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Abstract: This study proposeda novel exact expression for step length (size) in gradient-based
aerodynamic shape optimization for an airfoil in steady inviscid transonic flows. The airfoil surfaces
were parameterized using Bezier curves. The Bezier curve control points were considered as design
variables and the finite-difference method was used to compute the gradient of the objective function
(drag-to-lift ratio) with respect to the design variables. An exact explicit expression was derived for the
step length in gradient-based shape optimization problems. It was shown that the derived step length
was independent of the method used for calculating the gradient (adjoint method, finite-difference
method, etc.). The obtained results reveal the accuracy of the derived step length.
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1. Introduction

The combination of computational fluid dynamics with numerical optimization algorithms has
become a numerical tool used to predict the optimal shape for aerodynamic configurations, such
as airfoils. During the last few decades, aerodynamic shape optimization has been an important
area of research and great advances have been made due to the rapid progress in the development
of high-performance computers and computational algorithms. The traditional “trial and error”
approach used to design aerodynamic configurations is based on wind-tunnel testing. Nowadays,
the high cost associated with wind-tunnel testing of real aerodynamic models is significantly reduced
using numerical shape optimization. Instead of costly experiments of a whole range of aerodynamic
configurations, only the optimal shape predicted bythe computational analysis is tested in the
wind tunnel. When validated this way, the optimal design may be used in the development of the
final aerodynamic configuration. To make this approach viable, shape optimization algorithms for
aerodynamic configurations must be as efficient as possible.

Among the factors involved in aerodynamic shape optimization are the type of flow regime
(subsonic, transonic, supersonic, hypersonic), the governing equations (Laplace, Euler, Navier–Stokes),
the grid used to mesh the flow domain (structured, unstructured, if structured: O-type, C-type, H-type,
or hybrid), the design variables and the angle of attack, the method of discretization of the governing
equations (finite element method (FEM), finite difference method (FDM), finite volume method
(FVM)), the optimization method (Newton and quasi-Newton methods, conjugate gradient, genetic
algorithm, etc.), the shape sensitivity analysis (finite-difference method, adjoint method, automatic
differentiation, etc.), the aerodynamic body to be optimized(airfoil, wing, fuselage, blades, etc.),
the objective function definition, the body parameterization method, and the imposed constraints
(geometrical, etc.).

In Hicks and coworkers [1,2], computational fluid dynamics was combined with numerical
optimization to predict theoptimal shape design for airfoils and wings. In Hicks et al. [1], the drag on
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nonlifting symmetric transonic airfoils in an inviscid flow is minimized under geometric constraints.
The numerical optimization method is based on feasible directions and the inviscid flow is governed
by the transonic, small-disturbance equation. In Hicks et al. [2], the optimal shape design of
a wing is studied. The problems of drag minimization and lift-to-drag ratio maximization are
addressed bysolving the three-dimensional full potential equation coupled with the conjugate gradient
method. The first use of adjoint equations for optimal design problems in fluid dynamics is presented
inPironneau [3] and for aerodynamic shape optimization problems governed by the full potential
and the Euler equations arepresented in Jameson and coworkers [4–7]. The application of the adjoint
method to aerodynamic shape optimization has been the subject of intensive research during the
past few decades [8–12]. The optimal shape design in fluid mechanics and aerodynamics using
different methods is thoroughly studied inMohammadi and Pironneau [13] and an excellent study on
the coupling of computational fluid dynamics and optimization methods is given inThevenin and
Janiga [14]. A thorough examination of various aerodynamic optimization methods is given inSkinner
and Zare-Behtash [15]. An extensive study on the mathematical aspects of the discrete adjoint method
is presented in Giles and coworkers [16,17]. InElliott and Peraire [18], the discrete adjoint method is
used to calculate the gradient of the objective function with respect to design variables in airfoil and
wing inverse design problems governed by the Euler equations using unstructured meshes. It is shown
that the computation of the gradient of the objective function using the adjoint method is independent
of thenumber of design variables. In Nemec and Zingg [19], a Newton–Krylov algorithm is applied
to the discrete adjoint and the discrete flow-sensitivity approaches to calculate the gradient of the
objective function in some two-dimensional aerodynamic shape optimization problems governed by
the Navier–Stokes equations. The design problems considered include an inverse design, maximization
of the lift-to-drag ratio, lift-constrained drag minimization, and lift enhancement. In Anderson and
Venkatakrishnan [20], the continuous adjoint method is formulated and applied for aerodynamic shape
optimization problems governed by the Euler and Navier–Stokes equations using unstructured grids
for different objective functions, such as drag minimization, lift maximization, and an inverse design
(based on a pressure distribution).

By increasing the number of design variables in large-scale aerodynamic shape optimization
problems, the most efficient method forcalculating the involved gradients is to combine gradient-based
optimization methods, such as steepest-descent, conjugate-gradient, or quasi-Newton method, with
the adjoint method. In the gradient-based optimization methods, the iterative process used to update
the solution is based on the calculation of two variables: (1) the direction of descent and (2) the step
length (a positive scalar). The former, which may be obtained from the calculation of the gradient of the
underlying objective function, specifies the direction along which the value of the objective function
is reduced, while the latter determines the distance that the updated solution should move in the
direction of descent to substantially minimize the objective function. The success of a gradient-based
optimization method depends on effective choices of both the direction of descent and the step
length [21]. In aerodynamic shape optimization problems, the gradient of the objective function may
be determined usingthe finite-difference method or the adjoint method. The step length is calculated
usingline search or trust-region methods. If the objective function to be minimized can be expressed
as a polynomial function, one can find an exact step length; otherwise, an inexact step length may
be obtained usingthe line search or trust-region methods, and it is chosen in such a way that some
conditions, such as the Wolfe conditions, are satisfied [21]. To the best of our knowledge, in aerodynamic
shape optimization problems, there exists no exact expression for the step length. In this study, an exact
step length is developed for the first time for unconstrained minimization problems in aerodynamic
shape optimization, such as drag and drag-to-lift ratio minimization problems.

2. Governing Equations

The steady inviscid transonic flows considered here are governed by the Euler equations. In this
study, these equations were solved using the ANSYS Fluent v19.2 software (ANSYS, Inc., Canonsburg,
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PA, USA) to obtain the airfoil surface pressure distribution needed to calculate the sensitivity coefficients
using the finitedifference method.

Airfoil Parameterization

In this study, Bezier curves (BezierAirfoil: A MATLAB code for generating an airfoil shape using
Bezier curve-V2. DOI: 10.13140/RG.2.2.30002.56000) were used to parameterize the airfoil surfaces.

Bezier curve: The mathematical definition of a Bezier curve is as follows:

P(t) =
n∑

i=0

Bi Jn,i(t) (1)

where
Jn,i(t) =

n!
i!(n− i)!

ti(1− t)n−i (2)

is the Bernstein basis polynomial of degree n, t ∈ [0, 1], and P(t) = (x(t), y(t)). x(t) and y(t) are the x-
and y- coordinates of the predetermined data points on the airfoil surface. By convention:00

≡ 1 and
0! ≡ 1. The order of a Bezier curve is equal to n + 1 (the number of the control points).

The parametric Bezier curve of interest here was of order 11 (because it can successfully generate
a large number of airfoil shapes with a high degree of accuracy) and is given as follows:

n = 10⇒ number of control points = 11

P(t) =
10∑

i=0
Bi J10,i(t) =B0 J10,0(t) + . . .+ B10 J10,10(t)

= B0
10!

0!(10−0)! t
0(1− t)10−0 + . . .+ B10

10!
10!(10−10)! t

10(1− t)10−10

(3)

In this study, the x-coordinates of airfoil nodes were considered constant during the optimization,
P(t) = y(t). Therefore, for the predetermined y-coordinate of the airfoil nodes, we could write:

y1, j(t) = B0(1− ty1, j)
10 + B110ty1, j(1− ty1, j)

9 + B245t2
y1, j

(1− ty1, j)
8 + B3120t3

y1, j
(1− ty1, j)

7

B4210t4
y1, j

(1− ty1, j)
6 + B5252t5

y1, j
(1− ty1, j)

5 + B6210t6
y1, j

(1− ty1, j)
4 + B7120t7

y1, j
(1− ty1, j)

3

+B845t8
y1, j

(1− ty1, j)
2 + B910t9

y1, j
(1− ty1, j)

1 + B10t10
y1, j

(4)

Therefore, the Bezier control points B0, . . . , B10 could be obtained at the first iteration for the
predetermined y-coordinate of the initial airfoil. Two Bezier curves were needed to construct an airfoil
surface: one for the upper surface (11 Bezier control points) and one for the lower surface (11 Bezier
control points). Hence, we needed 2× 11 = 22 Bezier control points. y1, j are the y-coordinates of the
airfoil nodes in which j = 1, . . . , N+1

2 (N is the number of nodes on the airfoil surface) for the upper
surface, j = N+1

2 , . . . , N for the lower surface (Figure 1), and ty1, j is the value of t ∈ [0, 1] associated with
the y1, j (Figure 2). The airfoil chord was divided into N+1

2 − 1 intervals of equal length l.
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3. Aerodynamic Shape Optimization

3.1. Design Variables

Here, in the aerodynamic shape optimization, the design variables were the Bezier control points
BDVi (i = 1, . . . , 16), as shown in Figure 3. The first and last two Bezier control points on the upper
and the lower surfaces of the airfoil (hollow circles in Figure 3) were fixed and not considered to
bedesign variables.For the ease of coding, the design variables were numbered consistent with the node
numbering on the airfoil surface (see Appendix C). In other words, the design variables were numbered
from right to left on the upper surface and from left to right on the lower surface (see Figure 3).
The reason for fixing two control points adjacent to the airfoil trailing edge (BU

9 and BL
9) was that the

values of these two control points were very small (BU
9 = −1.35283 × 10−5 and BL

9 = 1.35283 × 10−5

for the NACA0012 airfoil, as shown in Figure 4), especially given that they should be multiplied by
another small variable (finite-difference step-size: see Equation (17)), and even the double-precision
calculations of the flow solver (here ANSYS Fluent) may not be able to detect the change of the pressure
of the perturbed nodes. Thus, the computation of the sensitivity coefficients using the finitedifference
method for these two control points would be problematic and would result in a zero sensitivity
coefficient due to the subtraction of nearly equal terms. The complex-step derivative approximation is
a remedy for this issue if one has access to the solver source code to substitute all real type variable
declarations with complex declarations and define all functions and operators that are not defined for
complex arguments [22]. However, in this study, the two control points mentioned above were fixed
and are not considered as design variables.
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Figure 3. Definition of the design variables used for aerodynamic shape optimization. Here, the
coordinates of the Bezier control points were not real and were plotted this way for the sake of simplicity
in the definition.
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3.2. Objective Function

The aerodynamic shape optimization problem of interest here consistedof the minimization of
the drag (D) to lift (L) ratio, D

L , at a fixedangle of attack α. This was an unconstrained optimization
problem since no constraint was considered for it.

The objective function for this case is:

J = (
D
L
)

2
(5)

where
D = A cosα+ N sinα (6)

L = −A sinα+ N cosα (7)

and A and N are axial and normal forces, respectively (Figure 5) [23]. We can write the drag and lift
forces as follows:

D =
N−1∑
j=1

(
p1, j(y1, j − y1, j+1) cosα+ p1, j(x1, j+1 − x1, j) sinα

)
(8)

L =
N−1∑
j=1

(
−p1, j(y1, j − y1, j+1) sinα+ p1, j(x1, j+1 − x1, j) cosα

)
(9)

Therefore, the objective function becomes:

minJ = (D
L )

2
= ( A cosα+N sinα

−A sinα+N cosα )
2
=


N−1∑
j=1

(p1, j(y1, j−y1, j+1) cosα+p1, j(x1, j+1−x1, j) sinα)

N−1∑
j=1

(−p1, j(y1, j−y1, j+1) sinα+p1, j(x1, j+1−x1, j) cosα)


2

(10)
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3.3. Sensitivity Analysis

The sensitivity analysis in gradient-based optimization is concerned with the computation of
the derivative of the objective function with respect to the unknown variables. Suppose we wish to
calculate the sensitivity of the objective function J defined by Equation (10) to the Bezier control
points BDVi (i = 1, . . . , 16). This can be mathematically expressed as:

∂J
∂BDVi

= 2(
D
L
)

∂
∂BDVi

(
D
L
) = 2(

D
L
)

∂D
∂BDVi

L− ∂L
∂BDVi

D

L2 = 2(
D
L3 )(

∂D
∂BDVi

L−
∂L

∂BDVi

D) (11)

The derivatives on the right-hand side of Equation (11) can be evaluated by taking the derivative
of drag D, Equation (8), and lift L, Equation (9) with respect to the design variables BDVi , as follows:

∂D
∂BDVi

=
N−1∑
j=1

[(
∂p1, j

∂BDVi

(y1, j − y1, j+1) + p1, j
∂(y1, j − y1, j+1)

∂BDVi

)
cosα+

∂p1, j

∂BDVi

(x1, j+1 − x1, j) + p1, j
∂(x1, j+1 − x1, j)

∂BDVi︸             ︷︷             ︸
=0

 sinα


(12)

Factoring
∂p1, j

∂BDVi

, we obtain:

∂D
∂BDVi

=
N−1∑
j=1

[(
∂p1, j

∂BDVi

(
(y1, j − y1, j+1) cosα+ (x1, j+1 − x1, j) sinα

))
+ p1, j

∂(y1, j − y1, j+1)

∂BDVi

cosα
]

(13)

In a similar fashion, we obtain:
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∂L
∂BDVi

=
N−1∑
j=1

[(
−
∂p1, j

∂BDVi

(y1, j − y1, j+1) − p1, j
∂(y1, j − y1, j+1)

∂BDVi

)
sinα+

∂p1, j

∂BDVi

(x1, j+1 − x1, j) + p1, j
∂(x1, j+1 − x1, j)

∂BDVi︸             ︷︷             ︸
=0

 cosα


(14)

Factoring
∂p1, j

∂BDVi

, we obtain:

∂L
∂BDVi

=
N−1∑
j=1

[(
∂p1, j

∂BDVi

(
−(y1, j − y1, j+1) sinα+ (x1, j+1 − x1, j) cosα

))
− p1, j

∂(y1, j − y1, j+1)

∂BDVi

sinα
]

(15)

Thus, the derivative of the objective function, Equation (10) becomes:

∂J
∂BDVi

= 2(
D
L3 )(

∂D
∂BDVi

L−
∂L

∂BDVi

D) =

2(
D
L3 )

N−1∑
j=1

[(
∂p1, j

∂BDVi

(
(y1, j − y1, j+1) cosα+ (x1, j+1 − x1, j) sinα

))
+ p1, j

∂(y1, j − y1, j+1)

∂BDVi

cosα
]
L−

N−1∑
j=1

[(
∂p1, j

∂BDVi

(
−(y1, j − y1, j+1) sinα+ (x1, j+1 − x1, j) cosα

))
− p1, j

∂(y1, j − y1, j+1)

∂BDVi

sinα
]
D

 =
2(

D
L3 )

N−1∑
j=1

[
∂p1, j

∂BDVi

(y1, j − y1, j+1)(L cosα+ D sinα) +
∂p1, j

∂BDVi

(x1, j+1 − x1, j)(L sinα−D cosα)+

p1, j
∂(y1, j − y1, j+1)

∂BDVi

(L cosα+ D sinα)
]

(16)

The sensitivity coefficients
∂p1, j

∂BDVi

may be computed using the finitedifference method, which

is chosen for the simplicity of implementation. Suppose we wish to calculate the sensitivity of the
pressure of nodes on the airfoil surface, p1, j( j = 1, . . . , N− 1), to the y-coordinate of the 16 Bezier control
points (BDVi (i = 1, . . . , 16), 8 for each of the upper and lower surfaces)in this study. The sensitivity
analysis can be performed by introducing a small perturbation to the y-coordinate of each of the Bezier
control points. The grid generation (using perturbed values for the Bezier control points) and flow
problem may be solved to obtain the new values for the pressure p1, j. Using these values for the
pressure, the dependency of the pressure p1, j on the perturbation of the y-position of Bezier control
points can be evaluated. The central finitedifference method is used to compute these sensitivities
as follows:

∂p1, j

∂BDVi

=
p1, j(BDVi + εBDVi) − p1, j(BDVi − εBDVi)

2εBDVi

(17)

In this study, the finitedifference step-size was ε = 0.005. The term εBDVi is the perturbation in the
y-position of the Bezier control point BDVi . Since the sensitivity of each pressure p1, j( j = 1, . . . , N − 1)
to each y-position of the Bezier control point BDVi (i = 1, . . . , 16) is required, the computation of the
sensitivity coefficients using this method requires 2 × (total number of control points − total number of
fixed control points) = 2 × [2(11) − 2(3)] = 32 additional solutions of the flow problem at each iteration.

Moreover, the terms
∂(y1, j − y1, j+1)

∂BDVi

=
∂y1, j

∂BDVi

−
∂y1, j+1

∂BDVi

can be calculated using Equation (4).

By having the value of the pressure at each node from the solution of flow equations (here, the Euler
equations are used), the drag D and the lift L can be calculated using Equations (8) and (9), respectively.
The angle of attack α is given a priori and is constant. The airfoil surface coordinates, x1, j and y1, j,
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are also known from the Bezier curve equation (here, the x1, j are constant and do not change in the
optimization process).

4. Optimization Method

In this study, the unconstrained nonlinear minimization problem was solved using
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (a quasi-Newton method). The quasi-Newton
method is a gradient-based optimization method thatuses an approximation of the Hessian matrix
or the inverse of a Hessian matrix [24]. In the BFGS method, an approximate inverse of the Hessian
matrix,B(k), is updated iteratively until an optimal solution is found. The steps of the aerodynamic
shape optimization using the BFGS method as implemented in this study are as follows.

(1) Specify the physical domain; the boundary conditions; the problem conditions, such as the free
stream Mach number; and the angle of attack.

(2) Generate structured or unstructured grids over the domain. The airfoil surface is generated using
aBezier curve of degree n.

(3) Solve the flow problem regarding finding the pressure values at thegrid points of the physical
domain and hence the airfoil surface.

(4) Using Equations (8) and (9), compute the objective functionJ (k) Equation (10).
(5) Compute the sensitivity coefficients using Equation (17).

(6) Compute the gradient direction ∇J (k) using Equation (16).

(7) The initial approximate inverse of Hessian matrix,B(1), is taken as the identity matrix, namely
B

(1) = I.
(8) Compute the direction of descent S(k) using the following equation:

S(k) = −B(k)
∇J

(k) (18)

(9) Compute the search step length β(k). An explicit expression for computing the search step length
will be presented later.

(10) Evaluate the new values of the design variables (Bezier curve control points) using the following
equation:

B(k+1)
DV = B(k)

DV + β(k)S(k) = B(k)
DV − β

(k)
B

(k)
∇J

(k) (19)

(11) Set the next iteration (k = k + 1) and return to step 2. Update the approximate inverse of the
Hessian matrix as [24]:

B
(k+1) = B(k) + (1 +

(g(k))
T
B

(k)g(k)

(d(k))
T

g(k)
)

d(k)(d(k))
T

(d(k))
T

g(k)
−

d(k)(g(k))
T
B

(k)

(d(k))
T

g(k)
−
B

(k)g(k)(d(k))
T

(d(k))
T

g(k)
(20)

where:
d(k) = B(k+1)

DV −B(k)
DV = β(k)S(k) (21)

g(k) = ∇J (k+1)
−∇J

(k) (22)

There exists no exact search step length for highly nonlinear aerodynamic shape optimization
problems. Therefore, an inexact step length using line search methods, such as backtracking,
is determined and it is chosen in such a way that some conditions, such as Wolfe conditions,
are satisfied [13,21,25]. Here, we present a novel method to obtain an exact step length in aerodynamic
shape optimization problems involving the unconstrained minimization of common objective function
definitions, such as drag and the drag-to lift-ratio. The formulation given here is concerned with the
Bezier curve only but it can be extended to other airfoil parameterization methods.
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Exact Step Length

The exact step length can be obtained as:

β
(k)
exact = argmin

β≥0
J (B(k+1)

DV ) = argmin
β≥0

J

(
B(k)

DV − β
(k)
B

(k)
∇J (B(k)

DV)
)

(23)

For simplicity, let B(k)
DVi

= a(k)i andB(k)
∇J

(k) = b(k)i (i = 1, . . . , 2n− 2), and suppose, for generality,
that the Bezier control points associated with the trailing and leading edges are considered fixed (they
are not considered as design variables). Thus, we can write:

B(k+1)
DVi

= a(k)i − β(k)b(k)i (24)

where a(k)i is divided into aU(k)

i (i = 1, . . . , n − 1) for the upper surface and aL(k)
i (i = n, . . . , 2n − 2) for

the lower surface. To obtain the exact step length β
(k)

exact, we minimizeJ (B(k+1)
DVi

) =

D(B(k+1)
DVi

)

L(B(k+1)
DVi

)

2

with

respect to β(k) as follows:
∂J
∂β

= 2
D
L
∂
∂β

(
D
L
) = 0⇒ D = 0 (25)

D =
N−1∑
j=1

(
y1, j(p1, j − p1, j−1) cosα+ N sinα

)
=

N+1
2 −1∑
j=2

y1, j(p1, j − p1, j−1) +
N−1∑

j=N+1
2 +1

y1, j(p1, j − p1, j−1)

 cosα+ N sinα = 0
(26)

Since y1,1 = y1,N = y1, N+1
2

= 0, the indices in Equation (26) do not include j = 1, N+1
2 , N.

Equation (26) is the same as Equation (8) with the rearrangement of terms being with respect to y1, j
rather than p1, j. From the definition of the Bezier curve, Equations (1) and (2)), we can write the drag,
Equation (26) as:

D =


N+1

2 −1∑
j=2

(
n−1∑
i=1

BU(k+1)

DVi

n!
i!(n−i)! t

i
y1, j

(1− ty1, j)
n−i

)
(p1, j − p1, j−1)+

N−1∑
j=N+1

2 +1

(
n−1∑
i=1

BL(k+1)

DVi

n!
i!(n−i)! t

i
y1, j

(1− ty1, j)
n−i

)
(p1, j − p1, j−1 )

}
cosα+ N sinα = 0

(27)

Using B(k+1)
DVi

= a(k)i − β(k)b(k)i (Equation (24)), we can write:

D =


N+1

2 −1∑
j=2

(
n−1∑
i=1

(aU(k)

i − β(k)bU(k)

i ) n!
i!(n−i)! t

i
y1, j

(1− ty1, j)
n−i

)
(p1, j − p1, j−1)+

N−1∑
j=N+1

2 +1

(
n−1∑
i=1

(aL(k)
i − β(k)bL(k)

i ) n!
i!(n−i)! t

i
y1, j

(1− ty1, j)
n−i

)
(p1, j − p1, j−1 )

}
cosα+ N sinα = 0

(28)

Afterexpanding, we obtain:

D =


N+1

2 −1∑
j=2

(
n−1∑
i=1

aU(k)

i
n!

i!(n−i)! t
i
y1, j

(1− ty1, j)
n−i
− β(k)

n−1∑
i=1

bU(k)

i
n!

i!(n−i)! t
i
y1, j

(1− ty1, j)
n−i

)
(p1, j − p1, j−1)+

N−1∑
j=N+1

2 +1

(
n−1∑
i=1

aL(k)
i

n!
i!(n−i)! t

i
y1, j

(1− ty1, j)
n−i
− β(k)

n−1∑
i=1

bL(k)
i

n!
i!(n−i)! t

i
y1, j

(1− ty1, j)
n−i

)
(p1, j − p1, j−1 )

}
cosα+ N sinα = 0

(29)
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Using the identity
k1∑

i=k0

l1∑
j=l0

ai j =
l1∑

j=l0

k1∑
i=k0

ai j, we can write the above expression as:

D =

n−1∑
i=1

N+1
2 −1∑
j=2

aU(k)

i
n!

i!(n−i)! t
i
y1, j

(1− ty1, j)
n−i
− β(k)

N+1
2 −1∑
j=2

bU(k)

i
n!

i!(n−i)! t
i
y1, j

(1− ty1, j)
n−i

 (p1, j − p1, j−1)+

n−1∑
i=1

 N−1∑
j=N+1

2 +1
aL(k)

i
n!

i!(n−i)! t
i
y1, j

(1− ty1, j)
n−i
− β(k)

N−1∑
j=N+1

2 +1
bL(k)

i
n!

i!(n−i)! t
i
y1, j

(1− ty1, j)
n−i

(p1, j − p1, j−1 )
}

cosα+ N sinα = 0

(30)

Therefore, we obtain

β
(k)
exact =

n−1∑
i=1

N+1
2 −1∑
j=2

aU(k)
i

n!
i!(n−i)! ti

y1, j
(1−ty1, j )

n−i(p1, j−p1, j−1)+
n−1∑
i=1

N−1∑
j= N+1

2 +1

aL(k)
i

n!
i!(n−i)! ti

y1, j
(1−ty1, j )

n−i(p1, j−p1, j−1)

 cosα+N sinα

n−1∑
i=1

N+1
2 −1∑
j=2

bU(k)
i

n!
i!(n−i)! ti

y1, j
(1−ty1, j )

n−i(p1, j−p1, j−1)+
n−1∑
i=1

N−1∑
j= N+1

2 +1

bL(k)
i

n!
i!(n−i)! ti

y1, j
(1−ty1, j )

n−i(p1, j−p1, j−1)

 cosα

(31)

which is the exact step length. As can be seen from Equation (31), the value of the exact step length
depends on the gradient of the objective function and it is independent of the method used for
calculating the gradient. In other words, one can calculate the gradient with any available method,
such as the adjoint method, the finitedifference method, etc., and then use Equation (31) to calculate
the exact step length. It can be concluded that an inaccuracy in computing the gradient of the objective
function or the approximate inverse of Hessian matrixB(k) can give rise to an inaccuracy in calculating
the exact step length.

For the sake of simplicity, the derivation of the above general step length expression is presented
for the Bezier curve of degree 10 and is given in Appendix A and a Fortran code to calculate it is given
in Appendix D. The derivation of the exact step length for other forms of the objective function, such as
drag minimization and lift-constrained drag minimization, is given in Appendix B.

5. Results

As mentioned previously, the objective of the aerodynamic shape optimization problem considered
in this study was to minimize the drag-to-lift ratio (which is equivalent to the maximization of the
lift-to-drag ratio) for an airfoil moving in a steady inviscid transonic flow through the implementation
of the exact step length in a gradient-based optimization algorithm. The following test case is presented
to investigate the accuracy and performance of the derived step length.

Test Case: A NACA 0012 airfoil operating at a fixed angle of attack of 2◦ and a free-stream Mach
number of 0.75 was considered for this test case as theinitial shape and flow conditions. The free
stream pressure was p∞ = 101,325.0 Pa. There was a strong shock at half of the airfoil chord length
on the upper surface. Since there was shock-induced pressure drag on the airfoil inthese operating
conditions, we aimedto optimize the airfoil to eliminate or weaken the shock as much as possible.
The initial drag and lift forces were D = 515.760 N and L = 17,090.0 N, respectively (this means that for
the initial airfoil, NACA 0012, inthese flow conditions, L

D = 17,090.0 N
515.760 N = 33.1). The initial drag and lift

coefficients were cd = 1.294 × 10−2 and cl = 0.42867, respectively, which are in excellent agreement
with cd = 1.25× 10−2 and cl = 0.4225 in Carpentieri et al. [26]. As shown in Table 1, the drag and lift
forces of the optimal shape were D = 36.142 N and L = 15,086.0 N, respectively (this means that for the
optimal airfoil, L

D = 15,086.0 N
36.142 N = 417.4, which was an approximately 11.6 times increase in the value of

( L
D ). A substantial decrease in the drag (from 515.760 N to 36.142 N) using only 16 design variables

was achieved. Moreover, the drag and lift coefficients of the optimal shape were cd = 9.065 × 10−4

and cl = 0.37839, respectively. A structured O-grid (see Figure 6) with N = 601 nodes on the airfoil
surface and 109 nodes in the normal direction to the airfoil surface was generated. The inviscid
transonic flow equations (Euler equations) were solved using the ANSYS Fluent software to compute
the pressure at each node on the airfoil surface (for unperturbed and 2× 16 = 32 perturbed shapes
foreach iteration). The computed pressures were then substituted into Equation (17) to calculate the
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sensitivity coefficients needed to compute the gradient of the objective function. A comparison of the
initial shape (NACA 0012 airfoil) and the optimal one, as well as the corresponding surface pressure
coefficients, is shown in Figure 7a,b, respectively. As can be seen, the shock on the initial shape was
eliminated in the optimal shape. The static pressure distributions of the initial and optimal shapes
are depicted in Figure 8a,b, respectively. A comparison of the initial and updated shape at each
iteration is shown in Figure 9. As can be seen in Figure 9, the shock waseliminated or significantly
weakened at each iteration (it is apparent from the value of the drag force given in Table 1, as well as
from the thinner leading edge in the updated airfoils). The optimal shape is also in good agreement
with the optimal shape in References [26,27]. A comparison of the initial shape (NACA 0012) and
the optimal shapes obtained in Chen et al. [27] and from our study is shown in Figure 10. As can be
seen, the upper surface shapes in both optimal shapes wereshock-free, which resulted in the minimum
drag in both shapes (as can be seen in Table 1, the majority of the reduction in the objective function
(D

L )
2

in the test case was due to the decrease in the drag value). The history of the objective function
is shown in Figure 11. The value of the objective function was substantially reduced by 99.4% and
most of the reduction was obtained in the first iteration. The optimization process was continued
for 15 iterations. The value of the exact step length used in the BFGS optimization method (using
Equation (31) or Equation (A5)) is plotted in Figure 12. At iteration 6, the negative value for the step
length was obtained (β(6) = −1.2468). The minimum value for the objective function was obtained at
iteration 6; however, as this value was obtained by a negative step length, the optimization process
was continued further. The sensitivity coefficients at some arbitrary nodal points (node numbers
20, 170, and 270 on the upper surface and node numbers 350, 500, and 580 on the lower surface;
there are N+1

2 = 601+1
2 = 301 nodes on each surface of the airfoil) on the airfoil surface using three

different finite-difference step-sizes ε = 10−2, ε = 10−3, and ε = 5 × 10−3 are depicted in Figure 13.
As shown, the sensitivity coefficients at each node using the three step-sizes were in good agreement.
However, in this study, the finite-difference step-size ε = 5× 10−3 was used to calculate the sensitivity
coefficients using Equation (17). The gradients of the objective functionJ = (D

L )
2

with respect to the
design variables BDVi (i = 1, . . . , 16) for the first and last iterations(iterations 1 and 15) are shown in
Figure 14a,b, respectively, representing a significant decrease in the norm of the gradient (from 0.0697
to 4.151× 10−4; a 99.4% reduction) to infer the optimal shape.

Table 1. Results for the test case.

Iteration Number (k) J = (D
L )

2 Step Length β(m2) D(N) L(N) cd cl

0 (initial shape) 9.10775 × 10−4 - 515.760 17,090.000 1.294 × 10−2 0.42867
1 1.97841 × 10−5 0.5534 34.032 7651.200 8.536 × 10−4 0.19191
2 1.34569 × 10−5 1.6872 35.644 9716.600 8.940 × 10−4 0.24372
3 1.06817 × 10−5 1.1510 38.239 11,700.000 9.591 × 10−4 0.29348
4 9.92128 × 10−6 2.4779 40.664 12,910.000 1.020 × 10−3 0.32381
5 8.40409 × 10−6 0.0188 40.980 14,136.000 1.028 × 10−3 0.35456
6 4.89131 × 10−6 −1.2468 35.521 16,061.000 8.910 × 10−4 0.40284
7 1.50193 × 10−5 47.6144 72.886 18,807.000 1.828 × 10−3 0.47174
8 2.14748 × 10−5 2.8478 49.214 10,620.000 1.234 × 10−3 0.26638
9 1.66016 × 10−5 0.3450 48.401 11,879.000 1.214 × 10−3 0.29795
10 1.24568 × 10−5 0.2160 45.653 12,935.000 1.145 × 10−3 0.32445
11 7.33858 × 10−6 0.2599 38.305 14,140.000 9.608 × 10−4 0.35466
12 6.68139 × 10−6 0.0009 40.202 15,553.000 1.008 × 10−3 0.39011
13 8.65189 × 10−6 11.8508 40.162 13,654.000 1.007 × 10−3 0.34247
14 1.26244 × 10−5 1.8642 59.411 16,721.000 1.490 × 10−3 0.41941
15 5.73953 × 10−6 0.9977 36.142 15,086.000 9.065 × 10−4 0.37839

- 99.4% reduction - 93.0%
reduction

11.7%
reduction - -
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Figure 7. Comparison of initial and optimal airfoils used in the transonic flow shape optimization
(a) and the corresponding airfoil surface pressure coefficients (b).
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Figure 8. Static pressure distribution for the initial shape (NACA 0012) (a) and the optimal shape
(at iteration 15) (b).
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Figure 9. Comparison of the initial shape (NACA 0012) and the updated shape at (a–n) iteration 1 to
iteration 14.
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Figure 10. Comparison of the initial shape (NACA 0012), the optimal shape from our study, and the
optimal shape from Chen et al. [27]; it shows a good agreement between the optimal shapes and an
excellent agreement between the optimal upper surfaces where the shock was eliminated.
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It should be emphasized that the gradient of the objective function with respect to the design
variables was computed using the finitedifference method. More accurate results are expected if the
gradient computation is accomplished with more accurate methods, such as the adjoint method or the
complex-step method.

6. Conclusions

This study aimed to develop a novel and exact step length for gradient-based aerodynamic
shape optimization problems. The steady inviscid transonic flow governed by the Euler equations
was considered and the Euler equations were solved usingthe finite element solver ANSYS Fluent.
Minimization of the drag-to-lift ratio (which is equivalent to the maximization of the lift-to-drag ratio)
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the exact step length dependedon both the values of the gradient of the objective function and the
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Nomenclature

B Bezier curve control point
S(k) direction of descent at iteration k
J objective function
J Bernstein basis polynomial
n degree of the Bernstein basis polynomial in Bezier curve
p pressure
P x and/or y in the Bezier curve expression
t parameter used in the Bezier curve, t ∈ [0, 1]
x, y Cartesian coordinates in the physical domain
β(k) search step length at iteration k
DV design variable
k iteration number

Appendix A

D(B(k+1)
DVi

) =


0︷︸︸︷

[y1,1 ](p1,1 − p1,N−1) cosα+[

y1,2︷                                                                                                                        ︸︸                                                                                                                        ︷
BU

0︷︸︸︷
0 + B(k+1)

DV9
10t1,2(1− t1,2)

9 + B(k+1)
DV8

45t2
1,2(1− t1,2)

8 + · · ·+ B(k+1)
DV1

10t9
1,2(1− t1,2) +
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10︷︸︸︷
0 ](p1,2 − p1,1) cosα+

[
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= 0

(A1)

Using B(k+1)
DVi

= a(k)i − β(k)b(k)i , we can write Equation (A1) as:
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D(B(k+1)
DVi
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(A2)

After factoring, we obtain:

D(B(k+1)
DVi

) =
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9(p1,2 − p1,1) + 10t1,3(1− t1,3)
9(p1,3 − p1,2) + · · ·+ 10t1, N+1

2 −1(1− t1, N+1
2 −1)

9(p1, N+1
2 −1 − p1, N+1

2 −2)

 cosα

+

(a(k)8 − β(k)b(k)8 )




A8︷                                                                                                                                                ︸︸                                                                                                                                                ︷
45t2

1,2(1− t1,2)
8(p1,2 − p1,1) + 45t2

1,3(1− t1,3)
8(p1,3 − p1,2) + · · ·+ 45t2

1, N+1
2 −1

(1− t1, N+1
2 −1)

8(p1, N+1
2 −1 − p1, N+1

2 −2)

 cosα

+
...
+

(a(k)1 − β(k)b(k)1 )




A1︷                                                                                                                                            ︸︸                                                                                                                                            ︷
10t9

1,2(1− t1,2)(p1,2 − p1,1) + 10t9
1,3(1− t1,3)(p1,3 − p1,2) + · · ·+ 10t9

1, N+1
2 −1

(1− t1, N+1
2 −1)(p1, N+1

2 −1 − p1, N+1
2 −2)

 cosα

+

(a(k)10 − β
(k)b(k)10 )




A10︷                                                                                                                    ︸︸                                                                                                                    ︷
10t1, N+1

2 +1(1− t1, N+1
2 +1)

9(p1, N+1
2 +1 − p1, N+1

2
) + · · ·+ 10t1,N−1(1− t1,N−1)

9(p1,N−1 − p1,N−2)

 cosα

+

(a(k)11 − β
(k)b(k)11 )




A11︷                                                                                                                 ︸︸                                                                                                                 ︷
45t2

1, N+1
2 +1

(1− t1, N+1
2 +1)

8(p1, N+1
2 +1 − p1, N+1

2
) + · · ·+ 45t2

1,N−1
(1− t1,N−1)

8(p1,N−1 − p1,N−2)

 cosα

+
...
+

(a(k)18 − β
(k)b(k)18 )




A18︷                                                                                                              ︸︸                                                                                                              ︷
10t9

1, N+1
2 +1

(1− t1, N+1
2 +1)(p1, N+1

2 +1 − p1, N+1
2
) + · · ·+ 10t9

1,N−1
(1− t1,N−1)(p1,N−1 − p1,N−2)

 cosα

+ N sinα) = 0

(A3)

which will be:

D(B(k+1)
DVi

) =

(a
(k)
9 − β(k)b(k)9 )A9 + (a(k)8 − β(k)b(k)8 )A8 + · · ·+ (a(k)1 − β(k)b(k)1 )A1︸                                                                                    ︷︷                                                                                    ︸

Upper surface

+

(a(k)10 − β
(k)b(k)10 )A10 + (a(k)11 − β

(k)b(k)11 )A11 + · · ·+ (a(k)18 − β
(k)b(k)18 )A18︸                                                                                        ︷︷                                                                                        ︸

Lower surface

 cosα+ N sinα = 0

(A4)

Thus, the exact step length is obtained as being:

β(k) =

[
a(k)9 A9 + a(k)8 A8 + · · ·+ a(k)1 A1 + a(k)10 A10 + a(k)11 A11 + · · ·+ a(k)18 A18

]
cosα+ N sinα[

b(k)9 A9 + b(k)8 A8 + · · ·+ b(k)1 A1 + b(k)10 A10 + b(k)11 A11 + · · ·+ b(k)18 A18

]
cosα

(A5)
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The Fortran 77 code used for calculation of the exact step length given by Equation (A5) is presented in
Appendix D.

Appendix B

Appendix B.1. Other Forms of the Objective Function

Appendix B.1.1. Drag Minimization

It is worth mentioning at this stage that the above expression for the step length is equally valid for drag
minimization problems as well. In such a case, we can express the objective function as:

J = D2 (A6)

Thus, we can write
∂J
∂BDVi

= 2D
∂D
∂BDVi

(A7)

where the term
∂D
∂BDVi

can be computed usingEquation (13). In a similar fashion to Equation (25), to derive an

exact expression for the step length, we can write:

∂J
∂β

= 2D
∂D
∂β

= 0⇒ D = 0 (A8)

which results in the same expression for the step length given in Equation (31) (or Equation (A5)).

Appendix B.1.2. Lift-Constrained Drag Minimization

In such a case, we can express the objective function as:

J = D2 (A9)

subject to L = constant = C (A10)

The equality constraint, L = constant = C, can be explicitly incorporated into the objective function,J = D2,
toconvert the constrained optimization problem to an equivalent unconstrained one. If

L = C (A11)

Then, from Equation (7), we have:

L = −A sinα+ N cosα = C (A12)

Therefore, we can write:

N =
C + A sinα

cosα
(A13)

By substituting N into the drag force expression (Equation (6)), we have:

D = A cosα+ N sinα = A cosα+
C + A sinα

cosα
sinα =

A cos2 α+ C sinα+ A sin2 α
cosα

Using cos2 α+ sin2 α = 1, the drag force expression simplifies to:

D =
A + C sinα

cosα
(A14)

or

D =

N−1∑
j=1

p1, j(y1, j − y1, j+1) + C sinα

cosα
(A15)
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Now the objective function expression to be minimized is:

J = D2 =


N−1∑
j=1

p1, j(y1, j − y1, j+1) + C sinα

cosα


2

(A16)

The gradient expression is:

∂J
∂BDVi

= 2D
∂D
∂BDVi

∂J
∂BDVi

= 2


N−1∑
j=1

p1, j(y1, j − y1, j+1) + C sinα

cosα



N−1∑
j=1

[
∂p1, j

∂BDVi

(y1, j − y1, j+1) + p1, j
∂(y1, j − y1, j+1)

∂BDVi

]
cosα

After simplifying (because the lift force is constant, L = C, we have ∂C
∂Bi

= 0), we obtain:

∂J
∂BDVi

=
2

cos2 α

N−1∑
j=1

p1, j(y1, j − y1, j+1) + C sinα


N−1∑

j=1

[
∂p1, j

∂BDVi

(y1, j − y1, j+1) + p1, j
∂(y1, j − y1, j+1)

∂BDVi

] (A17)

Equation (A17) is the gradient expression for the equivalent unconstrained optimization form of the
lift-constrained drag minimization problem.

To obtain an exact step length for this case, it is necessary to have D = 0. From Equation (A16), after a
rearrangement of terms with respect to y1, j rather than p1, j, we can write:

D =
N−1∑
j=1

p1, j(y1, j − y1, j+1) + C sinα =
N−1∑
j=1

y1, j(p1, j − p1, j−1) + C sinα = 0 (A18)

In a similar procedure to the previous cases, we can obtain the exact step length as being:

β
(k)
exact =

n−1∑
i=1

N+1
2 −1∑
j=2

aU(k)
i

n!
i!(n−i)! ti

y1, j
(1−ty1, j )

n−i(p1, j−p1, j−1)+
n−1∑
i=1

N−1∑
j= N+1

2 +1

aL(k)
i

n!
i!(n−i)! ti

y1, j
(1−ty1, j )

n−i(p1, j−p1, j−1)

+C sinα

n−1∑
i=1

N+1
2 −1∑
j=2

bU(k)
i

n!
i!(n−i)! ti

y1, j
(1−ty1, j )

n−i(p1, j−p1, j−1)+
n−1∑
i=1

N−1∑
j= N+1

2 +1

bL(k)
i

n!
i!(n−i)! ti

y1, j
(1−ty1, j )

n−i(p1, j−p1, j−1)


(A19)

or for the Bezier curve of degree 10 used in this study as being:

β(k) =

[
a(k)9 A9 + a(k)8 A8 + · · ·+ a(k)1 A1 + a(k)10 A10 + a(k)11 A11 + · · ·+ a(k)18 A18

]
+ C sinα[

b(k)9 A9 + b(k)8 A8 + · · ·+ b(k)1 A1 + b(k)10 A10 + b(k)11 A11 + · · ·+ b(k)18 A18

] (A20)

Note that in this equation, there is no cosα. C term as the initial lift force, which should be constant during
the optimization process.
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Appendix C

The Fortran code for converting the Bezier control points to the design variables is as follows:

C n is the degree of Bezier curve
C CPN is the Control Points Number (which is n+1=10+1=11 here)
C B_Y_T and B_Y_B is Bezier control points associated with the top and
C bottom surfaces, respectively
C B_Y is the Bezier design variable (see Figure 3: Two Bezier control
C points adjacent to trailing edge are not considered as design C
C variables in this code;therefore, there are eight design variables on top and
C surface and eight design variables on the bottom surface)

n=10
CPN=n+1
DO I=1,CPN-3
B_Y(I,1)=B_Y_T(CPN-I-1,1)
ENDDO

DO I=CPN-3+1,2*CPN-6
B_Y(I,1)=B_Y_B(I-CPN+3+1,1)
ENDDO

Appendix D

C STS stands for step-size (length) calculation
C t_STS is associated with each node on the airfoil surface,
C as defined in Figure 1
C t_T is t for the top surface; t_B is t for the bottom surface
C N is the number of nodes on airfoil surface

DELTA1_TT=(1.0−0.0)/((N+1)/2−1)
DELTA1_TB=(1.0−0.0)/((N+1)/2−1)
t_T(1,1)=0.0
t_T((N+1)/2,1)=1.0
t_B(1,1)=0.0
t_B((N+1)/2,1)=1.0
DO I=2,(N+1)/2−1
t_T(I,1)=t_T(I-1,1)+DELTA1_TT
ENDDO
DO I=2,(N+1)/2−1
t_B(I,1)=t_B(I−1,1)+DELTA1_TB
ENDDO
t_STS(1,1)=1.0
t_STS(1,(N+1)/2)=0.0
t_STS(1,N)=1.0

DO J=2,(N+1)/2−1
t_STS(1,J)=t_T((N+1)/2+1−J,1)
ENDDO

DO J=(N+1)/2+1,N−1
t_STS(1,J)=t_B(J−(N+1)/2+1,1)
ENDDO

C for the upper surface

A(1)=0.0
DO J=2,(N+1)/2−1
A(1)=A(1)+10.0*(t_STS(1,J)**9)*((1.0−t_STS(1,J))**1)*
+(PRESSURE(1,J)−PRESSURE(1,J−1))
ENDDO

A(2)=0.0
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DO J=2,(N+1)/2−1
A(2)=A(2)+45.0*(t_STS(1,J)**8)*((1.0-t_STS(1,J))**2)*
+(PRESSURE(1,J)−PRESSURE(1,J−1))
ENDDO

A(3)=0.0
DO J=2,(N+1)/2−1
A(3)=A(3)+120.0*(t_STS(1,J)**7)*((1.0−t_STS(1,J))**3)*
+(PRESSURE(1,J)−PRESSURE(1,J−1))
ENDDO

A(4)=0.0
DO J=2,(N+1)/2−1
A(4)=A(4)+210.0*(t_STS(1,J)**6)*((1.0−t_STS(1,J))**4)*
+(PRESSURE(1,J)−PRESSURE(1,J−1))
ENDDO

A(5)=0.0
DO J=2,(N+1)/2−1
A(5)=A(5)+252.0*(t_STS(1,J)**5)*((1.0−t_STS(1,J))**5)*
+(PRESSURE(1,J)−PRESSURE(1,J−1))
ENDDO

A(6)=0.0
DO J=2,(N+1)/2−1
A(6)=A(6)+210.0*(t_STS(1,J)**4)*((1.0−t_STS(1,J))**6)*
+(PRESSURE(1,J)−PRESSURE(1,J-1))
ENDDO

A(7)=0.0
DO J=2,(N+1)/2−1
A(7)=A(7)+120.0*(t_STS(1,J)**3)*((1.0−t_STS(1,J))**7)*
+(PRESSURE(1,J)−PRESSURE(1,J−1))
ENDDO

A(8)=0.0
DO J=2,(N+1)/2−1
A(8)=A(8)+45.0*(t_STS(1,J)**2)*((1.0−t_STS(1,J))**8)*
+(PRESSURE(1,J)−PRESSURE(1,J−1))
ENDDO

A(9)=0.0
DO J=2,(N+1)/2−1
A(9)=A(9)+10.0*(t_STS(1,J)**1)*((1.0−t_STS(1,J))**9)*
+(PRESSURE(1,J)−PRESSURE(1,J−1))
ENDDO

C for the lower surface

A(10)=0.0
DO J=(N+1)/2+1,N−1
A(10)=A(10)+10.0*(t_STS(1,J)**1)*((1.0−t_STS(1,J))**9)*
+(PRESSURE(1,J)−PRESSURE(1,J−1))
ENDDO

A(11)=0.0
DO J=(N+1)/2+1,N−1
A(11)=A(11)+45.0*(t_STS(1,J)**2)*((1.0−t_STS(1,J))**8)*
+(PRESSURE(1,J)−PRESSURE(1,J−1))
ENDDO

A(12)=0.0
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DO J=(N+1)/2+1,N−1
A(12)=A(12)+120.0*(t_STS(1,J)**3)*((1.0−t_STS(1,J))**7)*
+(PRESSURE(1,J)−PRESSURE(1,J−1))
ENDDO

A(13)=0.0
DO J=(N+1)/2+1,N−1
A(13)=A(13)+210.0*(t_STS(1,J)**4)*((1.0−t_STS(1,J))**6)*
+(PRESSURE(1,J)−PRESSURE(1,J−1))
ENDDO

A(14)=0.0
DO J=(N+1)/2+1,N−1
A(14)=A(14)+252.0*(t_STS(1,J)**5)*((1.0−t_STS(1,J))**5)*
+(PRESSURE(1,J)−PRESSURE(1,J−1))
ENDDO

A(15)=0.0
DO J=(N+1)/2+1,N−1
A(15)=A(15)+210.0*(t_STS(1,J)**6)*((1.0−t_STS(1,J))**4)*
+(PRESSURE(1,J)−PRESSURE(1,J-1))
ENDDO

A(16)=0.0
DO J=(N+1)/2+1,N−1
A(16)=A(16)+120.0*(t_STS(1,J)**7)*((1.0−t_STS(1,J))**3)*
+(PRESSURE(1,J)−PRESSURE(1,J−1))
ENDDO

A(17)=0.0
DO J=(N+1)/2+1,N−1
A(17)=A(17)+45.0*(t_STS(1,J)**8)*((1.0−t_STS(1,J))**2)*
+(PRESSURE(1,J)−PRESSURE(1,J−1))
ENDDO

A(18)=0.0
DO J=(N+1)/2+1,N−1
A(18)=A(18)+10.0*(t_STS(1,J)**9)*((1.0−t_STS(1,J))**1)*
+(PRESSURE(1,J)−PRESSURE(1,J−1))
ENDDO

C terms in Equation (24):

DO I=1,2*CPN−4
b_STS(I,1)=0.0

DO L=1,2*CPN−4
b_STS(I,1)=b_STS(I,1)+BY_BFGS(I,L)*DELTA_SY(L,1)
ENDDO

ENDDO

DO I=1,2*CPN−4
a_STS(I,1)=B_Y(I,1)

ENDDO

C calculation of beta (exact step-size):
C terms in numerator of Equation (A5)

BETA1_KY=0.0
DO I=1,2*CPN−4
BETA1_KY=BETA1_KY+a_STS(I,1)*A(I)
ENDDO



Fluids 2020, 5, 70 24 of 25

C terms in the denominator of Equation (A5)

BETA2_KY=0.0
DO I=1,2*CPN−4
BETA2_KY=BETA2_KY+b_STS(I,1)*A(I)
ENDDO

C Equation (A5):

BETA_KY=(COS(PI*AOA/180.0)*BETA1_KY+NORMAL_FORCE*
+SIN(PI*AOA/180.0))/(COS(PI*AOA/180.0)*BETA2_KY)
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