1/3
β1/3

n Fn .
Figure 9 illustrates the profiles of Fn and its derivatives plotted against η, reflecting a

monotonic behavior of Fn(η) and its derivatives. Of particular physical significance are the values
F′′n (η = 0) = c3(1−G)1/3

β1/3
n and F′′′n (η = 0) = c4(1−G)2/3

β2/3
n , which, as we shall see, are directly

related to the shear stress at the wall and pressure, respectively. Here c3 = 1.0651 and c4 = −0.7765.
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n F′′n as curve (3) and (1−G)−2/3
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n F′′′n as curve (4).

To the current order, we determine the flow field in the slip layer III by inserting (82) and (83) as
well as Ψ4 into (80), yielding

ψ(x, z) =
1−G

2
z2 +

G
3

z3 + Re−4/3
∞∑

n=1

An

βn
eβnxFn

(
Re1/3z

)
. (87)

Of particular interest are the pressure and the shear stress at the wall:

Rep(x) = 2Gx + Re−1/3c4(1−G)2/3
∞∑

n=1

An

β1/3
n

eβnx, (88)

τxz(x, z = 0) = 1−G + c3(1−G)1/3Re−2/3
∞∑

n=1

An

β2/3
n

eβnx. (89)

We recall that the pressure is hydrostatic across the slip layer III, which is reflected by the absence of
the z dependence in (88). Figure 10 illustrates the influence of the flow rate on the pressure (Figure 10a)
and the wall shear stress (Figure 10b) at Re = 10. The range Q < 0.5 is taken to correspond typically to slot
coating, and Q = 0.5 corresponds to drag flow. In this case, the adverse pressure gradient in Figure 10a
opposes the action of the forward translation of the substrate, exhibiting the constant positive gradient
2G = 6(1− 2Q) far upstream. However, the pressure rises rather rapidly as the flow approaches the die
exit after becoming positive at a point that depends on the flow rate. However, this dependence is not
monotonic. As Q departs (decreases) from the drag-flow level, Q = 0.5, where there is no change in the
pressure, the pressure rises at the exit, but only to reach a maximum around Q = 0.4 and drops again
as illustrated for Q = 0.35. This non-monotonicity is a consequence of flow separation, which will be
discussed shortly. More generally, the rise in pressure depends also on inertia; its behavior is estimated
from (88) to be Rep(x = 0, z) ∼ −Re−1/3. We observe that the explicit dependence on Q is not evident
from (88) since the coefficients An and eigenvalues βn also depend on Q (or G as shown in Appendix B).
The shear stress plots in Figure 10b show that the stress experiences a drop near the exit. We have also
included the shear stress curves that correspond to the Couette–Poiseuille level for each flow rate as
asymptotes, which roughly help locate the inception of the slip layer. The rise in adverse pressure above
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the Poiseuille level (Figure 10a) is caused by the flow acceleration as the film approaches the exit; the flow
converges sharply as the film contracts at the exit (see Figure 2). The rise in the pressure is accompanied
by a drop in the shear stress, resulting in a loss in forward flow momentum; the increase in pressure in
the direction of the flow is, of course, akin to an increase in the potential energy of the fluid, leading to a
reduced kinetic energy and a deceleration of the fluid.
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We observe that the flow in the wall layer is slower than in the core layer, and therefore expect
a greater influence of the increasing pressure gradient. This seems to be particularly the case for a
thinner coating film, here typically illustrated by Q = 0.35 for slot coating in Figure 10. The adverse
pressure gradient is sufficiently large for the shear stress to vanish and a separation to eventually occur,
with flow reversal occurring as it separates from the die wall.

We consider next the case of blade coating, which is typically illustrated in Figure 11, where we
display the pressure (Figure 11a) and the wall shear stress (Figure 11b) for Q > 0.5 and Re = 10. The drag
flow (Q = 0.5) is again included for reference. The pressure at the blade exit drops below atmospheric
for the same reason as the rise in pressure in slot coating, namely as a result of the meniscus curvature
and the film acceleration while moving along curved streamlines (see Figure 4a). For a higher flow rate,
the fall in pressure is sharper, with a corresponding sharper rise in the wall shear stress (Figure 11b).
Thus, a thicker film has to adjust more rapidly in height and velocity as Figure 2 indicates. Although
the profiles in Figure 11 somewhat mirror those in slot coating, there are two important distinctions
to observe. While the deviation from the Poiseuille level is non-monotonic with respect to Q for slot
coating, the response is monotonic for blade coating (Figure 11a). This monotonicity is also reflected in
the location of the inception of the slip layer, which coincides with the location of departure of the shear
stress from the Couette-Poiseuille level, as illustrated in Figure 11b. More importantly, in contrast to
slot coating, there is no possibility for separation in blade coating since there is no adverse pressure
gradient (Figure 11a) and the wall shear stress remains positive (Figure 11b). Finally, the drop in
pressure below atmospheric has been reported in the literature, which we will elucidate further next.

In their computational analysis of high-speed blade coating, Iliopoulos and Scriven [17] reported on
pressure drop below atmospheric, similar to the drop predicted by the present formulation (Figure 11a).
Direct full quantitative comparison is difficult since Iliopoulos and Scriven included the effect of forces
such as shear thinning, the elastic deformation of the substrate and blade, as well as the wear on
the blade from particle collisions, which are not accounted for in our study. Nevertheless, we will
see that the comparison reveals important fundamental agreement and discrepancies when inertia is
involved. In any case, the effect of the various additional forces do not seem to make any significant
qualitative and quantitative difference, which can be confirmed by referring to figures of Iliopoulos
and Scriven [17]. These figures indicate that the pressure upstream of the blade rises gradually from
ambient to a sharp peak at the entrance to the blade region. The adverse pressure gradient causes the
deflection of the excess liquid. The pressure then decreases linearly across the channel between the
blade and the moving substrate, and drops below atmospheric at the blade exit. As mentioned earlier,
this further drop is caused by the meniscus curvature and the film acceleration while moving along
curved streamlines. The pressure then rises gradually back to atmospheric level as the film tends to
uniform (plug) flow conditions.
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Figure 11. Pressure (a) and shear stress (b) distributions along the stationary blade or die wall for
Re = 10 and various coating thicknesses (Q ≥ 1/2). Also added are the Couette–Poiseuille levels in (b)
to show the leading edge of the wall layer far upstream.

This behavior is also captured by the present theoretical analysis, which is depicted from the
pressure profiles in Figure 12 for the three cases considered by Iliopoulos and Scriven [17], namely for
Re = 1, 5 and 12 and corresponding flow rates of 0.58, 0.6 and 0.62, respectively. We have also included
Figure 9 of Iliopoulos and Scriven as the top-right inset for reference, which depicts the pressure
profiles for the trailing stiff blade geometry. We note that we used a much narrower streamwise
range in Figure 12 than in the inset. In addition, our ambient pressure is 0 as opposed to 1 in the
inset. Although the same flow rates are used by Iliopoulos and Scriven (inset), the present pressure
gradients are higher. This is expected since the shear stress is higher for a Newtonian fluid. The flow
rates used in Figure 12 were deduced from Figure 10 of Iliopoulos and Scriven [17] where the coating
thickness is plotted against the Reynolds number. Incidentally, as they report: “Figure 10 suggests
that for a stiff trailing blade with deformable substrate, raising the Reynolds number, or equivalently
increasing the substrate speed, the liquid density, or decreasing the viscosity, leads to a thicker coating
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film. For Re around 55, the coated thickness becomes equal to the gap between the blade and the
substrate”. This response is in line with the basic premise of the present theory which stipulates that the
thickness increases with inertia, resulting from the drop in viscous effects responsible for the onset of
the free-surface layer and the ensuing film contraction. In fact, the film thickness is equal to the channel
gap as Re tends to infinity. In this case, the flow retains its CP profile across the exit region and further
downstream. We emphasize that the CP is a solution of the Euler’s equations. Another important
agreement between the theoretical and numerical predictions is the dependence of the pressure drop
below atmospheric on inertia. This is reflected in the inset at the bottom left of Figure 12, where we plot
Rep(x = 0) against Re based on the three cases reported in the main figure. Clearly, the trend in the
numerical and theoretical data points is essentially the same. The pressure at the exit increases rapidly
in the small Re range and tapers (decaying to zero) for large Re. More precisely, expression (88) indicates

that the pressure at the exit reduces to Rep(x = 0) = Re−1/3c4(1−G)2/3 ∞∑
n=1

An

β1/3
n

, which suggests that

the pressure drops below atmospheric is of order Re−1/3. However, we note that if the flow rate (or G)
varies with the Reynolds number as the data of Iliopoulos and Scriven [17] seem to suggest for a
flexible substrate, then the dependence of the pressure drop on Re may differ slightly. We recall that An

and βn are G dependent (see Appendix B). In fact, it seems that Rep(0) behaves like Re−1/7, a behavior
which is surprisingly the same for both the theoretical and numerical predictionsFluids 2020, 5, x 37 of 51 
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Figure 12. Pressure profiles along the stationary blade (x < 0) and the free surface (x > 0) for Re = 1, 5
and 12 (Q = 0.58, 0.6 and 0.62). Inset on top right shows Figure 13 from Iliopoulos and Scriven [17],
and inset on bottom left shows the values of Rep(0) against Re from current theory (squares) and the
numerical results of Iliopoulos and Scriven [17] (circles).
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Figure 13. Influence of the flow rate on the shear stress distribution along the moving substrate
at Re = 10 for (a) Q ≤ 1/2 and (b) Q ≥ 1/2. Drag flow corresponds to Q = 1/2. Corresponding
fully-developed profiles are included in lighter lines.

Figure 12 reveals, however, two fundamental features that do not seem to be captured by the
numerical simulation (top-right inset). The first is the accelerated drop below atmospheric near the exit
(main Figure 12) as opposed to the continuous linear drop in the inset. This means that the numerical
simulation does not indicate the existence of any upstream influence, which is rather inaccurate given
the elliptic nature of the governing equations. The second discrepancy concerns the stress singularity
at the exit, which should inevitably be reflected in the pressure singularity as shown in figure but not
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in the inset. The pressure singularity is a consequence of elongational effect; near x = 0, the streamwise
momentum equation reduces to the balance between the pressure gradient and the gradient of the
excess normal stress, thus yielding Repx = uxx. Consequently, the jump in ux from zero to a large
positive value (see Figure 2b) leads to the jump in the pressure. The pressure singularity can manifest
itself numerically in the form of spikes as reported in Figure 11b of Mitsoulis and Athanasopoulos [50].
We suspect that the singularity was smoothed over in the finite-element calculation of Iliopoulos and
Scriven [17]. As we shall see next, the flow is very different in the slip layer IV along the moving
substrate. We have already reported on the pressure profiles in Figure 8, which turn out to be smooth.
The shear stress profiles require further development as we shall see in the next section.

6. The Flow Near the Moving Substrate (Slip Layer IV)

To examine the structure of the slip layer IV near the moving substrate, we let y = 1 − z > 0.
The scaling in the transverse direction is changed by writing y = γη > 0, where γ is the small parameter
in the problem, defined as γ = Re−β or Re = γ−1/β, whereβ is to be determined. Similar to the analysis
of the free-surface layer II and the slip layer III, the following change of coordinates is introduced, namely
x = ξ, z = 1− γη. Letting ψ(ξ,η) = 1− G

6 +ψ(ξ,η) and proceeding as before, we see that in order to
match the flow at the edge of the layer IV to the core layer I, the stream function and pressure must

tend to ψ(ξ,η→∞) ∼ −γη and p(ξ,η→∞) ∼ ε3
[
2Gx−

∞∑
n=1

An
βn

eβnxV′n(1)
]
, respectively, to lowest

order in γ. In this case, for the inertial and viscous terms to balance in the transformed momentum
equations, we must have β = 1/2. Therefore, Re = γ−2 = ε−3 and γ = ε3/2. In this case, the problem
for ψ(ξ,η) and p(ξ,η) becomes (dropping the bar):

ψηψξη −ψξψηη = −ε3pξ − ε
3/2ψηηη − ε

9/2ψξξη,

ψηψξξ −ψξψξη = pη − ε
3/2ψξηη − ε

9/2ψξξξ,

ψ(ξ,η = 0) = 0, ψη(ξ,η = 0) = −ε3/2,

ψ(ξ→ −∞,η) ∼ −ε3/2η+ ε3η2
(

1+G
2

)
−Gε9/2 η3

3 .

(90)

Additional conditions for the stream function and the pressure are established from matching
with the core flow. However, these conditions are not the same upstream (x < 0) and downstream
(x > 0) of the exit. The two problems will be treated separately in each region. However, for any x,
the expansions of the stream function and the pressure take the forms:

ψ(ξ,η) = 1−
G
6
+ ε3/2Ψ2(ξ,η) + ε3Ψ3(ξ,η) + ε9/2Ψ9/2(ξ,η) + . . . , (91)

p(ξ,η) = ε3P3(ξ,η) + ε4P4(ξ,η) + . . . . (92)

Proceeding as in the previous sections, we find that the first two terms are contributions to the
Couette-Poiseuille flow:

Ψ3/2(ξ,η) = −η, (93)

Ψ3(ξ,η) =
(1 + G

2

)
η2. (94)

The correction occurs at the next order, O
(
ε6

)
, and the problem is governed by

Ψ9/2ξη = P3ξ + Ψ9/2ηηη, (95)

P3η = 0, (96)

Ψ9/2(ξ,η = 0) = Ψ9/2η(ξ,η = 0) = 0, (97)
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Ψ9/2(ξ→ −∞,η) ∼ −
G
3
η3 , Ψ9/2(ξ,η→∞) ∼ −

G
3
η3. (98)

We consider the solution of problem (95)–(98) separately upstream and downstream of the exit.
For x < 0, the pressure remains dictated by its core value from (65):

p3(x ≤ 0,η→∞) ∼ 2Gx−
∞∑

n=1

An

βn
eβnxV′n(1), (99)

which, when inserted in (95), leads to the following equation for Ψ9/2(ξ < 0,η):

Ψ9/2ξη = −
∞∑

n=1

AneβnxV′n(1) + Ψ9/2ηηη + 2G. (100)

The solution may be written as Ψ9/2(ξ < 0,η) = −G
3 η

3 +
∞∑

n=1
AneβnxV′n(1)Gn(η), where the

coefficients Gn(η) are governed by

G′′′n −βnG′n − 1 = 0, Gn(0) = G′n(0), G′′′n (∞) ∼ 0. (101)

This problem admits an analytical solution Gn(η) = −η+ 1√
βn

(
1− e−

√
βnη

)
, and the stream

function near the moving substrate becomes

Ψ(ξ < 0,η) = 1− G
6 −Re−1/2η+ Re−1

(
1+G

2

)
η2
−Re−3/2 G

3 η
3

−Re−3/2
∞∑

n=1

An
βn

eβnxV′n(1)
[
η− 1√

βn

(
1− e−

√
βnη

)]
.

(102)

When expressed in terms of z, this expression leads to the following expression for the velocity
and the shear stress near the moving substrate:

u(x < 0, z) = u0(z) + Re−1
∞∑

n=1

An

βn
eβnxV′n(1)

(
1− e−

√
βnRe(1−z)

)
, (103)

τxz(x < 0, z) = 1−G + 2Gz−Re−1/2
∞∑

n=1

An√
βn

eβnxV′n(1)e
−

√
βnRe(1−z). (104)

The exponential term that constitutes the main correction and ensures adherence at the
moving substrate. Finally, the skin drag coefficient along the wall for x < 0 becomes

τxz(x < 0, z = 1) = 1 + G−Re−1/2
∞∑

n=1

An√
βn

eβnxV′n(1). This expression can be used to estimate the

starting point of the slip layer IV, a point where the flow begins to deviate from the Couette-Poiseuille
limit. Thus, the commencement of the slip layer would correspond, in practice, to a position x0

satisfying

∣∣∣∣∣∣∣∣
1+G−Re−1/2

∞∑
n=1

An√
βn

eβnx0 V′n(1)

1+G

∣∣∣∣∣∣∣∣ equal to a small tolerance. Of course, the starting point depends

on Q and Re (see below). The slip layer IV should not be confused with the boundary layer examined
by Carvalho and Kheshgi [9], which emanates at the dynamic contact line of the upstream meniscus in
slot coating. Obviously, the upstream meniscus is not accounted for in the present formulation.

For x > 0, the problem is much more complicated, but remains mathematically manageable.
The difficulty stems from the core pressure (65), which takes a different form than (99):

P3(x > 0,η→∞) ∼ −
∞∑

n=1

An

βn
e−βnxV′n(1), (105)
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which, when inserted in (95), leads to the following equation for Ψ9/2η(ξ > 0,η):

Ψ9/2ξη =
∞∑

n=1

Ane−βnxV′n(1) + Ψ9/2ηηη. (106)

In addition to conditions (97), Equation (106) must be solved subject to flow matching at the
channel exit (x = 0):

Ψ9/2η

(
ξ = 0+,η

)
= Ψ9/2η(ξ = 0−,η) = −Gη2

−

∞∑
n=1

An

βn
V′n(1)

(
1− e−

√
βnη

)
. (107)

The solution may be conveniently written in the form

Ψ9/2η(ξ,η) = −Gη2
−

∞∑
n=1

AnV′n(1)
[
Un(ξ,η) +

1
βn

(
1− e−

√
βnη

)]
, (108)

where the coefficients Un(ξ,η) are governed by the following problem

Unξ = Unηη − e−
√
βnη + 2− e−βnx,

Un(ξ,η = 0) = Un(ξ = 0+,η) = 0,
(109)

which is of the transient heat conduction type with a source term, admitting the solution:

Un(ξ,η) =
ξ∫

0

∞∫
0

2−e−βns
−e−
√
βny

√
4π(ξ−s)

[
exp

(
−

(η−y)2

4(ξ−s)

)
− exp

(
−

(η+y)2

4(ξ−s)

)]
dyds

=
ξ∫

0

(
2− eβn(ξ−t)

)
erf

(
η
√

4t

)
dt− 1

βn

(
1− eβnξ

)
sinh

(√
βnη

)
−

1
2

ξ∫
0

eβnt
[
e
√
βnηerf

(
2
√
βnt+η

2
√

t

)
− e−
√
βnηerf

(
2
√
βnt−η

2
√

t

)]
dt.

(110)

This, in turn, yields the following expression for the velocity to O
(
Re−1

)
near the moving substrate:

u(x > 0, z) = (1−G)z + Gz2 + Re−1
∞∑

n=1

AnV′n(1)
[

1
βn

(
1− e−

√
βnη

)
+ Un(ξ,η)

]
, (111)

which is easily evaluated numerically. The shear stress or drag at the substrate takes the following
form to O

(
Re−1/2

)
:

τxz(x > 0, z = 1) = 1 + G−Re−1/2
∞∑

n=1

AnV′n(1)

4
√

x
π
+

1− eβnx
√
πβn

+
eβnxerfc

(√
βnx

)
√
βn

. (112)

We recall again that the pressure is hydrostatic across the slip layer IV, and therefore remains
as in Figure 8. Figure 13 illustrates the influence of the flow rate on the wall shear stress at Re = 10.
The ranges Q < 0.5 and Q > 0.5 in Figure 13a,b are again taken to correspond typically to slot and blade
coating, and Q = 0.5 corresponds to drag flow. We have also included the shear stress curves that
correspond to the CP level for each flow rate as asymptotes, which roughly help locate the inception of
the slip layer IV. For slot coating, Figure 13a indicates that the shear stress drops sharply from its CP
level just before the exit, and can exhibit a minimum followed by a maximum before the sharp drop
for a thin coating film as illustrated for Q = 0.35. For any Q < 0.5, Figure 13a suggests that the flow
separates; the vanishing of the shear stress is accompanied by an adverse pressure (Figure 8a). It seems
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that the separation always occurs at x < 0, at a location further upstream for the thinner coating film.
In contrast, for blade coating, the shear stress plots in Figure 13b show that the stress experiences a rise
near the exit. Although the stress can vanish for a thick coating film (Q > 0.6), there is no possibility of
a separation given the favorable pressure gradient (see Figure 8b).

The rich dynamics and steep gradients exhibited by the shear stress for slot coating in Figure 13a,
especially upstream of the exit, contrast sharply the smooth and mild behavior exhibited by the
pressure in Figure 8a. This may seem at first physically unrealistic given the intimate coupling between
stress and pressure gradients in the conservation equations. As a check, we examine the validity of
the streamwise momentum equation along the wall for x < 0, which reduces to −Repx + τxz,z = 0.

Clearly, upon noting from (104) that τxz,z (x < 0, z = 1) = 2G −
∞∑

n=1
AneβnxV′n(1), we deduce that

Repx(x < 0, z = 1) = 2G−
∞∑

n=1
AneβnxV′n(1), which is the same result that is achieved upon evaluating

the pressure gradient from (65) at z = 1. As to the transverse momentum equation, it reduces to
−Repz + τzx,x +τzz,z = 0 at z = 1. Noting that τzx,x +τzz,z = uzx + wzz = −wzz + wzz = 0 at the
moving substrate, this leaves pz = 0, which is the case to the current order as per (96). We thus confirm
that momentum is conserved in the streamwise and transverse directions.

7. Discussion and Concluding Remarks

The planar laminar free-surface coating flow of a Newtonian fluid is investigated in the current
study. The flow near and far from the channel exit is examined at moderate Reynolds and capillary
numbers, subject to the substrate translation, and an adverse or a favorable constant pressure gradient
applied far upstream of the channel exit as encountered in slot and blade coating flows. Although the
flow far downstream is relatively simple to analyze as it becomes of the boundary-layer or the thin-film
type, the treatment remains challenging in the vicinity of the exit. The method of matched asymptotic
expansion is adopted to examine the influence of inertia and the applied pressure gradient on the shape
of the free surface and the flow field. At the channel exit, a stress singularity occurs where the boundary
condition changes from no-slip at the lower wall, to slip at the free surface, leading to the development
of a boundary layer along the free surface. As a result, the flow domain consists of four different regions
(Figure 1): the core layer I, the free-surface layer II, the slot or blade slip layer III, and the slip layer IV
near the moving substrate. The layers II, III and IV are shear dominated, and the flow is obtained using
a boundary-layer approach, but not all layers allow a similarity solution. In contrast, the core layer
I is inviscid rotational where both shear and extensional flows are in balance. The small parameter
in the problem turns out to be ε = Re−1/3, based on the balance of inertia and viscous effects in the
free-surface layer II, allowing the asymptotic development of the flow by expanding the flow field.

As the fluid emerges from the channel in the form of the jet, it experiences a drastic drop in the
shear stress and rise in normal stress at the channel exit as it slips along the free surface. This type of
singularity constitutes a major hurdle in a theoretical methodology, particularly in a computational
approach. Moreover, there is a wealth of physical mechanisms and phenomena that cannot be easily
captured by a numerical approach. The boundary-layer structures in layers II and III are investigated
in detail. The similarity solutions obtained in the two layers do not require matching at the exit.
Consequently, the presence of the singularity is circumvented, constituting a major advantage of the
present formulation. The shape of the free surface is determined by matching the free-surface layer
flow with the core flow outside the channel exit.

The inviscid character of the core layer I can be perplexing given the parabolic Couette-Poiseuille
flow as the leading-order velocity profile. This is a pivotal point which embeds the major premise on
which the present theory is built, and can be explained as follows. The Couette-Poiseuille flow is only
recovered in the limit of infinite Reynolds number (ε→ 0). In this limit, there is no viscous mechanism
for the flow to change as it nears and traverses the exit. The fully developed Couette-Poiseuille
velocity profile imposed far upstream retains its shape, and the free surface remains flat (horizontal).
We therefore interpret the Couette-Poiseuille profile in the present context to correspond to inviscid
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rotational flow. Mathematically, any fully-developed profile: u = u(z), w = 0, satisfies Euler’s equations,
which are the inviscid limit of the Navier–Stokes’ equations for infinite Reynolds number. In the present
problem, although the Couette-Poiseuille profile is derived by integrating the (viscous) Navier–Stokes’
equations, this profile does indeed satisfy Euler’s equations as well as all the boundary conditions at
the solid walls and flat free surface in the inviscid limit. Physically, one expects that if the Reynolds
number is large enough (excluding turbulence), one should observe a profile close to the parabolic
profile, even downstream (such as the case of water out of a garden hose). This hypothesis, and the
present approach, have been amply validated for an axisymmetric jet (see, for instance, Philippe and
Dumargue [33]). Thus, in this inviscid limit, the parabolic (or any) profile imposed far upstream
remains unchanged as the fluid emerges at the exit. There is simply no viscous mechanism for the
shear stress to relax or (equivalently) for a boundary layer to form along the free surface. Consequently,
the free surface remains horizontal. In fact, the shear stress vanishes everywhere in the inviscid limit
(zero viscosity) regardless of the value of the velocity gradient. In this limit, the dynamic conditions (6)
and (7) are identically satisfied.

The core layer of the slot or blade coating flow should, apparently, be similar to the channel flow
with a fine constriction considered by Smith [51]. Both flows comprise a leading-order fully developed
contribution and an inviscid rotational first-order correction. However, there is an important difference
as a result of the presence of a free surface in coating flow. In coating, the fully developed flow
prevails everywhere, including the region downstream of the die or blade exit, only in the limit of infinite
Reynolds number. In this limit, the free surface remains flat. The situation is different in Smith’s case.
The Poiseuille flow is recovered in the limit of zero slope of the indentation at any Reynolds number,
and therefore exists in that limit. In the absence of the constriction, the flow physically exists and is
certainly viscous. Therefore, we tend to consider the Couette-Poiseuille flow in coating as inviscid as it
is reached only in the limit of infinite Re, satisfying Euler’s equations without any viscous mechanism
capable of altering the Couette-Poiseuille profile as the flow traverses the exit. This is an unphysical
limit flow. It is important to emphasize that whether the Couette-Poiseuille flow is labelled as inviscid
or viscous has no consequence on the present development and results.

The free surface is found to always contract near the channel exit regardless of the level of inertia
and direction of the applied pressure gradient. The film tends to slightly expand further downstream
for a thick blade coating film (Figure 2). For Ca = O(1), we show that the shape of the meniscus is
not affected by surface tension. However, surface tension appears to alter significantly the dynamics
in the normal stress, especially for blade coating where it causes a maximum to emerge near the exit
(Figure 3). Further downstream where the flow becomes of the boundary-layer type, we illustrate how
the near-exit solution can be matched to a thin-film formulation (Figure 4). Alternatively, the near-exit
solution can be used as initial condition for a computational approach, thus avoiding the incorporation
of the singularity.

Given the inviscid character of the core layer I for any finite Reynolds number, the core solution
does not satisfy adherence at the walls where slip layers III and IV emerge. The detailed flow structure
is obtained in the slip layers. In particular, we find as a result of the vanishing wall shear stress and the
presence of adverse pressure (Figure 10), that a separation may eventually occur for a thin film in slot
coating. Separation appears to be even more unavoidable near the moving substrate for slot coating
(Figure 13). Finally, the undershoot exhibited by the pressure at the blade is captured in Figure 12.
Both the current and existing numerical results from the literature appear to suggest that the pressure
drop below atmospheric grows like Re−1/7. However, unlike existing numerical predictions that show
a linear decay sustained all the way to the exit, the current predictions show a further nonlinear drop,
thus reflecting an upstream influence not predicted when using a numerical approach.

We would like to conclude this section by discussing two important issues that are not addressed
in the present study and are worth elaborating on for future consideration. The first being the case
of small-flow rate (Q < 1/3) in slot coating. The present formulation cannot handle such a situation,
which involves bending of the free surface as it invades the region between the channel walls upstream
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of the exit. Consequently, the free-surface height experiences a significant departure from the infinite-Re
limit of a flat surface, which violates the validity of expansion (19). We suspect that this would be an
entirely different flow regime where the pressure gradient may no longer be assumed small relative to
the Reynolds number. We also suspect that the flow in the immediate vicinity of the singularity with
(approximate) solution to the full Navier–Stokes equations must be considered, which leads us to the
second issue.

In fact, the second important issue concerns the flow very near the singularity. Much of
twentieth-century boundary-layer theory was concerned with two problems, one the external flow
over a plate (either infinite or semi-infinite length), the second flow in a slightly deformed channel
by the presence of a mild constriction placed on the wall(s). The problem considered in this paper
combines elements of both channel flow (through an upstream oncoming Couette–Poiseuille flow)
with aspects of flow past a finite plate (through having the blade or die wall of the channel terminate
with a free surface flow downstream of that point, so having elements of a wake-like flow). The present
solution remains incomplete since the flow structure very near the blade or die exit is essentially left
out. Only an approximation for the flow near the free surface downstream of the blade or die is derived.
Since this boundary-layer solution (derived in Section 3) is only an approximate solution of the full
Navier–Stokes equations, higher-order corrections remain envisageable.

The present development has a close parallel with the solution near the trailing point of a finite
plate as proposed by Goldstein [47], who was able to develop approximate solutions to the wake,
with the approximations including a singularity at the trailing edge. As in the present coating flow,
the solution was developed in powers of x1/3, where x was the distance from the trailing edge, and the
singularity was in effect an infinite transverse velocity (order x−2/3 as x→ 0) and a singularity in the
pressure and stress from x < 0 to x > 0. The singularity was circumvented, and Goldstein was able to
analyze the leading order far wake flow. It took three decades before the asymptotic structure was
properly explained, when Stewartson [48] and Messiter [49] determined the triple-deck structure about
the trailing edge point. Hence, the present paper puts the coating flow problem in a similar position
to that for the trailing edge problem after Goldstein’s development but before that of Stewartson
and Messiter: a much more complex asymptotic structure near the blade or die is needed if the
analysis is to be complete or extendable to higher order. Extension to either higher-order terms (in the
present expansions) or larger parameter values may need a much more complicated interaction region.
The idea is then is to seek a uniformly valid solution across the singularity, and thus provide the flow
details very close to the edge. In analogy to the flow near the trailing edge, we anticipate the existence
of a very small region near the edge of the blade or the die where derivatives of the flow variables
are of the same order in both directions. In other words, both shearing and elongation are dominant
mechanisms. In this case, the correct approximate (and not just the boundary-layer) solution of the full
Navier–Stokes equations must be sought. Different attempts were made early on to achieve uniform
validity but the approach developed by Stewartson [48] and Messiter [49], or the now well-established
triple-deck approach, looks the most promising for future development.
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Appendix A. Matching between the Free-Surface and Core Layers

The matching rule employed by Van Dyke [57] is adopted here for the streamfunction and the
pressure, but the pressure will turn out to be uniformly valid across the core and the free-surface layer.
Thus, only the matching of the streamfunction is detailed here. In this case, Van Dyke’s rule states that

EnHmψ = HmEnψ, (A1)

where m and n are integers. Here, En is the core-expansion operator, which truncates immediately
after the term of order εn where the expansion is expressed in terms of core variables. Hm is the
corresponding boundary-layer expansion operator. The left- and right-hand sides of expressions
(A1) must be exactly the same for all the values of m and n. Depending on the values of m and n,
we need different levels of matching to obtain the boundary conditions for the inner and core solutions,
and simultaneously to determine the free surface height to each order in ε.

We recall from (1) that, to leading order, the stream function in the core region is ψ0(z), which can
be expressed in terms of y = z− ζ(x). In this case, the stream function expression (52) for the core flow
must be cast in terms of y, and takes the following form (Khayat 2014, Tillett 1968):

ψ(x, z) =
(1−G

2

)
(y + εh)2 +

G
3
(y + εh)3 + ε3ψ(x, y + εh) + O

(
ε3

)
. (A2)

A useful expression is obtained upon expanding ψ(x, z) = ψ(x, y + εh) about y = 0:

ψ(x, y + εh) = ψ(x, 0) + yψy(x, 0) + y2

2 ψyy(x, 0) + . . . . .

+εhψy(x, 0) + εhyψyy(x, 0) + . . . . . .

+
(εh)2

2 ψyy(x, 0) + . . . . . .

(A3)

We first consider the matching between the free-surface and core layers to O(ε). The asymptotic
form (27)–(29) for Ψ2 is determined by considering the application of (A1) for m = 2 and n = 0. Applying
E0 on (A2) gives

E0ψ =
(1−G

2

)
y2
−

G
3

y3. (A4)

As this expression must be cast in inner variables when the operator H2 is applied, it is rewritten
in the following form:

E0ψ = (1−G)
ε2η2

2
+ G

ε3η3

3
. (A5)

Therefore,

H2E0ψ =
(1−G

2

)
ε2η2 =

(1−G
2

)
y2. (A6)

On the other hand, to leading order, the expansion for the stream function in the free-surface layer
is obtained from (20) as ψ = ε2Ψ2. Thus, E0H2ψ = ε2Ψ2, which, when matched with (A5), leads to
Ψ2 ∼ (1−G)η

2

2 for large η or condition (27)–(29).
Next, we determine h0(x) in (19) by considering the application of (A1) for m = 2 and n = 1.

Applying E1 on (A2), we have

E1ψ =
(1−G

2

)(
y2 + 2εh0y

)
+

G
3

(
y3 + 3εh0y2

)
. (A7)

The terms surviving to O
(
ε2

)
are identified by expressing E1ψ in terms of η =

y
ε and using (A2)

for m = 1 to yield:

H2E1ψ =
(1−G

2

)
y2 + ε(1−G)h0y. (A8)



Fluids 2020, 5, 180 41 of 44

On the other hand, we note from (29) that H2ψmay be written in terms of the core variables as

H2ψ = ε2ξ2/3f2 ∼

(1−G
2

)
ε2ξ2/3(θ+ c1)

2 =
(1−G

2

)
ε2ξ2/3

(
ηξ−1/3 + c1

)2
, (A9)

which yields

E1H2ψ =
(1−G

2

)
y2 + ε(1−G)c1x1/3y. (A10)

Equating (A8) and (A10) leads to

h0(x) = c1x1/3 =
d1

(1−G)1/3
x1/3. (A11)

Even to this order, we begin to sense the difference in behavior of the film height (thickness)
between slot and blade coating for G > 0 and G < 0, respectively. Clearly, (A11) indicates that in both
cases the height grows like x1/3 but at a higher rate, leading ultimately to a thinner film for slot than
for blade coating. A more accurate prediction of the film thickness will be achieved by considering the
next order.

In order to determine the asymptotic behavior of Ψ3(ξ,η→ 0) in the free-surface layer, we set
n = 0 and m = 3, and match the expressions:

H3E0ψ = 2y2
−

4
3

y3, (A12)

E0H3ψ = E0
(
ε2Ψ2 + ε

3Ψ3
)
, (A13)

yielding Ψ3 ∼
G
3 η

3 or condition (35).
Finally, to obtain h1(x) and ψ(x, 0), (A1) is applied for m = n = 3. This step is algebraically much

more involved, and is only summarized here. Noting that H3ψ = ε2Ψ2 + ε
3Ψ3 = ε2ξ2/3f2 + ε

3ξf3 and
using the asymptotic forms (29) and (32) give

H3ψ = ε2ξ2/3
{
(1−G)

(ηξ−1/3+c1)
2

2

}
+ε3ξ

[
G
3

{(
ηξ−1/3 + c1

)3
−

6
1−G

}
+ c2

(
ηξ−1/3 + c1

)]
.

(A14)

Thus,
E3H3ψ = (1−G)

y2

2 + G
3 y3 + εx1/3yc1[(1−G) + Gy]

+ε2x2/3
[
(1−G)c2

1
2 + Gyc2

1 + c2y
]
+ ε3x

[
c2c1 +

1
3

(
Gc3

1 −
6G

1−G

)]
.

(A15)

Recalling (A2) and (A3), we observe that

E3ψ =
(

1−G
2

)[
y2 + 2ε

(
h0 + εh1 + ε

2h2
)
y + ε2

(
h2

0 + 2εh0h1
)]

+G
3

(
y3 + 3ε

(
h0 + εh1 + ε

2h2
)
y2 + 3ε2

(
h2

0 + 2εh0h1
)
y + ε3h3

0

)
+ ε3ψ(x, 0).

(A16)

Consequently,

H3E3ψ = (1−G)
y2

2 + G y3

3 + εy(1−G + Gy)h0

+ε2
[(

1−G
2 + Gy

)
h2

0 + (1−G)yh1
]
+ ε3

[
(1−G)h0h1 + G

h3
0

3 +ψ(x, 0)
]
.

(A17)

Equating (A15) and (A17), and recalling that h0 = c1x1/3, the correction for the free surface height
to the next order is obtained as

h1(x) =
c2

(1−G)
x2/3. (A18)
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In addition, one has

ψ(x, 0) = −
2G

1−G
x (A19)

Condition (A19) yields the third boundary condition in (59)–(61).

Appendix B. Values of Eigenvalues and Coefficients for the First Six Modes

n βn An V
′

n(1) Q G

1 4.2800 −0.4202 −6.4042 0.3500 0.9000
2 7.3840 −1.0934 3.9830 0.3500 0.9000
3 10.4550 −1.9273 −3.0082 0.3500 0.9000
4 13.5250 −2.8259 2.4900 0.3500 0.9000
5 16.6000 −3.7257 −2.1727 0.3500 0.9000
6 19.6840 −4.5943 1.9603 0.3500 0.9000
1 3.7694 −0.8589 −1.7827 0.4000 0.6000
2 6.7715 −1.4428 1.4067 0.4000 0.6000
3 9.8205 −1.8071 −1.2695 0.4000 0.6000
4 12.9010 −2.0410 1.2002 0.4000 0.6000
5 15.9972 −2.2018 −1.1588 0.4000 0.6000
6 19.1061 −2.3235 1.1314 0.4000 0.6000
1 3.4080 −0.5525 −1.2056 0.4500 0.3000
2 6.4685 −0.6824 1.1067 0.4500 0.3000
3 9.5680 −0.7372 −1.0716 0.4500 0.3000
4 12.6800 −0.7652 1.0538 0.4500 0.3000
5 15.8100 −0.7835 −1.0430 0.4500 0.3000
6 18.9400 −0.7978 1.0358 0.4500 0.3000
1 2.7680 1.2325 −0.8453 0.6000 −0.6000
2 6.0642 0.9314 0.9162 0.6000 −0.6000
3 9.2630 0.8624 −0.9423 0.6000 −0.6000
4 12.4370 0.8303 0.9560 0.6000 −0.6000
5 15.5980 0.8126 −0.9644 0.6000 −0.6000
6 18.7550 0.8037 0.9701 0.6000 −0.6000
1 2.5130 2.4107 −0.7898 0.7000 −1.2000
2 5.9320 1.5087 0.8832 0.7000 −1.2000
3 9.1700 1.3402 −0.9186 0.7000 −1.2000
4 12.3650 1.2668 0.9375 0.7000 −1.2000
5 15.5400 1.2272 −0.9492 0.7000 −1.2000
6 18.7000 1.2053 0.9572 0.7000 −1.2000
1 2.3240 3.5018 −0.7660 0.8000 −1.8000
2 5.8400 1.8988 0.8672 0.8000 −1.8000
3 9.1100 1.6433 −0.9065 0.8000 −1.8000
4 12.3200 1.5358 0.9278 0.8000 −1.8000
5 15.5000 1.4783 −0.9411 0.8000 −1.8000
6 18.6700 1.4464 0.9503 0.8000 −1.8000
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