
fluids

Article

Suite-CFD: An Array of Fluid Solvers Written in
MATLAB and Python

Nicholas A. Battista

Department of Mathematics and Statistics, The College of New Jersey, 2000 Pennington Road, Ewing Township,
NJ 08628, USA; battistn@tcnj.edu; Tel.: +1-609-771-2445

Received: 1 October 2019; Accepted: 19 February 2020; Published: 25 February 2020
����������
�������

Abstract: Computational Fluid Dynamics (CFD) models are being rapidly integrated into applications
across all sciences and engineering. CFD harnesses the power of computers to solve the equations
of fluid dynamics, which otherwise cannot be solved analytically except for very particular cases.
Numerical solutions can be interpreted through traditional quantitative techniques as well as visually
through qualitative snapshots of the flow data. As pictures are worth a thousand words, in many
cases such visualizations are invaluable for understanding the fluid system. Unfortunately, vast
mathematical knowledge is required to develop one’s own CFD software and commercial software
options are expensive and thereby may be inaccessible to many potential practitioners. To that extent,
CFD materials specifically designed for undergraduate education are limited. Here we provide an
open-source repository, which contains numerous popular fluid solvers in 2D (projection, spectral,
and Lattice Boltzmann), with full implementations in both MATLAB and Python3. All output data is
saved in the .vtk format, which can be visualized (and analyzed) with open-source visualization tools,
such as VisIt or ParaView. Beyond the code, we also provide teaching resources, such as tutorials,
flow snapshots, measurements, videos, and slides to streamline use of the software.

Keywords: fluid dynamics education; applied mathematics education; computational fluid dynamics;
fluids visualization; open-source CFD; projection method; spectral fluid solver; Lattice Boltzmann
Method; cavity flow; circular flow; interacting vortices; flow past cylinder; flow past porous cylinder;
MATLAB; Python

1. Introduction

Computational Fluid Dynamics (CFD) models are being applied to problems across all sciences
and engineering. From designing more aerodynamic sportswear and vehicles, to understanding
animal locomotion, to personalized medicine, to disease transmission, and to predicting hurricanes and
atmospheric phenomena, it is difficult to find situations where greater knowledge of the underlying
fluid dynamics isn’t desired or valuable. Due to its immense importance, many scientists have
dedicated their careers to the field, whether they study particular fluid phenomena or develop tools,
either experimental or numerical, for other scientists and engineers to use. Possibly because of how
vital understanding fluid dynamics is to human flourishing, proving existence, uniqueness, and the
possible breakdown of solutions to the system of non-linear partial differential equations that govern
fluid dynamics is one of the Millennium Problems, to which the Clay Institute offers a 1 million dollar
prize for solving [1]. On the other hand, CFD allows us to solve these equations, the Navier-Stokes
equations, which are the equations that detail the conversation of momentum and mass for a fluid. For
an incompressible, viscous fluid, they can be written as follows,

ρ
[∂u

∂t
(x, t) + (u(x, t) · ∇)u(x, t)

]
= −∇p(x, t) + µ∆u(x, t) (1)

Fluids 2020, 5, 28; doi:10.3390/fluids5010028 www.mdpi.com/journal/fluids

http://www.mdpi.com/journal/fluids
http://www.mdpi.com
https://orcid.org/0000-0003-2437-0383
http://dx.doi.org/10.3390/fluids5010028
http://www.mdpi.com/journal/fluids
https://www.mdpi.com/2311-5521/5/1/28?type=check_update&version=2

Fluids 2020, 5, 28 2 of 58

∇·u(x, t) = 0 (2)

where u(x, t) and p(x, t) are the fluid’s velocity and pressure, respectively. The physical properties
of the fluid are given by ρ and µ, its density and dynamic viscosity, respectively. The independent
variables are the time, t, and spatial position, x. Here all variables that pertain to the fluid, e.g., u and p,
are written in an Eulerian framework on a fixed Cartesian mesh, x. Think of a fixed Cartesian mesh as
a rectangular grid to which over the course of the simulation physical quantities, like velocity, pressure,
etc., are measured at specific lattice points. In an Eulerian framework, specific blobs of fluid are not
tracked over time, as though they are billiard balls, but rather, we focus on measuring quantities of
interest at specific locations in space, located on a fixed grid. Note that Equations (1) and (2) provide
the conservation of momentum and mass, respectively.

Many techniques have been developed to solve the above system of equations, such as projection
methods [2–6], spectral methods [7–9], and Lattice Boltzmann methods [10–12]; however, they are
typically left out of undergraduate curricula due to the mathematical background required for
implementation, while they are commonly found in graduate curricula [13]. Moreover, it is not
only mathematical knowledge that is a barrier; CFD requires expertise in at least four knowledge
domains [14]: flow physics, numerical methods, computer programming, and validation, either
experimental or theoretical. Thankfully, this has not stopped academics from developing and
researching methods to integrate CFD into undergraduate courses [13–21]. Some have offered best
practices guides and advice for future CFD undergraduate courses [13,21]. Stern et al. [13] has
suggested for beginners to focus on the overall CFD process and flow visualizations, in order to
solidify their fundamental understanding of fluid physics. Appropriate flow visualizations also help
students validate and verify their simulations through careful inspection [21].

As computer literacy is rapidly becoming more of a central focus in undergraduate curricula,
CFD could be a natural outlet where students may not only implement and test algorithms, but also
practice proper data analysis and data visualization, while building computational experience. Much of
the fluid dynamics software that has been used in previous courses is either foreign to students or only
commercially available [14,17,19,20]. Commercial software has been recommended by the American
Physical Society and American Association of Physics Teachers as a tool to help students prepare for
21st century careers by exposing them to a greater range of experiences and opportunities [22,23].
Unfortunately due to expensive software licenses, some schools, particularly smaller institutions, may
not be able to afford such software, especially if they would only be used intermittently to complement
the existing course material.

Recently, popular programming languages selected for many undergraduate curricula in science,
mathematics, and engineering have been either MATLAB or Python [24–28]. MATLAB [29] and
Python [30] are both interpreted languages, making it easier (and more attractive) for students to begin
programming [31]. Moreover if students have already been exposed to these programming languages,
giving them a platform to refine their skills in these languages while at the same strengthening their
intuition in fluid dynamics may prove beneficial.

For this reason, many scientists, engineers, and mathematicians who are passionate about
education have begun developing CFD software intended for educational purposes written in
these languages [32–36]. Such open source software packages can be integrated into courses in a
well-streamlined fashion, with tutorials, activities, exercises, and notes provided, and may even blur
the line between classroom activities and contemporary research [32,35–37]. In particular L.A. Barba
and G. Forsyth [33] have developed a guide for students to numerically solve the Navier-Stokes
equations in 12 scaffolding steps and L.A. Barba and O. Mesnard [34] have developed a similar
scaffolding lesson structure for students to study classical aerodynamics using potential flow models.
Both are written in Python using Jupyter Notebooks [38]. Pawar and San [39] developed modules for
teaching advanced undergraduate and graduate students how to develop their own fluid solvers in
the Julia programming language [40].

Fluids 2020, 5, 28 3 of 58

Rather than develop a collection of modules that teach how to implement particular CFD
numerical schemes, we offer the scientific community a variety of popular fluid solvers that solve
traditional problems in fluid dynamics, with two independent but equal implementations written
in MATLAB and Python. The emphasis is not placed on students having to develop or implement
numerical schemes, but to allow them the opportunity to get an accelerated start in CFD, and run,
tweak, and analyze simulations of traditionally studied problems in fluids courses, as well as explore
data visualization and how to present data that is appropriate for fluid physics interpretation. All
of this can be done while testing their own hypotheses in familiar programming environments. In
the remainder of this manuscript, we will give a high-level overview of the CFD schemes currently
implemented in the software (Section 2), guided tutorials on how to run, visualize, and analyze
simulations (Section 3), and provide numerous examples to which students may elect to study or
modify as well (Section 4).

Furthermore, we provide an in-depth mathematical description of each numerical scheme in
Appendix B. The open-source software repository can be accessed at https://github.com/nickabattista/
Holy_Grail. Any simulation data produced from the software can be visualized and analyzed in
open-source software, such as VisIt [41], maintained by Lawrence Livermore National Laboratory, or
ParaView [42], developed by Kitware, Inc., Los Alamos National Laboratory, and Sandia National Labs.
We also provide teaching resources, such as slides, figures, and movies in the Supplementary Materials.

2. Brief Overview of the Three Fluid Solvers

In this section we will give a brief overview of the three fluid solvers currently implemented
in the software—a projection method, a spectral (FFT) method, and the Lattice-Boltzmann method.
Our goal is to provide students a high-level overview of the methods and how they compare to one
another. Further details regarding their mathematical foundations and implementations are given in
Appendix B.

2.1. Projection Method

The projection method was first introduced by Chorin in 1967 [2] and independently by Temam
in 1968 [4], to solve the viscous, incompressible Navier-Stokes equations. Projection methods are
finite difference based numerical schemes [43], in which the fluid equations are solved in an Eulerian
framework, i.e., the computational grid is static and fluid dynamics variables, like velocity, pressure,
etc., are measured at particular locations on the grid over time during a simulation. Projection methods
have been extensively used throughout the fluid dynamics community for decades, in numerous
applications across many fields, while being continually improved for efficiency and accuracy [5,44–46].

In a nutshell, this method decouples the velocity and pressure fields, using operator splitting and
a Helmholtz-Hodge decomposition. This makes it possible to explicitly solve Equations (1) and (2)
in a few steps [2] while also increasing computational efficiency. Please see Appendix B.1 for further
mathematical details.

Furthermore, projection methods allow one to define explicit boundary conditions (BCs) for
velocity on edges of the computational domain, whether they are Dirichlet, Neumann, or Robin boundary
conditions [5,47]. In our software, we allow users to impose tangential velocity boundary conditions
along the edges of the rectangular domain, while the normal direction boundary conditions for velocity
are explicitly set to zero. The choice to set normal BCs to zero was made in order to simplify the code
by ensuring that volume conservation would be automatically satisfied, i.e., situations will not arise
in which a specified amount of fluid is being pumped into the domain while a different amount is
leaving the domain per unit time.

Having defined the fluid velocity as u = (u, v), one can set the boundary conditions for u on
the top and bottom of the domain (v = 0 along these edges) or v on the left and right sides (u = 0
along these edges). See Figure 1 for an illustration. Later in Section 4, we will showcase two different
traditional problems in fluid dynamics with a projection method:

https://github.com/nickabattista/Holy_Grail
https://github.com/nickabattista/Holy_Grail

Fluids 2020, 5, 28 4 of 58

1. Cavity Flow
2. Circular Flow in a Square Domain

The examples are different due to the changes in boundary conditions that the user can impose,
see Figure 1. In Figure 1 we illustrate the boundary conditions for each example: cavity flow (a)
and circular flow (b). This figure also illustrates that the domain could be constructed to be either
rectangular or square and that the boundary conditions do not have to be uniform among all sides,
nor across the domain.

Figure 1. Boundary conditions are depicted pertaining to (a) cavity flow and (b) circular flow for the
projection methods examples.

We will also compare different fluid scales in both examples, using the Reynolds Number, Re.
The Reynolds Number is given by

Re =
ρLV

µ
, (3)

where ρ and µ are the fluid’s density and dynamic viscosity, respectively, while L and V are a
characteristic length- and velocity-scale of the system. In essence, Re is a ratio of inertial forces
to viscous forces in a system. If Re >> 1, inertia dominates, if Re << 1, viscous forces dominate,
and if Re = 1, the inertia and viscous forces are balanced. An example of high Re flow would be the
flow around a marble quickly falling through air. An example of low Re flow would be the fluid flow
around a marble slowly falling through honey.

2.2. Spectral Method (FFT)

Spectral methods are a different class of differential equation solvers. They are well-known for
achieving highly accurate solutions, i.e., spectral accuracy [48–50]. Spectral accuracy occurs when
error decreases exponentially with a small change in grid resolution, e.g., there is a linear relationship
between the logarithm of error and grid resolution, i.e.,

log(error) ∼ N,

where N is the number of grid points. These methods approximate solutions using orthogonal
expansions, such as Fourier Series or other orthogonal basis of functions, like Chebyshev Polynomials
or Legendre Polynomials. In contrast to finite difference based schemes, like the projection method,
where solutions are approximated at specific locations in space, in spectral methods a particular
orthogonal series expansion is chosen and the earnest is on finding the coefficients of the expansion.

Here we chose to use the basis of Discrete Fourier Transform (DFT). The DFT can be used to
express functions that are not periodic, unlike Fourier Series expansions, which are used to represent
periodic functions. Moreover, we used the Fast Fourier Transform (FFT), which yields the same
numerical values as a DFT, but is considerable more computationally efficient, i.e., fast.

Fluids 2020, 5, 28 5 of 58

Thus, we implemented a FFT based spectral scheme to solve the viscous, incompressible
Navier-Stokes equations in 2D. We also chose to solve these equations in their vorticity formulation (see
Appendix B.2 for mathematical details). The vorticity formulation will lead to a few numerical benefits.

In a nutshell, this will recast our problem into solving for the vorticity, ωωω = ωk̂, and the
streamfunction, ψ. Velocity can be defined in terms of the curl of the streamfunction, i.e., a vector
potential, see below

u = ∇× ψk̂. (4)

Hence this allows us to find the velocity field, u = (u, v), once we find ψ, e.g.,

u =
∂ψ

∂y
and v = −∂ψ

∂x
.

Moreover, the incompressibility condition (Equation (2)) will be automatically satisfied since u is
defined to be the curl of a scalar, and the divergence of the curl of a vector is always identically zero.

Furthermore, working in the vorticity formulation requires us to only solve a Poisson equation
for the streamfunction in terms of the vorticity, ωωω, i.e.,

∆ψ = −ω. (5)

Notice that Equation (5) is a linear equation. Moreover, upon taking the FFT of the
Equation (5), the computation is transformed into frequency (Fourier) space, which offers two
advantages—increased speed and accuracy.

In practice, we will solve for the streamfunction at the next time-step based on the previously
computed vorticity and then update the vorticity using information from the newly updated
streamfunction. We chose to use a Crank-Nicholson time-stepping scheme [51] to update the vorticity
to the next time-step. The Crank-Nicholson scheme is well-known for being unconditionally-stable
for diffusion problems and as well as for being 2nd order accurate in time and space, as an implicit
method [52]. These accuracy and stability properties make the Crank-Nicholson an ideal candidate for
numerically solving such equations.

Although using a FFT (spectral method) preserves high accuracy of the spatial information at a
particular time-step, numerical error still unfortunately creeps in due to the time-stepping nature of
solving an evolution equation for the fluid’s momentum (see Equation (A15) in Appendix B.2). That
is, evolving the system forward in time is where the brunt of the error takes place, rather than the
spatial discretization.

In contrary to the projection method, this FFT-based approach allows us to explore periodic
boundary conditions. For example, if fluid flow is moving vertically-upwards through the top of the
computational domain, it will re-enter moving vertically-upwards through the bottom of the domain.
This has advantages and disadvantages. Some advantages are that explicit boundary conditions do
not need to be satisfied nor enforced, which aids in computational speed-up. However, to that extent,
one disadvantage is that this makes it more difficult to enforce particular boundary conditions when
desired. FFT-based fluid solvers have been used in the fluid-structure interaction community, in
particular within immersed boundary methods [32,37,53], when one wants to study the interactions of
an object and the fluid to which it’s immersed. As the focus is on the object and fluid interactions, it is
typically modeled away from the domain boundaries in the middle of the computational domain to
avoid boundary artifacts. For a mathematically detailed description of this FFT-based spectral method
see Appendix B.2.

For this particular FFT-based fluid solver for the vorticity-formulation of the viscous,
incompressible Navier-Stokes equations, we will highlight the following examples:

1. Side-by-Side Vorticity-Region Interactions
2. Evolution of Vorticity from an Initial Velocity Field

Fluids 2020, 5, 28 6 of 58

Contrary to the examples shown for the projection method in Section 2.1, these examples are not
differentiated by different boundary conditions, but rather different initial vorticity configurations
in the computational domain. Figure 2 gives the initial vorticity configurations for the two cases
considered: side-by-side vorticity region interactions (left) and an initial vorticity field that defined by
a velocity vector field (right). In Figure 2a, counterclockwise (CCW) and clockwise (CW) correspond to
regions of uniform vorticity, where vorticity initialized as a positive or negative constant for CCW and
CW, respectively. In all other regions of the computational domain, the vorticity is either initialized to
zero (Figure 2a). Although not shown, one could also initialize simulations on a rectangular grid. In
Figure 2b, the initial vorticity is defined by computing the vorticity from a simulation’s velocity vector
field. The velocity vector field was taken from a time-point in a Pulsing_Heart simulation [36] in the
open-source IB2d software [32,37]. In this example, we illustrate that if a snapshot of the velocity field
is known, it is possible to evolve the fluid dynamics forward using this spectral (FFT) method, even
though it is based on the vorticity formulation of the Navier-Stokes equations.

Figure 2. Illustrations of the boundary conditions and vorticity initialization for the cases of
(a) interacting vorticity regions and (b) an initial vorticity field defined from a velocity vector field.

2.3. Lattice Boltzmann Method

The Lattice Boltzmann method (LBM) does not explicitly (or implicitly) solve the incompressible,
Navier-Stokes equations, rather it uses discrete Boltzmann equations to model the flow of a fluid [11].
In a nutshell, the LBM tracks fictitious particles of fluid flow, thinking of the problem more as a
transport equation, e.g.,

∂ f
∂t

+ u · ∇ f = Ω, (6)

where f (x, t) is the particle distribution function, i.e., a probability density, u is the fluid particle’s
velocity, and Ω is what is called the collision operator. However, rather than these particles moving in
a Lagrangian framework, the Lattice Boltzmann method simplifies this assumption and restricts the
particles to the nodes on a lattice.

In traditional CFD methods, one typically discretizes the fluid equations in an Eulerian framework,
as in a projection or spectral method. When you are free of such restriction, as in the LBM, it allows
one to more readily deal with complex boundaries, model porous structures and multi-phase flow,
as well as incorporate microscopic interactions, while also allowing for massive parallelization of the
algorithm, leading to increased computational efficiency [12,54–56].

The LBM involves collision and streaming steps, where fictional fluid particles consecutively
propagate (and collide) over a discretized lattice, and the fluid density is evolved forward. There are
multiple ways to handle boundary conditions in the LBM. One such way is to use bounce-back boundary
conditions, which are executed by masking points in the domain via boolean expressions, thus defining
regions where the fluid can and cannot flow [55]. In short, the propagating (streaming) directions are

Fluids 2020, 5, 28 7 of 58

simply reversed when they hit a boundary node, see Figure A3 in Appendix B.3. The bounce-back
conditions can be used to enforce the necessary and physical no-slip boundary conditions for fluid flow
as well as defining solid objects in the interior of the grid (for an example see Figure 33). For a detailed
mathematical description of the LBM see Appendix B.3.

To highlight the LBM fluid solver, we showcase the following examples:

1. Flow past one or more cylinders
2. Flow past porous cylinder

3. How to Run the Simulations, Visualize, and Analyze

In this section we will give instructions on how to run, visualize, and analyze the simulations
produced in this software. We will explain how to change parameters below as well. In particular,
we will provide both overviews of what is possible to visualize and analyze as well as a guided
walk-through of the steps required, designated by Guide in their title. We broke this section into the
following subsections:

1. Running a Simulation
2. Visualizing the Data in VisIt
3. Guide: Running the Spectral (FFT) Method’s ‘bubble3’ Example
4. Guide: Visualizing the Spectral (FFT) Method’s ‘bubble3’ Data
5. Guide: Analyzing the Spectral (FFT) Method’s ‘bubble3’ Data

3.1. Running a Simulation

Here we will briefly describe how to run each fluid solver’s corresponding simulations.
To illustrate the software structure and how to run the simulations, we will use the MATLAB
(https://www.mathworks.com/products/matlab.html) [29] version. Note that the Python
implementation is consistent in its structure as well as naming conventions.

To run the simulation, one would need to do the following:

1. Either clone the Holy_Grail repository or download the Holy_Grail zip file at
https://github.com/nickabattista/Holy_Grail/ to your local machine. Note you can
download or clone this repository to any directory on your local machine.

2. Open MATLAB and go to the appropriate sub-directory for the particular fluid solver example
you wish to run, e.g.,

• Projection_Method: for the projection method solver and its examples
• FFT_NS_Solver: for the spectral (FFT) method solver and its examples
• Lets_Do_LBM: for the Lattice Boltzmann method solver and its examples

and go into the MATLAB subfolder. (If you wanted to run an example in Python, you would
change directories until you are in the complementary Python subfolder.)

3. The main script name for each fluid solver is named accordingly, e.g.,

• Projection_Method.m - main script for the projection method
• FFT_NS_Solver.m - main script for the spectral (FFT) solver
• lets_do_LBM.m - main script for the Lattice Boltzmann solver

Each of these scripts contains all the functions and modules necessary to run each example. The
file print_vtk_files.m produces the .vtk data files during each simulation. The user should not
have to change this file, unless they do not wish to save some of the data for storage reasons.
If this is the case, this can be accomplished by commenting out the lines corresponding to
whichever data is not to be saved.

https://www.mathworks.com/products/matlab.html
https://github.com/nickabattista/Holy_Grail/

Fluids 2020, 5, 28 8 of 58

4. Depending on the subfolder that you are in, to run an example, you would type its main script
name into the MATLAB command window and click enter.

5. The simulations are not instantaneous; they may take a few minutes. Upon starting the simulation,
a folder named vtk_data is produced, which will be used for storing the simulation data files
in .vtk format. As the simulation runs, it will dump more data into this folder. Note that
depending on the simulation you choose and the grid resolution, the simulations may take from
a few minutes to ∼30 min. Moreover, if you wish to run multiple simulations, note that the
default folder name is set to vtk_data, and so running additional simulations will overwrite any
previously saved data in the previous vtk_data folder. Please manually change the name of the
folder after each simulation to avoid this.

Digging deeper into each fluid solver script:

1. If one desires to change parameters for a particular simulation, e.g., grid resolution, viscosity
(either µ (Projection) or ν (FFT) or τ (LBM), etc.), options are available to the user without
digging deep into any of the sub-functions or individual modules beyond the main function
itself, see Figure 3.

2. Figure 3 highlights the main choices the user can make for each of the three fluid solvers (a)
Projection, (b) Spectral (FFT), and (c) Lattice Boltzmann. The user can identify which of the
built-in examples they wish to run by changing the appropriate string flag labeled choice.

3. Note that each example will run as described in Section 4 if all the parameters are selected to be
those in the parameter Table that provided within each example’s section. Caution: numerical
stability conditions may be violated by choice of other parameters. To test other parameter
values, we suggest making incremental variations, e.g., try doubling or halving viscosity, rather
than testing values orders of magnitude apart. Numerical instability will appear if solvers cannot
converge or begin dumping NaNs (not-a-number), which represent unrepresentable numbers to
computers, due to their inherent floating-point arithmetic.

4. As the entire fluid-solver is contained within each script, the user can go deeper into the code to
modify examples or create their own. This can be done in the following sub-functions:

• Projection Method: please_Give_Me_BCs (choice)
• Spectral (FFT) Solver: please_Give_Initial_Vorticity_State (choice, NX, NY)
• Lattice Boltzmann Solver: give_Me_Problem_Geometry (choice, Nx, Ny, percentPorosity)

Fluids 2020, 5, 28 9 of 58

Figure 3. Options for practitioners to change the grid resolution and size, fluid properties (density,
viscosity), and other solver attributes within the software for the (a) Projection method, (b) Fast Fourier
Transform (FFT)-based spectral solver, and (c) Lattice Boltzmann solver. The possible choices for
built-in examples are also listed for each.

3.2. Visualizing the Data in VisIt

In this section we will briefly describe how produce visualizations, such as those Section 4.
We will briefly detail the steps to visualize the data using the open-source software VisIt
(https://visit.llnl.gov) [41]. Note that each simulation produces data in the .vtk format and so one
could alternatively use the open-source software ParaView [42] for visualization purposes as well.
Later, in Section 3.3 we will guide a user through running an example (the spectral (FFT) method’s
bubble3 example) followed by a step-by-step guide to visualizing its corresponding data in Section 3.4.
We used VisIt version 2.13.3.

https://visit.llnl.gov

Fluids 2020, 5, 28 10 of 58

To visualize the data, one would need to do the following:

1. Open VisIt [41]
2. Open the desired Eulerian data (magnitude of velocity, vorticity, velocity vector field, etc.) from

the vtk_data folder.
3. A table of the possible data stored and their corresponding name when saved is found below

in Table 1.

Table 1. Data stored to .vtk format and its corresponding storage name.

Parameter Type ‘.vtk’ Name

Magnitude of Velocity Scalar uMag

Velocity Vectors Vector u

Horizontal Velocity Scalar uX

Vertical Velocity Scalar uY

Pressure (projection only) Scalar P

Vorticity Scalar Omega

Geometry (LBM only) Mesh Bounds

4. To Visualize Geometry (LBM only):

(a) Click Open
(b) Go to the vtk_data data folder that the simulation produced
(c) Click on the grouping of Bounds, click OK
(d) In VisIt, click on Add then Mesh→mesh.
(e) Then click Draw
(f) You can elect to change the color of boundary or size by double clicking on the Mesh in the

VisIt database listing window.

5. To Visualize Velocity Vectors:

(a) Click Open
(b) Go to the vtk_data data folder that the simulation produced
(c) Click on the grouping of u, click OK
(d) In VisIt, click on Add then Vector→u
(e) Then click Draw. An error message might pop up during at time-step zero (first data point)

if velocity is identically zero
(f) You can elect to change the color, size, scaling, and number of velocity vectors by

double-clicking on u in the VisIt database listing window
(g) To add streamlines of the velocity field, first make sure that your Active Source is set to u (see

Figure 4a), then click Add→Pseudocolor→operators→IntegralCurve→u (see Figure 4b).
Note you have the option to put numerous seed points for streamlines to stem in the domain.
Here we have chosen to use a line of points, sampled it at 4 evenly spaced locations within
that line, and specified particular integration tolerances, and a maximum number of steps
(see Figure 4c). Click Draw. You can also adjust the streamline aesthetics to how you desire,
e.g., color, thickness, etc.

Fluids 2020, 5, 28 11 of 58

Figure 4. VisIt graphical user interfaces (GUI) interface showing steps to illustrate velocity streamlines,
e.g., (a) active source must be set on velocity field, (b) sequence to plot streamlines, and (c) streamline
seeding location(s), accuracy tolerances, and solver-type.

6. To Visualize the Eulerian scalar data (e.g., Vorticity, Magnitude of Velocity, etc.):

(a) Click Open
(b) Go to the vtk_data data folder that the simulation produced
(c) Click on the grouping of the desired Eulerian scalar data, for example, Omega (for Vorticity),

click OK
(d) In VisIt, click on Add then Pseudocolor→Omega.
(e) Then click Draw
(f) You can elect to change the colormap and/or colormap scaling by double clicking on Omega

in the VisIt database listing window. The following table (Table 2) details the specific
colormap used for each scalar variable in the manuscript,

Table 2. Colormaps used for each scalar variable for visualization.

Parameter Colormap

Magnitude of Velocity RdYlBu or BrBG (Section 4.1 only)

Horizontal Velocity RdYlBu

Vertical Velocity RdYlBu

Pressure orangehot (Section 4.1 only)

Vorticity hot_desaturated

FTLE PuRd

Fluids 2020, 5, 28 12 of 58

(g) To visualize the finite-time Lyapunov exponent (FTLE), your Active Source in Visit
(see Figure 5a) must be on the velocity vectors, u. Then click Add→Pseudocolor→
operators→LCS→u (see Figure 5b). We used the attributes in Figure 5c for computing
the FTLE. In particular, we limited the maximum advection time to 0.05 and maximum
number of steps to 10. Once those are changed, click Draw.

Figure 5. VisIt GUI interface showing steps to illustrate finite-time Lyapunov exponents (FTLE), e.g.,
(a) active source must be set on velocity field, (b) sequence to plot FTLE (e.g., Lagrangian Coherent
Structures, LCS), and (c) attributes for plotting, e.g., accuracy tolerances, solver-type, etc.

(h) To add contours of the desired scalar variable, first make sure that your Active Source (see
Figure 5a) is set to the correct variable, then click Add→Contour→<desired variable name>.
Note that you have the option to scale the contours separate from the colormap of the variable
itself. Moreover, for FTLE your active source must be u and you can modify how FTLE are
computed, e.g., Figure 5c; however, we used consistent values for both FTLE computations.

3.3. Guide: Running the Spectral (FFT) Method’s ‘bubble3’ Example

In this guided walk-through, we wish to illustrate how to run a simulation and change its
parameters while also observing what information is being printed to the screen. We will use the
Spectral (FFT) Method’s bubble3 example and run two different examples where each uses a different
fluid kinematic viscosity, ν.

To run the simulation(s), do the following:

1. First we must make sure that we are inside of MATLAB the corresponding directory
for the MATLAB version of the spectral-based solver. To do this click through:
Holy_Grail→FFT_NS_Solver→MATLAB, see Figure 6. Note that I have downloaded (or cloned)
the software into my Documents folder.

Fluids 2020, 5, 28 13 of 58

Figure 6. MATLAB GUI interface showing the path to the current directory folder for the MATLAB
FFT-Based Spectral Solver as well as what files are contained within it.

2. To run this simulation, type FFT_NS_Solver into MATLAB’s command window and click enter.
See Figure 7 for what should print to the command window shortly thereafter. Note that the
bubble3 example is the default built-in example upon downloading the software (see Figure 3b).

Upon starting the simulation, information regarding the simulation solver and simulation is
printed to the screen. Moreover, the current_time within the simulation gets printed to the
screen at the time-points in which the data is stored. The data is stored in the vtk_data folder,
which is made upon starting the simulation.

Figure 7. Showing the output on the screen when this example begins running. Note that the vtk_data
folder is produced, in which stores the simulation data at predetermined time-points.

Fluids 2020, 5, 28 14 of 58

3. Once the simulation has finished running, we will change the vtk_folder’s name to
Simulation_1_Data. This folder contains all of the data that was stored during the simulation, i.e.,
the vorticity, fluid velocity field, magnitude of velocity, etc.. It is imperative to change this folder
name after each simulation if more simulations are to be run, or else the new data will printed
over the previous simulation’s data.

4. Once the folder’s name has been changed, we will open the FFT_NS_Solver.m script to change
one (or more) of the parameters. Here we will only change the fluid’s kinematic viscosity, ν;
however, there are other options in which you could change, such as the computational domain
size and/or grid resolution, see Figure 3b. As an example change nu from 1.0× 10−3 → 1.0× 10−2,
see Figure 8. Once you have changed ν, you can close the script.

Note that if you chose to change the grid resolution and domain size, make sure that the resolution
in x and y are equal, i.e., dx = Lx/Nx = Ly/Ny = dy. Moreover if you increase the resolution
(increase Nx, Ny) the simulations will take longer to run and the resulting data will require
more storage.

Figure 8. Changing the kinematic viscosity, ν, to a different value.

5. Finally, run this new simulation case by typing FFT_NS_Solver into the command window
and pressing enter. Once that simulation has finished running, change its folder name to
Simulation_2_Data. Now that we have a couple of simulations run, and have their corresponding
data saved, we will next focus on visualizing each simulation’s dynamics using the open-source
software VisIt [41].

3.4. Guide: Visualizing the Spectral (FFT) Method’s ‘bubble3’ Data

Here we will guide the user through visualizing the bubble3 simulation data from Section 3.3.
In particular we will visualize the magnitude of velocity data. Note that other Eulerian scalar data, like
vorticity, the x- or y-component of velocity, etc., may be visualized analogously, as we are following
the protocol from the previous section on data visualization, Section 3.2’s Visualizing the Eulerian scalar
data. To visualize the fluid’s velocity vector field, please follow Section 3.2’s steps for To Visualize
Velocity Vectors.

To visualize the uMag data, do the following:

1. First we must open the desired magnitude of velocity data. Recall that the fluid’s magnitude of
velocity data was saved under the name uMag. Click open in the VisIt toolbar and in the dialog
box that pops up, locate the desired data directory, here it is Simulation_Data_1 from earlier, and
select the uMag group. Figure 9 is provided as a visual aid for these steps.

Fluids 2020, 5, 28 15 of 58

Figure 9. Opening specific simulation data to visualize in VisIt.

2. Although we have opened the data, nothing will appear visualized, yet. However, now uMag is
the Active Source in the window, see Figure 10. We must now tell VisIt how to visualize the data.
We will visualize magnitude of velocity as a background colormap, as it is a scalar quantity. To
do this click ‘Add’ and then select Pseudocolor from the menu that appears, followed by uMag,
i.e., Add→Pseudocolor→uMag.

Figure 10. Opening specific simulation data to visualize in VisIt.

Fluids 2020, 5, 28 16 of 58

3. To finally visualize the data, click Draw. Window 1 will then show the fluid’s magnitude of
velocity data at time-point 0, i.e., the initial magnitude of velocity, see Figure 11.

Figure 11. ‘Drawing’ the data in VisIt. The data shown in Window 1 here corresponds to time-point 0,
as given from the time slider value.

4. Furthermore, we note that certain choices of colormaps are better for both conveying the data,
but also for people who are colorblind. Generally, the default colormap, which was used in
Figure 11, is a bad choice, as it is impossible for people who are red-green colorblind to interpret
the field [57]. Thus, we will change the colormap to another, e.g., the RdYlBu (red-yellow-blue)
colormap, by double-clicking on the uMag.*.vtk database:Pseudocolor uMag in the database
list and appropriately selecting the desired colormap. Other properties may also be changed in
this box, such as the colormap’s scaling.

Also, you can visualize the magnitude of velocity at the different time-points that were saved
during the simulation by moving the time-slider. Figure 12 shows the data at time-point 30.
Moreover, the colormap and its properties may be modified by double-clicking on uMag.*.vtk
database:Pseudocolor uMag in the database list.

Fluids 2020, 5, 28 17 of 58

Figure 12. Changing the time-point to the 30th time-point stored.

5. Note that the time in the simulation does not generally correspond to the time-point stored. For
example, in this case the simulation modeled 30 s of time and 60 total data time-points were
stored. Thus, data was saved every 0.5 s of simulation time. Furthermore, you could repeat Steps
1–4 for data in Simulation_2_Data from the second simulation you ran. Instead of comparing the
30th time-point’s data, we will compare the 60th, i.e., the last time-point. Repeating this entire
process for the other simulation’s data yields the comparison as shown in Figure 13, below.

Figure 13. Comparing the data between both simulations’ last time-point (60th time-point stored). Note
that a direct qualitative comparison is not possible because the scaling of each colormap is different.

Fluids 2020, 5, 28 18 of 58

However, we cannot qualitatively compare the magnitude of velocity between each of these
simulations as they are in Figure 13. Each simulation’s colormap has a different scale. In order to
compare, we must make both scales equivalent.

6. To change the scale, double-click on each of the databases. This will bring up a dialog window (as
described earlier) where you can change the scaling, e.g., minimum and maximum, as well as the
colormap itself. Change the minimum and maximum values to 0.0 and 0.2, respectively. Figure 14
illustrates where to change the minimum and maximum for the colormap’s scale. Once those
values are changed, click Apply. Note that you must do this for both of the databases individually.

Figure 14. Changing the magnitude of velocity’s colormap scaling.

7. After changing the scale, the comparison is significantly different than when first visualized,
see Figure 15.

Figure 15. Comparing each simulation’s magnitude of velocity data at the 60th time-point. The scaling
of each colormap is identical which leads to straight-forward direct qualitative comparison.

Fluids 2020, 5, 28 19 of 58

Furthermore, we also provide visualizations of other time-points and/or scalar data in
Appendix C.

3.5. Guide: Analyzing the Spectral (FFT) Method’s ‘bubble3’ Data

To analyze the data in VisIt, we will provide a walk-through of the steps that necessary to measure
a fluid quantity (particular variable) across a line of interest within the computational domain using the
Spectral (FFT) Method’s bubble3 example from Section 3.3. We will assume that you have visualized
the data for the magnitude of velocity that corresponds to both of the simulations. In this tutorial we will
compare the magnitude of velocity for both simulations across a vertical line through the center of the
computational domain at the last time-point stored, i.e., the 60th time-point. See Figure 16 for an idea
of where the measurement will take place.

To analyze the uMag data, do the following:

1. Make sure that Active source is the uMag data corresponding to the data from Simulation_1_Data in
VisIt, see Figure 16.

Once the Active Source has been appropriately selected, in the command bar, in the VisIt menu go
to Controls→Query (see Figure 16).

Figure 16. To analyze data in VisIt, the active source and active time slider must be set to specific data
that is desired to be analyzed, e.g., here it is the magnitude of velocity, uMag, for the Simulation_1_Data.

2. Next select Lineout under Queries and then under Variables select Scalars and then uMag, i.e.,
Variables→Scalars→uMag, see Figure 17.

Fluids 2020, 5, 28 20 of 58

Figure 17. Within the Query dialog box, select (a) the chosen data to measure, e.g., here it is uMag, and
(b) the Lineout option to measure the data across a line within the domain that is defined by a starting
and ending point.

3. Next we will define the line segment in which we intend to measure the data across. To do this
the user gets to choose the starting point and ending point of the line segment, see Figure 17b.
We will measure across a vertical line through the center of the domain, hence we choose
(x, y, z) = (0.5, 0.0, 0.0) and (x, y, z) = (0.5, 1.0, 0.0) as the starting and ending point, respectively.
We also will measure the value of uMag at 250 sampled points. Thus, change Sample Points to 250,
see Figure 17b and select Use sampling. VisIt will automatically interpolate the data so that it is
measured at number of equally-spaced sample points that is designated by the user.

4. Once you click Query a plot should pop up in a new Active Window in Visit, i.e., Active window 2,
see Figure 18. If you double-click on the Lineout(uMag) bar in the VisIt database listing window,
you can change various attributes about the line, such as its thickness or color among others.
Moreover, you can use the time-slider to observe how the magnitude of velocity across the
chosen line varies from time-point to time-points.

5. To get back to the colormap window, select Active Window 1, rather than 2.

6. You can repeat this procedure and overlay multiple uMag measured data on the same plot, each
corresponding to a different simulation, e.g., repeat this process for Simulation_2_Data. Be sure to
choose the correct data for the Active source.

7. If you repeat this entire process for the Simulation_2_Data and move the time-slider such
that the data being shown in Active window 2 corresponds to the last time-point stored (the
60th), you should see what is give in Figure 19. Also, note that we have changed each line’s
thickness individually.

Fluids 2020, 5, 28 21 of 58

Figure 18. Illustrating the Active window change to window 2 as well as a plot of the magnitude of
velocity (selected data) as measured across a vertical line at the center of the domain.

Figure 19. Comparing the measured magnitude of velocity data between both simulations at the last
time-point data saved.

Fluids 2020, 5, 28 22 of 58

4. Built-in Examples (for Each Fluid Solver)

In this section we will highlight a subset of the built-in examples that can be run immediately
upon download (or git clone) of the software. These examples were selected as they are either
traditional problems in fluid dynamics or problems that could naturally lead to fruitful discussion and
analysis of the underlying dynamics. The examples we will discuss are:

1. Lid-Driven Cavity Flow via the Projection Method
2. Circular Flow in a Square Domain via the Projection Method
3. Side-by-side Vorticity Region Interactions via the Spectral (FFT) Method
4. Evolution of Vorticity from an Initial Velocity Field via the Spectral (FFT) Method
5. Flow Past One or More Cylinders via the Lattice Boltzmann Method
6. Flow Past a Porous Cylinders via the Lattice Boltzmann Method

For each of these examples, we will provide the necessary simulation details, including a brief
background about problem as well as the numerical parameters that were used in each simulation.
Furthermore, we will also make observations regarding each simulation’s dynamics, investigate
some of the data, and suggest future ideas for how students could either modify or explore each
example further.

These examples are available within both the MATLAB and Python implementations in the
software. Note that Section 3 described how to run, visualize, and analyze the simulations, and thus
the visualizations and analysis contained here can be recreated by students and other practitioners.

4.1. Cavity Flow (via Projection Method)

In this example we will use the Projection Method in the software to run a cavity flow problem.
Note that this example is contained in the Projection Method folder and may be run by selecting the
‘cavity_top’ option (see line 58 in Figure 3a).

For this lid-driven cavity flow problem, the non-zero horizontal velocity on the top wall, u = uT ,
is set to uT = 4.0 m/s, while all other tangential (and normal) velocities along the boundaries are set
to zero (see Figure 1a). Note that the top wall velocity is not immediately set at uT , but rather the flow
ramps up from 0 to the preset uT along this wall, to avoid instantaneous acceleration artifacts. For the
simulations shown below with Re = 4000, use the computational parameters listed in Table 3. The
Reynolds Number was set by defining the characteristic length scale to be L = Lx, the horizontal length
of the domain, and the characteristic velocity to be V = uT , e.g., Re = ρLxuT

µ . To change the Reynolds
Number, the dynamic viscosity was varied. For Re = 4000, 400, 40 and 4, we used µ = 1, 10, 100, and
1000 kg/(m · s) , respectively. Note that for the cases with Re = 4 and 40, we decreased the time-step
to dt = 5× 10−5 s to ensure numerical stability of solutions. If we had not, errors would have been
magnified every time-step of the simulation and/or the numerical solutions may have blown up. In
CFD it is common that one may need to vary the time-step depending on the Re or other parameters
of the system. Situations in which very small time-steps need to be taken to ensure numerical stability
of solutions are known as stiff equations, for more information please see [43].

Table 3. Numerical parameters for the Cavity simulation for Re = 4000.

Parameter Variable Units Value

Domain Size [Lx, Ly] m [1, 2]

Spatial Grid Resolution [Nx, Ny] [128, 256]

Spatial Grid Size dx = dy m Lx/Nx = Ly/Ny

Time Step Size dt s 10−3

Total Simulation Time T s 6

Fluid Density ρ kg/m3 1000

Fluid Dynamic Viscosity µ kg/(m · s) 1

Fluids 2020, 5, 28 23 of 58

Upon having run the cavity model for Re = 4000, we visualized its corresponding simulation
data using VisIt [41], as illustrated by Figure 20, which gives colormaps of vorticity, magnitude of
velocity, velocity in the horizontal direction throughout the domain, and pressure, as well as depictions
of the velocity field, both as a scaled and non-scaled quantity. For the scaled velocity field snapshot,
the scale factor was equal to the largest magnitude of velocity across the entire computational domain.
In the non-scaled plot, streamlines are also given. Streamlines show the path that a passive particle
would take in the flow at a particular moment in time. The data shown here was taken at t = 6.0 s,
when the simulation ended.

Figure 20. Illustration of all the simulation data produced from the projection method example of
cavity flow (at Re = 4000). This snapshot was taken at 6.0 s, as the simulation ended.

A fully-formed vortex developed by that time near the top of the cavity, while a smaller vortex
appears to be forming below (see Vorticity pane in Figure 20). Snapshots illustrating the formation
of such vortices from this case of Re = 4000 are presented in Figure 21, which gives a colormap of
vorticity and the velocity vector field. As fluid is moving along the top edge of the domain from
left-to-right, the fluid nearest to the top begins moving in the same direction. Eventually fluid down
in the cavity begins moving in the same direction as well, until it reaches the right boundary, where
it must move downwards. It is easier for the fluid to move downward because of the faster flows
moving towards the right above it, due to the boundary condition. As the fluid moves downward
along the wall, fluid towards the middle of the cavity begins moving downwards as well. In tandem,
with the fluid moving left-to-right along the top and top-to-bottom along the right, these fluid patterns
initiate the formation of a clockwise-spinning vortex.

Now that there is a vortex spinning clockwise, it causes the fluid below the vortex (moving
right-to-left) to begin moving right-to-left until it reaches the wall on the left and an analogous
situation occurs to the above, except an oppositely-spinning (counter-clockwise) vortex begins to
form. Recall that these vortices can both be traced back to the fluid moving along the top of the
domain left-to-right. Within the region that the second vortex forms, much of the energy (velocity) has
dissipated away, resulting in a smaller, less strong vortex.

We can explicitly measure the horizontal velocity descending down the cavity. This data is
presented in Figure 22, which gives the horizontal velocity vs. depth in the cavity during four different
snapshots in the simulation. We also measure the horizontal velocity across three different lines
descending into the cavity. Near the surface of the cavity (at depth = 0 m), the velocity is equal to the
boundary condition. As one descends into the cavity, there are spikes in both the positive and negative
horizontal velocities. These spikes correspond to locations near the edges of the vortices, where there
is faster moving fluid.

Fluids 2020, 5, 28 24 of 58

Figure 21. Snapshots showing the evolution of vortical flow patterns during a simulation with
Re = 4000. The background colormap is of vorticity and the velocity vector field is also given.

Finally, one can change the Re by varying the dynamic viscosity, µ to observe how vortex formation
changes within the cavity, as well as, how quickly energy gets dissipated in higher viscosity settings.
Recall that if µ is changed to 40 or 4 the time-step, dt, was adjusted for as described above. Figure 23
illustrates how vortex formation changes within the cavity for different Re at three different snapshots
during the simulations. Moreover, it gives the horizontal velocity vs. cavity depth, as measured across
the middle of the cavity. Note that the Re = 4 and Re = 40 data virtually overlaps in the figure, and
velocity (and system’s energy) quickly dissipates to zero going further into the cavity.

Fluids 2020, 5, 28 25 of 58

Figure 22. Snapshots of horizontal velocity measurements, when measured down the cavity in three
places for Re = 4000.

Figure 23. A comparison of vorticity, velocity field, and horizontal velocity measurements down the
center of the cavity between cases of Re = 4, 40, 400, and 4000.

Fluids 2020, 5, 28 26 of 58

Students may elect to try the following:

1. Recreate the above results for cavity flow with the geometric and simulation parameters given
in Table 3 for one or more Re.

2. Change the domain width (cavity width) to observe differences as the cavity gets wider for a
given Re.

3. Vary the lid-velocity to observe differences (e.g., varying Re for different velocities as opposed to
differing viscosities, µ).

4.2. Circular Flow in a Square Domain (via Projection Method)

In this example we will use the Projection Method in the software to run an example involving
circular flow in a square domain. Note that this example is in the Projection Method folder and may
be run by selecting the ‘whirlwind’ option (see line 58 in Figure 3a).

In this case, all the tangential boundary conditions along the computational domain were set to
be U = utop = −ubot = vle f t = −vright = 1.0 m/s, see Figure 1b. As mentioned in Section 4.1 above,
the tangential wall velocities are not immediately set to U, but rather the flow ramps up along each
edge from 0 to the preset utop, ubot, vle f t, or vright along this wall, to avoid instantaneous acceleration
artifacts. For the simulation shown below with Re = 4000, use the computational parameters listed
in Table 4. Note that as Re = ρLU

µ , with L = Lx = Ly and U = 1.0 m/s, one can vary the dynamic
viscosity, µ, to change the Re. If you decide to make Re smaller (e.g., increasing µ), you may also need
to decrease the time-step, dt, significantly to ensure numerical stability, as mentioned in Section 4.1.
The requirement that very small time-steps are necessary to ensure numerical stability denotes what
are called stiff equations. For more information on stiff equations, please see [43].

Table 4. Numerical parameters for the whirlwind simulation for Re = 4000.

Parameter Variable Units Value

Domain Size [Lx, Ly] m [1, 1]

Spatial Grid Resolution [Nx, Ny] [256, 256]

Spatial Grid Size dx = dy m Lx/Nx = Ly/Ny

Time Step Size dt s 10−3

Total Simulation Time T s 24

Fluid Density ρ kg/m3 1000

Fluid Dynamic Viscosity µ kg/(m · s) 0.25

Having run the circular flow simulation for Re = 4000, we visualized its corresponding simulation
data using VisIt [41], see Figure 24, which gives colormaps of vorticity, magnitude of velocity, velocity
in the horizontal and vertical directions, and the finite-time Lyapunov exponent (FTLE). The FTLE
can be used to find the rate of separation in the trajectories of two infinitesimally close parcels of fluid.
Maxima in the FTLE have been used to determine approximations to the true Lagrangian Coherent
Structures (LCSs). LCSs are used to determine distinct flow structures in the fluid [58–61] can be used
to divide the fluid’s complex dynamics into distinct regions to better understand transport properties
of flow [62–64]. True LCSs would require knowledge of the infinite-time Lyapunov exponent (ITLE);
however, the FTLE can serve as a proxy to the ITLE. In this paper, we computed the forward-time
FTLE field, whose maximal ridges give approximate LCSs corresponding to regions of repelling fluid
trajectories and whose low values give rise to regions of attraction [61]. Thus, the FTLE can be used to
help find regions of high fluid mixing [58,59,61,65,66].

Figure 24 also provides contours for each quantity. It also includes a depiction of the fluid velocity
field, as scaled by the maximum in the entire domain’s magnitude of velocity, which also includes its
associated streamlines. Recall that streamlines are curves that depict instantaneous tangent lines along

Fluids 2020, 5, 28 27 of 58

direction of the flow velocity. They show the direction that a neutrally-buoyant particle would travel
at a particular snapshot in time. These are different than contours (also known as level-sets or isolines),
which are curves where a function has a constant value. This snapshot was taken at t = 24.0 s, when
the simulation ended.

Figure 24. Illustration of some of the data produced for the circular flow example, using the projection
method. The data shown is from the final time-step for Re = 4000.

As the velocity boundary conditions continually increased, the interior of the domain began to
move clockwise, in the same direction as the flow at the boundaries (see Figure 1b). The colormaps
and contours in each velocity-related panel reveal that flow speeds decrease towards the interior of the
domain. Moreover, as all the boundary conditions are uniform, the vertical and horizontal velocity
plots are identical under a 90 degree rotation. Also, the vorticity plot illustrates that vorticity is still
low by the ending of the simulation in the center of the domain, even though flow across the whole
domain is rotating clockwise. The FTLE plot suggests that the majority of fluid mixing occurs near the
edge of the domain, rather than the interior, as higher values of FTLE suggest nearby fluid trajectories
move away from each other at higher rates. This is due to larger spatial gradients in the velocity in
these regions, where flow is moving at different speeds in different directions.

We also present data comparing simulations for Re = 400, 1000, and 4000 (for µ = 2.5, 1.0, and
0.25 kg/(m · s), respectively). Figure 25 illustrates colormaps of the magnitude of velocity (with
corresponding contours) at various time-points during the simulation. Every colormap uses the same
scaling in the figure. Higher velocities appear to creep into the interior of the domain quicker in the
lower Re cases. By t = 24 s it appears that the Re = 400 and 1000 cases look almost identical, the
Re = 4000 case tells a different story - the interior of the domain is still moving considerable slower
than the other two cases. This might seem counter-intuitive at first, as one might generally think that
higher Re tends to lead to more fluid motion, especially when we are lowering viscosity to increase
Re. However, this is due to differences in time-scales for the diffusion of momentum through the
fluid. The viscous diffusion time can be thought of as the time it takes for a fluid parcel to diffuse a
particular distance on average. If t̃ is the diffusion time, ν = µ/ρ is the kinematic viscosity, and l̃ is the
mean-squared distance, then

t̃ ∼ l̃
ν
∼ 1

ν
,

Fluids 2020, 5, 28 28 of 58

if all of the simulation geometries are identical and only µ (and hence ν) is varied. This concept is
based off viewing diffusion as a random walk process [67]. Hence for the simulations presented here
the time-scales vary between

t̃Re=400 ∼
1

2.5/1000
= 400 s and t̃Re=4000 ∼

1
0.25/1000

= 4000 s.

Figure 25. Snapshots showing the evolution of the magnitude of velocity between cases of
Re = 400, 1000, and 4000.

Therefore in the Re = 4000 case, the diffusion time-scale is 10x longer than that of the Re = 400
case, and thus the dynamics evolve much slower in the Re = 4000 case! Moreover, this phenomena is
shown in Figure 26, which illustrates the fluid velocity field along with its associated streamlines at
the same snapshots in time.

This is more apparent if we compare flow profiles within the domain. Figure 27 compares the
horizontal flow profile for Re = 400, 1000, and 4000 across the vertical mid-line of the domain. As
mentioned above the dynamics in the Re = 4000 case evolves about 4x and 10x slower than the
Re = 1000 and Re = 400 cases, respectively. By 24.0 s, the flow profiles in the Re = 400 and Re = 1000
cases look almost identical, while the flow profile in the Re = 4000 resembles that of the the flow
profile in the Re = 1000 at ∼6.4 s—approximately a factor of 4 different in time. Furthermore Figure 28
shows the flow profiles for all three cases of Re when the diffusion of momentum has reached the same
depth. This occurs at different simulation times due do the variations in viscous diffusion time-scales.

Fluids 2020, 5, 28 29 of 58

Figure 26. Snapshots showing the velocity field’s evolution between cases of Re = 400, 1000, and 4000.
Streamlines of the velocity field are also illustrated.

Figure 27. Snapshots showing horizontal velocity measurements across a vertical line centered in the
domain among cases for Re = 400, 1000, and 4000.

Fluids 2020, 5, 28 30 of 58

Figure 28. Snapshots showing horizontal velocity measurements across a vertical line centered in the
domain among cases for Re = 400, 1000, and 4000 in which similar momentum diffusion depths have
been reached.

Students may elect to try the following:

1. Recreate the above results with the parameters listed in Table 4
2. Change the computational geometry, e.g., rectangular instead of square
3. Vary the input velocity along each side of the domain to make them non-uniform
4. Vary the Re by changing dynamic viscosity for suggestion (2) or (3)

4.3. Side-by-Side Voritices (via Spectral Method)

In this example we will use a FFT-based fluid solver in the software to run a simulation of multiple
regions of vorticity interacting with one another. Note that the first example given here can be run
by going into in the FFT_NS_Solver script selecting the ‘qtrs’ option (see line 47 in Figure 3b). The
vorticity is initialized as in Figure 2a. We will also highlight the ‘half’ option in this section as well.

Recall that for this solver, an initial vorticity configuration is needed. For the simulations of
four interacting vorticity regions, the CW and CCW vorticity were initialized as ω = −1 and 1 rad/s,
respectively. In other cases with only two interacting voricity regions, the strengths of each regions
were varied between −1,−0.5, 0.5 and 1 rad/s, as appropriate. For the simulations shown below with
either 2 or 4 interacting vorticity regions, use the computational parameters listed in Table 5.

Table 5. Numerical parameters for the 4 interacting vortices simulation.

Parameter Variable Units Value

Domain Size (4 case) [Lx, Ly] m [1, 1]

Spatial Grid Resolution (4 case) [Nx, Ny] [512, 512]

Spatial Grid Size dx = dy m Lx/Nx = Ly/Ny

Domain Size (2 case) [Lx, Ly] m [1, 0.5]

Spatial Grid Resolution (4 case) [Nx, Ny] [512, 256]

Spatial Grid Size dx = dy m Lx/Nx = Ly/Ny

Time Step Size dt s 10−2

Total Simulation Time T s 5

Fluid Kinematic Viscosity ν = ρ/µ m2/s 0.001

Figure 29 provides the simulation data for the case with 4 interacting vorticity regions, as
described above. It presents colormaps for vorticity, magnitude of velocity, horizontal velocity, vertical
velocity, and the finite-time Lyapunov exponent (FTLE), which is used to determine approximations
to the true Lagrangian Coherent Structures (LCS) to which can be used to distinguish fluid mixing
regions [58,59,61,65,66]. Their corresponding contours are also given. Recall that contours are curves

Fluids 2020, 5, 28 31 of 58

to which the value of a quantity is constant. Figure 29 also gives a snapshot of the velocity vector field.
This data is from the last snapshot of the simulation at t = 5.0 s.

The top two and bottom two vorticity regions are initialized the same, e.g., clockwise (CW) and
counterclockwise (CCW), respectively, by this point in the simulation they are beginning to lean in the
direction of rotation. Moreover, it can be seen that fluid is moving quickly horizontally through the
top, middle, and bottom of the domain, as illustrated by the magnitude of velocity plot. When this
is compared to the horizontal velocity plot, one observes that the fluid along the top and bottom of
the domain both are moving left-to-right, while fluid moving horizontally through the middle of the
domain is moving right-to-left. These directions align with the direction of the spinning vortices in
each of these horizontally-aligned regions—top, middle, and bottom, which can be seen in the velocity
vector field depiction.

The high values of FTLE illustrate regions of higher fluid mixing, as higher FTLE suggest faster
rates of separation of close fluid blobs. In Figure 29 these are the areas between the top-two and
bottom-two vorticity regions. Within these regions there is intense shearing among the vertical
flow velocity, see the vertical velocity plot. Red regions in the vertical velocity plot indicate fluid
moving upwards while blue corresponds to downward fluid motion. Moreover, from the nature of
the FFT-solver, the periodic boundary conditions, illustrate that along vertical walls of the domain
on opposite sides there are regions where fluid is moving the the opposite direction. Hence the large
FTLE values on the left and ride side of the top-two and bottom-two vortices. There is significantly less
mixing in the top, middle, and bottom horizontal strips across the domain because fluid is generally
moving unidirectionally in these regions with lower spatial gradients.

Figure 29. Illustrations of the simulation data produced during the case of 4 interacting vorticity
regions. The data shown is from the last time-step.

Fluids 2020, 5, 28 32 of 58

One could elect to change the size or strength of a subset of these vorticity regions to simulate
asymmetric vorticity interactions in this configuration. However, rather than study 4 interacting
vorticity regions, we compared 2 interacting regions at a time, and varied the strength (magnitude of
vorticity), size, and initial vorticity values (spinning-direction) between them, see Figure 30. Figure 30
provides comparison data of snapshots at t = 6.0 s in each simulation for different quantities—either
vorticity with velocity vectors, magnitude of velocity with its corresponding contours, and FTLE with
its corresponding contours. We use the language that a “strong" vorticity region has a |ω| = 1 rad/s,
while a “weaker" region has a vorticity of |ω| = 0.5 rad/s. Each initial size of the vorticity regions had
a radius of 0.15 m or 0.3 m.

In general, one can notice the following:

1. When same-spinning and size vorticity regions interact, more fluid mixing occurs directly between
them (1st row)

2. When oppositely-spinning and same size vortex regions interact, there is enhanced vertical fluid
flow between the vorticity regions, but less mixing between them (2nd row)

3. When oppositely-spinning vorticity regions of different strengths interact, the stronger region
(whose magnitude of vorticity is greater), influences fluid flow to move in the same direction
further away from it. There is still some enhanced vertical flow through the region between the
regions (3rd row)

4. If there are asymmetric region sizes and strengths, where the larger region is weaker (smaller
magnitude of vorticity), the region with the larger vorticity magnitude may be able to keep the
other region from influencing much of the flow around it, while imposing its flow direction on
the weaker region (4th row)

5. Two regions of vorticity with the same sign, but differing strengths, leads to enhanced fluid
mixing between the vortices, while flow around the smaller region are significantly less than the
other (5th row)

6. If there are asymmetric region sizes but uniform strengths, enhanced vertical flow will be seen
between the regions, although the larger vorticity region exerts more influence on flow patterns
closer to the smaller region (6th row)

7. If there are asymmetric region sizes and strengths, where the smaller region is weaker (smaller
magnitude of vorticity), enhanced vertical flow will be seen between the regions, although the
stronger vorticity region exerts more influence closer to the smaller region (7th row)

Students may elect to try the following:

1. Recreate the above results for interacting side-by-side vorticity regions with the geometric and
simulation parameters given in Table 5 or for different ν or computational domains.

2. Add more vorticity regions or make the case with four asymmetric in terms of placement
and/or size.

3. Change the distance between the vorticity regions to observe how magnitude of velocity or FTLE
contours change.

Fluids 2020, 5, 28 33 of 58

Figure 30. Vorticity and velocity field (left column) and magnitude of velocity with its associated
contours (right column) for cases of two vorticity regions with different sizes, strengths, and
vorticity initialization.

4.4. Evolution of Vorticity from an Initial Velocity Field

In this example using a spectral (FFT) solver, we begin with a snapshot of the velocity vector
field from an independent CFD simulation, see Figure 31a,b. Note that this snapshot was taken from
an open-source fluid-structure interaction example of a pulsing cartoon heart [36]. We used a stored
time-point’s velocity field data, to which we extracted the horizontal and vertical velocity components,
and then computed its associated vorticity at that particular time-step, see Figure 31c. We note that
there are numerical errors in computing the vorticity, ω, as a centered finite difference scheme [43] was
used to compute each first-order partial derivative in calculating vorticity, i.e., ω = ∂v

∂x −
∂u
∂y . Moreover,

since this fluid solver uses periodic boundary conditions, we computed the partial derivatives at each
boundary using data from the opposite side of the computational domain. Note this example may be
run by selecting the ‘jets’ option in the FFT_NS_Solver script (see line 47 in Figure 3b).

Fluids 2020, 5, 28 34 of 58

1

(a) (b) (c)

 Figure 31. (a,b) Unscaled and scaled velocity vector field, respectively, that was used to define the
initial fluid vorticity (c).

After having computed the vorticity from a velocity field, the simulation could begin. This
simulation used the computational parameters listed in Table 6. We further note that the velocity
field had an original grid resolution of [Nx, Ny] = [512, 512], so we down-sampled it to a [256, 256]
grid for the example shown here. Furthermore, as the original velocity field was computed from an
independent fluid-structure simulation, we comment that there is no complex, moving boundary
within the computational domain; however, at the initial point you can see the remnants of the
coinciding heart structure, see Figure 31.

Table 6. Numerical parameters for case of evolving vorticity from an initial velocity field.

Parameter Variable Units Value

Domain Size [Lx, Ly] m [1, 1]

Spatial Grid Resolution [Nx, Ny] [256, 256]

Spatial Grid Size dx = dy m Lx/Nx = Ly/Ny

Time Step Size dt s 10−2

Total Simulation Time T s 50

Fluid Kinematic Viscosity ν = µ/ρ m2/s 0.001

Figure 32 provides snapshots over the simulation to illustrate how the vorticity and magnitude of
velocity evolve. Both Figure 32a,b illustrate the effect of periodic boundary conditions along each edge
of the domain, e.g., vortices moving through the top or right side of the domain continue through the
bottom or left side of the domain, respectively. Furthermore, in the snapshots provided, the overall
vorticity and magnitude of velocity appears to dissipate within the domain. This is because there are
no source terms (or explicit boundary conditions) providing additional flow (energy) into the system
to induce more flow. Although the original velocity vector field that defined the initial vorticity of the
system came from a simulation of pulsing hearts, without the heart moving and thus pushing on the
fluid, the fluid will eventually stop moving and reach zero velocity due to the fluid’s viscous nature.
Therefore initializing the vorticity out of a time-point from another simulation’s velocity field, is akin
to studying the evolution of the fluid’s motion from a singular impulse in the flow.

Fluids 2020, 5, 28 35 of 58

Figure 32. The evolution of (a) the fluid vorticity and (b) magnitude of velocity during the course of
the simulation.

Students may elect to try the following:

1. Recreate the above results with the parameters listed in Table 6 or for different ν.
2. Take a velocity field from one of the Projection method examples, e.g., from Section 4.1 or

Section 4.3, and use it to initialize the vorticity for a simulation using this spectral (FFT) method.
3. Find how long it takes the simulation to reach a 1/10 or 1/100 of the original maximum magnitude

of velocity.
4. Discover how that time varies with changes in viscosity, ν.

4.5. Flow Past One or More Cylinders (via Lattice Boltzmann)

Flow past objects is one of the most heavily studied problems in aerodynamics and thus is a
standard example used in many fluid dynamics courses [68–70]. While many texts only consider the
problem for inviscid flows and use potential flow methods to solve for exact solutions [69,70], here

Fluids 2020, 5, 28 36 of 58

we include effects of viscosity to illustrate transitions to vortical flow, and upon doing so, a subset
of the possible flow separation cases. Furthermore, flow past cylinders is also still an active area of
contemporary research [71–77].

We performed simulations for both a single cylinder as well as multiple cylinders. The
computational geometry for a single cylinder case is given in Figure 33. Figure 33a gives the boundary
conditions considered for the problem for flow past a rigid cylinder contained within a rigid channel.
The walls of the channel are rigid and so bounce-back boundary conditions are used. The ends of the
channel use periodic boundary conditions, e.g., what goes out the right side, comes in through the
left. Note that this is the first example discussed in which uses a mix of explicit boundary conditions
and periodic boundary conditions. Moreover, the cylinder itself is modeled as a rigid structure and so
bounce-back conditions are used on it. Figure 33b provides visual details how the inflow is modeled in
the simulation. Every iteration, the horizontal velocity at the inflow is increased by an amount of ∆Ux

to drive fluid flow towards the right.

Figure 33. The geometrical setup for flow past cylinders using the Lattice Boltzmann method. (a) The
boundary conditions specified on all sides of the domain and on the cylinder within the channel and
(b) the inflow condition.

All simulation parameters (fluid, grid, and geometry) for both cases involving either a single
cylinder or multiple rigid cylinders are given in Table 7. Note that the cases with multiple cylinders
simulate flow around cylinders with larger radii, use a larger value for ∆Ux, and a different final
number of steps and grid resolutions. Furthermore, due to these differences we are not comparing the
case of one single cylinder to the case with multiple cylinders.

Table 7. Numerical parameters for flow past one or more cylinders using the Lattice Boltzmann Method.

Parameter Variable Units Value

Domain Size [Lx, Ly] m [2, 0.5]

Spatial Grid Resolution (1 Cylinder) [Nx, Ny] [640, 160]

Spatial Grid Resolution (Multiple Cylinders) [Nx, Ny] [512, 128]

Spatial Grid Size dx = dy m Lx/Nx = Ly/Ny

‘Density’ Initialization ρ 0.01

Relaxation Parameter τ 0.53

Total Simulation Steps (1 Cylinder) N 56000

Total Simulation Steps (Multiple Cylinders) N 5500

Incremental inflow velocity increase (1 cylinder) ∆uX 0.00125

Incremental inflow velocity increase (Multiple Cylinders) ∆Ux 0.01

Radii (1 Cylinder) r %Ly 7.5% Ly

Radii (Multiple Cylinders) r %Ly 12.5% Ly

The simulation data obtained at step n = 49, 600 is given in Figure 34. It presents colormaps
(and corresponding contours) for vorticity, magnitude of velocity, horizontal velocity, vertical velocity,
and the finite time Lyapunov exponent (FTLE), to which knowledge of the approximate Lagrangian

Fluids 2020, 5, 28 37 of 58

Coherent Structures (LCS) can be extracted [58,59,61,65,66]. We attribute regions with high FTLE to
regions of high fluid mixing, as higher FTLE suggests that nearby fluid parcels separate at a much faster
rate than those in lower FTLE regions. From the vorticity panel, significant flow separation is seen
as vortices are being shed off the cylinder and flow pushes past it left-to-right. Oppositely spinning
vortices are shed off cylinder one after another. Moreover, we observe that there is significantly more
horizontal fluid motion than vertical within the channel. Since flow is being pushed left-to-right from
the inflow condition, it would require more energy for fluid to move vertically, than to simply. . . go
with the flow. Figure 35 provides snapshots of vorticity (left) and FTLE (right) during the simulation to
highlight how smooth flow developed into vortical flow patterns once the horizontal velocity increased
past a threshold. Such threshold appears to have occurred around simulation step ∼ 47, 000.

In particular, flow instabilities began to manifest by step 46, 000, as seen by both the vorticity and
FTLE snapshots. The majority of fluid mixing occurred in large contours behind the cylinder up to
this point. Once flow separation occurs, some mixing occurs in the wake in small patches, but no
geometrically long regions of higher fluid mixing are present, as seen by the contours. Note that in the
last two panels, for steps 49, 200 and 49, 600, large FTLE-valued regions do not correspond to locations
of shed vortices, rather higher FTLE valued regions appear between oppositely spinning vortices.

Figure 34. Illustrations of the flow field at the end of a simulation with one cylinder in the channel,
showing colormaps of vorticity, magnitude of velocity, vertical and horizontal velocity, and finite-time
Lyapunov exponent.

Fluids 2020, 5, 28 38 of 58

Figure 35. Illustrations depicting the flow’s evolution to vortex shedding using vorticity (left column)
and finite-time Lyapunov exponent (right column) with their contours, respectively.

Finally we performed simulations with multiple cylinders in a channel. Each cylinder in these
simulations had a radii 66% larger than the single cylinder shown above. We performed three
separate simulations with different configurations of the cylinders, each based off a triangle formation.
Figure 36 illustrates how flow evolved for each geometric configuration, in particular for (a) vorticity
and (b) FTLE.

Vortices are observed shedding off each cylinder, possibly at an enhanced rate due to flow
interactions with the other cylinders (see suggested activity below). In the symmetric configurations,
e.g., the triangle-formation and vertical-line formation, flow symmetry is preserved, while in the
case with only one trailing cylinder, flow asymmetries arise. FTLE plots at the last step shown (5000)

Fluids 2020, 5, 28 39 of 58

illustrate different geometrical configurations not only can lead to different patterns of fluid mixing,
but also enhanced mixing, even among cases with only two cylinders. The vertically-aligned cylinder
case appears to elicit more downstream mixing in the wake than the case of asymmetrically placed
cylinders; however, this may also be an artifact of overall geometry of the system, e.g., the size of the
cylinders and the proximity of cylinders to the channel walls.

Figure 36. Snapshots from simulations of multiple cylinders in different configurations showing
(a) vorticity and (b) finite-time Lyapunov exponents with their contours, respectively. Note that the
colormaps are the same as used in Figure 35.

Students may elect to try the following:

1. Recreate the above results with the parameters listed in Table 7
2. Using the radius for the larger geometry case, run a simulation with only one cylinder present in

the middle and compare vorticity and FTLE evolution plots.
3. Vary τ (relaxation parameter relate to viscosity) to test the system’s sensitivity to τ
4. Change the number, placement, or size of each cylinder in the domain.
5. Change the shape of the object in the channel, e.g., try an ellipse or airfoil-like shape

4.6. Flow Past a Porous Cylinder (via Lattice Boltzmann)

While flow around solid objects is a popular problem in aerodynamics, flow around porous
objects has only recently begun to be investigated within in the past few decades, using either high

Fluids 2020, 5, 28 40 of 58

fidelity numerical simulation or experiments [78–82]. Here, we present an example of flow past a
porous cylinder using the LBM. The cylinder geometry, computational setup, and inflow/boundary
conditions are identical to the single cylinder case of Section 4.5 (see Table 7). The only difference being
that the cylinder geometry itself is porous.

The porosity, or void fraction (VF), of the cylinder was chosen to be VF ∈
{0%, 10%, 25%, 50%, 62.5%}. To model the void fraction, each grid cell inside the cylinder was given
a random number between [0, 1] and then depending on the specific VF, if that grid cell’s randomly
assigned number was above the VF in decimal form, it was assigned as a solid boundary. For example,
for VF = 25%, each grid cell with a randomly assigned number greater than 0.25 was declared a solid
boundary point. Figure 37 depicts the porous cylinders considered for each VF case studied below.

Although, the cylinder is no longer uniformly solid, in this example we will not focus our efforts
to study flow through the cylinder itself. For example, in Figure 37’s VF = 10% case, there are
holes in the interior of the cylinder domain that are not connected to the fluid region outside of the
cylinder. Those void regions will not influence the flow outside of the cylinder, as they are blocked
from outside fluid penetrating them. However, if you wanted to study the fluid dynamics through a
porous structure, you could design a specific void network structure within the cylinder or in another
desired geometry. What we will emphasize here is that the porous regions connected to the outside
of the cylinder cause asymmetries to develop in the overall flow pattern at an accelerated rate as
compared to the non-porous (solid) case. Such asymmetries then lead to quicker vortex shedding.

Figure 37. The porous cylinders considered in this section for different void fractions,
VF = {0, 10, 25, 50, 62.5}. Note that the porous structures were initialized randomly within the
cylinder, so there may not be open networks through the cylinder from one side to the other. The slight
geometrical perturbations are sufficient enough to initiate quicker transitions to vortex shedding in
each case of porous cylinder than the case of VF = 0.

Figure 38 shows the evolution of vortex shedding in cases of differing porosities (void fractions) of
{0%, 10%, 25%, 50%, 62.5%}. Every case shows that more porosity leads to faster development of vortex
shedding. Furthermore, even the case with VF = 10% has pronounced vortices being shed before the
VF = 0% case even shows any signs of significant flow asymmetry. The increased porosity accelerates
flow asymmetries to manifest, leading to vortex shedding occurring earlier on. This example highlights
how small perturbations in fluid dynamics problems (here small differences in geometric structure)
can lead to the system having significantly different time-scales for flow structures to develop or for a
bifurcation in the resulting dynamics to emerge.

Fluids 2020, 5, 28 41 of 58

Figure 38. Snapshots illustrating vorticity (with its contours) among cases of differing void
fractions, VF.

Students may elect to try the following:

1. Recreate the above results with the parameters listed in Table 7
2. Create the accompanying FTLE plots and discuss how fluid mixing changes due to the

porous cylinder
3. Vary τ (relaxation parameter relate to viscosity) to test the system’s sensitivity to τ
4. Increase the number of porous cylinder in the domain and vary their placement or size
5. Change the shape of the porous object in the channel, e.g., try an ellipse or airfoil-like shape
6. Create a specific porous network structure through the cylinder and test how flows directly

through a porous cylinder may affect vortex shedding

5. Discussion

In this work we provide software that was developed for the specific purpose to make CFD
accessible to undergraduate (and graduate) students in order to provide them an opportunity to
perform traditional and contemporary CFD simulations as a valuable learning experience. To that
end all the fluid solvers contained within were written in both MATLAB and Python, two languages
that are commonly familiar to most science and engineering students [24–28,31]. Students also have
the opportunity to modify existing examples or create their own examples within the software to test
hypothesis or for stimulate further scientific curiosity. To that extent, we provided an overview of how

Fluids 2020, 5, 28 42 of 58

the code is structured (Section 3) and offered interesting variations to each of the examples that we
showcased in this paper (Section 4).

Not only can students run CFD simulations, they also have the chance the practice the art of
scientific visualization, and use open-source software that is used by many researchers (VisIt [41] or
Paraview [42]), to visualize the corresponding data. These software packages are both open-source and
have easy-to-use and learn graphical user interfaces (GUIs) that streamline the visualization process.
They can also be used to perform data analysis as well, which further reduces the computational
learning curve for students to be able probe the data produced. We provided step-by-step guides on
how to use VisIt for these tasks in Section 3.

By performing their own CFD experiments, fluid dynamics students have the opportunity to vary
parameters (e.g., fluid scale (Re), boundary conditions, geometry, etc.) of a given system and observe
the resulting dynamics. More specifically, they are able to decrypt how the dynamics may vary across
parameter regimes, both qualitatively and quantitatively. This grants them the ability to challenge their
own developing intuition of the resulting flow physics to further accelerate their learning. They also
gain more computer experience and witness first-hand some of the advantages that complex computer
simulations offer.

If students wish to go a step further and study the underlying mathematical structure of the code,
we provide insightful comments everywhere possible within each fluid solver script. To complement
this, we provided a detailed mathematical overviews of each fluid solver used here in Appendix B.
While it is not our mission here to teach students how implement their own numerical fluid solvers,
we believe this work contributes to providing a foundation for capturing the importance (and utility)
of different fluid solver schemes. For each solver that was introduced for particular applications in
Sections 2.1–2.3, we give a high-level overview of the method. If students wish to continue learning
about numerical methods for solving the fluid equations or numerical methods for partial differential
equations in greater depth, we suggest Barba and G. Forsyth’s CFD Python: the 12 steps to Navier-Stokes
equations [33], L.A. Barba and O. Mesnard’s Aero Python: classical aerodynamics of potential flow using
Python [34], both of which use Jupyter Notebooks [38], or Pawar and San’s [39] modules for developing
fluid solvers in the Julia programming language [40].

In this day and age, as the importance of computer literacy increases rapidly [83–86], integrating
more hands-on computer-based activities into course structures will be of critical importance. However,
students also seeing successful execution of code is paramount [85]. Here we provide gateway software
for students to dive into the world of CFD, in familiar programming environments. While proprietary
software offers immense advantages to running simulations and analyzing data, students may see a
disconnect between the programming knowledge they’ve acquired and such polished software. We
hope to provide them a unique opportunity to see fluid solvers written in familiar, non-intimidating
environments that they may be able to tweak and modify comfortably. Our hope is to inspire further
ownership of their learning and to stimulate more interest in (lucrative, transferable) computer
programming skills.

Supplementary Materials: The following are available at http://www.mdpi.com/2311-5521/5/1/28/s1.

Funding: N.A.B. was funded and supported by the NSF OAC-1828163, the TCNJ Support of Scholarly Activity
(SOSA) Grant, the TCNJ Department of Mathematics and Statistics, and the TCNJ School of Science.

Acknowledgments: The author would like to thank Laura Miller for introducing him to the joys of computational
fluid dynamics. He would also like to thank Christina Battista, Robert Booth, Christina Hamlet, Alexander
Hoover, Matthew Mizuhara, Arvind Santhanakrishnan, Emily Slesinger, and Lindsay Waldrop for comments and
discussion. He also would like to sincerely thank the Reviewers, especially Reviewer 2, whose above and beyond
effort in providing incredibly thorough, insightful, and constructive feedback led to the manuscript becoming
significantly stronger.

Conflicts of Interest: The author declares no conflict of interest.

http://www.mdpi.com/2311-5521/5/1/28/s1

Fluids 2020, 5, 28 43 of 58

Abbreviations

The following abbreviations are used in this manuscript:

CFD Computational Fluid Dynamics
Re Reynolds Number
BCs Boundary Conditions
LBM Lattice Boltzmann Method
VF Void Fraction (Porosity)
GPU Graphics Processing Unit
CPU Central Processing Unit

Appendix A. Instructor Resources

Teaching Resources:

Associated supplemental files contain movies and codes pertaining to all the simulations detailed
in this paper. It encompasses the following:

1. suiteCFD_Supplement.pptx/.pdf: presentations which may be used in class; slides that tell the
story of the paper. Note that the .pptx file has embedded movies in .mp4 format.

2. Images: directory containing images (simulation snapshots, data) pertaining to each simulation
shown in the manuscript.

3. Movies: directory containing movies (.mp4 format) pertaining to each simulation shown in
the manuscript.

4. suite-CFD-Software-02-06-2019.zip: zip-file containing all fluid solver codes used in the
manuscript (as of 6 February 2020).

5. Note that all codes used in the manuscript can also be found at: https://github.com/
nickabattista/Holy_Grail.

6. Visualization software used: VisIt (https://visit.llnl.gov/) (v. 2.12.3).

Appendix B. Select CFD Algorithms

In this appendix we will discuss various numerical algorithms for studying fluid dynamics,
namely a projection method [2–5], a spectral methods solver based on the Fast Fourier Transform
(FFT) [7–9], and the lattice Boltzmann method [11,12]. Codes are available to test these methods at
https://github.com/nickabattista/Holy$_$Grail/. Their corresponding simulation data is saved in the
.vtk format, as to allow for visualization and analysis using open-source programs, such as VisIt [41] or
ParaView [42].

Appendix B.1. Projection Methods

The projection was first introduced by Chorin in 1967 [2] and independently a year later by
Temam [4] to solve the incompressible, Navier-Stokes equations [2]. The key feature of this method is
that it uses operator splitting and Helmholtz-Hodge decomposition to decouple the velocity and the
pressure fields, making it possible to explicitly solve the incompressible, Navier-Stokes equations in
only a few steps.

We will begin by introducing some notation. We denote un
ij = un(xi, yj) to be the velocity field

field at time-step n and spatial location (xi, yj), where {xi}Nx
i=0 and {yj}

Ny
j=0 are the x and y values of the

discretized rectangular (Eulerian) computational grid. Furthermore, un represents the velocity field at
time-step n in its entirety, e.g., not at one specific spatial location.

In the first step, an auxiliary (intermediate) velocity field is computed by ignoring any
dependencies on the pressure. This is essentially an operator split. This velocity field found will not be

https://github.com/nickabattista/Holy_Grail
https://github.com/nickabattista/Holy_Grail
https://visit.llnl.gov/
https://github.com/nickabattista/Holy$_$Grail/

Fluids 2020, 5, 28 44 of 58

divergence-free, and hence the necessary incompressible condition will not be satisfied (Equation (2)).
In discretization terms, this step takes the form of

u∗ − un

∆t
= − (un · ∇)un + ν∆un, (A1)

where u∗ is an intermediate (auxiliary) velocity field, which is not divergence-free. The second step
is known as the projection step, where the pressure gets reintroduced to give a final velocity field,
un+1 that satisfies the incompressibility condition (Equation (2)). This discretized step takes the
following form,

un+1 − u∗

∆t
= −1

ρ
∇pn+1, (A2)

where pn+1 is the pressure field at the next time-step. Because it requires an updated pressure term, we
must first find such a pressure. To do this we recall Helmholtz-Hodge Decomposition [87,88], which
says any vector field, that is twice continuously differentiable on a bounded domain, say v, can be
decomposed into a solenoidal part (divergence-free) and an irrotational part (curl-free), i.e.,

v = vsol + virr = vsol +∇φ, (A3)

where vsol is the solenoidal part and virr is the irrotational part. We note that an irrotational vector field
can be written as the gradient of a scalar, e.g., virr = ∇φ, where φ is some scalar function (sometimes φ

is referred to as a potential).
Note that if we take the divergence of (A3), we obtain,

∇ · v = ∆φ. (A4)

It is then possible to find the divergence-free part of the vector field v by solving the above Poisson
problem in (A4). This motivates the form of the second step for a projection method given in (A2).
However, to find the pressure, we take a divergence of (A2) and note that we require that un+1 be
divergence-free, i.e.,

∇ · un+1 = 0. (A5)

Taking the divergence of (A2) and requiring the condition in (A5), we obtain the following Poisson
problem for the pressure, pn+1, in terms of the intermediate velocity field u∗,

∆t
ρ

∆pn+1 = ∇ · u∗. (A6)

Note that this equation can be solved explicitly. Hence once pn+1 is found, we can then solve for un+1

using (A2), e.g.,

un+1 = u∗ − ∆t
ρ
∇pn+1. (A7)

Appendix B.2. Spectral Methods via Fast Fourier Transform (FFT)

For the spectral (FFT) method fluid solver we choose to work in the vorticity formulation of the
viscous, incompressible Navier-Stokes equations. Here we will begin by deriving such equations from
the previously written viscous, incompressible Navier-Stokes equations, i.e., Equations (1) and (2),

ρ

[
∂u
∂t

+ (u · ∇)u
]
= −∇p + µ∆u

and
∇ · u = 0.

Fluids 2020, 5, 28 45 of 58

We will use a lot of identities from vector calculus. First, recall the following identity for any
vector F,

(F · ∇)F = (∇× F)× F +
1
2
∇(F · F).

Substituting the above identity into the conservation of momentum equation (Equation (1) and
dividing by ρ gives us,

∂u
∂t

+ (∇× u)× u +
1
2
∇(u · u) = −1

ρ
∇p + ν∆u, (A8)

where ν = µ
ρ is the kinematic viscosity. Note that u · u is a scalar quantity, and thus we define it to be

U2 = u · u. Moreover, we also get to define a new quantity called the vorticity,

ωωω = ∇× u. (A9)

It is tempting to think of ωωω as describing the global rotation of the fluid, but this is misleading.
Although many flows can be characterized by local regions of intense rotation, such as smoke rings,
whirlpools, tornadoes, or even the red spot on Jupiter, some flows have no global rotation, but do
have vorticity. Vorticity describes the local spinning of a fluid near a fixed point in space, as seen by an
observer in the Eulerian framework.

Substituting the definitions of vorticity and U2 into Equation (A8), we obtain

∂u
∂t

+ωωω× u +
1
2
∇(U2) = −1

ρ
∇p + ν∆u.

Now taking the curl of the above equation we get an equation for the evolution of the vorticity, yields

∂ωωω

∂t
+∇× (ωωω× u) = ν∆ωωω, (A10)

since ∇× (∆u) = ∆(∇× u) = ∆ωωω. Furthermore we note that the pressure terms drop out as the
resulting force from pressure only acts perpendicular to the surface of a fluid blob and not parallel to
it, i.e., ∇× (∇Φ) = 0 for any scalar field Φ.

The viscous, incompressible Navier-Stokes equations can thus be written as follows,

∂ωωω

∂t
+∇× (ωωω× u) = ν∆ωωω (A11)

∇·u = 0 (A12)

Shortly we will introduce a vector potential to strive towards introducing a streamfunction, ψ, into
our formulation, but first we will use a vector calculus identity to re-write Equation (A11) into a more
traditional looking advection-diffusion equation. Using the following identity from vector calculus,

∇× (A× B) = (∇ · B + B · ∇)A− (∇ ·A + A · ∇)B, (A13)

we can mathematically massage Equation (A11) into the following form,

∂ωωω

∂t
+ (u · ∇)ωωω = (ωωω · ∇)u + ν∆ωωω. (A14)

Note that the evolution equation for vorticity, Equation (A14), now looks like an
advection-diffusion equation, but with an additional extra term, (ωωω · ∇)u. For 2D flows, recall

Fluids 2020, 5, 28 46 of 58

that u = (u, v, 0) and hence ωωω = (0, 0, ω). Moreover, in 2D flows, all partial derivatives with respect to
z are zero; hence the (ωωω · ∇)u term becomes zero, e.g.,

(ωωω · ∇)u =

(
0

∂

∂x
+ 0

∂

∂y
+ ω

∂

∂z

)
u = ω

∂u
∂z

= 0.

Thus, in 2D, we have the following form of the momentum equation in terms of vorticity

∂ωωω

∂t
+ (u · ∇)ωωω = ν∆ωωω. (A15)

Note that the form of Equation (A15) suggests that if ν ≡ 0 and if ωωω = 0 everywhere at any moment in
time, then ωωω = 0 for all future time. Moreover, since ω = ∇× u = 0, we have irrotational flow. Thus,
we would be studying an incompressible potential flow problem [70].

Next we introduce the streamfunction, ψ, as part of the vector potential for u,

u = ∇× ψk̂. (A16)

Note that if the streamfunction, ψ = ψ(x, y), is known, it is possible to extract the components of the
2D fluid velocity field, u = (u, v), from it e.g.,

u =
∂ψ

∂y
and v = −∂ψ

∂x
. (A17)

Furthermore, taking the curl of (A16), we are able to get a Poisson problem for ψ in terms of ωωω,

∆ψ = −ω, (A18)

where we have used the following vector calculus identity,

∇×∇×A = ∇(∇ ·A)−∇2A, (A19)

and the fact that ∂ψ
∂z = 0.

At this point, the idea is that if we are able to solve for the streamfunction, ψ, from the vorticity, ω,
we can then get the fluid velocity ,u, and it will automatically satisfy the incompressibility condition
by definition of the vector potential, i.e., Equation (A16). In essence this is the algorithm; however,
within this algorithm, we will work as much as possible in the Fourier frequency space, granted to
us by taking the Fast Fourier Transform (FFT). Before diving into the 4 main steps of this scheme,
we will introduce some notation involving Discrete Fourier Transforms (DFT) and hence FFT. Note
that the FFT yields the same results as the DFT but does so in a more computationally efficient, i.e.,
fast, manner.

• Taking the Discrete Fourier Transform (DFT) of a set of complex numbers produces another set of
complex numbers. The notation F {z} denotes taking the Discrete Fourier Transform of a set of
N-values, {zn}N−1

n=0 , e.g., for k = 0, 1, . . . , N − 1, we define

ẑk = F {z} =
N−1

∑
n=0

zn e−2πi kn
N .

• Variables with a hat, such as ẑk, denote variables that have been transformed into frequency
space via the Discrete Fourier Transform. Moreover, the indices k are known as the DFT’s
wave-numbers.

Fluids 2020, 5, 28 47 of 58

• We can also take the Inverse Discrete Fourier Transform (IDFT) to return our quantities of interest
from frequency space to real space. We denote the IDFT as

zn = F−1 {ẑ} = 1
N

N−1

∑
k=0

ẑk e−2πi kn
N ,

for all n = 0, 1, 2, . . . , N − 1.
• Next we will define the discretized quantities in the algorithm. A quantity such as f n

ij denotes
that quantity’s value at the nth time-step at spatial location (xi, yj) within the rectangular

computational grid. Hence we have a set of numbers { f n
ij}

Nx−1,Ny−1
i=0,j=0 (or matrix that changes as

n→ n + 1), and can transform it in analogous manner using a DFT.
• We define KX and KY to be matrices of the DFT’s wave-numbers, where KX , KY ∈ RNx×Ny . They

are defined as:

KX =


0 1 2 · · · Ny − 1
0 1 2 · · · Ny − 1
...

...
...

0 1 2 · · · Ny − 1

 and KY =


0 0 0 · · · 0
1 1 1 · · · 1
2 2 2 · · · 2
...

...
...

Nx − 1 Nx − 1 Nx − 1 · · · Nx − 1

 .

Note that each row of the matrix KX is a vector that we denote kX with components
kX = (0, 1, 2, . . . , Ny − 1)T . Similarly each column of the matrix KY is a vector that we denote
kY = (0, 1, 2, . . . , Nx − 1).

• In order to benefit from the FFT we will assume our spatial grid has a resolution of Nx × Ny,
where both Nx and Ny are powers of 2 [89].

We will now dive into the the 4 main steps in this spectral (FFT) method’s algorithm. They are
as follows:

1. Update the streamfunction to the current time-step, n:

From the previous time-step’s vorticity, ωn, we can solve the Poisson problem (Equation (A18))
for the streamfunction at the current time-step, ψn, i.e.,

ψ̂n
ij =

ω̂n
ij

k2
Xi
+ k2

Yj

, (A20)

where kXi and kYj are the Fourier wave-numbers, e.g., the ith and jth components of the vectors
kX and kY, respectively.

2. Obtain the components of velocity and the gradient of vorticity:

With the newly updated ψ̂n as well as ω̂n from the previous time-step, we are able to compute
the components of the velocity field at the current time-step, un = (un, vn). To do this, we
take derivatives of the streamfunction and vorticity in frequency space. This then gives us the
components of velocity (see Equation (A17)) and the gradient of vorticity, in frequency space
respectively. We can then use the IDFT to transform these quantities back into in real space, e.g.,

un = F−1 {2πi KY ◦ ψ̂n} (A21)

vn = F−1 {−2πi KX ◦ ψ̂n} (A22)

ωn
x = F−1 {2πi KX ◦ ω̂n} (A23)

ωn
y = F−1 {2πi KY ◦ ω̂n} (A24)

Fluids 2020, 5, 28 48 of 58

where the operation A ◦ B between two matrices of equal size is called the Hadamard product.
The Hadamard product is element-wise multiplication, e.g., if A and B are matrices of the same
size, for all components i, j, (A ◦ B)ij = AijBij.

3. Compute the advection term in frequency space from Equation (A15):.

Once you have the velocity field (un, vn) and partial derivatives of vorticity ωn
x = ∂ωn

∂x and
ωy = ∂ωn

∂y at the current time-step, it is now possible to compute the advection term from
Equation (A15), i.e., u · ∇ωωω. We define Fn

advij
to be the above advection term, and hence get that

Fn
advij

= un
ij ·ωn

xij
+ vn

ij ·ωn
yij

. (A25)

Furthermore, we can apply the DFT to Equation (A25) to transform it into frequency space, e.g.,

F̂n
advij

= F

{
Fn
advij

}
. (A26)

This will allows us to update vorticity to the (n + 1)st time-step using Equation (A15) in
frequency space.

4. Update the vorticity to next time-step:

Finally we use the Crank-Nicholson scheme to update the vorticity to the next time-step, ω̂n+1,

ω̂n+1
ij =

[
1 + ν∆t

2

(
K2

Xij
+ K2

Yij

)]
ω̂n

ij − ∆t F̂n
advij

1− ν∆t
2

(
K2

Xij
+ K2

Yij

) (A27)

Note that this method is semi-implicit; we explicitly discretize the advection term, while we
implicitly discretize the diffusion term. The Crank-Nicholson scheme is second order accurate in
time and space [51], and is unconditionally stable for an array of parabolic problems of the type
wt = awxx [52].

Now that the vorticity has been updated, ωn → ωn+1, you can repeat this process again.

Appendix B.3. Lattice Boltzmann Methods

As mentioned in Section 2.3, the Lattice Boltzmann method (LBM) does not explicitly (or implicitly)
solve the viscous, incompressible Navier-Stokes equations, rather it uses discrete Boltzmann equations
to model the fluid dynamics. In a nutshell tracks fictitious particles of fluid flow, thinking of the
problem more as a transport equation, e.g.,

∂ f
∂t

+ u · ∇ f = Ω, (A28)

where f (x, t) is the particle distribution function, i.e., a probability density, u is the fluid particle’s
velocity, and Ω is what is called the collision operator. However, rather than have these particles
moving in a Lagrangian framework, the Lattice Boltzmann method simplifies this assumption and
restricts the particle movements to nodes of a lattice. While we will only discuss a two dimensional
implementation of the LBM, three dimensional implementations follow analogously.

From the assumption restricting the fluid particles to reside on a lattice, there are only 9 possible
directions that a particle could potentially stream, or pass information, along to. These directions
are either horizontal (left/right) or vertical (up/down) or forward or backward along both diagonal
directions, as well as, staying at rest on its current node. These directions are illustrated in Figure A1,

Fluids 2020, 5, 28 49 of 58

and these streaming velocities, {ei}, are called the microscopic velocities. The directions illustrated in
Figure A1 is commonly called the D2Q9 Lattice Boltzmann Model.

Figure A1. Figure illustrating the possible streaming directions, {ei} for the D2Q9 Lattice
Boltzmann model.

Every point on the lattice has is a probability function, f (x, t), associated with it. Accounting for
the possibility of moving in only 9 directions, we rewrite the probability function as its discretized
counterpart, fi(x, t), where fi now gives the probability of streaming in a particular direction ei. Using
this discretization, we can define the macroscopic fluid density to be the sum of all possible fi, e.g.,

ρ(x, t) =
8

∑
i=0

fi(x, t). (A29)

Similarly, we can define the macroscopic velocity of the fluid as an average of the microscopic
velocities in each direction weighted by their associated particle distribution functions fi using (A29),

u(x, t) =
1
ρ

8

∑
i=0

c fi(x, t)ei, (A30)

where c = ∆x
∆t and is referred to as the lattice speed. The key elements that are left to discuss are

exactly what it means to stream the particle distributions, fi, as well as what it meant by the collision,
Ω. However, they both are encompassed within the steps in the LBM algorithm, so we will explicitly
define these procedures while also describing the algorithm. The steps are detailed below:

1. The first step is to stream the particle densities to propagate in each direction. Explicitly you
calculate the following intermediate particle density, f ∗i ,

f ∗i (x + cei∆t, t + ∆t) = f n
i (x, t), (A31)

where n is the time-step and where for each direction i, you would in practice compute

f ∗1 (xi, yj) = f n
1 (xi−1, yj), f ∗2 (xi, yj) = f n

2 (xi, yj−1), f ∗3 (xi, yj) = f n
3 (xi+1, yj),

f ∗4 (xi, yj) = f n
4 (xi, yj+1), f ∗5 (xi, yj) = f n

5 (xi−1, yj−1), f ∗6 (xi, yj) = f n
6 (xi+1, yj−1) (A32)

f ∗7 (xi, yj) = f n
7 (xi+1, yj+1), f ∗8 (xi, yj) = f n

8 (xi−1, yj+1), f ∗9 (xi, yj) = f n
9 (xi, yj)

This idea of streaming is shown in Figure A2.

Fluids 2020, 5, 28 50 of 58

Figure A2. Figure illustrating the idea of streaming by showing color correlated particle probability
functions, fi, before the streaming process and post-streaming, f ∗i .

2. The second step involves finding what is referred to as the equilibrium distribution. This step is a
part of the collision step, where you want to relax the particle density distributions towards a
local equilibrium. The local equilibrium is denoted f eq

i (x, t). First we must compute macroscopic
the properties (density and velocity) from the intermediate particle distributions f ∗i using (A29)
and (A30).

Once we have these quantities, we can now define the equilibrium distributions, f eq
i . We note

that there are many equilibrium distributions one could use in practice; however, each depends
on your specific model and its assumptions. The Lattice Boltzmann method implemented here
uses what is called the Bhatnagar-Gross-Krook (BGK) collision mode [90]. The BGK collision
model is useful for simulating single phase flows [12] and is most often the classic model to use
for solving the incompressible, viscous Navier-Stokes equations, although it can also be useful
for simulating compressible flows at low Mach numbers [11]. See [11] for a good review of the
BGK model. The BGK model’s equilibrium distribution can be written as follows

f eq
i (x, t) = wiρ + ρsi(u(x, t)), (A33)

where wi is a weight and si(u(x, t)) is defined as

si(u(x, t)) = wi

[
3

ei · u
c

+
9
2
(ei · u)2

c2 − 3
2

u · u
c2

]
. (A34)

The corresponding weights, wi are given as

wi =


4
9 i = 0

1
9 i ∈ {1, 2, 3, 4}
1

36 i ∈ {5, 6, 7, 8}
. (A35)

3. Finally we compute the collision step associated with the BGK model as follows

f n+1
i = f ∗i −

fi(x, t)− f eq
i (bf)

τ
, (A36)

where τ is the relaxation parameter and intuitively is related to the viscosity of the fluid, i.e.,

Fluids 2020, 5, 28 51 of 58

ν =
2τ − 1

6
∆x2

∆t
. (A37)

Before we mention how to handle boundary conditions we will briefly discuss some of the
advantages of the LBM. One of the biggest advantages of LBM is its implementation lends itself toward
massive GPU or CPU parallelization. Due to parallelization it can be an incredibly fast way of solving
fluid problems that are coupled with equations that model heat transfer or chemical processes [91].
Moreover, the algorithm also prides itself for the ability to compute flows through complex geometries
and porous structures rather easily and efficiently [55]. From the structure of the streaming step, one
can easily prescribe boundary conditions and regions in the grid where fluid is not allowed to flow
easily. For our considerations here we only will introduce what are referred to as bounce-back boundary
conditions [55].

The bounce-back boundary conditions are used to enforce no-slip conditions; however, as we
will show, they are not only used on the edges of the domain, but can be implemented on the interior
to create complex geometries. In a nutshell the incoming streaming directions of the distribution
functions are simply reversed when they hit a boundary node. This idea is depicted in Figure A3. In
practice, one can simply mask these boundary points on the domain using boolean logic.

Figure A3. Illustration of bounce-back boundary conditions. During the pre-streaming step there are
microscopic velocities set on the boundary and then they are reversed during the streaming step

Appendix C. Extra Visualizations of Data from Section 3: Spectral (FFT) Method’s
bubble3 Example

These visualizations are to complement those already presented in the guided tutorials from
Section 3. We will also give a bit of background for the simulation as well. This example used the
spectral (FFT-based) fluid solver in the software and models multiple regions of vorticity ‘overlapping’
at the beginning. Note that first example given here can be run by going into in the FFT_NS_Solver script
selecting the ‘bubble3’ option. The vorticity is initialized as in Figure A4. Recall that counterclockwise
(CCW) and clockwise (CW) correspond to regions of uniform vorticity, where vorticity initialized as a
positive or negative constant for CCW and CW, respectively.

Fluids 2020, 5, 28 52 of 58

Figure A4. Illustrations of the boundary conditions and vorticity initialization for the cases of the
bubble3 example.

In this example, three circular regions of vorticity are placed, partially on top of one another. The
largest region begins with a uniform value of +0.4, followed by the smaller regions with −0.5 and
+0.5, respectively. The remainder of the computational domain is initialized with a random value
of vorticity between [−1, 1]. We note that initializing a random values of vorticity will generally not
satisfy the incompressibility condition (Equation (2)); however, here we do it only to illustrate that
the solver is able to handle initial random noise. This simulation used the computational parameters
found in Table A1.

Table A1. Numerical parameters for case with ‘overlapping’ vorticity regions

Parameter Variable Units Value

Domain Size [Lx, Ly] m [1, 1]

Spatial Grid Resolution [Nx, Ny] [256, 256]

Spatial Grid Size dx = dy m Lx/Nx = Ly/Ny

Time Step Size dt s 10−2

Total Simulation Time T s 30

Fluid Kinematic Viscosity ν = µ/ρ m2/s 0.001

Figure A5 provides the simulation data at the beginning of the simulation (a) and at the last
time-step (b). It presents colormaps (and corresponding contours) for vorticity, magnitude of velocity,
horizontal velocity, vertical velocity, and the finite-time Lyapunov exponent (FTLE). It also gives a
snapshot of the velocity vector field. The last snapshot of the simulation was from t = 30.0 s.

From Figure A5, it is evident that the random vorticity values at the start of the simulation
eventually interact and dissipate in the flow, as observed in the vorticity panel. Initially there appears
to be a lot of noise in the background vorticity (it was initialized to be random between [−1,1]) and
by the end it appears virtually averaged out. Moreover, due to the background vorticity noise at
the beginning, there are a lot of tiny patches of oppositely moving fluid. This leads to an initial
background of high FTLE values, which suggests there is significant fluid mixing occurring. Similarly
to vorticity, by the end, the background has significantly less mixing (e.g., smaller FTLE values) overall
in areas away from the interacting vortical structures, which started off as overlapping vorticity regions.
The area of high mixing in the FTLE panel at the last time-step is in a region where there is a lot of
oppositely moving fluid, both horizontally as well as vertically.

Fluids 2020, 5, 28 53 of 58

Figure A5. Simulation data from the case of overlapping vorticity regions during (a) the first time-step
and (b) the final time-step.

Figure A6 provides snapshots over the simulation to illustrate how the magnitude of velocity and
vorticity evolved over time. Figure A6a shows that the overlapping regions of vorticity induce the
highest flows overall, as quantified by magnitude of velocity. That is, although the background was
initialized to random values between [−1,1], which may include values that are higher than initial
vorticity of the overlapping regions (+0.4,−0.5, and +0.5 for largest to smallest, respectively), it did
not significantly contribute to bulk flow within the domain. Moreover, as suggested earlier, the initial
random vorticity configuration quickly dissipates itself out, see Figure A6b.

Fluids 2020, 5, 28 54 of 58

Figure A6. The evolution of (a) the magnitude of velocity (with its contours) and (b) vorticity (with its
contours) during the course of the simulation.

Students may elect to try the following:

1. Recreate the above results with the parameters listed in Table A1 or for different ν or
computational domains.

2. Change the initial vorticity in each ‘overlapping’ region.
3. Change the placement of where each vorticity region is.
4. Modify the example to have more/fewer overlapping regions of vorticity.
5. Try initializing a completely random background vorticity without any other vorticity structures.

Fluids 2020, 5, 28 55 of 58

References

1. Fefferman, C.L. Existence and Smoothness of the Navier-Stokes Equation. In The Millenium Prize Problems;
Clay Mathematics Institute: Cambridge, MA, USA, 2006; pp. 57–67.

2. Chorin, A.J. The numerical solution of the Navier-Stokes equations for an incompressible fluid. Bull. Am.
Math. Soc. 1967, 73, 928–931. [CrossRef]

3. Chorin, A.J. Numerical Solution of the Navier-Stokes Equations. Math. Comp. 1968, 22, 745–762. [CrossRef]
4. Temam, R. Une méthode d’approximation de la solution des équations de Navier-Stokes. Bull. Soc.

Math. Franc. 1968, 96, 115–152. [CrossRef]
5. Brown, D.L.; Cortez, R.; Minion, M.L. Accurate Projection Methods for the Incompressible Navier-Stokes

Equations. J. Comp. Phys. 2001, 168, 464–499. [CrossRef]
6. Griffith, B.E. An accurate and efficient method for the incompressible Navier-Stokes equations using the

projection method as a preconditioner. J. Comput. Phys. 2009, 228, 7565–7595. [CrossRef]
7. Costa, B. Spectral Methods for Partial Differential Equations. CUBO Math. J. 2004, 6, 1–32.
8. Uecker, H. A short ad hoc introduction to spectral methods for parabolic PDE and the Navier-Stokes

equations, 2009. In Proceedings of the Lecture given at International Summer School Modern Computational
Science, Oldenburg, Germany, 16–28 August 2009.

9. Suzuki, M. Fourier-Spectal Methods For Navier-Stokes Equations in 2D, 2014. Available online: http:
//www.math.mcgill.ca/gantumur/math595f14/NSMashbat.pdf (accessed on 29 June 2019).

10. Hardy, J.; Pomeau, Y.; de Pazzis, O. Time evolution of a two-dimensional classical lattice system. Phys. Rev.
Lett. 1973, 31, 276–279. [CrossRef]

11. Chen, S.; Doolen, G.D. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 282–300.
[CrossRef]

12. Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond; Oxford University Press: Oxford,
UK, 2001.

13. Stern, F.; Xing, T.; Yarbrough, D.B.; Rothmayer, A.; Rajagopalan, G.; Prakashotta, S.; Caughey, D.;
Bhaskaran, R.; Smith, S.; Hutchings, B.; et al. Hands-On CFD Educational Interface for Engineering
Courses and Laboratories. J. Eng. Edu. 2006, 95, 63–83. [CrossRef]

14. Cummings, R.; Morton, S., Computational Aerodynamics Goes to School: A Course in CFD for
Undergraduate Students. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit,
Reno, NV, USA, 10–13 January 2005; AIAA: Reston, VA, USA,2005. [CrossRef]

15. Ormiston, S.J. Incorporating CFD into the undergraduate Mechanical Engineering Programme at the
University of Manitoba. In Proceedings of the Ninth Annual Conference of the CFD Society of Canada:
CFD2001, Waterloo, ON, Canada, 27–29 May 2001; Schneider, G., Ed.; CFD Society of Canada: Waterloo, ON,
Canada, 2001; pp. 333–337.

16. Aung, K. Design and Implementation of an Undergraduate Computational Fluid Dynamics (Cfd) Course,
2003. In Proceedings of the 2003 American Society for Engineering Education Annual Conference, Nashville,
TN, USA, 22–25 June 2003. Available online: https://peer.asee.org/design-and-implementation-of-an-
undergraduate-computational-fluid-dynamics-cfd-course.pdf (accessed on 9 September 2019)

17. Stern, F.; Xing, T.; Yarbrough, D.; Rothmayer, A.; Rajagopalan, G.; Otta, S.P.; Caughey, D.; Bhaskaran, R.;
Smith, S.; Hutchings, B.; et al. Development of hands-on CFD educational interface for undergraduate
engineering courses and laboratories. In Proceedings of the 2004 American Society for Engineering Education
Annual Conference & Exposition, Salt Lake City, UT, USA, 20–23 June 2004; American Society for Engineering
Education: Washington, DC, USA, 2004; pp. 1526–1555.

18. Adair, D. Incorporation of Computational Fluid Dynamics into a Fluid Mechanics Curriculum. In Advances
in Modeling of Fluid Dynamics; Liu, C., Ed.; IntechOpen: London, UK, 2012; Chapter 5, pp. 97–122.

19. Stern, F.; Yoon, H.; Yarbrough, D.; Okcay, M.; Oztekin, B.U.; Roszelle, B. Hands-on integrated CFD
educational interface for introductory fluids mechanics. Int. J. Aerodyn. 2012, 2, 339–371. [CrossRef]

20. Ray, B.; Bhaskaran, R. Integrating Simulation into the Engineering Curriculum: A Case Study. Int. J. Mech.
Eng. Edu. 2013, 41, 269–280. [CrossRef]

21. Eldredge, J.D.; Senocak, I.; Dawson, P.; Canino, J.; Liou, W.; LeBeau, R.; Hitt, D.; Rumpfkeil, M.; Cummings, R.
A Best Practices Guide to CFD Education in the Undergraduate Curriculum. Int. J. Aerodyn. 2014, 4, 200–236.
[CrossRef]

http://dx.doi.org/10.1090/S0002-9904-1967-11853-6
http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
http://dx.doi.org/10.24033/bsmf.1662
http://dx.doi.org/10.1006/jcph.2001.6715
http://dx.doi.org/10.1016/j.jcp.2009.07.001
http://www.math.mcgill.ca/gantumur/math595f14/NSMashbat.pdf
http://www.math.mcgill.ca/gantumur/math595f14/NSMashbat.pdf
http://dx.doi.org/10.1103/PhysRevLett.31.276
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
http://dx.doi.org/10.1002/j.2168-9830.2006.tb00878.x
http://dx.doi.org/10.2514/6.2005-1072
https://peer.asee.org/design-and-implementation-of-an-undergraduate-computational-fluid-dynamics-cfd-course.pdf
https://peer.asee.org/design-and-implementation-of-an-undergraduate-computational-fluid-dynamics-cfd-course.pdf
http://dx.doi.org/10.1504/IJAD.2012.049127
http://dx.doi.org/10.7227/IJMEE.41.3.8
http://dx.doi.org/10.1504/IJAD.2014.067580

Fluids 2020, 5, 28 56 of 58

22. Heron, P.; McNeill, L. Phys21: Preparing Physics Students for 21st-Century Careers (A Report by the Joint
Task Force on Undergraduate Physics Programs), 2016. American Physical Society and the American
Association of Physics Teachers. Available online: https://www.compadre.org/JTUPP/report.cfm (accessed
on 7 January 2020).

23. Heron, P.; McNeill, L. Preparing Physics Students for 21st-Century Careers. Phys. Today 2017, 70, 38.
24. Fefferman, C.L. A Comparison of C, MATLAB, and Python as Teaching Languages in Engineering.

In Computational Science—ICCS 2004; Bubak, M., van Albada, G.D., Sloot, P.M., Dongarra, J., Eds.; Springer:
Berlin/Heidelberg, Germany, 2004; pp. 1210–1217.

25. Spencer, R.L. Teaching computational physics as a laboratory sequence. Am. J. Phys. 2005, 73, 151–153.
[CrossRef]

26. Peng, L.; Bao, L.; Huang, M. Application of Matlab/Simulink Software in Physics. In High Performance
Networking, Computing, and Communication Systems; Wu, Y., Ed.; Springer: Berlin/Heidelberg, Germany, 2011;
Chapter 21, pp. 140–146.

27. Sangwin, C.J.; O’Toole, C. Computer programming in the UK undergraduate mathematics curriculum. Int. J.
Math. Edu. Sci. Technol. 2017, 48, 1133–1152. [CrossRef]

28. Wang, Y.; Hill, K.J.; Foley, E.C. Computer programming with Python for industrial and systems engineers:
Perspectives from an instructor and students. Comput. Appl. Eng. Educ. 2017, 25, 800–811. [CrossRef]

29. MATLAB. version 8.5.0 (R2015a); The MathWorks Inc.: Natick, MA, USA, 2015.
30. Van Rossum, G. Python; version 3.5. 2015. Available online: https://www.python.org (accessed on

31 August 2019).
31. Carey, M.A.; Papin, J.A. Ten simple rules for biologists learning to program. PLoS Comput. Biol. 2018,

14, e1005871. [CrossRef]
32. Battista, N.A.; Strickland, W.C.; Miller, L.A. IB2d: A Python and MATLAB implementation of the immersed

boundary method. Bioinspir. Biomim. 2017, 12, 036003. [CrossRef]
33. Barba, L.A.; Forsyth, G. CFD Python: The 12 steps to Navier-Stokes equations. J. Open Source Edu. 2018,

1, 21. [CrossRef]
34. Barba, L.A.; Mesnard, O. Aero Python: Classical aerodynamics of potential flow using Python. J. Open

Source Edu. 2019, 2, 45. [CrossRef]
35. Battista, N.A.; Mizuhara, M.S. Fluid-Structure Interaction for the Classroom: Speed, Accuracy, Convergence,

and Jellyfish! arXiv 2019, arXiv:1902.07615.
36. Battista, N. Fluid-structure Interaction for the Classroom: Interpolation, Hearts, and Swimming! SIAM Rev.

2018, in press.
37. Battista, N.A.; Strickland, W.C.; Barrett, A.; Miller, L.A. IB2d Reloaded: A more powerful Python and

MATLAB implementation of the immersed boundary method. Math. Methods Appl. Sci. 2018, 41, 8455–8480.
[CrossRef]

38. Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.;
Grout, J.; Corlay, S.; et al. Jupyter Notebooks—A publishing format for reproducible computational
workflows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas; Loizides, F.,
Schmidt, B., Eds.; IOS Press: Amsterdam, The Netherlands: 2016; pp. 87–90.

39. Pawar, S.; San, O. CFD Julia: A Learning Module Structuring an Introductory Course on Computational
Fluid Dynamics. Fluids 2019, 4, 159. [CrossRef]

40. Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing.
SIAM Rev. 2017, 59, 65–98. [CrossRef]

41. Childs, H.; Brugger, E.; Whitlock, B.; Meredith, J.; Ahern, S.; Pugmire, D.; Biagas, K.; Miller, M.; Harrison, C.;
Weber, G.H.; et al. VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data. In High
Performance Visualization–Enabling Extreme-Scale Scientific Insight; Bethel, E.W., Childs, H., Hansen, C., Eds.;
Chapman and Hall/CRC: Boca Raton, FL USA, 2012; pp. 357–372.

42. Ahrens, J.; Gerveci, B.; Law, C. ParaView: An End-User Tool for Large Data Visualizations; Elsevier: Atlanta, GA,
USA, 2005.

43. Burden, R.L.; Faires, J.D. Numerical Analysis, 5th ed.; Prindle, Weber and Schmidt: Boston, MA USA, 1993.
44. Minion, M.L. Higher-Order Semi-Implicit Projection Methods. In Numerical Simulations of Incompressible

Flows; Hafez, M.M., Ed.; World Scientific Publishing Company: Waterloo, ON, Canada, 2003; pp. 126–140.

https://www.compadre.org/JTUPP/report.cfm
http://dx.doi.org/10.1119/1.1842751
http://dx.doi.org/10.1080/0020739X.2017.1315186
http://dx.doi.org/10.1002/cae.21837
https://www.python.org
http://dx.doi.org/10.1371/journal.pcbi.1005871
http://dx.doi.org/10.1088/1748-3190/aa5e08
http://dx.doi.org/10.21105/jose.00021
http://dx.doi.org/10.21105/jose.00045
http://dx.doi.org/10.1002/mma.4708
http://dx.doi.org/10.3390/fluids4030159
http://dx.doi.org/10.1137/141000671

Fluids 2020, 5, 28 57 of 58

45. Guermond, J.L.; Minev, P.; Shen, J. An overview of projection methods for incompressible flows.
Comp. Methods Appl. Mech. Eng. 2006, 195, 6011–6045. [CrossRef]

46. Almgren, A.S.; Aspden, A.J.; Bell, J.B.; Minion, M.L. On the Use of Higher-Order Projection Methods for
Incompressible Turbulent Flow. SIAM J. Sci. Comput. 2013, 35, B25–B42. [CrossRef]

47. Bell, J.B.; Colella, P.; Glaz, H.M. A second order projection method for the incompressible Navier-Stokes
equations. J. Comput. Phys. 1989, 85, 257–283. [CrossRef]

48. Atkinson, K.E. An Introduction to Numerical Analysis, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1989.
49. Trefethen, L.N. Spectral Methods in MATLAB; SIAM: Philadelphia, PA, USA, 2001.
50. Battista, N.A. Spectrally Accurate Initial Data in Numerical Relativity. Master’s Thesis, Rochester Institute

of Technology, Rochester, NY, USA, 2010.
51. Crank, J.; Nicholson, P. A practical method for numerical evaluation of solutions of partial differential

equations of the heat conduction type. Proc. Camb. Phil. Soc. 1947, 43, 50–67. [CrossRef]
52. Thomas, J.W. Numerical Partial Differential Equations: Finite Difference Methods; Springer: New York, NY,

USA, 1995.
53. Battista, N.A.; Baird, A.J.; Miller, L.A. A Mathematical Model and MATLAB Code for Muscle-Fluid-Structure

Simulations. Integr. Comp. Biol. 2015, 55, 901–911. [CrossRef]
54. Zhang, J. Lattice Boltzmann method for microfluidics: Models and applications. Microfluid. Nanofluidics

2011, 10, 1–28. [CrossRef]
55. Bao, Y.B.; Meskas, J. Lattice Boltzmann Method for Fluid Simulations, 2011. Available online: http:

//www.cims.nyu.edu/~billbao/report930.pdf (accessed on 19 September 2019).
56. Tu, J.; Yeoh, G.H.; Liu, C. Computational Fluid Dynamics, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 2018.
57. Ishihara, I. Tests for color blindness. Am. J. Ophthal. 1918, 1, 457. [CrossRef]
58. Shadden, S.C.; Lekien, F.; Marsden, J.E. Definition and properties of Lagrangian coherent structures from

finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 2005, 212, 271–304. [CrossRef]
59. Shadden, S.C. Lagrangian Coherent Structures: Analysis of Time Dependent Dynamical Systems Using

Finite-Time Lyapunov Exponent, 2005. Available online: https://shaddenlab.berkeley.edu/uploads/LCS-
tutorial/index.html (accessed on 19 September 2019).

60. Shadden, S.C.; Katija, K.; Rosenfeld, M.; Marsden, J.E.; Dabiri, J.O. Transport and stirring induced by vortex
formation. J. Fluid Mech. 2007, 593, 315–331. [CrossRef]

61. Haller, G.; Sapsis, T. Lagrangian coherent structures and the smallest finite-time Lyapunov exponent. Chaos
2011, 21, 023115. [CrossRef]

62. Shadden, S.C.; Dabiri, J.O.; Marsden, J.E. Lagrangian analysis of fluid transport in empirical vortex ring
flows. Phys. Fluids 2006, 18, 047105. [CrossRef]

63. Lukens, S.; Yang, X.; Fauci, L. Using Lagrangian coherent structures to analyze fluid mixing by cilia. Chaos
2010, 20, 017511. [CrossRef]

64. Cheryl, S.; Glatzmaier, G.A. Lagrangian coherent structures in the California Current System—Sensitivities
and limitations. Geophys. Astrophys. Fluid Dyn. 2012, 106, 22–44.

65. Haller, G. Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos 2000, 10, 99–108.
[CrossRef]

66. Haller, G. Lagrangian Coherent Structures. Annu. Rev. Fluid Mech. 2015, 47, 137–162. [CrossRef]
67. Truskey, G.A.; Yuan, F.; Katz, D.F. Transport Phenomena in Biological Systems; Pearson Prentice Hall

Bioengineering: Upper Saddle River, NJ, USA, 2004.
68. Rayleigh, L. On the flow of compressible fluid past an obstacle. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1916,

32, 1–6. [CrossRef]
69. Acheson, D.J. Elementary Fluid Dynamics; Oxford University Press: Oxford, UK, 1990.
70. Batchelor, G.K. An Introduction to Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2000.
71. Morton, C.; Yarusevych, S. Vortex shedding in the wake of a step cylinder. Phys. Fluids 2010, 22, 083602.

[CrossRef]
72. Bao, Y.; Wu, Q.; Zhou, D. Numerical investigation of flow around an inline square cylinder array with

different spacing ratios. Comput. Fluids 2012, 55, 118–131. [CrossRef]
73. Carini, M.; Gianetti, F.; Auteri, F. On the origin of the flip-flop instability of two side-by-side cylinder wakes.

J. Fluid Mech. 2014, 742, 552–576. [CrossRef]

http://dx.doi.org/10.1016/j.cma.2005.10.010
http://dx.doi.org/10.1137/110829386
http://dx.doi.org/10.1016/0021-9991(89)90151-4
http://dx.doi.org/10.1017/S0305004100023197
http://dx.doi.org/10.1093/icb/icv102
http://dx.doi.org/10.1007/s10404-010-0624-1
http://www.cims.nyu.edu/~billbao/report930.pdf
http://www.cims.nyu.edu/~billbao/report930.pdf
http://dx.doi.org/10.1016/S0002-9394(18)90663-X
http://dx.doi.org/10.1016/j.physd.2005.10.007
https://shaddenlab.berkeley.edu/uploads/LCS-tutorial/index.html
https://shaddenlab.berkeley.edu/uploads/LCS-tutorial/index.html
http://dx.doi.org/10.1017/S0022112007008865
http://dx.doi.org/10.1063/1.3579597
http://dx.doi.org/10.1063/1.2189885
http://dx.doi.org/10.1063/1.3271340
http://dx.doi.org/10.1063/1.166479
http://dx.doi.org/10.1146/annurev-fluid-010313-141322
http://dx.doi.org/10.1080/14786441608635539
http://dx.doi.org/10.1063/1.3459157
http://dx.doi.org/10.1016/j.compfluid.2011.11.011
http://dx.doi.org/10.1017/jfm.2014.9

Fluids 2020, 5, 28 58 of 58

74. Younis, M.Y.; Alam, M.M.; Zhou, Y. Flow around two non-parallel tandem cylinders. Phys. Fluids 2016,
28, 125106. [CrossRef]

75. Gao, Y.; Chen, W.; Wang, B.; Wang, L. Numerical simulation of the flow past six-circular cylinders in
rectangular configurations. J. Mar. Sci. Technol. 2019, 1–25. [CrossRef]

76. Ji, C.; Cui, Y.; Xu, D.; Yang, X.; Srinil, N. Vortex-induced vibrations of dual-step cylinders with different
diameter ratios in laminar flows. Phys. Fluids 2019, 31, 073602.

77. Ji, C.; Yang, X.; Yu, Y.; Cui, Y.; Srinil, N. Numerical simulations of flows around a dual step cylinder with
different diameter ratios at low Reynolds number. Eur. J. Mech. B/Fluids 2019, in press. [CrossRef]

78. Fransson, J.H.; Konieczny, P.; Alfredsson, P.H. Flow around a porous cylinder subject to continuous suction
or blowing. J. Fluids Stuct. 2004, 19, 1031–1048. [CrossRef]

79. Chen, X.; Yu, P.; Winoto, S.; Low, H. Numerical analysis for the flow past a porous square cylinder based on
the stress-jump interfacial-conditions. Int. J. Num. Meth. Heat Fluid Flow 2008, 18, 635–655. [CrossRef]

80. Naito, H.; Fukagata, K. Numerical simulation of flow around a circular cylinder having porous surface.
Phys. Fluids 2012, 24, 117102. [CrossRef]

81. Shahsavari, S.; Wardle, B.L.; McKinley, G.H. Interception efficiency in two-dimensional flow past confined
porous cylinders. Chem. Eng. Sci. 2014, 116, 752–762. [CrossRef]

82. Ledda, P.G.; Siconolfi, L.; Viola, F.; Gallaire, F.; Camarri, S. Suppression of von Kármán vortex streets past
porous rectangular cylinders. Phys. Rev. Fluids 2007, 3, 103901. [CrossRef]

83. Gupta, G.K. Computer literacy: Essential in today’s computer-centric world. ACM SIGCSE Bull. 2005,
38, 115–119. [CrossRef]

84. Shein, E. Should everybody learn to code? Commun. ACM 2014, 57, 16–18.
85. Sterling, L. Coding in the curriculum: Fad or foundational? ACER Res. Conf. 2016, 4, 72–84.
86. Baker, M. Scientific computing: Code alert. Nature 2017, 541, 563–565. [CrossRef]
87. Helmholtz, H. Uber Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen

entsprechen. J. Reine Angew. Math. 1858, 55, 25–50.
88. Bladel, J. On Helmholtz’s Theorem in Finite Regions; Midwestern Universities Research Association: Madison,

WI, USA, 1958.
89. Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput.

1965, 19, 297–301. [CrossRef]
90. Bhatnagar, P.L.; Gross, E.P.; Krook, M. A Model for Collision Processes in Gases. I. Small Amplitude

Processes in Charged and Neutral One-Component Systems. Phys. Rev. 1954, 94, 511–525. [CrossRef]
91. Asinari, P. Multi-Scale Analysis of Heat and Mass Transfer in Mini/Micro Structures. Ph.D. Thesis, Energy

Engineering, Politecnico di Torino, Turin, Italy, 2005.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.4972549
http://dx.doi.org/10.1007/s00773-019-00676-7
http://dx.doi.org/10.1016/j.euromechflu.2019.09.016
http://dx.doi.org/10.1016/j.jfluidstructs.2004.06.005
http://dx.doi.org/10.1108/09615530810879756
http://dx.doi.org/10.1063/1.4767534
http://dx.doi.org/10.1016/j.ces.2014.05.054
http://dx.doi.org/10.1103/PhysRevFluids.3.103901
http://dx.doi.org/10.1145/1138403.1138446
http://dx.doi.org/10.1038/nj7638-563a
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.1103/PhysRev.94.511
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Brief Overview of the Three Fluid Solvers
	Projection Method
	Spectral Method (FFT)
	Lattice Boltzmann Method

	How to Run the Simulations, Visualize, and Analyze
	Running a Simulation
	Visualizing the Data in VisIt
	Guide: Running the Spectral (FFT) Method's `bubble3' Example
	Guide: Visualizing the Spectral (FFT) Method's `bubble3' Data
	Guide: Analyzing the Spectral (FFT) Method's `bubble3' Data

	Built-in Examples (for Each Fluid Solver)
	Cavity Flow (via Projection Method)
	Circular Flow in a Square Domain (via Projection Method)
	Side-by-Side Voritices (via Spectral Method)
	Evolution of Vorticity from an Initial Velocity Field
	Flow Past One or More Cylinders (via Lattice Boltzmann)
	Flow Past a Porous Cylinder (via Lattice Boltzmann)

	Discussion
	Instructor Resources
	Select CFD Algorithms
	Projection Methods
	Spectral Methods via Fast Fourier Transform (FFT)
	Lattice Boltzmann Methods

	Extra Visualizations of Data from Section 3: Spectral (FFT) Method's bubble3 Example
	References

