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Abstract: This work puts forward a modeling study contrasted against experimental, with focus
on abrupt circular contraction flow of two highly-elastic constant shear-viscosity Boger fluids, i.e.,
a polyacrylamide dissolved in corn-syrup PAA/CS (Fluid-1) and a polyisobutylene dissolved in
polybutene PIB/PB (Fluid-2), in various contraction-ratio geometries. Moreover, this work goes
hand-in-hand with the counterpart matching of experimental pressure-drops observed in such 4:1
and 8:1 aspect-ratio contraction flows, as described experimentally in the literature. In this study,
the experimental findings, for Boger fluids with severe strain-hardening features, reveal significant
vortex-evolution characteristics, correlated with enhanced pressure-drop phasing and normal-stress
response in the corner region. It is shown how such behavior may be replicated through simulation
and the rheological dependencies that are necessary to bring this about. Predictive solutions with
an advanced hybrid finite-element/volume (fe/fv) algorithm are able to elucidate the rheological
properties (extensional viscosity and normal-stress response) that rule such vortex-enhancement
evolution. This is accomplished by employing the novel swanINNFM(q) family of fluids, through the
swIM model-variant, with its strong and efficient control on elongational properties.

Keywords: Boger fluids; circular contraction flow; lip vortex; pressure-drops; vortex-enhancement;
first normal-stress difference; swIM model

1. Background and Introduction

Quantitative comparison between numerical predictions, experimental observations, and complex
flow, occurring in contraction and contraction–expansion flows, has occupied the attention of the
rheological scientific community over decades; see, for instance, Boger [1] and Boger et al. [2],
López-Aguilar et al. [3], Tamaddon-Jahromi et al. [4], Nigen and Walters [5], Binding et al. [6],
Pérez-Camacho et al. [7], Tamaddon-Jahromi et al. [8], López-Aguilar et al. [9], López-Aguilar et al. [10],
Webster et al. [11], and reviews of Walters and Webster [12], White et al. [13], and Owens and Phillips [14].
This may be recorded in terms of pressure-drops, and vortex-activity in the recess-zones nearby salient
and re-entrant corners of these geometries. In Boger [1] and Boger et al. [2], attention was given to two
experimental studies with highly-elastic constant-viscosity ‘Boger’ fluids and circular contractions.
In the first of these two studies [2], comparison was made between the flow of two Boger fluids,
with basically the same principal characteristic relaxation-times, in three contraction-ratio geometries
(αaspect) of 2:1, 4:1, and 16:1. Findings with increasing shear-rate disclosed two distinct kinematical
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patterns. The first fluid under αaspect = {4, 16}, a polyacrylamide in corn-syrup PAA/CS solution
(Fluid-1, Figure 1), showed continual salient-corner vortex-growth, with separation-line adjustment
in shape from concave-to-convex. In contrast, the second test polyisobutylene in polybutene PIB/PB
solution (Fluid-2, Figure 2) displayed a sequential combination of salient-corner and lip vortices.
Then, as deformation-rate increased, the lip kinematical structure completely engulfed the shrinking
salient-corner vortex, giving way to a single large recirculating entity of convex shape (elastic-corner
vortex). Note, in both experiments and at high shear-rates, the vortex extended in coverage up to
the re-entrant corner. Under such different scenarios, Boger et al. [2] concluded that measurement of
steady and dynamic shear properties alone were insufficient to characterize the response of such elastic
liquids in circular contraction flow.

Fluids 2020, 5, 85 2 of 23 

the flow of two Boger fluids, with basically the same principal characteristic relaxation-times, in 
three contraction-ratio geometries (αaspect) of 2:1, 4:1, and 16:1. Findings with increasing shear-rate 
disclosed two distinct kinematical patterns. The first fluid under αaspect = {4, 16}, a polyacrylamide in 
corn-syrup PAA/CS solution (Fluid-1, Figure 1), showed continual salient-corner vortex-growth, 
with separation-line adjustment in shape from concave-to-convex. In contrast, the second test 
polyisobutylene in polybutene PIB/PB solution (Fluid-2, Figure 2) displayed a sequential 
combination of salient-corner and lip vortices. Then, as deformation-rate increased, the lip 
kinematical structure completely engulfed the shrinking salient-corner vortex, giving way to a single 
large recirculating entity of convex shape (elastic-corner vortex). Note, in both experiments and at 
high shear-rates, the vortex extended in coverage up to the re-entrant corner. Under such different 
scenarios, Boger et al. [2] concluded that measurement of steady and dynamic shear properties alone 
were insufficient to characterize the response of such elastic liquids in circular contraction flow. 

 
Figure 1. Vortex-activity with increasing flow-rate Q; Boger Fluid-1 (PAA/CS); β = 0.73, αaspect = {2, 4, 
16}. 

Figure 1. Vortex-activity with increasing flow-rate Q; Boger Fluid-1 (PAA/CS); β= 0.73, αaspect = {2, 4, 16}.

In the second and further study, Boger and Binnington [15] studied two Boger fluids to produce
streak-like photographic observations for αaspect = 4 circular contractions, of sharp and rounded-corner
configurations. The first fluid was the organically-based international test fluid Ml, (polyisobutylene
dissolved in polybutene (PIB/PB)). The second fluid was referred to as fluid P1 (0.03% polyacrylamide
dissolved in corn-syrup (PAA/CS)). Both fluids exhibited significant elasticity, while at the same time,
a constant shear viscosity. There, these two fluids exhibited distinctly different vortex-enhancement
paths for a given aspect-ratio choice. For example, in the rounded-corner geometry, the salient-corner
vortex appeared almost constant in size with the M1-fluid, whilst lip-vortex formation was observed
under the P1 fluid case. As for the abrupt contraction, the M1-fluid displayed marginal vortex-growth,
whilst vortex-enhancement was more active for the P1-fluid. Once more, these major differences between
the responses in complex-flow of solutions with similar shear properties in fixed geometries render
their extensional features as the subjacent explanation for such diversity of trends in vortex-activity.
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Figure 2. Vortex-activity with increasing flow-rate Q; Boger Fluid-2 (PIB/PB); β = 0.87, αaspect = {2, 4, 
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In addition, Rothstein and McKinley [16] explored experimentally the creeping flow of a dilute
0.025 wt% polystyrene/polystyrene (PS/PS) Boger fluid. These authors, covering a large range of
Deborah numbers, devoted attention to circular contraction–expansion flow-settings of various
aspect-ratios (αaspect = {2, 4, 8}) and re-entrant corner curvature degrees. For a relatively low aspect-ratio
of αaspect = 2 of sharp-corners, a steady lip-vortex was observed at the re-entrant corner. For aspect-ratios
of between αaspect = 4 and 8, lip-vortex formation was absent, but a salient-corner vortex was recorded,
which grew with the flow-rate increase. Rounding the re-entrant corner shifted such landmarks and
trends to higher values of flow-rates, but did not change qualitatively the structure and evolution of
the overall flow-field.

Sato and Richardson [17] performed simulations for planar αaspect = 4 contraction flow. These were
based on a hybrid finite volume/element method, embedded in a time-stepping procedure within a
pressure-correction scheme. These authors reported lip-vortex formation as a pseudo-transient
phenomenon, appearing at Reynolds-number levels of Re = 0.01, and being triggered by an
instantaneous increase in Deborah numbers (De) from six to twelve. Subsequently, such transient
lip-vortex faded through the time-stepping process, as a steady-state solution was approached at
the limiting value of elasticity of De = 12. Similarly, for the same αaspect = 4 planar contraction
flow, Olsson [18] also observed the transient presence of a lip-vortex, but using the Giesekus
rheological equation-of-state; whilst employing a method-of-lines technique for time-integration
and a discretization based on finite-differences.

In keeping with the above developments, the present study considers counterpart predictive
solutions generated with a hybrid-subcell finite-element/volume algorithm (fe/fv) [19–21], incorporating
some novel advanced stabilization techniques [22,23]. Attention is directed towards contraction-ratios of
αaspect = {2, 4, 8}, covering in particular the correlation of pressure-drop enhancement, vortex-dynamics
(lip-vortex formation), and flow-structure (normal-stress response); the context is one of Boger
fluids and creeping flow conditions. This range of contraction-ratios was held sufficient for present
comparison purposes, as gathered from our prior work on contraction-expansion ratio comparison in



Fluids 2020, 5, 85 4 of 22

López-Aguilar et al. [9]. An appeal is also made to our companion study in Tamaddon-Jahromi et al. [4],
where the focus of attention there was solely on the αaspect = 8 contraction-ratio problem.

2. Governing Flow Equations, Material Functions, Problem Specification, and Numerical Algorithm

Following the principles of conservation of momentum and mass, the non-dimensional equations
that govern the flow response of viscoelastic fluids under creeping incompressible and isothermal
conditions, are:

∇ · u = 0 (1)

Re
∂u
∂t

= ∇ · T−Re u · ∇u−∇p. (2)

As such, a domain bounded in space and time (x, t) is considered, over which spatial–temporal
differential operators apply. Then, field variables u, p, and T represent fluid velocity, hydrodynamic
pressure, and stress-tensor, respectively. The stress-tensor may be expressed as:

T = τ+ 2βd. (3)

The stress-tensor is decomposed into two parts by means of the Elastico-Viscous Stress Splitting
(EVSS) assumption, where the total stress T is composed by two contributions, one for the polymer,
to which the viscoelastic nature is addressed through τ, and another of Newtonian-like response of
the form 2 βd. In this, d = (∇u + ∇u†)/2 represents the rate-of-deformation tensor, where tensor
transpose is denoted with the superscript †. In addition, the non-dimensional group Reynolds number
is defined as Re = ρUcharLchar

µ0
, through characteristic scales of Uchar on fluid velocity (mean flow-velocity

over the characteristic-length), and, for length, Lchar, as the constriction radius. The material density is
represented with ρ and the characteristic viscosity taken as a zero shear-rate viscosity (µ0 = µp + µs).
Here, µp and µs are the polymeric viscosity and the solvent viscosity components, respectively, so that
the solvent-fraction parameter can be defined as β =

µs
µ0

. Creeping flow conditions are presumed

throughout, so that Reynolds numbers are typically O(10−2) or smaller.

2.1. Constitutive Modeling

To complete the equation set, one needs a state law on stress, which is provided by the
swanINNFM(q) model formalism (see Tamaddon-Jahromi et al. [4,8] and López-Aguilar et al. [9]).
This model is soundly-based, being derived from two well-respected models, the Finitely Extensible
Non-linear Elastic dumbbell Chilcott-Rallison FENE-CR model (Chilcott and Rallison [24]) and a
White–Metzner model (White and Metzner [25]).

The base FENE-CR model may be written in a configuration-tensor A form (bold-face symbols
denote tensorial quantities), as:

Wi
∇

A + f [tr(A)](A− I) = 0. (4)

Here,
∇

A stands for the upper-convected material-derivative of the configuration-tensor (A),
defined as:

∇

A =
∂A
∂t

+ u · ∇A− (∇u)† ·A−A · (∇u). (5)

The FENE-CR structural-functional f [tr(A)] is:

f [tr(A)] =
1

1− tr(A)

L2

. (6)
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Then, Kramer’s rule relates configuration and extra-stress tensors as follows:

τ =
1− β
Wi

f [tr(A)](A− I). (7)

In the above, L is the extensibility parameter for the FENE-CR model, related to the dumbbell
chain-length, and I is the identity tensor. In addition, the non-dimensional Weissenberg group-number
is defined as Wi = λ1

Uchar
Lchar

, where dependency upon the fluid relaxation-time (λ1) and a characteristic

rate ( Uchar
Lchar

) is observed. Then, rise in Wi may be generated through deformation-rate increase, fixing the

fluid elastic character through λ1, whilst the flow-rate Q-dynamics are increased, i.e., Wi = λ1
Q

πL3
char

,

considering that Q = AUchar = πL2
charUchar.

To arrive at the swanINNFM(q) model, one needs to consider a rate-dependent viscosity in the
above developments, as under the generalized White–Metzner model, taking this to be extension-rate
dependent alone. Then, using Equations (3) and (7) above, the new resulting family of swanINNFM(q)
models, in its single relaxation-time swIM model-variant [3,4,8–11], may be articulated through the
amended total-stress tensor, as:

T =
1− β
Wi

f [tr(A)](A− I)φ
( .
ε
)
+ 2βφ

( .
ε
)
d, (8)

where the dissipative extensional-function φ
( .
ε
)

is taken as a quadratic-form from the truncated
Taylor-series approximation of the cosh-exponential expression available. This dissipative

extensional-function is defined as φ
( .
ε
)
= 1 +

(
λD

.
ε
)2

, with parameterization on a dissipative material

time-scale parameter λD, and functionality on a generalized strain-rate invariant
.
ε = IIId

IId
. Here, IIId and

IId represent the third and the second invariants of d, respectively. Fuller details on the development
of this swanINNFM(q)-family of fluids are supplied in Debbaut and Crochet [26], Debbaut et al. [27],
Tamaddon-Jahromi et al. [4,8], López-Aguilar et al. [3,9,10], and Webster et al. [11].

2.2. Material Functions

The relevant swIM-model rheometrical functions are provided in Figure 3, noting a constant
shear-viscosity. These are the extensional viscosity ηe and the first normal-stress difference in shear
N1Shear, where variation over model parameters (β, L, λD) is presented. Their functional forms
are, respectively:

ηe = 3φ(
.
ε)β+ 3φ(

.
ε)(1− β)

 f 2

f 2 − f Wi
.
ε− 2Wi2

.
ε

2

, (9)

N1Shear =
2(1− β)Wi

.
γ

2

f
. (10)

In Figure 3a, a solvent-content β-variation extensional viscosity ηe-response is exposed for the
swIM model, under λD = 0.075, L = 5, and β = {0.9, 0.8, 0.5, 1/9}. Firstly, the swIM model-response
appears bounded by the two extremes of its behavior; under λD = 0, the dissipative extensional
influence disappears, and the swIM model extensional hardening finds a plateau for moderate-to-high
extension-rates; on the other extreme, at L→∞, an Oldroyd-B-like response is recovered, with infinite
extensional viscosity predictions. Within these two bounds, swIM β-decrease, which may be interpreted
as an increase in solute-content, renders a rise in the plateau-level observed at intermediate shear-rates
in the range of 1 ≤ λ1

.
ε ≤ 70 units. Beyond such plateaued-stage, a steep rise is witnessed as a result of

the influence of the extensionally-driven dissipative mechanism promoted by φ
( .
ε
)
= 1 +

(
λD

.
ε
)2

; here,
β-decrease shifts this ηe-rise to higher extension-rates. In Figure 3b, the first normal-stress in shear
N1Shear-response is plotted for both Oldroyd-B and swIM under β-decrease. Here, in contrast to the
stiff quadratic rising Oldroyd-B N1Shear-trend, swIM provides a softer trend for shear-rates beyond
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λ1
.
γ~10 units; in addition, β-decrease shifts N1Shear-rise to lower shear-rates. Such predictive capabilities

of the swIM model are contrasted against N1Shear data reported by Boger et al. [2] for both Boger
fluids formed by diluted solutions of PAA/CS and PIB/PB. This data is presented in dimensionless
form, taking as characteristics time and viscosity scales, the characteristic time and the constant
shear-viscosity reported experimentally by Boger et al. [2] as {λ1, η0} = {0.380 s, 97.5 P} for the PAA/CS
solutions and {λ1, η0} = {0.149 s, 251 P} for the PIB/PB case. Stark matching is recorded between the
experimental rheometrical N1Shear and the predictions achieved using the swIM model. Particular
to Figure 3b, a window of experimental-data capture is defined in the ranges of solvent-fraction
0.5 ≤ β ≤ 0.9, extensibility-parameter 5 ≤ L ≤ 12, and dissipative-parameter 0 ≤ λD ≤ 0.1, which is used
in subsequent sections for the simulation of contraction complex flow of those Boger fluids.
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swIM models; symbols: experimental N1Shear data from Boger et al. [2].
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In Figure 3c, swIM extensional viscosity response with L-variation is reported. Particularly,
this parametric study is performed under β = {0.9, 0.7}, λD = {0, 0.075}, and L = {5, 8, 10, 12}.
swIM extensional viscosity under L-increase is analogous to that observed under solvent-fraction
β-decrease, displaying an intermediate plateaued region, and followed by a sharp increase. Interestingly,
the cumulative response of increasing both solvent-fraction β, the extensibility-parameter L and the
extensional-dissipative time-scale λD of β = 0.7, L = 12 and λD = 0.3, exposes the strength of this
model to boost hardening in extensional viscosity. The effects of such variations in first normal-stress
in shear N1Shear are, under L-increase, to enhance elasticity beyond λ1

.
γ ~ 10 units (Figure 3d).

Notably, the coincidence between swIM predictions and N1Shear experimental data-trends reported by
Boger et al. [2] holds.

In Figure 3e, the influence of λD-variation over extensional viscosity is provided under β = 0.9
and L = 5. Here, the departure from the FENE-CR trend at intermediate extensional-rates appears
sooner as the level of λD is larger, even vanishing the plateaued section for λD = 0.4 in comparison
with smaller λD-cases. In terms of first normal-stress in shear N1Shear (Figure 3f), as devised for this
swIM model, λD-increase does not affect response in shear deformations.

2.3. Problem Specification and Numerical Scheme

The meshes used to discretize the problem, described in a 2D-domain, under three aspect-ratios
αaspect = {2, 4, 8}, are displayed in Figure 4. Their characteristics in terms of node number and
degrees-of-freedom are provided in Table 1. On mesh-refinement and solution-convergence, one may
refer to the counterpart study in Tamaddon-Jahromi et al. [4], where this topic is well-covered. One may
note the additional fine meshing used in the αaspect = 4 instance, around the re-entrant corner zone,
which is necessary to pursue a stringent lip-vortex search.

Figure 4. Zoomed mesh sections of contraction geometries; αaspect = {2, 4, 8}.
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Table 1. Mesh characteristics, different contraction aspect-ratios.

Mesh
αaspect

Elements Nodes Degrees of Freedom (u,p,τ)

2 2762 5787 36,235
4 2987 6220 38,937

8 (refined) 2016 4191 26,234
8 (medium) 1707 3634 22,768
8 (coarse) 868 1897 11,897

Boundary conditions. On flow boundary-conditions, the flow specification is as follows. No-slip
is taken on boundary walls, and shear-free symmetry is imposed on the flow-centerline (see also
below). At flow-inlet, velocity and stress are specified, according to the flow-rate setting, akin to
full-developed shear-flow. There, under vanishing convective terms, the partial differential equations
PDE for stress-configuration collapses to a temporal ordinary differential equation ODE system,
providing evolution to the algebraic stress equivalent forms. At outlet, only the arbitrary level of
pressure is set. Then, through a steady-state solution-continuation procedure, initial conditions
from a prior flow-rate solution may be accessed, and under more severe-flow parameter selection,
feed-forward exit-procedures may be used on velocity-gradients and stress components to accelerate
convergence (see López-Aguilar et al. [9,22]). Such feed-forward procedure overwrites fully-developed
polymeric-stress τ and velocity-gradient∇u components from inter-field regions towards the outlet-edge
neighborhood prior solution approximation in each time-step. This helps to reduce noise proliferation
originated at the outlet, which reflects back towards the internal field, and is particularly useful
under moderate-to-high flow-rates (López-Aguilar et al. [9,22]). Generally, a flow-rate increase mode
is adopted through a series of steady-state solutions, as appropriate and as prescribed elsewhere
(Tamaddon-Jahromi et al. [4,8], López-Aguilar et al. [3,9,10]).

On numerical-to-experimental scaling. In the αaspect = 4.08 contraction flow of Boger [1] and
Boger et al. [2], a Weissenberg number definition was introduced as Wiexp = λexp .

γ; where λexp is a
relaxation-time and

.
γ is a characteristic shear-rate (downstream wall shear-rate in tubular entry flow).

Accordingly, respective relaxation-times were identified of λexp = 0.149 s for the polyisobutylene (PIB)
in polybutene (PB) Boger fluid, and λexp = 0.308 s for the polyacrylamide (PAA) in water and corn syrup
(CS) Boger solution. A functional relationship may be derived between these two experimental and
computational Wi-definitions; experimentally of (Wiexp = λexp .

γ) and computationally of (Wicomp =

λ1
Uchar
Lchar

). For one-to-one comparison purposes, this establishes appropriate scaling factors of ( 1
λexp ),

between experimental findings and computational predictions per fluid-instance; yielding: Wicomp =

6.71 Wiexp for fluid PIB/PB and Wicomp = 3.25Wiexp for fluid PAA/CS (see López-Aguilar et al. [3] and
Tamaddon-Jahromi et al. [4] for more details on such scaling). Based on these scaling factors, Wiexp

as in Boger [1] compares as 10.5 ≤Wicomp
≤ 16.6 under fluid PIB/PB, and 2.05 ≤Wicomp

≤ 5.3 under
fluid PAA/CS. In practice, one notes below for the αaspect = 4, that computationally, a slight lip-vortex
appears for 2.5 ≤Wicomp

≤ 5.5 (lower rate range); whilst experimentally, a lip-vortex is only observed
for fluid PIB/PB (in the higher Wicomp-range) and not recorded with fluid PAA/CS.

Hybrid subcell finite-element/finite-volume scheme. The numerical method used in this work is based on
a hybridized finite-element (fe) and finite-volume (fv) spatial-discretization scheme. Such a formulation
comprises both time-stepping and fractional-staged (three) equation-structure. On the momentum-mass
conservation equation doublet, finite-element (fe) discretization, grafted upon a Taylor–Petrov–Galerkin
structure, is selected following incremental pressure-correction strategy. On the constitutive
stress-equation, finite-volume (fv) discretization is employed. Such a space-time discretization
agrees with equation-type specification. Accordingly, Galerkin-type (fe) approximation is applied on
parent triangular tesselations; whilst a subtended subcell/cell-vertex finite-volume (fv) discretization
is used for the rheological equation-of-state on stress-tensor components. An element-by-element
iterative solution-procedure, space-efficient in its implementation, is utilized for discretized equations.
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The pressure-equation is solved with a direct Choleski-reduction method. Then, the (fv)-component
on stress is treated in a direct single-iteration implementation. The conservation-form for the stress
equation is non-linear, and contains inhomogeneous source terms. This demands both median-dual-cell
treatment for source terms and fluctuation-distribution for fluxes (upwinding). Additionally, quadratic
interpolation is chosen for velocity, whilst linear interpolation is specified for pressure on the parent
fe triangular-cell grid. For the finite-volume implementation, four fv-subcells per parent fe-cell are
obtained, being the fv-sub-cell constructed via the interconnection of the parent fe-cells mid-side nodes.
In such a structured arrangement, stress variables are located at the vertices of fv-sub-cells, and solution
projection between is unnecessary. On the child subcell-level, this provides for a subcell-vertex
fv-method for which trial-solutions are interpolated linearly. The resulting formulation is consistent in
time and holds an accuracy of second-order. Further details on the numerical scheme and its detailed
implementation characteristics, can be found in Wapperom and Webster [19], Webster et al. [20],
and Aboubacar and Webster [21].

Stabilization techniques. Additional and latest aspects of improved stabilization techniques for
viscoelastic flow employed are summarized as follows. The set of such stabilization techniques
comprises the velocity-gradient VGR-correction [22,23], the use of velocity-gradient recovery,
a discrete continuity correction over the flow-domain, and additional compatibilizing conditions
on the flow-centerline, with pure-extension shear-free inhomogeneous extensional deformation
at the centerline symmetry. Additionally, the absolute-value ABS-f correction [22,23] regularizes
the problem through absolute-value imposition on the structure-network functional (f ) in the
rheological equation-of-state and within the Kramer’s rule transformation in the momentum equation.
Positive-definiteness of the problem is promoted through the use of configuration-tensor form in the
constitutive equation [3,4,8,9,11,22,23].

3. Results—Computational Predictions and Flow-Structure versus Pressure-Drop Correlation

Comparison of predictive solutions is presented across the three geometric aspect-ratios, in turn,
of αaspect = {2, 4, 8}. In this, it is informative to consider ramping-up through flow-rate (low,
medium, high), where, due to the variation in dynamics per geometry, these ranges themselves
will vary per geometry. Specific insight is drawn through comparison against the counterpart
experimental patterns of Boger [1] and Boger et al. [2], and particularly, when focusing on Boger
fluids of two different solvent-fractions of β = 0.87 and β = 0.73, as extracted above in N1Shear-match
with swIM model in Section 2.2. The Results section is organized in two main subsections. Firstly,
3.1 8:1 contraction flow includes: flow-structure (vortices and first normal-stress difference N1) and
pressure drops, renders the main findings of this work, and evidences the matching of experimental
pressure-drops using the swIM model. Here, conspicuously, vortex-development phasing is correlated
with pressure-drop enhancement, as described by Binding and Walters [28], providing theoretical
explanation to experimental features of this benchmark circular contraction problem. Moreover,
viscoelastic response in the recess-zones, observed through first normal-stress N1-fields, appears
directly linked with the vortex-formation and evolution, with salient-corner, lip, and elastic corner
vortex capture, where the tracking of the shape and size of vortex-structures is recorded. This lies as a
major finding on relating pressure-drop enhancement, vortex-evolution (flow kinematics), and flow
structure [9]. The second section, Section 3.2 Predictive capabilities of the swIM—Vortex-dynamics
across αaspect = {2, 4, 8} circular contraction flow, provides insight into the influential swIM model
parameters that permit the prediction of the elusive lip-vortex. Particular attention is paid to
swIM solvent-fraction β, extensibility-parameter L and dissipative parameter λD variation, for which
exploration of their vortex-dynamics and lip-vortex-formation are explored, and where intermediate
λD-values at relatively high extensibility L-features appear as a proper combination for lip-vortex
capture. Such parametrical-specification correlates with the precise control of extensional properties
provided by the swanINNFM(q) model-family, embodied here through its swIM variant.
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3.1. 8:1 Contraction Flow: Flow-Structure (Vortices and First Normal-Stress Difference N1) and
Pressure Drops

Notably and overall, all geometric aspect-ratios explored display elastic-corner vortices (ecv)
at large flow-rates, as it is apparent in Figures 1 and 2. Hence, to describe the evolution of such
kinematic structures and its relationship with pressure-drops with flow-rate rise, one may begin with
the αaspect = 8 aspect-ratio case (see Tamaddon-Jahromi et al. [4]), as this instance provides the strongest
dynamics and the sharpest distinction in flow-pattern features and viscoelastic pressure-drop rise
arising experimentally. Such an αaspect = 8 geometry is reflective of higher ratios and reveals the evolving
streamline patterns and exaggerated pressure-drop trends of Figure 5. First, recorded in relatively
low flow-rate range of Q/Q0 ≤ 0.035 units, salient-corner vortices (scv) at low-rates arise, accompanied
by pressure-drops that concur with Newtonian equivalents (here, Q0 and ∆p0 are, respectively,
characteristic flow-rate and pressure-drop taken from experiments [1]). Then, with flow-rate increase,
in the low-to-mid flow-rate range of 0.12 ≤ Q/Q0 ≤ 0.2 units, such relatively simple behavior gives way
to co-existent salient-corner/lip vortices (lv), instance for which viscoelastic pressure-drop initiates its
departure from Newtonian response. Further flow-rate increase drives coalescence of the co-existent
scv and lv, and marks the entry to the onset of large elastic-corner vortices (ecv) in the mid-to-high
flow-rate regime of Q/Q0 ≥ 0.35 units, in which stark departure in pressure-drop between simple
Newtonian and viscoelastic Boger fluids is apparent. Such vortex-evolution, from salient-corner vortex
to elastic-corner vortex, has been proposed by Binding and Walters [28] as a cause for the pressure-drop
enhancement observed experimentally.
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Figure 5. Pressure and streamlines against flow-rate; swIM model; λD = {0.0, 0.075, 0.1}; β ≤ 0.9, L = 5.
Note the coloring of the stages under each stream-line pattern, indicating the vortex-type present
at each flow-rate and its place in the pressure drop plot. Here, a vortex-evolution is depicted, from
salient-corner vortices, passing lip-vortex generation, its co-existence with the salient-corner kinematic
structure, followed by elastic-corner vortex domination.

Correlation of complex flow features and Boger-fluid normal-stress difference in complex flow. It was
established in López-Aguilar et al. [9] that the various vortex-structures and flow-stages (scv, lv, and ecv)
tie in closely with the corner-patterns sustained in N1-fields from complex flow, whilst vortex-evolution
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with Q-increase across such scv, lv, and ecv stages are closely driven the extensional viscosity response
in ideal extensional deformation, as predicted with the swIM-model. The present study would concur
with this, as evidenced in Figure 6, where sample streamlines are contrasted against N1-fields for
αaspect = 8 case. Note that in the circular contraction complex flow at hand, the first normal-stress
difference is defined as N1 = τzz−τrr, where τzz and τrr represent the normal-stresses in z and r
directions, respectively. Here, the phases of scv growth, co-existence of scv-lv, and ecv-domination are
mirrored in the N1 field-data of Figure 6. Under this evidence, one may conclude that elasticity and,
hence, non-linearity, manifest through first normal-stress difference in shear and extension (extensional
viscosity), is observed to strongly influence the formation of such vortex-structures and its counterpart
energetic pressure-drop effects in departure from Newtonian equivalent levels.
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3.2. Lip-Vortex Predictive Capabilities of the SwIM—Vortex-Dynamics across αaspect = {2, 4, 8} Circular
Contraction Flow

Once that prediction of experimental pressure-drops and their corresponding vortex-structure
from Boger [1] and Boger et al. [2], have been achieved using the swIM model for an αaspect = 8,
a parametric study is worthy to explore the predictive capabilities of this swanINNFM(q) family of
models, in terms of the elusive task of predicting the appearance and persistence of lip-vortex structures
in less demanding αaspect = {2, 4} circular contraction geometries. Here, one may note that the versatile
swIM model, with its control of normal-stress response, both in elongational (extensional-viscosity)
and shear first normal-stress in shear deformations, is able to answer such a question. Specifically,
different flow-structures and their evolution are observed by varying parameters of solvent-fraction β,
extensibility L-parameter, and extensional dissipation-parameter λD. Each of these material parameters
may be associated with corresponding variations in rheological properties (see Figure 3), observed
through extensional viscosity ηe and normal-stress difference in shear N1Shear. Under alternative
parameter-variation, one notes the selection of implied base-values of: L = 5 for β–variation, and β = 0.9
for L-variation. Then, the dissipation-parameter may be set either at λD = 0 or λD = 0.075. From this
perspective, counterpart findings may then be explored comparatively for flows in lower and alternative
geometric contraction-ratios. Here, parameters influencing normal-stress response in both shear and
extensional deformations appear with a key-role in the development of varied flow-structure formation
in the contraction flows analyzed.

3.2.1. 8:1 Contraction Flow: Flow-Rate and Solvent-Fraction Adjustment (1/9 ≤ β ≤ 0.9)

This analysis starts with the αaspect = 8 circular contraction case, with focus on three flow-rate
regimes that highlight essential vortex-structure features.

Low flow-rates. Wi = [1, 2] Under swIM [L = 5, λD = 0.075], only salient-corner vortex (scv) activity is
recorded at Wi = 1 (Figure 7a), with no apparent lip-vortex (lv) activity. Then whilst remaining at Wi = 1,
vortex-size and intensity strengthen considerably with solvent-fraction β-reduction. With increase in
flow-rate level, at Wi = 2 (Figure 7b), the first appearance for lv-formation is found at β = 0.7, attendant
with scv-presence. At lower solvent-fractions, such lip-vortex presence considerably enhances, to even
take over the salient-corner vortex-intensity and produce a single strong elastic-corner vortex with a
prominently convex separation-line; see Boger [1] and Boger et al. [2] for analogous experimental trends.
Consistently, one observes ecv Ψmin-intensity nearly doubling from β = 0.5 to β = 0.3; and tripling from
β = 0.5 to β = 1/9, as recorded in Figure 7.

Medium Wi = [3, 5] and high [Wi = 16] flow-rates. Addressing the medium flow-rate regime,
and comparing against that at low flow-rates, lip-vortex formation appears earlier with solvent-fraction
β-decline. So, for example, at Wi = 3, first lip-vortex detection is noted with more dilute systems
at β = 0.9, see Figure 8a. Flow-patterns and trends outlined at lower flow-rates are then repeated
under solvent-fraction β-decrease. This precedes pronouncedly concave ecv-formation by β ≤ 0.6.
This theme is continued into the second yet higher-rate level in the medium flow-rate regime of
Wi = 5, shown in Figure 8b. In the high flow-rate regime, still larger ecv Ψmin-intensities abound in
Figure 9, through some 8-times increase in vortex-size from β = 0.9 to β = 1/9 and dramatic vortex
separation-line adjustment.

Extensional dissipative-parameter λD-variation. In passing, it is worth reflecting on the influence of
dissipation extensional-influence and λD-rise on the results above; specifically in the medium flow-rate
range Wi = 3, adopting other parameters of L = 5, β = 0.9. In Figure 10, this is illustrated through
streamline-patterns across the range 0.1 ≤ λD ≤ 1.0, in a regime of strong lip-vortex activity, both in
intensity and spatial occupation. This is useful for insight upon the αaspect = 4 ratio case reviewed
below. In this data, one can detect a clear amplification of the lip-vortex in the range 0.1 ≤ λD ≤ 0.4,
prior to coalescence with the salient-corner vortex (0.5 ≤ λD), the lip-vortex being the dominant feature
both prior to and post-coalescence. As a consequence, the eye of the vortex-center, subsequent to
coalescence, is driven towards the re-entrant corner (response observed experimentally with Boger
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Fluids 1 and 2; Boger [1]), announcing the onset of a phase of strong elastic corner-vortex domination,
and further, unsteady vortex-oscillation at still larger flow-rates [8].Fluids 2020, 5, 85 14 of 23 
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3.2.2. Comparison across Geometric Aspect-Ratios αaspect

Predictive solutions with swIM [L = 5, λD = 0.1, β = 0.9] provide direct comparison on major
findings across the various contraction-ratios, taken against increasing flow-rate (Q) and charted
through rise in Wi, according to low, moderate, and high flow-rate regimes. Note that to truly amplify
the detail, scaling is applied in the cross-stream direction. Accordingly, streamline field-patterns
are reported in Figure 11 and the line-graph of Figure 12. This data conveys the corresponding
trend in movement on vortex-intensity. Notably, lip-vortex appearance is only recorded in the larger
contraction-ratio αaspect = 8.

Low flow-rate (Wi = 1). In the first row of Figure 11, comparable vortex-structures are discerned
across all three aspect ratios, gathering common concave-shaped separation-lines (referenced to the
salient-corner recess), and with practically identical scv Ψmin-intensity of O(10−4).

Intermediate flow-rate regime [Wi = 3, Wi = 5]. Here, more interesting distinction can be drawn.
At (Wi = 3), the second row of Figure 11, both αaspect = {2, 4} solutions retain scv Ψmin-intensity of
O(4 × 10−3), yet proving one order-of-magnitude larger rotational intensity than at corresponding
Wi = 1. With (αaspect = 8, Wi = 3), there is a relatively marginal decline in scv-intensity to O(3 × 10−3)
noted, whilst also supporting some energy transfer into the onset of a lip-vortex, of intensity one
order-of-magnitude lower, i.e., O(5 × 10−4). As above, here vortex separation-lines retain their
concave-shaped form. At the more dynamic level of Wi = 5, corresponding to the third row of
Figure 11, for αaspect = 8, there is a sudden burst of activity, with an increase of two orders-of-magnitude
in lip-vortex rotational intensity, from Wi = 3 (row-two) to Wi = 5 (row-three). Simultaneously,
the standing scv-intensity triples to O(9 × 10−3). Now for the first time, conspicuously, the vortex
separation-line begins to adjust in shape around the lip-vortex zone, depicting somewhat of a more
convex-to-concave delineation. In contrast, neither of the lower ratio αaspect = {2, 4} solutions pick
up any sign of lip-vortex activity, whilst their scv-intensities reflect levels comparable to those of
{lip-vortex, αaspect = 8}, being slightly larger at O(2 × 10−2).

High flow-rate regime of Wi = [10, 20]. Rows four and five of Figure 11 now display vortex
separation-lines of convex shapes for all three ratio-solutions. Nevertheless, the αaspect = 8 Wi =

10-solution (row-four of Figure 11) is disparate, in that its elastic-corner vortex has an evolution history
that passes through coexistent lv-scv structures. In contrast, both αaspect = {2, 4} solutions provide
an ecv delivered from a growing salient-corner vortex directly, without any intermediate transition.
The relative position of vortex-centre loci across contraction-ratio, clearly displays dependency upon
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their evolution history through flow-rate rise, with αaspect = 8 locating the ecv closer to the re-entrant
corner. These vortex-evolution patterns concur well with Boger Fluid-1 (PAA/CS) findings of Boger [1].
Particularly notable is the trend observed for aspect-ratios (αaspect ≥ 4), and the movement of the
vortex-eye gravitating towards the re-entrant corner with increasing flow-rate (Figure 11).
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Informative overall trends can be gathered from vortex-intensity (−Ψmin) data listed in Table 2 and
its graphical representation in Figure 12. From a united trend at low flow-rates, there is a pronounced
rise in vortex-intensity at (Wi ≥ 5), in instances αaspect = {4, 8} above αaspect = 2. By Wi = 20, separation
is clearly apparent between all three instances, with the largest ecv-intensity attracted by αaspect = 8
(with lv-formation marked); and trends in αaspect = 4 solutions follow closely those under αaspect = 8.
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Notably, trends in αaspect = 2 ratio solutions are the least dynamic in adjustment, providing smooth and
continuous rise in scv-intensity.
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Table 2. Vortex-intensity (−Ψmin); αaspect = {2, 4, 8}; Wi = [1, 20]; swIM [L = 5, β ≤ 0.9]; λD = 0.1.

Wi/αaspect 2 4 8

1 0.0006 0.0009 0.0008

3 0.0043 0.0048 0.0005
0.0029(lv)

5 0.0244 0.0277 0.0093
0.0271(lv)

10 0.0841 0.2874 0.3028

20 0.2654 1.132 1.589

3.2.3. αaspect = 4 and αaspect = 2 Ratios: Lip-Vortices, Rise in Wi, Extensibility-Parameter L,
and Solvent-Fraction β Switch

In this section, a parametric study on swIM extensibility parameter L and solvent fraction β is
carried out, to discern the possibility of lip-vortex formation in less stringent contraction-ratios of
αaspect = {2, 4}. Recall that Boger [1] and Boger et al. [2] only observed a lip-vortex experimentally for
the PIB/PB-based fluid at {Wiexp = λexp .

γ = 2.3; Wicomp
λ1

= 6.71 Wiexp
λ

= 15.4} under the αaspect = 4.08
ratio flow. This is performed through manipulation of extensional properties modulated by L-variation
and solute-content promoted by β-decrease. Particularly, one turns to predictions for fluids with more
pronounced extensional features and slightly higher solvent-fractions, i.e., L = 12, λD = 0.1, and β = 0.7
(as noted in Boger Fluids 1 and 2 of Boger [1]). One should mention that relatively more diluted fluids
(β = 0.8; Figure 13) give signs of lip-vortex formation, but such kinematical structures remain difficult
to track under such conditions.
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Figure 13. Vortex-intensity (−Ψmin); αaspect = 4; swIM [L = 12, β = 0.8, λD = 0.1].

Lip-vortex-capture under αaspect = 4, β = 0.7, L = 12 and λD = 0.1 settings. Figure 14 illustrates a
successful lip-vortex prediction under αaspect = 4. Firstly, an order-of-magnitude increase is detected in
lv-intensity from Wi = 4 (ψmin = −0.0005) to Wi = 5.7 (ψmin = −0.0053). This proves to be the largest
lip-vortex observed for the various different αaspect = 4 trial-settings. As such, Wi = 5.7 represents
a critical level, beyond which steady-state solution-tractability fails. What is apparent is the fine
balance in rheology here, between both solvent-fraction settings and hardening-levels. This interplay
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clearly has strong impact upon such localized issues as lip-vortex appearance (or not, as the case
may be). Clearly experimentally, both such outcomes were observed in Boger [1]; with Boger Fluid-2
substantiating a bulb-like lip-vortex.Fluids 2020, 5, 85 20 of 23 
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Figure 14. Vortex-intensity (−Ψmin); αaspect = 4; swIM [L = 12, β = 0.7, λD = 0.1].

Seeking lip-vortices through λD-rise under β = {0.8, 0.7} and L = 12. Following on from the parameter
adjustment and findings on vortex activity in Tamaddon-Jahromi et al. [4] under αaspect = 8 flow,
one may be peaked to further investigate the distinct influence of the extensional dissipation-parameter
λD. In particular, seeking the segregated impact of extensional viscosity alone on αaspect = 4
lip-vortex response, as identified above. Figure 15 provides further evidence supplied with λD-rise,
at the associated two solvent-fraction levels of β = {0.8, 0.7}. From this data, it is clear that early
dissipation-factor λD-rise (with its ηe-boosting control) does strengthen lip-vortex activity, prior to this
being subsumed by the more dominant salient-corner vortex, as the latter fingers its way towards the
re-entrant corner. This response is simply intensified with reduction in solvent-fraction, with β = 0.7
subsuming lv-activity at λD = 0.4, whilst β = 0.8 performs likewise by λD = 0.3.
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On αaspect = 2 flow. Finally, the flow dynamics for the αaspect = 2 contraction-ratio are so mild, that 
one needs to locate large polymeric-composition as high as β  = 1/9 to detect any indication of 
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Figure 15. Vortex-intensity (−Ψmin); αaspect = 4; swIM [L = 12, β = {0.7, 0.8}, λD = {0.2, 0.3, 0.4}].

On αaspect = 2 flow. Finally, the flow dynamics for the αaspect = 2 contraction-ratio are so mild,
that one needs to locate large polymeric-composition as high as β = 1/9 to detect any indication of
lv-activity. Even then, such activity is limited to the temporal evolution phase alone, and vanishes
prior to a steady-state being established (also noted by others for planar αaspect = 4 contraction flow,
see Sato and Richardson [17], Olsson [18]). In this instance, the influence of extensibility structure
L-parameter adjustment on vortex-structures is barely noticeable.

4. Conclusions

Findings in this study go some way to replicating the experimental observations of Boger [1]
and Boger et al. [2], on flow structures generated in three circular contraction flows of different
aspect-ratios of αaspect = {2, 4, 8}, and with two different Boger fluids, of essentially the same rheological
response. Predictions reveal the delicate rheological balances at play, to match such response, taking
into account the separate and combined influences of extensional viscosity and first normal-stress
difference. Accordingly, elusive lip-vortices have been captured, as well as transition phases between
salient and lip-vortices, their coalescence and the domination of elastic-corner vortices, and their
relationship pressure-drops and first normal-stress difference in complex combined shear-to-extensional
flow. Predictions permit fine interrogation of such phenomena. The flow history through flow-rate
Q-rise provides the key to recognizing the dominant rheological characteristics here, where the
swIM-model’s precise tuning of normal-stress response on both shear and extension permits the
capture of lip-vortices in the three geometrical configurations explored. Moreover, a link between
flow-structure (through vortex-morphology and first normal-stress difference in the vicinities of
the constriction) and pressure-drop enhancement staging is reported. In this respect, vortex-shape
concurs well with N1-field structure in the recess zones, for which connection between kinematics
and rheological response is exposed. The pressure-drop enhancement mechanism, associated with
the non-linear viscoelastic features of the Boger solutions, correlates well with vortex-dynamics
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phasing, where transition is recorded from early concave salient-corner vortices, coexistent lip and
salient-corner vortices, and evolution to convex elastic-corner vortices, as reported experimentally [28]
and numerically [9].

Of particular note across contraction-ratio αaspect = {2, 4, 8} solutions is the gradually shifting
upwards of the vortex-centre loci. It is attracted to the re-entrant corner, yet the relative positions
of vortex-centre loci clearly display dependencies upon their salient-corner to elastic-corner vortex
evolution history through flow-rate rise. These vortex evolution patterns concur well with the Boger
Fluid-1 (PAA/CS) and Fluid-2 (PIB/PB) findings of Boger [1], prominent for aspect-ratios (αaspect ≥ 4),
and the movement of the vortex-eye gravitating towards the re-entrant corner with increasing flow-rate,
finally leading to elastic-corner vortex domination and viscoelastic pressure-drop enhancement.
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