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Abstract: Many organisms achieve locomotion via reciprocal motions. This paper presents the
dynamic analysis and design optimization of a vibratory swimmer with asymmetric drag forces
and fluid added mass. The swimmer consists of a floating body with an oscillatory mass inside.
One-dimensional oscillations of the mass cause the body to oscillate with the same frequency
as the mass. An asymmetric rigid fin attached to the bottom of the body generates asymmetric
hydrodynamic forces, which drive the swimmer either backward or forward on average, depending
on the orientation of the fin. The equation of motion of the system is a time-periodic, piecewise-smooth
differential equation. We use simulations to determine the hydrodynamic forces acting on the fin and
averaging techniques to determine the dynamic response of the swimmer. The analytical results are
found to be in good agreement with vibratory swimmer prototype experiments. We found that the
average unidirectional speed of the swimmer is optimized if the ratio of the forward and backward
drag coefficients is minimized. The analysis presented here can aid in the design and optimization
of bio-inspired and biomimetic robotic swimmers. A magnetically controlled microscale vibratory
swimmer like the one described here could have applications in targeted drug delivery.

Keywords: vibrational mechanics; bio-inspired swimmers; averaging; drag-based systems;
asymmetric added mass; piecewise-smooth dynamical systems; targeted drug delivery

1. Introduction

Vibrations are a characteristic of many physical systems. Many biological and robotic systems
are vibration-driven, i.e., they use periodic motions of their limbs, bodies, or links to generate forces
for locomotion. Some examples are flying insects and birds, fish, snakes and worms, swimming
micro-organisms, swimming robots, and flapping-wing biomimetic air vehicles. Vibrations may
also be used for open-loop stabilization or to change the transient response properties of a system,
which is called vibrational control [1–3]. The vibrational mechanics of smooth dynamical systems is a
well-developed research area. But many vibrational systems are only piecewise-smooth. For example,
mechanical systems with dry (Coulomb) friction, mechanical systems with aero- or hydrodynamic
forces, electrical circuits with switches, mechanical systems with colliding bodies, and biolocomotion
systems [4].

Most often, due to the presence of time-periodic inputs, vibrational systems are time-periodic,
and hence time-varying systems. In general, dynamic analysis of time-varying systems is more
complicated than for time-invariant systems [5]. However, for classes of time-periodic systems one
may use the averaging theorem to transform the original time-periodic system into a time-invariant
system which represents the averaged dynamics [6–8]. According to the averaging theorem, every
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stable equilibrium point of the averaged dynamics corresponds to a stable periodic orbit of the original,
time-periodic system with the same stability properties of the equilibrium point, and which “hovers”
in a small neighborhood around that equilibrium point. Averaging techniques are widely used for
dynamical analysis of smooth, time-periodic systems. However in [9–11], the averaging theorem is also
used for vibration analysis of piecewise-smooth, time-periodic systems. Although more complicated,
higher order averaging techniques are also available for the analysis of time-periodic systems [12,13].

One application of vibrational mechanics and averaging is for the dynamic analysis of flying and
swimming biolocomotion systems and for the analysis, control, and optimization of biomimetic robotic
systems. Most of the available robotic swimmers and fliers use actuated tails, fins, wings, or flagella
for motion [14–17]. Design optimization and optimization of kinematic gaits and inputs of these types
of swimmers and fliers have been active research areas [18–21]. For a review of robotic fliers and
macro- and micro-size swimmers see [22–25]. Dynamics, control, and optimization of mobile robots,
such as robotic swimmers and fliers, with no actuated members outside of their bodies have also been
subjects of vast research recently. This type of robots use internal rotors, internal oscillatory masses,
or deformations of their bodies to generate asymmetric fluid or friction forces for motion [26–33].

In this paper we consider the vibrational analysis and design optimization of a drag-based
vibratory swimmer. Unlike conventional robotic swimmers, the proposed swimmer does not have
any actuated or moving parts on the exterior of its body, which causes its design, fabrication,
and maintenance to be simple. The swimmer with mass M consists of a symmetric body which
floats on the surface of a fluid, e.g., water. A mass m oscillates inside the body with constant amplitude
and frequency. A rigid, thin, inclined plate (fin) is attached to the bottom of the body and is submerged
in the fluid. Hydrodynamic forces act on the fin when it moves relative to the fluid. According to
the principle of conservation of linear momentum, the swimmer body oscillates in response to the
oscillation the mass m with the same frequency, but a different amplitude. Without the inclined fin,
the average velocity of the swimmer is zero. By adding the inclined fin and thus breaking the symmetry
of the external swimmer geometry, an asymmetric drag force is applied to the system. Due to the
asymmetric drag force, the average velocity of the swimmer will not be zero anymore and the swimmer
moves in one direction on average with a certain mean velocity. The fin also changes the total mass of
the system by adding an asymmetric fluid added mass to the mass of the system.

We performed finite element simulations with COMSOL Multiphysics R© and determined the
drag coefficient of an inclined rigid fin attached to a wall and immersed in a fluid, for different values
of the fin angle, and established an approximate relationship between the drag coefficient and the
fin angle. Using the averaged dynamics of the system and the relationship we found between the
drag coefficient and the fin angle, we determine the optimum fin angle for the swimmer to move
at maximum average speed. We present a general theorem for design optimization of a class of
vibrational systems with asymmetric forces acting on the system. Through experiments, we verified
the dynamic model, optimization technique, and finite element simulation results used for analysis.
The results show adequate agreement between analytical and experimental design optimization.
The idea presented in this paper may be used for the dynamic analysis and design optimization
of macro- and microsized robotic swimmers. e.g., for microrobots used for targeted drug delivery.
Though the swimmer presented in this paper floats on the fluid surface, the general class of systems
analyzed also includes vibratory swimmers which are immersed in a fluid. For microscale swimmers,
one may use micro-cantilever beams as the vibratory mass.

This paper is organized as follows. In Section 2.1 we discuss the averaging of a class of mechanical
systems with high-frequency inputs. We use the averaging technique described in Section 2.1 to
determine the average dynamics of the vibratory swimmer in Section 2.2, after discussing the equations
of motion of the swimmer. Section 2.3 presents the design optimization of the vibratory swimmer
to maximize its mean velocity. In Section 2.4 we discuss the results from numerical simulations to
determine the hydrodynamic forces acting on a rigid, inclined plate submerged in a fluid. Section 3.1
discusses the averaging and design optimization of vibratory boat with both asymmetric drag and
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asymmetric fluid added mass forces. The swimmer used for experiments and experimental results are
presented in Section 3.2. The main results of the research are summarized in Section 4.

2. Materials and Methods

2.1. Averaging of Piecewise-Smooth Systems with High Frequency Inputs

Consider the first order system

ẋ = f (x) + u(t), x(0) = x0 (1)

where x is the n× 1 state vector, f (x) is a vector field containing smooth or piecewise-smooth functions,
and u(t) =

(
u1(t), . . . , un(t)

)T is the input vector. Consider high-frequency, high-amplitude inputs of
the form

ui(t) = ωvi(ωt) (2)

where vi(t) are zero-mean, T-periodic functions, and ω is the “high” frequency. Substituting inputs of
the form (2) into system (1), the dynamic equations of the system are

ẋ = f (x) + ωv(ωt), x(0) = x0 (3)

where v(t) =
(
v1(t), . . . , vn(t)

)T . Using the fast-time scale τ = ωt, Equation (3) transforms into

dx
dτ

= ε f (x) + v(τ), x(0) = x0 (4)

where ε = 1
ω is a “small” number.

Consider the transformation
x = y +

∫
v(τ)dτ (5)

where
∫

v(τ)dτ = (
∫

v1(τ)dτ, . . . ,
∫

vn(τ)dτ)
T . Taking the derivative with respect to τ, (5) becomes

dx
dτ

=
dy
dτ

+ v(τ). (6)

Comparing Equations (4) and (6), one concludes that

dy
dτ

= εg(y, τ), y(0) = y0 (7)

where

g(y, τ) = f
(

y +
∫

v(τ)dτ

)
.

Since the inputs vi(τ) are zero-mean, T-periodic functions, g(y, τ) is also T-periodic in its second
argument. The initial conditions y0 are determined using transformation (5) for τ = 0.

System (7) is in the standard averaging form and its averaged dynamics are represented by [6,7]

dȳ
dτ

= εḡ(ȳ), ȳ(0) = y0 (8)

where

ḡ(ȳ) =
1
T

∫ T

0
g(ȳ, τ)dτ.

Replacing the fast time scale τ with the slow time scale t, the averaged dynamics (8) can be written in
the form

˙̄y = ḡ(ȳ), ȳ(0) = y0. (9)
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According to the averaging theorem, if the averaged dynamics (9) possesses a hyperbolically
stable equilibrium point, then the original time-periodic system (7) possesses a hyperbolically stable
periodic orbit in an O(ε) neighborhood of that equilibrium point. From transformation (5) it is evident
that the average values of x and y are equal, i.e., x̄ = ȳ.

2.2. The Vibratory Swimmer: Dynamic Analysis and Averaging

In this section we derive the equation of motion of the proposed vibratory swimmer and determine
its averaged dynamics. The vibratory swimmer considered in this paper consists of a symmetric main
body floating on the surface of a fluid. A smaller body oscillates back and forth inside the main body.
A rigid, inclined fin is attached under the swimmer and is submerged inside the fluid as shown in
Figure 1. Here, we ignore the symmetric hydrodynamic forces acting on the main body and only
consider the drag force acting on the fin. We also ignore the pitch and plunge motions of the main
body and only consider its one-dimensional motion in the horizontal x-direction.

Figure 1. Schematic of the vibratory swimmer consisting of a main body, an oscillating mass m, and a
rigid fin attached to the bottom surface of the swimmer at an orientation α.

Suppose that the oscillatory mass performs a harmonic oscillation of the form

y(t) =
Y
ω

cos ωt (10)

where y is the position vector of the oscillatory mass relative to the main body and Y
ω and ω are the

amplitude and frequency of its vibrations. The x-component of the linear momentum of the system is

Px = Mẋ + mẏ (11)

where M is the total mass of the system including the oscillating mass and the added mass of the fluid,
m is the mass of the oscillating body, and x is the position vector of the body. Using Newton’s second
law, the equation of motion of the system is

Mẍ + mÿ = −FD (12)

where FD is the drag force acting on the system. Replacing ÿ using the expression above, the equation
of the system is

ẍ = − FD
M

+
mY
M

ω cos ωt, x(0) = x0, ẋ(0) = v0 (13)
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In this paper we neglect the symmetric drag force acting on the main body and only consider the drag
force of the fin in the form

FD =
1
2

ρACD(α)v2 sgn(v) (14)

where ρ is the fluid density, A is the fin’s total surface area, v = ẋ is the velocity of the main body, α is
the fin angle (see Figure 1), and CD(α) is the drag coefficient of the fin. It is evident that due to the
asymmetry of the fin, the drag coefficient CD and the added mass of the fluid are different in forward
(v > 0) and backward (v < 0) motion of the swimmer. In this section we consider a symmetric added
mass, hence a constant M, and an asymmetric drag coefficient. We discuss the effects of asymmetric
added mass in Section 3.1.

Consider the drag coefficient to be

CD(α) =


CDp(α) ; v > 0

1
2
(
CDp(α) + CDn(α)

)
; v = 0

CDn(α) ; v < 0
(15)

For simplicity we use c(α) = ρACD(α)
2M and Ȳ = mY

M , and write Equation (13) in the form

v̇ = −c(α)v2 sgn(v) + Ȳω cos ωt, v(0) = v0 (16)

where using the drag coefficients CDp(α) and CDn(α), the coefficient c(α) is

c(α) =


cp(α) ; v > 0

1
2
(
cp(α) + cn(α)

)
; v = 0

cn(α) ; v < 0
(17)

The coefficient c(α) can then be written as

c(α) = c̄(α) + c̃(α) sgn(v) (18)

where

c̄(α) =
cp(α) + cn(α)

2

c̃(α) =
cp(α)− cn(α)

2
.

Replacing c(α) in Equation (16) and simplifying, the equation of motion is

v̇ = −
(
c̄(α) sgn(v) + c̃(α)

)
v2 + Ȳω cos ωt, v(0) = v0, (19)

Equation (19) is in the form of system (3) with n = 1 and f (v) = −
(
c̄(α) sgn(v) + c̃(α)

)
v2,

a piecewise-smooth function. Using the fast time scale τ = ωt and the transformation

v = u + Ȳ sin τ (20)

and following the procedure discussed in Section 2.1, the averaged dynamics of system (19) are
determined to be

˙̄u = −πc̃(α) + 2c̄(α)φ
πM

(
ū2 +

1
2

Ȳ2
)
− 3c̄(α)Ȳ cos φ

πM
ū, ū(0) = u0 (21)

where
φ = sin−1 ū

Ȳ
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and the initial condition u0 = v0.
Figure 2 shows time histories of the original, time-periodic system (19) and its averaged

dynamics (21). The physical parameters are M = 0.4 kg, m = 0.2 kg, A = 0.04 m2, ρ = 1000 kg/m3,
Y = 0.2 m/s, ω = 20 rad/s, CDp = 0.1, and CDn = 0.2. The initial conditions are x0 = 0 and v0 = 0.
By linearizing the averaged dynamics about their equilibrium point ūe = 0.0135 m/s, one can show
that this equilibrium point is stable. Therefore the original time-periodic system possesses a stable
periodic orbit in a small neighborhood of that equilibrium point.

5 10 15 20
Time (s)

0.05

0.10

0.15

0.20

0.25

x (m)

Averaged

Actual

Figure 2. Time histories of the original and averaged systems’ displacements.

2.3. Optimization of a Class of Vibratory Systems

In this section we consider optimization of a class of vibratory systems, including the vibratory
swimmer presented in Section 2.2. For the case of the vibratory swimmer, the goal is to determine
the fin angle α (see Figure 1) to maximize the average velocity v̄ of the main body for a certain set of
physical parameters of the system.

Theorem 1. Consider the first order time-periodic system

ẋ = −c(p) f (x) + ωu(ωt), x(0) = x0 (22)

where f (x) is a smooth or piecewise-smooth function, u(t) is a T-periodic, zero-mean function, p ∈ D ⊆ R is a
parameter, and

c(p) =


cp(p) ; x > 0

1
2
(
cp(p) + cn(p)

)
; x = 0

cn(p) ; x < 0

where cp(p) and cn(p) are functions of class Cr, r ≥ 1. Suppose that for any value of p ∈ D, the average
dynamics of time-periodic system (22) possesses a hyperbolically stable equilibrium point x̄e = x̄e(p). Then the

extrema of x̄e coincide with the extrema of cp(p)
cn(p) .

Proof. See Appendix A.

The dynamics (16) of the vibratory swimmer is in the form of (22). Therefore, according to

Theorem 1, the average velocity v̄ of the main body is maximum if the ratio cp(α)

cn(α)
is minimum, where α

is the fin angle. In this case, while the main body is oscillating back and forth, it also moves forward
with maximum speed on average. Therefore the maximum average speed of the swimmer depends on

the ratio cp(α)

cn(α)
of the damping coefficients.
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Remark 1. From system (22) one concludes that if the drag force acting on the rigid fin is proportional to any
positive power of the velocity, i.e., FD ∝ vr, r ∈ R+, the average velocity of the swimmer is still maximum if the

ratio cp(α)

cn(α)
is minimum.

2.4. Numerical Simulation of Hydrodynamic Forces Acting on a Rigid, Inclined Fin

In this section we discuss the numerical computation of the drag coefficient of a rigid, rectangular
fin immersed in a viscous fluid using COMSOL Multiphysics R© software (The COMSOL Group,
Stockholm, Sweden).The fin is attached to an infinite large, fixed surface parallel to the flow, such that
the fluid does not flow over the top of the plate. The fin has an angle α with the infinite surface and
the flow direction, as shown in Figure 3. The CFD module was used for the computations. No-slip
boundary conditions were used at the walls, a constant velocity condition was used at the inlet of the
domain, and a pressure boundary condition was used at the exit. Domain size and resolution studies
were performed to ensure that the domain size of 14 m × 4 m and CFL number of 1.0 were sufficient
to predict a converged value for the drag coefficient.

Figure 3. Schematic of the rigid inclined fin immersed in fluid at the bottom of the swimmer.

We used two-dimensional numerical simulations to determine the drag coefficient CD of the fin
for different values of α ∈ [0, π] rad. To determine the drag coefficient, we divided the total drag force
found in the simulations by the dynamic pressure and the fin frontal area. The simulation results were
used for design optimization of the vibratory swimmer. Figure 4 presents a snapshot of the simulations
for α = 50◦ after the simulation has reached steady state. The fluid inlet velocity is U∞ = 0.1 m/s and
the Reynolds number is Re = ρvL

µ = 22,500, where ρ and µ are the density and dynamic viscosity of
the fluid, respectively (assumed to be water at standard pressure and temperature here), and L is the
length of the fin, which is 0.3 m in the simulations, with a thickness of 5 mm. Figure 5 shows the drag
coefficient CD versus the fin angle α. For optimization purposes, we approximate the drag coefficient
with the following 12th degree polynomial in terms of α, where α is in radians

CD(α) ≈ 0.018α12 − 0.33α11 + 2.583α10 − 11.48α9 + 31.74α8 − 56.38α7

+63.98α6 − 44.5α5 + 17.31α4 − 3.766α3 + 1.44α2 + 0.132α
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Figure 4. Fluid velocity magnitude for α = 50◦ and U∞ = 0.1 m/s at steady state, obtained via
numerical simulations.

0 0.5 1 1.5 2 2.5 3

 (rad)

0

0.2

0.4

0.6

0.8

1

C
D

Data

Fitted curve

Figure 5. Drag coefficient of the rigid fin versus fin angle, α, obtained via numerical simulations.

Using Theorem 1 and the approximate function of CD(α), one determines the optimum fin angle
αm ≈ 9.4◦ which generates the maximum average velocity of the swimmer v̄m ≈ 8 mm/s, determined
using Equation (21). Figure 6 presents the displacement of the swimmer for the three values of fin
angle α1 = 5◦, α2 = αm, and α3 = 15◦. Figure 7 shows the average displacement of the swimmer
versus time for the parameter values listed in the caption. The rest of the physical parameters are
the same as used in simulations to generate Figure 2. It can be seen that though during the transient
motion at the beginning of motion the optimum angle αm may not generate the maximum velocity,
during steady state motion the swimmer with the optimum angle moves with the maximum speed.
Therefore, after a “long enough” time, the swimmer with the optimum fin angle travels farther than
the swimmer with any other angle.
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Figure 6. Displacement of the swimmer versus time for α1 = 5◦, α2 = αm = 9.4◦, and α3 = 15◦. Full:
original system, dashed: averaged system.

Figure 7. The average displacement of the swimmer versus time for α1 = 5◦, α2 = αm = 9.4◦,
and α3 = 15◦ during transient motion.

3. Results

3.1. The Vibratory Swimmer with an Asymmetric Added Mass

In the vibratory swimmer introduced in Section 2.2 and depicted in Figure 1, the flow of the fluid
around the asymmetric inclined fin is not identical during forward (v > 0) and backward (v < 0)
motions. The asymmetric flow of the fluid in the forward and backward motion of the swimmer
generates both asymmetric drag force and asymmetric added mass of the fluid. In this section we
discuss the averaging and design optimization of the swimmer when considering realistic asymmetric
drag forces and added masses. This is the form of the model that we will compare with experimental
results in Section 3.2.

Consider the equation of motion (13) of the system with the total mass of the system M(α) =

M0 + Mf(α), where M0 is the mass of the system without considering the fluid added mass, hence it is
constant, and Mf(α) is the fluid added mass which depends on the fin angle α and the direction of
motion of the swimmer. Therefore, the total mass of the system is
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M(α) =


Mp(α) ; v > 0

1
2
(

Mp(α) + Mn(α)
)

; v = 0
Mn(α) ; v < 0

(23)

Defining

M̄(α) =
Mp(α) + Mn(α)

2

M̃(α) =
Mp(α)−Mn(α)

2
(24)

the total mass can also be written as M(α) = M̄(α) + M̃(α) sgn(v). Defining a(α) = 1
2 ρACD(α),

the equation of motion of the system is

ẋ = v

v̇ = − ā(α) + ã(α) sgn(v)
M̄(α) + M̃(α) sgn(v)

v2 sgn(v) +
mY

M̄(α) + M̃(α) sgn(v)
ω cos ωt (25)

where ā(α) and ã(α) are determined using ap(α) =
1
2 ρACDp(α) and an(α) =

1
2 ρACDn(α) similar to (18).

Using the fast-time scale τ = ωt, Equation (25) can be written as

dx
dτ

= εv

dv
dτ

= −ε
ã(α) + ā(α) sgn(v)

M̄(α) + M̃(α) sgn(v)
v2 +

mY
M̄(α) + M̃(α) sgn(v)

cos τ (26)

where ε = 1
ω . Consider the continuous transformation

v =

{
u + Ȳp(α) sin τ ; v ≥ 0

r(α)u + Ȳn(α) sin τ ; v < 0
(27)

where Ȳp(α) =
mY

Mp(α)
, Ȳn(α) =

mY
Mn(α)

, and r(α) = Mp(α)

Mn(α)
= Ȳn(α)

Ȳp(α)
. By taking derivative with respect to

τ from (27) and comparing the result with Equation (26), one gets

dx
dτ

=

{
ε
(
u + Ȳp(α) sin τ

)
; v ≥ 0

ε
(
r(α)u + Ȳn(α) sin τ

)
; v < 0

(28)

du
dτ

=

{
−εbp(α)

(
u2 + 2Ȳp(α)u sin τ + Ȳ2

p(α) sin2 τ
)

; v ≥ 0

εbn(α)
(

r(α)u2 + 2Ȳn(α)u sin τ + 1
r(α) Ȳ2

n(α) sin2 τ
)

; v < 0
(29)

where bp(α) =
ap(α)

Mp(α)
and bn(α) =

an(α)
Mn(α)

. The time periodic Equations (28) and (29) are in the standard
averaging form. Using the averaging theorem, the averaged dynamics of the system is

dx̄
dτ = ε

2π

(∫ t1
0

(
ū + Ȳp(α) sin τ

)
dτ +

∫ t2
t1

(
r(α)ū + Ȳn(α) sin τ

)
dτ +

∫ 2π
t2

(
ū + Ȳp(α) sin τ

)
dτ
)

dū
dτ = ε

2π

(
−
∫ t1

0 bp(α)
(
ū2 + 2Ȳp(α)ū sin τ + Ȳ2

p(α) sin2 τ
)
dτ +

∫ t2
t1

bn(α)
(

r(α)ū2 + 2Ȳn(α)ū sin τ

+ 1
r(α) Ȳ2

n(α) sin2 τ
)

dτ −
∫ 2π

t1
bp(α)

(
ū2 + 2Ȳp(α)ū sin τ + Ȳ2

p(α) sin2 τ
)
dτ
) (30)

where t1 = π + sin−1 ū
Ȳp(α)

and t2 = 2π − sin−1 ū
Ȳp(α)

. After some math and replacing the fast-time

scale τ with the slow-time scale t, the averaged dynamics can be written as
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v̄ = ˙̄x =
1

2π

(
π
(
1 + r(α)

)
+ 2
(
1− r(α)

)
φ
)

ū +
1
π

Ȳp(α)
(
1− r(α)

)
cos φ

˙̄u = − 1
2π

(
π
(
bp(α)− r(α)bn(α)

)
+ 2
(
bp(α) + r(α)bn(α)

)
φ
)(

ū2 +
1
2

Ȳ2
p(α)

)
− 3

2π
Ȳp(α)

(
bp(α) + r(α)bn(α)

)
ū cos φ (31)

where φ = sin−1 ū
Ȳp(α)

.

Knowing the fluid added mass function in terms of the fin angle α, i.e., Mf = Mf(α), one can
use the averaged dynamics for design optimization of the swimmer, e.g., determine the angle α for
maximum speed of the swimmer on average (v̄). For this goal, one determines α for: (1) ūe to be
the equilibrium point of the second equation of the averaged dynamics (31), and (2) ūe maximizes v̄.
Therefore if ūe is an equilibrium point of the averaged dynamics, from Equations (31) one can write

v̄e = F(ūe, α) (32)
˙̄u|ū=ūe = G(ūe, α) = 0 (33)

where F(ū, α) and G(ū, α) are the right hand side of the first and second equations of (31), respectively.
Then the problem reduces to a constrained optimization problem; maximize v̄ in (32) under
constraint (33). Using the method of Lagrange multipliers, we use the function

f (ūe, α, λ) = F(ūe, α)− λG(ūe, α) (34)

The equilibrium point ūe that maximizes or minimizes v̄e, and the corresponding angle α are then
determined from the following set of equations

∂ f
∂ūe

= 0

∂ f
∂α

= 0 (35)

∂ f
∂λ

= 0

Since the determination of the fluid added mass is complicated and outside the scope of this
paper, in order to show the effectiveness of the averaging and optimization results in this section,
we use a hypothetical added mass and write the total mass of the system in the form

M(α) = M0 + 0.1α sin α (36)

where α is in radians. Using M0 = 0.4 kg, the total mass M of the system in terms of α is presented in
Figure 8. With the rest of the physical parameters being the same as in Section 2.4, using Equations (35)
and (31), one determines the optimum angle αm ≈ 8.7◦ and the maximum average velocity of the
swimmer v̄m ≈ 0.67 cm/s, respectively. The simulation results using three fin angles α1 = 5◦, α2 = αm,
and α3 = 13◦ and zero initial conditions are shown in Figure 9.
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Figure 8. The asymmetric total mass of the swimmer versus the fin angle α for forward motion (Mp)
and backward motion (Mn).

Figure 9. Displacement of the swimmer versus time with an asymmetric added mass for α1 = 5◦,
α2 = αm = 8.7◦, and α3 = 13◦. Full: original system, dashed: averaged system.

3.2. Experiments

To validate the theoretical and numerical results presented in previous sections, we performed
experiments with a prototype vibratory swimmer. Here, we describe the device we used in the
experiments and present the experimental results. The device used for the experiments consists
of a small swimmer floating in a water tank, as shown in Figure 10. A rigid rectangular fin with
an adjustable angle is attached to the bottom of the swimmer and is submerged in water. A small
servomotor in the swimmer moves (vibrates) a mass back and forth, causing the swimmer to move
back and forth with the same frequency. A battery is used to power the servomotor. For the main body
we used a rectangular piece of polystyrene. The mass of the swimmer is M = 104 g, the vibratory mass
is m = 43 g, and the rigid fin is 11.5 cm× 4.5 cm. The amplitude and frequency of oscillations are 3 cm
and 2π rad/s, respectively. Interested readers can watch Video S1 in the Supplementary Materials to
see the prototype swimmer in operation.
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Figure 10. The vibratory swimmer used in experiments.

To perform an experiment, we chose a test fin angle, started the system with zero initial
speed, and measured the time required for the swimmer to travel a certain rectilinear distance.
This determined the swimmer’s average velocity corresponding to that fin angle. To minimize the
effects of disturbances and uncertainties, we repeated the experiment at least five times for each
fin angle. We also chose the maximum distance from the starting point possible as a stopping
point for the experiments. Figure 11 shows the experimental average swimming versus fin angle
compared with the average swimming speed predicted by the theoretical model from Section 3.1.
Though the theoretical results predict the maximum average velocity happens for an optimal fin angle
of αm ≈ 10◦, the experiments show that the true optimal angle is αm ≈ 20◦. Since the real flow is
three-dimensional while the modeled flow used in numerical simulations for determining the drag
coefficient is two-dimensional, and considering the other effects neglected in the modeling, such as the
hydrodynamic forces acting on the main body, the discrepancy displayed between the theoretical and
experimental results is not unexpected.

Figure 11. Average speed of the swimmer versus fin angle from experiments and simulations.
Although the trends are the same in both cases, including the predicted maximum average swimming
speed, which differs by only about 7% between the experiments and theory, the experiments reveal a
higher optimal fin angle than that predicted by the two-dimensional theoretical analysis.
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From Equation (12) it is evident that the inertial force generated by the acceleration of the sliding
mass, i.e., mÿ, causes the back and forth motion of the swimmer. For a swimmer with symmetric drag
and added mass, if acceleration of the sliding mass is also symmetric during one cycle, the swimmer
does not move on average. However, if the acceleration of the sliding mass, and hence the inertial
forces, are not symmetric during one cycle, the swimmer moves in one direction on average. Note that
the acceleration can be a zero-mean, periodic function of time, however not symmetric over one
cycle. The slider-crank mechanism used in the experiments generates periodic, zero-mean, asymmetric
acceleration for the slider. Therefore, even though for the fin angles α = 0 and α = 90◦ the drag acting
on the system and the added mass are symmetric, the swimmer still possesses non-zero velocity on
average. This phenomenon can be clearly seen in Figure 10 for α = 0 and α = 90◦.

4. Discussion

In this paper we introduced a mathematical model for a vibratory surface swimmer consisting
of a symmetrical body containing an additional vibratory mass inside the body, and an asymmetric
rigid fin attached to the bottom of the body and immersed in fluid. Due to the symmetric inertial
forces generated by the oscillations of the vibratory mass and the asymmetric hydrodynamic forces
acting on the fin, the swimmer moves in one direction on average while performing asymmetric
oscillations. Using the averaged dynamics of a class of vibratory systems and constrained optimization,
we determined the optimum design for the rigid fin to generate the maximum average speed for
the swimmer. The optimum speed predicted by the model and found in the associated physical
experiments we performed with a prototype vibratory swimmer different by no more than 7%,
though the theory predicted an optimal fin angle of around 10◦ while the actual optimal fin angle was
found experimentally to be close to 20◦.

Generalizing our results beyond the specific parameters and geometries used here, we showed
that for a class of vibratory systems with asymmetric damping or drag forces in their forward and
backward motions, to maximize or minimize the equilibrium state of the averaged system, one should
design the system to maximize or minimize the ratio of the damping or drag coefficients during the
forward and backward motion. The class of systems considered in this paper includes both vibratory
swimmers moving on a fluid surface (vibratory surface vessels) and vibratory swimmers that are
completely submerged in a fluid (vibratory underwater vehicles). The results do not depend on
assumptions of swimmer scale or the details of mass oscillation actuation. Therefore the results of this
paper can be used for the design optimization of a wide range of underwater vehicles, biomimetic
robotic swimmers, and swimming microrobots, including those that could be used for drug delivery.

Supplementary Materials: The following are available online at http://www.mdpi.com/2311-5521/5/1/38/s1,
Video S1: The vibrational swimmer in operation.
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Appendix A. Proof of Theorem 1

Replacing c(p) using (18), the system (22) can be written in the form

ẋ = −
(
c̄(p) + c̃(p) sgn(x)

)
f (x) + ωu(ωt), x(0) = x0 (A1)

http://www.mdpi.com/2311-5521/5/1/38/s1
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Following the procedure discussed in Section 2.1, and using transformation

x = y + U(t) (A2)

where U(t) =
∫

u(t)dt is a T-periodic function, the average dynamics of (A1) is

˙̄y = − 1
T

∫ T

0

(
c̄(p) + c̃(p) sgn

(
ȳ + U(t)

))
f
(
ȳ + U(t)

)
dt (A3)

Suppose that the periodic function y + U(t) has k roots t1 < t2 < . . . < tk in [0, T], and without
loss of generality suppose that y + U(t) ≥ 0, t ∈ [0, t1]. Therefore the averaged dynamics (A3) can be
written as

˙̄y = − 1
T
(
c̄(p)F(ȳ) + c̃(p)G(ȳ)

)
(A4)

where

F(ȳ) =
∫ t1

0
f
(
ȳ + U(t)

)
dt +

∫ t2

t1

f
(
ȳ + U(t)

)
dt + . . . +

∫ T

tk

f
(
ȳ + U(t)

)
dt

G(ȳ) =
∫ t1

0
f
(
ȳ + U(t)

)
dt−

∫ t2

t1

f
(
ȳ + U(t)

)
dt + . . . +

∫ T

tk

f
(
ȳ + U(t)

)
dt

Since x̄e is an equilibrium point of the averaged dynamics (A4), then

H(x̄e, p) = c̄(p)F(x̄e) + c̃(p)G(x̄e) = 0 (A5)

Therefore the problem is a constrained optimization problem; maximize/minimize x̄e subject to
constraint (A5). Using the method of Lagrange multipliers, we construct the function [34]

h(x̄e, p, λ) = x̄e − λH(x̄e, p) (A6)

where λ is the Lagrange multiplier. One can find the extrema of x̄e and the corresponding values of p
and λ using the set of equations

∂h
∂x̄e

= 0

∂h
∂p

= 0 (A7)

∂h
∂λ

= 0

From the second equation of (A7), one finds

∂h
∂p

= 0 ⇒ ∂H
∂p

= 0 ⇒ dc̄(p)
dp

F(x̄e) +
dc̃(p)

dp
G(x̄e) = 0 (A8)

Using constraint (A5) (or the third equation of (A7)), the last equation in (A8) can be written as

c̄(p)
dc̃(p)

dp
− c̃(p)

dc̄(p)
dp

= 0 (A9)

or
d

dp

(
c̃(p)
c̄(p)

)
= 0 (A10)
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Replacing c̄(p) and c̃(p) into (A10), one gets

d
dp

(
cp(p)− cn(p)
cp(p) + cn(p)

)
= 0 ⇒ d

dp

 cp(p)
cn(p) − 1
cp(p)
cn(p) + 1

 = 0 (A11)

or
d

dp

(
cp(p)
cn(p)

)
= 0 (A12)

Therefore the extrema of x̄e coincide with the extrema of the ratio cp(p)
cn(p) .
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