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Abstract: In this manuscript, an automated framework dedicated to design space exploration and
design optimization studies is presented. The framework integrates a set of numerical simulation,
computer-aided design, numerical optimization, and data analytics tools using scripting capabilities.
The tools used are open-source and freeware, and can be deployed on any platform. The main feature of
the proposed methodology is the use of a cloud-based parametrical computer-aided design application,
which allows the user to change any parametric variable defined in the solid model. We demonstrate
the capabilities and flexibility of the framework using computational fluid dynamics applications;
however, the same workflow can be used with any numerical simulation tool (e.g., a structural solver or
a spread-sheet) that is able to interact via a command-line interface or using scripting languages. We
conduct design space exploration and design optimization studies using quantitative and qualitative
metrics, and, to reduce the high computing times and computational resources intrinsic to these kinds
of studies, concurrent simulations and surrogate-based optimization are used.

Keywords: CFD; numerical optimization; CAD parametrization; cloud-based; design space exploration;
SSIM

1. Introduction

Consumer demand, government regulations, competitiveness, globalization, better educated
end-users, environmental concerns, market differentiation, social media trends, and even influencers,
they are all driving products manufacturers and industry to reduce production expenditures and final
cost of goods, and at the same time improving the quality and reliability of the products with the lowest
environmental impact. To reach these goals and to develop revolutionary products, the manufacturing
sector is relying more on virtual prototypes, computer simulations, and design optimization.

Computational fluid dynamics (CFD), computational structural dynamics (CSD), computer-aided
manufacturing (CAM), computer-aided design (CAD), multi-physics simulations, digital twins, the internet-
of-things (IoT) and the cloud, are among many of the tools increasingly being used to simulate and certify
products by analysis and simulation before going into production and commercialization. Even before
reaching the market, modern products have undergone some kind of heuristic or methodological
optimization. Though the optimization might take different forms in different fields (e.g., finance,
health, construction, operations, manufacturing, transportation, construction, engineering design,
sales, public services, mail, and so on), the ultimate goal is always getting the best out of something
under given circumstances, either by minimizing, maximizing, equalizing, or zeroing a quantity of
interest (Qol).
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Product optimization can be undertaken in two different ways, by using design space exploration
(DSE) or by using design optimization (DO). Even a combination of both methodologies is possible.
In DSE, we simply explore the design space in a methodological way, and while doing so, we extract
knowledge. DSE is the process of discovering, expanding, evolving, and navigating the design space to
extract knowledge to support better decision making [1]. It is not difficult to recognize that in DSE, we
are not converging to an optimal value, we are only exploring the design space, but in doing so, we are
gathering valuable information about the global behavior, and this information can be used to get a
better design. Moreover, this knowledge can also be used to conduct surrogate-based optimization (SBO)
studies. The SBO method consists of constructing a mathematical model (also known as a surrogate,
response surface, meta-model, emulator) from a limited number of observations (CFD simulations,
physical experiments, or any quantifiable metric) [2-5]. After building the surrogate, it can be explored
and exploited. Conducting the optimization at the surrogate level is orders of magnitude faster than
working at the high fidelity level [2].

Design optimization strategies, on the other hand, consist on formulating an optimization problem
and converging to the optimal design. Here, it is assumed that the problem can be formulated before
the search and convergence begin. A typical optimization problem can be formulated as follows,
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where X is a n-dimensional vector called the design vector, f;(X) is the objective function or Qol, g;(X) are
the inequality constraints, /;(X) are the equality constraints, and xl’-b and xll.‘h are the variables lower
and upper bounds, respectively. To find the optimal value we can use gradient-based methods or
derivative-free methods [5-10]. Also, the problem formulation can be single-objective (one Qol to be
optimized) or multi-objective (more than one Qol to be optimized simultaneously). Things can get
even more complicated, as in some cases we might need to deal with design optimization problems
incorporating many disciplines (e.g., aerodynamics, propulsion, structures, and performance). In this
case, we say we are dealing with a multi-disciplinary design optimization problem (MDO) [11-16]. MDO
allows designers and engineers to incorporate all relevant disciplines simultaneously. The optimum of
the simultaneous problem is superior to the design found by optimizing each discipline sequentially since
it can exploit the interactions between the disciplines. However, including all disciplines simultaneously
significantly increases the complexity of the problem [7].

The field we are concerned with in this manuscript is that of engineering design; nevertheless,
this by no means limits the range of applicability of the current work; it simply reflects the authors’
interests and fields of expertise.
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In engineering design, we are often interested in optimizing the geometry. To do so, two approaches
are available, direct modeling and parametric modeling. In direct modeling, we modify the geometry
by pushing and pulling points, lines, and surfaces (like working with clay). This gives designers and
engineers a lot of flexibility when it comes to shape the geometry; however, in the process of doing
so, we give up geometry parametrization in favor of creating organic shapes that might be difficult to
manufacture. In parametric modeling, the user defines relationships, constraints, parametric variables,
and configurations when creating the solid model. Then, by changing these variables, the user can easily
create endless variations on the original geometry with complete control and millimetric precision.

However, when conducting fully automatic DSE or DO studies, introducing the CAD tools is not
very straightforward. Most of the times the CAD applications are not compatible with the operating
system (OS) where the numerical simulations are being performed (usually Unix-like OS), or simply,
it is not possible to connect the optimization loop with the CAD tool due to the fact that the user can
only interact with it using a graphical user interface (GUI), which cannot be used in an automatic
optimization loop driven by a command-line interface (CLI).

To overcome this problem, many commercial simulation frameworks are adding a monolithic
design environment to integrate all the applications needed to conduct design space exploration
and design optimization studies, namely CAD, multi-physics solver, optimizer, and post-processing.
While commercial frameworks have proven to be reliable, they come with a price tag that often
is unreachable by small and medium-sized enterprises (SMEs), hobbyists, researchers or personal
users. Hereafter, we propose the integration of open-source and freeware tools to conduct DSE and
DO studies.

To perform the numerical simulations, we use the multi-physics solver OpenFOAM (version 7.0) [17,18]
or the programming language Python. The optimization algorithms and the code coupling interface is
provided via the Dakota library [19,20] (version 6.10). All the real-time data analytics, quantitative
and qualitative post-processing, and data analytics are performed using Python, VIK [21], and bash
scripting. Finally, to create and modify the geometry we use Onshape [22], which is a cloud-based
parametric CAD and product development application. Onshape’s application programming interface
(API) is open-source; therefore, it can be deployed in any platform with an internet connection. The API
is implemented in Python, and the calls to Onshape’s server are done using RESTful requests. Onshape
offers two subscription plans, a pay-up plan and a free one. Both subscriptions plans have the same
professional capabilities, the only difference is the level of product support offered and the access to
enterprise options.

The purpose of this manuscript is two-fold. First, we want to use the cloud to support CAD
parametrization in DSE or DO design loops, which undoubtedly will give users enormous flexibility
as the CAD application does not need to be installed locally, and there is no need for a monolithic
CAD/Simulation software integration. Secondly, we want to deploy fully automatic, fault-tolerant,
and scalable engineering design loops using in-house computational resources, the cloud, or HPC
centers; and everything based on open-source and freeware tools. We hope that this contribution
will offer guidelines to designers and engineers working with design optimization and design space
exploration, will help them at implementing their own optimization loops, and to some extent, it will
help to address some of the findings and recommendations listed in the NASA contractor report
“CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences” [23], where it is stated the
following: “Included in this desired set of capabilities is a vision for how CFD in 2030 will be used: a vision
of the interaction between the engineer/scientist, the CFD software itself, its framework and all the ancillary
software dependencies (databases, modules, visualization, etc.), and the associated HPC environment. A single
engineer/scientist must be able to conceive, create, analyze, and interpret a large ensemble of related simulations
in a time-critical period (e.g., 24 h), without individually managing each simulation, to a pre-specified level
of accuracy”.
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The rest of the manuscript is organized as follows. Section 2 gives an overview of the methodology
used. In Section 3 we describe the numerical experiments carried out to demonstrate the usability and
flexibility of the framework. Finally, in Section 4 we present the conclusions and future perspectives.

2. Description of the Workflow—Methodology

In Figure 1, we illustrate a graphical summary of the methodology used in this work. The engineering
design loop starts with a fully parametrized geometry, then new candidates are generated by changing
the parametrical variables. It is important to stress that our starting point is the parametrical variables
and not the solid model; that is, we are allowed to start from any possible geometry that can be
generated using the parametrical variables. Hereafter, we use Onshape [22] as solid modeler, which is
a cloud-based CAD application. The fact that Onshape is cloud-based gives us the flexibility to deploy
the framework in any platform without the need to install the application. The only requirement is to
have a working internet connection.

Uncertainty quantification (UQ)
Optimization under uncertainty (OUU)
Robust design } { Fully parametrized input geometry

%4

Data collection - Data analytics - Real time data monitoring

Code coupling interface
Design space exploration and
design optimization application

Concurrent simulations
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Convergence check
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Figure 1. Graphical summary of the engineering design loop.

The whole workflow is controlled by the library Dakota [19,20], which serves as the numerical
optimizer and code coupling interface tool. The Dakota library provides a flexible and extensible
interface between simulation codes and iterative analysis methods. The library is software agnostic,
in the sense that it can interface any application that is able to parse input/output files via a CLI.
The library also has extensive design optimization and design space exploration capabilities. It comes
with many gradient-based methods and derivative-free methods for design optimization. It also
contains many design and analysis of computer experiments (DACE) methods to conduct design
space exploration studies. And to obtain faster turn-around times, Dakota supports concurrent
function evaluations.

The engineering design loop illustrated in Figure 1 is orchestrated by using Dakota’s configuration
input file. In this input file, all the steps to follow in the engineering design loop are defined. As previously
stated, the only requirement is that the applications involved in the loop can interact via the CLIL
In references [3,24-33], few examples using Dakota to control complex engineering design loops are
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discussed. However, none of them addressed the use of a fully parametric cloud-based CAD tool to
generate the solid geometry or the use of the cloud to deploy the loop.

After defining Dakota’s configuration file, the engineering design loop can be launched sequentially
or concurrently using local resources, on the cloud, or remotely in an HPC center. All the tools involved
in the loop are black-box applications that are connected using Dakota. An essential step of every
optimization loop is that a Qol must be provided to compute the sensitivities; this is also controlled
using Dakota’s configuration file. This step is critical and is the user’s responsibility to define all the
quantities of interests to monitor. After computing the Qol, Dakota will compute the sensitivities
using the method selected by the user. With Dakota, the user is not obliged to use the optimization
and space exploration methods implemented on it; one can easily interface Dakota with a third-party
optimization library.

At this point, we can rely on a human decision-maker or a machine learning engine to pick up the
best design or set of optimal solutions. During the whole process, data is collected and monitored in
real time. Dakota also offers restart capabilities, so in the event of an unexpected failure of the system
(hardware or software), the user can restart from a previously saved state.

In this work, we use the design loop illustrated in Figure 1 for DO and DSE studies. In DO,
the user starts from an initial design or guess, and the optimization algorithm will make it slightly
better, i.e., in DO we are making sub-optimal guesses incrementally better. This by no means is negative,
and the chances are that the results are a substantial improvement over the initial guess. In essence,
DO is an iterative-converging process that requires a starting point (or a set of points) and a set of
constraints. On the other hand, in DSE we do not need to define an initial guess or a set of constraints
(except for the bounds of the design space). We generate new solutions sequentially or concurrently
that might be better or worse than a baseline, but in the process of doing so, we are exploring and
exploiting the design space. DSE gives more information to engineers than DO, and this information
can be used for decision making, knowledge extraction, and anomalies detection. All the information
gathered during the design loop can also be used to construct reduced-order models, surrogate models,
or to interrogate the data using exploratory data analysis and machine learning techniques.

3. Numerical Experiments

3.1. Cylinder Optimization Problem—~Minimum Surface and Fixed Volume

This problem is also known as the soda can optimization problem. We aim at finding the optimal
dimensions of a right cylinder that minimize the total surface area of the cylinder, which holds a given
volume. This problem can be formulated as follows,

minimize Syt (5)
subject to,
V = 355cm?
(6)
0<rh<oco
where

Stot = 27tr* + 271rh

7
V = nr?h @)

in Equations (5)—(7), St is the cylinder’s total surface, V its volume, r its radius, and h its height.
The solution to this problem is the following,



Fluids 2020, 5, 36 6 of 24

r = 3.837 cm
h =7.675cm (8)
Spmin = 277.54 cm?

This is a classic problem that is frequently posed to first-year calculus students. Therefore, we will
not go into details on how to find the analytical solution (Equation (8)). Instead, we will use this case
to illustrate how the cloud-based design loop works.

In Figure 2, we illustrate the general workflow. In steps 1-2, we define all the configuration
variables and measurements (e.g., area, volume, length, and so on). In these steps, we also check that we
are obtaining the desired output by changing manually the parametrical variables. In Figure 3, we show
the screen-shot of how this case was setup in Onshape (the document is available at the following
link https://cad.onshape.com/documents/448249f25f37397d1823feb6 /w /33bcalcf858efd73dc35ab4f/
e/2ec99atd57f87dd94045affd); in the figure, it can be observed that all the configurations, bounds,
and measurements have been defined. All these variables can be accessed or modified using Onshape’s
Python API (https://github.com/onshape-public/apikey/tree /master/python). In step 3 we proceed
to test the connection with Onshape’s server, this is illustrated in Figure 4. In the figure, we use the
API client to encode the changes to the model configurations and evaluation of the measurements.
Then, using OAuth authentication, a RESTful request is sent to Onshape’s server, which sends a
response back to the client. The response can be the new geometry or the evaluation of the volume
of the new solid model. After testing the configurations and communication with Onshape’s server,
we proceed to define the problem in Dakota’s configuration file and to create any additional scripts
needed to parse input/output files (step 4). This step includes choosing the optimization or space
exploration method and defining the bounds, constraints, and objective functions. At this point, we can
proceed to deploy the case sequentially or concurrently using local resources, the cloud, or HPC center
resources (step 5). Finally, in step 6, we can visualize the optimal solid model. Additionally, we can
use exploratory data analysis to study the collected data. During the whole process, restart files are
generated, and data is monitored in real time.

In Listing 1, we show an excerpt of the Python code used to change the configuration variables.
In the listing, the keywords height_to_update, dial_to_update, and dia2_to_update are the parametric
variables, and each one was defined in the Onshape document. Their values are substituted automatically
by Dakota, and their bounds are defined in Dakota’s configuration file. The function part_studio_stl_conf
is responsible for exporting the geometry using the current values of the configuration variables (in this
case the geometry is exported in STL format but any supported CAD exchange format can be used).
The exported geometry is then used with the black-box solver. The did, wid, and eid keywords in
Listing 1 are referred to the document id, workspace id, and element id of the Onshape document (refer
to Figure 3). In Listing 2, we show an excerpt of the Python code used to evaluate the measurements (the
structure is similar to that of Listing 1). In the listing, the line of code “function(context, queries) return
getVariable(context, ‘volume’);” evaluates the measurement, as defined in the Onshape document.
In this case, we are evaluating the volume of the solid model. As for the configuration variables,
all the measurements need to be defined in the Onshape document. In the listing, the function
featurescript_conf takes the configuration values and the measurement function definition and gives
as output the evaluation of the measurement for the given configuration. For the interested reader,
the working case with all the scripts can be downloaded at this link (https:/ /github.com/joelguerrero/
cloud-based-cad-paper/tree/master/soda_can/). These scripts can be used as a starting point for
more complex cases. It is worth mentioning that the Python API works with Python 2 (2.7.9+).

Let us discuss the outcome of a DO study using a gradient-based method (method of feasible
directions or MFD [34,35] with numerical gradients computed using forward differences). As we are
optimizing a right cylinder, we set the diameters of the top and bottom surfaces to the same value,
we also started to iterate from two different initial conditions. In Table 1, we show the outcome of this
study. As can be observed, in both situations we arrived at the optimal value, and any deviation from
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the analytical solution is due to numerical precision and convergence tolerances. It is also interesting to
note that depending on the starting conditions, different convergence rates can be achieved. The closer
we are to the optimal solution, the faster the convergence will be. This put in evidence that the
formulation of an optimization problem using gradient-based methods requires certain knowledge of
the behavior of the design space; otherwise, the convergence rate to the optimal value will be slow.

Listing 1. Excerpt of the Python code used to setup the parametric configuration variables.

configuration = {

‘units’: ‘'meter’,

‘scale’: 1.0,

‘configuration” :
"height={[height_to_update]}+m;’
‘dial={[dial_to_update]}+m;’
‘dia2={[dia2_to_update]}+m’

}

stl = c.part_studio_stl_conf(did, wid, eid, configuration)

Listing 2. Excerpt of the Python code used to evaluate the measurements.

body_feature = {
"script" :
"function(context,_queries),_{return_getVariable(context,_'volume”);}"

}

configuration = {

‘units’”: ‘'meter’,

’scale’: 1.0,

‘configuration” :
"height={[height_to_update]}+m;’
‘dial={[dial_to_update]}+m;’
‘dia2=({[dial_to_update]}+m’

}

out = c.featurescript_conf(did, wid, eid, body_feature, configuration)

During the DO study, we also used a derivative-free method (mesh adaptive direct search algorithm
or MADS [36]), which also converged to the optimal solution but with a slow convergence rate,
as shown in Table 2. As a side note, even if the derivative-free method exhibited a slow convergence
rate, it was faster than the gradient-based method with a poor guess of the starting point (MFD-2 in
Table 1). In general, derivative-free methods do not require the definition of the starting point, and they
are insensitive to numerical noise.

Table 1. Outcome of the optimization study using a gradient-based method (MFD [34,35]).

MFD-1 MFD-2 Analytical Solution

Starting point-Height (height_to_update)-cm 4 2 -
Starting point-Diameter (dial_to_update)-cm 8 12 -
Optimal value-Height (height_to_update)-cm 7.617 7.607 7.675
Optimal value-Diameter (dial_to_update)-cm 7.692 7.697 7.674
QoI (Stot)-cm? 277.026  277.027 277.54
Non-linear constraint (Volume)-cm? 354.001  354.000 354.98

Function evaluations 88 405 -
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STEP 1.
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solid model
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Figure 2. Workflow of the problem setup using the proposed cloud-based framework.

Table 2. Outcome comparison of the gradient-based method (MFD [34,35]) and the derivative-free
method (MADS [36]). In the table, MFD refers to the gradient-based method (same as MFD-1 in Table 1),
and MADS refers to the derivative-free method.

MFD  MADS Analytical Solution

Optimal value-Height (height_to_update)-cm  7.617 7.699 7.675
Optimal value-Diameter (dial_to_update)-cm  7.692 7.655 7.674
QoI (Sot)-cm? 277.026  277.236 277.54

Non-linear constraint (Volume)-cm? 354.001 354.406 354.98

Function evaluations 88 256 -




Fluids 2020, 5, 36 9 of 24

In Table 3, we compare the results of the same DO study but this time using two and three design
variables. Again, we obtain results close to the analytical one, and surprisingly, the convergence rate of
both cases was similar. The main reason for the similarity of the convergence rate is that the starting
points of the design variables are close to the optimal value. This evidence the importance of choosing
good starting points to get a good convergence rate; gradient-based methods can be very sensitive to
this choice. Regarding the case setup, the main difference is that we need to add additional scripts to
compute the area of the top and bottom surfaces of the cylinder, independently.

did wid eid
A A A
r N7 N \
“c-Cc@ 9a onshapecom -

Onshape = 9= i, soda_can m B® o0 20 M1 ® [] AppStore  Leaming Center ©- Miicelguerrero~
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%

Configuration bounds ———»

MR Add configurationinput =

Figure 3. Definition of configuration variables and measurements in the Onshape document.

Let us run the same case using a design space exploration method. We remind the readers that
when using DSE, we are not explicitly converging to an optimal solution; we are just exploring the
design space. Then, the outcome of this study can be used for knowledge extraction, anomalies
detection, or to construct a surrogate model. To conduct this DSE study, we used a full-factorial
experiment with 21 experiments equally spaced for each design variable (for a total of 441 observations).
In Figure 5, we show one of the many plots that can be used to visualize the data coming from DSE
studies [3,37]. This plot is called scatter plot matrix, and in one single illustration, it shows the
correlation information, the data distribution (using histograms and scatter plots), and regression
models of the responses of the Qol.

By conducting a quick inspection of the scatter plot matrix displayed in Figure 5, we can demonstrate
that the data is distributed uniformly in the design space (meaning that the sampling plan is unbiased),
and this is demonstrated in the diagonal of the plot (the plots corresponding to the design variables).
By looking at the scatter plot of the experiments (lower triangular part of the matrix), we see the
distribution of the data in the design space. If, at this point, we detect regions in the design space
that remain unexplored, we can add new training points to cover those areas. In the case of outliers
(anomalies), we can remove them from the dataset with no significant inconvenience. However, we
should be aware that outliers are telling us something, so it is a good idea to investigate the cause and
effect of the outliers. In the upper triangular part of the plot, the correlation information is shown
(Spearman correlation in this case). This information tells us how correlated the data is. For example,
and by looking at the last row of the plot that shows the response of the Qol, if we note here a strong
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correlation between two variables, it is clear that these variables cannot be excluded from the study.
As can be seen, this simple plot can be used to gather a deep understanding of the problem.

RESTful request

- </> &~ .
- o— N
Lo = L

«------ . =
J
Client % nshap
Python API AN N N o h e
OAuth authentication SO g server

RESTful response

Figure 4. Onshape’s cloud-based client-server communication using RESTful API. The client communicates
with Onshape’s server using Python API keys and OAuth authentication.

Table 3. Outcome of the optimization study using a gradient-based method (MFD [34,35]). In the table,
MFD-2DV refers to the case with two design variables. MFD-3DV refers to the case with three design
variables. The case MFD-2DV uses the same diameter for the top and bottom surfaces.

MFD-2DV  MFD-3DV  Analytical Solution

Starting point-Height (height_to_update)-cm 4 4 -
Starting point-Diameter 1 (dial_to_update)-cm 8 8 -
Starting point-Diameter 2 (dia2_to_update)-cm - 5 -

Optimal value-Height (height_to_update)-cm 7.617 7.648 7.675
Optimal value-Diameter 1 (dial_to_update)-cm 7.692 7.686 7.674
Optimal value-Diameter 2 (dia2_to_update)-cm - 7.666 -

QoI (Stor)-cm? 277.026 277.026 277.54
Non-linear constraint (Volume)-cm? 354.001 354.004 354.98
Function evaluations 88 114 -

The data gathered from the DSE study can also be used to construct a meta-model, and then
conduct the optimization at the surrogate level. In Figure 6, we illustrate the response surface, which was
constructed using Kriging interpolation (universal Kriging). The implementation details of the method
can be found in references [2,4,20,38-42]. To conduct the optimization at the surrogate level, we used
the MFD gradient-based method (method of feasible directions [34,35] with analytical gradients).
However, any optimization method (gradient-based or derivative-free) can be used as working at the
surrogate level is inexpensive; we do not need to perform high-fidelity function evaluations.

In Figures 5 and 6, we plot a two-variable design space. In general, a design space will be n-dimensional,
where 7 is the number of design variables of which the objective is a function. We deliberately used a
two-variable design space to help visualize the response surface, the design space, and the various
concepts related to DO and DSE. For completeness, we extended this problem to three design variables,
and we obtained similar results by using the same methodology. We want to point out that all the
results discussed in this section were obtained using Python scripting as black-box solver, and the
volume and surfaces were computed using Onshape’s APL
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Figure 5. Scatter plot matrix of the cylinder optimization case using two design variables. In the
upper triangular part of the plot, the Spearman correlation is shown. In the diagonal of the matrix,
the histograms showing the data distribution are displayed. In the lower triangular part of the matrix,
the data distribution is shown using scatter plots. In the last row of the matrix plot, the response of the
Qol in function of the design variables and the non-linear (NL) constraint is illustrated, together with a
quadratic regression model.

We would like to highlight that the optimized can dimensions presented in this section significantly
differ from actual soda cans. We should ask ourselves, is the shape of this soda can truly optimal? From
a mathematical point of view, yes. However, from a point of view of going through the whole process
of manufacturing the can, is not. This simple example shows that optimization is very subjective.
Sometimes manufacturers are trying to optimize something a little bit more abstract, like, how the
can is manufactured, packing factor, opening mechanism, customer satisfaction, aluminum cost,
and these abstract questions are better answered using design space exploration and by visualizing
and interacting with the results in real time, as is possible to do by using the proposed cloud-based
engineering design framework.
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To close the discussion of this introductory case, we would like to reiterate that the optimization
loop implemented is fault-tolerant, so in the event of hardware or software failure, the optimization
task can be restarted from the last saved state. During the design loop, all the data is made available
immediately to the user, including the geometry, even when running multiple simulations at the same
time. Moreover, the data is monitored in real time; therefore, anomalies and trends can be detected
in real time, and corrections/decisions can be taken. Finally, when it comes to engineering design
studies, DO will converge to the optimal value, but formulating the problem requires some knowledge
about the design space. Also, DO does not give valuable information about the global behavior of the
Qol. Design space exploration, on the other hand, provides a lot of information about the design space
without converging to the optimal value. Still, these studies might be expensive to conduct due to the
high number of function evaluations often required to construct a reliable estimator. An added benefit
of DSE is that the outcome can be used to conduct SBO studies, where the cost of evaluating the Qol
and derivatives is zero as we are working at the surrogate level. Ultimately, the choice of the method
to use is to the user, and likely based on the computational resources available and in the difficulty to
formulate the optimization problem.

1800 6000
1600
5000

1400

1200 4000

3000

NL constraint

2000

1000

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Height (cm) Height (cm)
Figure 6. Left image: contour plot of the Qol (total surface). Right image: contour plot of the non-linear
constraint (volume); in the image, the white line represents the range where the volume is 354 cm? <
Volume < 356 cm3. In both images, the green circle represents the starting point, the red circle represents
optimal value, the yellow circles represent the path followed by the optimization algorithm (note that
the gradient evaluations are not plotted), and the white circles represent the sampling points.

3.2. Static Mixer Optimization Case

In this case, we introduce the use of a qualitative metric to conduct the engineering design study.
We also compare the outcome of a DO study and a DSE study. The geometry used in this case is shown
in Figure 7, and it corresponds to a static mixer with two inlets and one output. The goal, in this case,
is to obtain a given velocity distribution at the outlet by changing the angle of the inlet pipe 1 (refer to
Figure 7). The velocity distribution field at the outlet was designed in such a way that the velocity
normal to the outlet surface has a paraboloid distribution. Then, by using the SSIM index method
(refer to Appendix A for an explanation), we compared the target image and the image of the current
configuration (refer to Figure 8). The closer the SSIM index is to one, the more similar the images are;
therefore, we aim at maximizing the Qol.

The simulations were conducted using OpenFOAM (version 7.0) [17,18]. To find the approximate
solution of the governing equations, the SIMPLE pressure-velocity coupling method was used, together
with the k — epsilon turbulence model with wall functions, and a second-order accurate and stable
discretization method for the convective, diffusive, and gradient terms. The Onshape document
with all the dimensions is available at the following link (https://cad.onshape.com/documents/
8f1312fafb3aac0f7bd3ed38/w/72a43b7cd8cab686e908ef122 /e /33c606cd59a53e2b8532a94a).


https://cad.onshape.com/documents/8f1312fafb3aac0f7bd3ed38/w/72a43b7cd8ca686e908ef122/e/33c606cd59a53e2b8532a94a
https://cad.onshape.com/documents/8f1312fafb3aac0f7bd3ed38/w/72a43b7cd8ca686e908ef122/e/33c606cd59a53e2b8532a94a
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The case setup is similar to the one presented in Section 3.1. The main difference is that we are
introducing a new black-box application that requires additional steps so that it can be used inside
the engineering design loop. The workflow specific to the data exchange between Dakota and the
black-box solver (OpenFOAM in this case), is depicted in Figure 9 and discussed below. It is worth
mentioning that the workflow is similar for different black-box applications, the only difference is in
the formatting of the input and output files, and the data structure.

AW

Inlet pipe 1
. =~ Inlet 1

Angle variation
on inlet pipe 1

Inlet 2 N 3l
Y
, « >
X kv l
z X Outlet

Figure 7. Static mixer geometry.

Target image Output image - SSIM = 0.9220

Figure 8. Velocity distribution normal to the outlet surface. Left image: reference velocity distribution

or target image. Right image: image of the velocity distribution for a non-optimal case. To determine
if the images are similar, we used the SSIM index method. The closer the SSIM index of the output
image is to one, the more similar the images are.

First, the Dakota input file is setup to reflect the number, range, and name of the design variables
(parametrical variables), the number of Qol, and the objective of the optimization study (minimize
or maximize). In the same input file, the optimization method or design space method is chosen,
along with the required options. Also, sequential or asynchronous function evaluations can be chosen
according to the resources available. Then, as depicted in Figure 9, a Template directory is created
to store the parametrical input files, i.e., subject to change as a result of the optimization process
(e.g., files containing the definition of the geometry, boundary conditions for inlet velocity, physical
properties, etc.). The automatic update of the parametrical files located in the Template directory is
done automatically by using a Dakota supplied utility or user-defined scripts. These utilities skim
all files located in the Template directory and automatically insert the values generated by Dakota
during the design optimization or the design exploration study, into the predefined locations in the
template files. In this workflow, a Base case directory is also created, where all the files needed to
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update the geometry and to run the OpenFOAM simulations are stored. The simulation control script
file (or simulation driver), denoted by the Control script box in Figure 9, merges the automatically
edited files in the Template directory with the Base case directory, creating in this way a working
directory for a specific set of design parameters. At this point, the control script executes all the
steps related to the simulation, i.e., geometry update, meshing, and launching the solver (in serial
or parallel). Finally, all the data generated is automatically post-processed following the instructions
defined in the control script. This includes quantitative and qualitative post-processing, as well as
data formatting. It should be emphasized that the Template directory and Base case directory are
created by the user. Also, the automatic update of the parametrical files is done after merging the
directories Template directory and Base case directory into a separate working directory. For the
interested reader, the working case setup can be found at this link (https:/ /github.com /joelguerrero/
cloud-based-cad-paper/tree/master/static_mixer).

e B e

Template Base case
directory directory
S~— S—

Automatic "
Se uentli)a‘l\ﬁy;:r:ncurrem DAKOTA | ,| replacementof | | Createworking Intergc':ie;npz:h(n:u o l}utomanc_ DAKOTA
d evaluations Parameters file parametric variables directories = scripting files = La of ases Results file
in template files pting
N a
/ ~. Control script
L

DAKOTA or
:?‘AI:?';I;I: user formatted
P output file

Figure 9. Workflow for data exchange between Dakota and OpenFOAM. The white rectangles denote

process blocks, light-shaded blue document symbols denote unchanging sets of files, and light-shaded
green document symbols indicate files that change with each set of design parameters generated by
Dakota or after the end of the evaluation of the Qol. The light-shaded grey area denotes the domain of
the control script that automatically prepares the case; this includes, CAD geometry, mesh generation,
launching the solver, quantitative and qualitative post-processing, and automatic formatting of input
and output files.

In Figure 10, we plot the outcome of the DO study using a gradient-based method (method of
feasible directions or MFD [34,35] with numerical gradients computed using forward differences),
and the DSE study using a uniform sampling for the inlet pipe angle (from 0 to 180 degrees). For the
DO case, we used as starting point 0 degrees, and the case converged to the optimal value (pipe angle
equal to 111.0549 degrees and SSIM index equal to 0.9660) in 31 function evaluations. In the DSE case,
we explored the design space from 0 to 180 degrees, in steps of 5 degrees, so roughly speaking, we used
the same number of function evaluations as for the DO case. From Figure 10, we can demonstrate that
the DSE study, while not formerly converging to the optimal solution, gives more information about
the design space than the DO method. From the DSE results, we can see that there is a plateau of the
SSIM value for pipe angle values between 90 and 135 degrees. This information is not available when
conducting DO studies, as the goal of these methods is to convergence to the optimal solution in an
iterative fashion, and in doing so, some areas of the design space may remain unexplored. Using the
data of the DSE study, we can also get a good estimate of the maximum value of the SSIM index, or we
can use the data to construct a meta-model, and then use any DO method to find the optimal value.
Both methods, DO and DSE, have their advantages and drawbacks and often is a good practice to use
a combination of both, i.e., we first explore the design space in an inexpensive way, and then we use
the information gathered from the DSE study to start a refined DO study.


https://github.com/joelguerrero/cloud-based-cad-paper/tree/master/static_mixer
https://github.com/joelguerrero/cloud-based-cad-paper/tree/master/static_mixer
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In Figure 11, we show the velocity distribution at the outlet surface for five cases of the DSE
study. In this figure, we also show the SSIM index value, the geometry layout, and the target image.
As previously stated, the goal of this study was to obtain a given velocity distribution at the outlet
(target image) by changing the angle of the inlet pipe. Then, by using the SSIM index method
(Appendix A), we compare the target image and the image of the current configurations (as shown
in Figure 11). The closer the SSIM index is to one, the more similar the images are. We highlight that
we are using a qualitative metric instead of the traditional quantitative metrics used in engineering
design studies. We designed beforehand the desired appearance of the field at the outlet, and then,
by comparing the images in the design loop, we found the best match for our qualitative metric.

Again, we stress the fact that the loop is fully automatic and fault-tolerant, and it can be run
concurrently and on the cloud. For the DSE case, we run eight simulations concurrently, each one using
four cores. For the DO case, we were limited by the number of derivatives that can be computed at the
same time. As this case only has one design variable, only one derivative can be computed. Therefore,
the maximum number of concurrent simulations achievable in this DO case was two (one function
evaluation and one gradient evaluation using forward differences), and each concurrent evaluation
was conducted using eight cores.
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Inlet pipe 1 angle (degrees)
Figure 10. Comparison of the outcome of the DO and DSE studies. The Qol used was the SSIM index.

Let us now conduct a DSE study using three design variables, namely the diameter of the inlet pipe
one, the diameter of the inlet pipe two, and the angle of the inlet pipe one. Again, all the parametrical
variables were defined in the Onshape’s document and modified using the Python APL This study was
conducted using 170 experiments, generated using the space filling Latin hypercube sampling method
(LHS) [2]. The simulations were run concurrently (eight simulations at the same time), and each
simulation was run in parallel using four cores.

In Figure 12, we show another way to visualize high-dimensional data by using the parallel
coordinates plot [43]. This kind of plot is extremely useful when visualizing and analyzing multivariate
data, as it lets us identify how all variables are related. The highlighted line in Figure 12 represents the best
solution (maximum SSIM index value), and shows the respective values of the design variables. In this
DSE case, we can see that solutions that are better than the solution obtained using one design variable
(SSIM = 0.9660), can be obtained by also changing the diameters of the inlet pipes. These solutions are
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shown in Figure 13. It worth mentioning that the parallel coordinates plots implemented are interactive;
this allows us to isolate a range of values in real time. We can even change the order of the columns
interactively and compare the slopes between variables. The scripts used for the parallel coordinates
plots, as well as the data, are available at the following link (https://github.com/joelguerrero/cloud-
based-cad-paper/tree/master/parallel_coordinates_dse_case). The interactive parallel coordinates plot
can be accessed at the following link (http:/ /joelguerrero.github.io/parallel_coordinates_dse_case/).

Target velocity distribution at outlet — @
Velocity distribution at outlet — @ @ @ @ @

- A \
Geometry variations —
@ @ ® ® ®
Inlet pipe angle — 0° 40° 110° 150° 180°
SSIM index — 0.9221 0.9463 0.9654 0.9518 0.9264

Figure 11. Qualitative comparison of the velocity distribution at the outlet. The SSIM method was
used to compare the images. In the SSIM method, a value of 1 means that the images are identical.
The target image is shown in the first row of the figure.

Inlet pipe angle (inlet 1) Inlet pipe diameter (inlet 1) Inlet pipe diameter (inlet 2) SSIM Index - Qol
0.9

200
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100
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0.6 0.6 0.86

Figure 12. Parallel coordinates plot of the outcome of the DSE study using three design variables.
The highlighted line represents the best solution.
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Figure 13. Parallel coordinates plot with filters. In the top image, the Qol has been filtered (0.9660 <
SSIM < 1). In the bottom figure, we apply additional filters to the design variables.

3.3. Two Ahmed Bodies in Platoon

In this case, we use the engineering design loop to conduct a parametric study. We compare the
numerical results obtained with the current framework, against the experimental results obtained
in references [44,45]; therefore, this is also a validation case. The simulations were conducted using
OpenFOAM (version 7.0) [17,18]. To find the approximate solution of the governing equations, the SIMPLE
pressure-velocity coupling method was used, together with the k — w SST turbulence model with wall
functions, and a second-order accurate and stable discretization method for the convective, diffusive,
and gradient terms.

The study was conducted at different inter-vehicle spacing, an Ahmed body slant angle equal
to 25 degrees, and an inlet velocity equal to 40 m/s. The Qol to measure is the normalized drag
in platooning. In Figure 14, we depict a sketch of the computational domain and the definition of
the inter-vehicle spacing S. From the parametrization used when creating the solid model, the two
Ahmed bodies can be simulated in any formation with different slant angles, where everything
can be controlled using configuration variables. The Onshape document with all the dimensions is
available at the following link (https://cad.onshape.com/documents/b691f01f6fadba22433180ad /w/
28165b21b45b4fee07e761b8/e/93c2ec3a1d01f9149d0557b1).

In Figure 15, we plot the outcome of this parametric study, where the normalized drag coefficient
in platooning is computed as follows,

_Cm )

CDPIatooning - CD2
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https://cad.onshape.com/documents/b691f01f6fadba22433180ad/w/28165b21b45b4fee07e761b8/e/93c2ec3a1d01f9149d0557b1
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in this equation, Cp; is the drag coefficient of the Ahmed body in a platoon position (front, back,
sideways, or any combination), and Cp, is the drag coefficient of the single Ahmed body. From the
results presented in Figure 15, it can be observed a satisfactory agreement between the numerical
and experimental values. It is worth mentioning that the simulations were run concurrently (four
simulations at the same time), and each simulation was run in parallel using six cores.

S =x/L

—>

e

Y4

Figure 14. Spacing definition of the two Ahmed bodies, where x is the distance between the two bodies,
L is the Ahmed body length, and S is the non-dimensional inter-vehicle spacing (S = x/L).

In this final application, we only conducted a parametrical study with one design variable. However,
this study served to demonstrate the usability of the framework for complex validation cases. The reader
should be aware that this case can be extended to more complex scenarios; for example, we could
simulate one Ahmed body overtaking the other one.
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Figure 15. Normalized drag coefficient against inter-vehicle spacing S. The continuous lines represent
the numerical results. The experimental results (dashed line) were taken from references [44,45].

4. Conclusions and Future Perspectives

In this manuscript, we presented an engineering design framework to perform design optimization
and design space exploration studies. The engineering design loop implemented, allows for sequential
and concurrent simulations (i.e., many simulations can be run at the same time), and each simulation
can be run in parallel; this allows reduction of the output time of the design loop considerably.
The optimization loop is fault-tolerant and software agnostic, and it can be interfaced with any
application able to interact using input/output files via a command-line interface. The code coupling
capabilities were provided by the library Dakota, and all the tools used in this work are open-source
and freeware.

Two novel features were introduced in the workflow. First, the use of a cloud-based parametric
CAD tool that gives engineers and designers complete control over the geometry during the design
loop. This feature allows users to deploy the design loop in any platform as the installation is not
required. It also lets the designers interact with the parametric CAD model using a programmatic
API. Introducing the CAD tool into the design loop has been traditionally a problem because most
of the CAD applications run in Windows OS. In contrast, the simulation software runs in Unix-like
OS. Furthermore, in traditional CAD tools is not possible to interact with the parametric model using
a programmatic environment; they take all the inputs via a graphical user interface that cannot be
controlled in an automatic design loop. The use of the cloud-based CAD tool allowed us to circumvent
these problems.

Secondly, the use of the SSIM index method to drive the design study. By using this metric, it is
possible to compare images instead of integral quantities. We can now design beforehand how the
field will look like in a given location of the domain, and the design loop will try to find the best match
for that qualitative metric.

From the numerical experiments presented, it was demonstrated the flexibility and usability of
the proposed workflow to tackle engineering design problems using different approaches. As for
the optimization strategy concerns, we used gradient-based methods, derivative-free methods,
surrogate-based optimization, and design space exploration techniques. All the methods delivered
satisfactory results. The SSIM index method also proved to be very robust and easy to implement.

This tool, together with reduced-order models and surrogate models, has the potential to open
the door to generative design in CFD. We look forward to working in this field, together with machine
learning techniques and more advanced image recognition algorithms.
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Appendix A

Hereafter, we briefly describe the Structural Similarity Index (SSIM) method used in Section 3.2 to
measure the similarity between images. The SSIM is a method for predicting the perceived quality of
digital television and cinematic pictures, as well as other kinds of digital images and videos.

Referring to a grey-scale image, a similarity index can be computed considering it as a bi-dimensional
function of intensity [46]. The simplest and most commonly used similarity index is the mean squared
error (MSE), which is obtained averaging the squared intensity difference between two pictures on
each pixel [47]. However, the MSE, like many other mathematically defined indexes, is not able to
take into account subjective quality measures (i.e., human perception-based criteria, such as image
structure comparison) [48]. For this reason, it can be misleading when it is necessary to find the image
that is more similar to a reference one.

To avoid the problems related to the MSE, the SSIM index can be used. Based on how it is defined,
the SSIM takes into account the structured information and the neighborhood dependencies that
are usually present in natural images. The SSIM has been used with success in different research
fields; for example, in reference [49], the authors used it to detect disturbances or blurring effects in
a set of pictures. The authors also reported that it was not possible to do the same with the MSE.
In reference [50], the SSIM index of flame images was used as a measure of the burning state in a
sintering process. By using a small number of samples, the authors were able to recognize the burning
state with satisfactory accuracy thanks to the SSIM index. In reference [51], a hand gesture recognition
study based on both MSE and SSIM was presented, and it was concluded that both techniques could
be used for gesture recognition. In addition, it was also found that the SSIM was superior to the MSE,
as it was insensitive to small imperfections in the reconstructed image caused by thresholding.

Considering two different image discrete signals, let us say x and y, the similarity evaluation is
based on three characteristics: luminance, contrast, and structure [47]. The luminance y, of each signal
is computed as the mean intensity, as follows,

He= 3 L% (A

where N is the number of pixels.
The luminance comparison between x and y is then performed defining the function I(x, y),

2 C
I(x,y) =

G (A2)

where C; is a constant used to avoid instabilities when the denominator is close to zero.
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The contrast oy is estimated as the standard deviation of the image signal, and is computed
as follows,

LS (= )2 (A3)
O = | o= Y (xi —u
X N_11+1 1 X

The contrast comparison function c(x, y) is similar to Equation (A2), and it also includes a constant
to avoid instabilities (Cy).

2000y + Co
C(X,y) = U%TM (A4)
The structure comparison can be performed by defining the function s(x, y),
Oxy + G
Y) = ————— A5
soy) = oA (A5)
where 0y, is specified as follows,

1 N
Oxy = N_-1 Z(xi _Vx)(yi_.”y) (A6)

i+1

Finally, by combining Equations (A2), (A4) and (A5), it is possible to obtain the SSIM index
between x and y, as follows,

SSIM(x,y) = [1(x,y)]" - [e(x, )] - [s(x, )] (A7)

where «, B, and 7y are positive parameters used as weights factors to set the importance of I(x,y),
c(x,y) and s(x, y) when computing the SSIM index. A simplified expression of Equation (A7) can be
obtained by setting I(x,y), c¢(x,vy), s(x,y), and Cs to the following values [47],

_G

a=1 g=1 y=1 Cs >

(A8)

thus obtaining the following expression for SSIM (which is the form of the Equation (A7) used in
this work),

(2pxpy + C1) (200 + C2)

SSIM(x,y) = <y§+;t§+cl) (0%+‘7§+C2)

(A9)

To analyze the images, we use the Python library scikit-image [52], which is a collection of
algorithms for image processing. The images to compare are saved as color images in digital format
(e.g., Portable Network Graphics or PNG format). However, this procedure was designed for grey-scale
images, as stated at the beginning of this section. Thus, it is necessary to separate the three different
color channels (red, green, and blue), as shown in Figure A1. This is done by using the Python function
imread to import the digital image (in PNG format) as a uint8 three-dimensional array. At this point,
each channel is a monochrome picture so that it can be treated as a grey-scale picture, and its SSIM
index can be computed by using Equation (A9). The SSIM of the original digital image can be finally
obtained as the average of the SSIMs of the three color channels. The computation of the SSIM of the
separate channels and their averaging is performed using the compare_ssim function implemented in
the Python library scikit-image. The SSIM index value is a number between 0 and 1, where 1 means a
perfect matching between the images. That is, the closer the value is to 1, the more similar the images
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are. A sample python script can be found at the following link (https://github.com/joelguerrero/
cloud-based-cad-paper/tree/master/SSIM).

Red Channel Blue Channel

Colour Picture
- W -

Figure Al. Separation of red, green and blue channels of a color picture. Image courtesy of Diego
Rattazzi (diego.rattazzi@edu.unige.it).
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