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Abstract: In this paper, the continuous adjoint method is used for the optimization of a static mixing
device. The CFD model used is suitable for the flow simulation of the two miscible fluids that
enter the device. The formulation of the adjoint equations, which allow the computation of the
sensitivity derivatives is briefly demonstrated. A detailed analysis of the geometry parameterization
is presented and a set of different parameterization scenarios are investigated. In detail, two different
parameterizations are combined into a two-stage optimization algorithm which targets maximum
mixture uniformity at the exit of the mixer and minimum total pressure losses. All parameterizations
are in conformity with specific manufacturability constraints of the final shape. The non-dominated
front of optimal solutions is obtained by using the weighted sum of the two objective functions and
executing a set of optimization runs. The effectiveness of the proposed synthetic parameterization
schemes is assessed and discussed in detail. Finally, a reduced length mixer is optimized to study the
impact of the length of the tube on the device’s performance.

Keywords: mixing devices; two-phase flows; shape optimization; continuous adjoint method

1. Introduction

During recent years, there is a growing demand for designing and constructing highly efficient
engineering devices and systems. Flow systems are no exception and, thus, the development of
optimization tools that improve their performance is of high importance. Computational Fluid
Dynamics (CFD) is a highly accurate way to predict the flow behavior within the system and,
coupled with an optimization method, consist a both efficient and effective design process.

The optimization of any device starts by defining the objective-function(s) measuring
its performance and the design variables. The optimal values of the design variables that minimize
(or maximize) the objective function(s) are sought. The minimization (or maximization) of a single
objective function, can be carried out using gradient-based methods. These make use of the gradient
of the objective function to update the current geometry at the end of each optimization cycle.
They converge fast and their cost is exclusively determined by the cost of computing the gradients.
There is a variety of methods to compute gradients (finite differences, automatic differentiation [1],
complex variables method [2]), with the adjoint [3,4] being the most efficient one, since its cost is
independent of the number of design variables. The adjoint method can be developed following the
continuous or discrete approach, with both of them having their own advantages and disadvantages.
Their main difference relies on whether the differentiation or the discretization of the flow equations
comes first. In this paper, the continuous adjoint approach, programmed in the OpenFOAM
environment, is used.
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When the flow system includes two or more fluids, a multiphase flow model must be used.
The way this is formulated greatly depends on the fluid properties, their interaction and their
concentrations inside the mixture [5–9]. In this paper, a flow model for two miscible fluids following
a Eulerian description is used. This model is suitable for the simulation of flows inside mixing
devices which do not contain moving parts. These are motionless structures that blend two or
more fluids traveling inside a tube trying to deliver an homogeneous mixture at the exit. They are
met in various application fields such as medicine, wastewater treatment and chemistry applications.
Their functionality is based on the existence of baffles inside the tubes which force the flow to recirculate
enhancing, thus, the mixing process. Apart from delivering uniform flow at the outlet, mixers should
have the smallest possible power losses to reduce energy consumption. Several published studies
are dealing with the flow simulation in mixing devices [10,11] or with the problem of optimizing
them, targeting mixture uniformity at the exit [12–14] and minimum total pressure drop within the
device [15,16], though none of them uses the adjoint method, at least to the author’s knowledge. In this
paper, a method based on the continuous adjoint for a two-phase model is used for the optimization of
a static mixing device targeting both the aforementioned objective functions. The continuous adjoint
method for this two-phase model has been developed in [17] and is, herein, summarized by presenting
the adjoint partial differential equations (PDEs), the adjoint boundary conditions and the gradient
expression. For the optimization of the device, the two parameterizations initially presented in [17],
namely a node-based and a positional angle one, are used. A significant difference is that, in this paper,
the two parameterizations are combined by formulating a two-stage optimization. Over and above,
a study of a shorter device is provided to examine the impact of the length on the performance of
the device, in view of a forthcoming optimization in which the tube length is an extra design variable.

2. Flow Analysis & Shape Optimization Tools

The flow domain within the static mixing device is enclosed by two inlets (one inlet per incoming
fluid), a single outlet (where mixture uniformity is targeted) and the solid walls (including the baffles
the shape of which must be optimized). Figure 1 presents the geometry of the mixer, where seven
equally distributed baffles are placed inside. In this initial/reference geometry, every second baffle is
placed at the same angular position, at 180◦ shift from its previous/next one.

Figure 1. Mixer geometry which comprises of two inlets, one outlet and seven baffles. (Top): the mesh
blocks across the mixer geometry. Each baffle is associated with a unique mesh region that can be
displaced in the peripheral direction (“rotated”) independently from the rest ones. (Bottom): the set of
points (red patch), the coordinates of which comprise the design variables in the NBP.
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2.1. Two-Phase Flow Model-Primal Equations

For a laminar flow of two miscible fluids, the flow or primal problem within the optimization
loop requires the solution of the flow equations, written in the form [7,9]

Rp = −∂(ρvi)

∂xi
=0 (1)

Rv
i = ρvj

∂vi
∂xj
− ∂

∂xj

[
µ

(
∂vi
∂xj

+
∂vj

∂xi

)]
+

∂p
∂xi

=0 i = 1, 2, 3 (2)

Ra = vi
∂α

∂xi
− ∂

∂xj

(
D

∂α

∂xj

)
= 0 (3)

where ρ is the mixture density, vi are the mixture velocity components, p is the static pressure and
µ is the mixture dynamic viscosity. In Equation (3), α denotes the volume fraction of the mixture
and D the mass diffusivity coefficient. Throughout this paper, repeated indices imply summation.
Assuming that both fluids have constant densities (ρ1 and ρ2) and constant viscosities (µ1 and µ2),
the mixture density and viscosity are given by ρ=αρ1+(1− α)ρ2 and µ=αµ1+(1− α)µ2.

For the closure of the problem, the following flow or primal boundary conditions are imposed as:

• Inlets (SI): Fixed incoming velocity components vi and fixed distributions of the volume fraction
α; in specific, Inlet 1 is given α=1 (first incoming fluid) and Inlet 2 is given α=0 (second fluid).
Zero Neumann condition for the static pressure.

• Outlet (SO): Zero Dirichlet condition for p. Zero Neumann condition for vi and α.
• Walls (SW): Zero Dirichlet condition for vi (no-slip condition). Zero Neumann condition

for p and α.

2.2. Shape Parameterization

The shape parameterization defines the variables controlling shape modifications based on
the computed (in this work, by the continuous adjoint method) gradients of the objective function.
Its selection is important as search based on different shape parameterizations explore different design
spaces and, occasionally, lead to different (sub)optimal solutions. The two parameterizations this paper
relies on were also used in a previous study, [17], therein independently from each other. Here, the goal
is to effectively combine both parameterizations during the optimization to get better performing
mixing device configurations. The two parameterizations are:

• Node-Based Parameterization (NBP). The coordinates of each surface node of the selected patches
(parameterized walls SWp ) of the computational mesh are the design variables.

• Positional Angle Parameterization (PAP). The angular positions of the baffles across the mixer
are used as design variables. This means that, starting from an initial position, the baffles can
be placed at different angles inside the mixer without changing either their shapes or their
longitudinal positions.

In what follows, the degrees of freedom of the problem are denoted by

~b=(b1, b2, ..., bN) ∈ <N (4)

The above parameterizations will be used in adjoint-based optimization loops for two mixers of
different length, without though handling the length as an extra design variable.
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2.3. Objective Functions

This paper is dealing with two objective functions, see also [17]. The first one, denoted as FU ,
is a measure of the mixture uniformity at the exit. It is defined by

FU =
∫

SO

vini

(
α−

∫
SO

αdS

SO

)2

dS (5)

where ni is the unit outward normal vector to the outlet boundary. The term into parenthesis in
the integral denotes the deviation of the local α from its averaged value over the outlet patch.
In a well-mixed flow, FU tends to zero. The second objective function is related to the (volume
flowrate-weighted) total pressure losses occurring between the inlets and the outlet. This is given by

FP = −1
2

∫
SI,O

vini(p +
1
2

ρv2
j )dS (6)

and should be minimized too.
Since the optimization is carried out using a gradient-based method minimizing a single target

function, the two objectives are combined in

F = w1FU + w2FP (7)

where w1 and w2 are user-defined weights. Practically, these are set as w1 = w̄1/F0
U and w2 = w̄2/F0

P
where F0

P and F0
U are the values of the objective functions for the reference static mixer geometry. In fact,

w̄1 and w̄2 are the weights selected by the user. The total derivative of F (expressed, in the general
sense, as F=

∫
S FSi nidS) w.r.t.~b is

δF
δ~b

=
∫

SI∪SO

∂FS,i

∂~b
nidS+

∫
SI∪SO

∂FS,i

∂xk

δxk

δ~b
nidS+

∫
SI∪SO

FS,i
δ

δ~b
(nidS) (8)

In Equation (8), the following identity (see [18])

δΦ

δ~b
=

∂Φ

∂~b
+

∂Φ
∂x

δx
δ~b

(9)

that relates the total (δ) and partial (∂) derivatives of any flow variable Φ, by also involving the mesh
sensitivities δx/δ~b, is used.

2.4. Adjoint Equations

To develop the continuous adjoint method that computes the sensitivity derivatives of F w.r.t.~b,
the augmented objective function

Faug = F +
∫

Ω
qRpdΩ +

∫
Ω

uiRv
i dΩ +

∫
Ω

φRadΩ (10)

where q, ui, φ are the adjoint pressure, velocities and phase fraction respectively, is defined and
differentiated as presented in detail in [17] (for two-phase flows) and [18] (for single-phase flows).

The differentiation of Equation (10) w.r.t.~b yields

δFaug

δ~b
=

δF
δ~b

+
∫

Ω

(
q

∂Rp

∂~b
+ ui

∂Rv
i

∂~b
+ φ

∂Ra

∂~b

)
dΩ

+
∫

S
(qRp + uiRv

i + φRa)
δxj

δ~b
njdS

(11)
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By using the Green-Gauss theorem to the volume integral of Equation (11), a lengthy development
exposed in the aforementioned references provides the adjoint field equations

Rq =−∂ui
∂xi

=0 (12a)

Rui =ρuj
∂vj

∂xi
−

∂(ρuivj)

∂xj
− ∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
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)]
+ρ

∂q
∂xi

+φ
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∂xi
= 0 i = 1, 2, 3 (12b)

Rφ =−∂(φvi)

∂xi
− ∂

∂xj

(
D

∂φ

∂xj

)
+ρ∆

(
uivj

∂vi
∂xj

+vi
∂q
∂xi

)
+µ∆

∂ui
∂xj

(
∂vi
∂xj

+
∂vj

∂xi

)
=0 (12c)

where ρ∆ = ρ1−ρ2 and µ∆ = µ1−µ2. The above set of adjoint field equations is associated with the
following set of adjoint boundary conditions:

• Inlets (SI): Dirichlet condition for the adjoint velocity; in specific the normal component is set to
un =−ni∂FSI,i /∂p and the tangential ones uI

t = uI I
t = 0. Zero-Dirichlet condition for φ together

with zero-Neumann for q.
• Outlets (SO): Dirichlet conditions for ui: unvn =q and utvn+ν ∂ut

∂n =0. Robin condition for adjoint

phase φvini + D ∂φ
∂xj

nj − ρ∆qvini =−
∂(Fini)SO

∂α . Zero Neumann condition for q.

• Walls (SW): Zero Dirichlet condition for ui. Zero Neumann condition for φ and q.

2.5. Sensitivity Derivatives

After satisfying the adjoint field equations and boundary conditions, the resulting terms in (the
developed) Equation (11) give the sensitivity derivatives

δF
δ~b

=−
∫

SWp

{[
−qρni+µ

(
∂ui
∂xj

+
∂uj

∂xi

)
nj

]
∂vi
∂xm

nm
δxk

δ~b
nk+φD

∂α

∂xj

δnj

δ~b
+φD

∂2α

∂xk∂xj

δxk

δ~b
nj

}
dS (13)

Equation (13) is written for a general design variable vector ~b, where SWp is the set of
parameterized walls. Working with NBP, applied on the mixer, only the coordinates of points at
the top part of each baffle are considered as design variables (Figure 1). By doing so, only the profile
of each baffle can be modified whereas its lateral surfaces remain planar. The points are moved only
perpendicular to the top part securing this way that each baffle maintains its thickness. Assuming that
the tube is aligned with the z-axis, the design vector becomes~b=[x1, x2, ..., xM, y1, y2, ..., yM] where M
is the total number of boundary nodes on the parameterized walls.

With NBP, it is almost mandatory to additionally use a gradient smoothing algorithm and this
because any numerical noise in the computed gradient can create irregularities on the surface and lead
the optimization loop to diverge. Smoothing, also, allows bigger deformations to be of the surface
and, consequently, to converge faster to the optimal solution. A more extensive study on this matter
can be found in [19]. For smoothing the gradients, a diffusion-like equation is solved on the surface
of the geometry.

Ḡ− ε∇2
SḠ = G (14)

where ε is a coefficient that defines the intensity of smoothing, G=δF/δ~b (13) and Ḡ is the smoothed
sensitivity field which the Equation (14) is solved for. The∇2

S operator is the Laplace-Beltrami operator
on the surface of the shape to be modified. Figure 2 demonstrates the different displacements of the top
surface of the first baffle when using the non-smoothed and the smoothed gradients. For the adaptation
of the internal mesh nodes to the displaced boundaries an inverse distance mesh deformation tool
coupled with mesh optimization techniques is used [20].
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Figure 2. The profile of the top surface of the first baffle at the end of the first optimization cycle (with
the NBP) when a non-smoothed (red) or a smoothed (blue) gradient is used. Note that the diameter of
the inner cylindrical surface of the tube is 0.1 m

In case the PAP is used, ~b = [θ1, θ2, ..., θB], where B is the total number of baffles inside the
mixer and θ is the angle of rotation of each baffle. Here, as before, only the top part of the baffle is
parameterized. Then, each node on the surface of the baffle can be written in a cylindrical coordinate
system as

~xi = (|~ri| cosθ, |~ri| sinθ, z) (15)

where~ri is a vector pointing from a point on the axis (at the same z) to each node i. Then, the derivative
of δF/δθ can be computed from Equation (13), by additionally using that

δxk
δbj

=(−|~ri |sinθ, |~ri| cosθ, 0) (16)

While changing the positional angle of each baffle, the latter needs to slide along the inner
wall of the mixer, which requires either a complicated mesh adaptation algorithm or to redesign the
geometry on the CAD system. To avoid this, each baffle is associated with a different mesh block,
as shown in Figure 1. By doing so, all cylindrical blocks can be displaced in the peripheral direction
independently from each other. This alleviates the need to slide the baffles along the wall and adapt
the mesh accordingly.

During the solution, consecutive mesh blocks are communicating by interpolating each discrete
field vi, p, a over their non-matching interfaces (in the PAP). The same holds also for the adjoint
fields ui, q and φ. The interpolation is done between two interfaces A and B that are geometrically
identical, but with different distribution of nodal positions (Figure 3). To do this, for each face fi over
the interface A, all the faces f j belonging to B which it overlaps with are tracked down. For each f j,
the relative weight contribution is calculated as Wi,j =S fi

/S f j
, where S is the surface area of each face.

This way, the interpolated value of a variable Φ from interface B to A becomes as ΦA =∑K
j Wi,jΦj with

K being the total number of overlapping faces.
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Figure 3. Field interpolation patterns between two non-matching interfaces, for use in the
PAP-based optimization.

Both parameterizations can be used as stand-alone tools (as was the case in [17]), but can also be
combined into a single workflow. This way, the top surface of the baffle can be deformed and, at the
same time, the positional angles of the baffle can be changed. In this paper, the two parameterization
schemes are combined in three different optimization scenarios:

1. The first scenario with two consecutive stages in which the NBP is used until convergence is
reached and, afterwards, the PAP takes over starting from the converged solution of the first stage.

2. The opposite two-stage scenario, in which the PAP (until convergence) is used and, afterwards,
the NBP takes over.

3. A scenario in which both parameterizations are used simultaneously (coupled usage) at each
optimization cycle.

2.6. Optimization Workflow

The optimization workflow is as follows:

1. The primal (1) and, then, the adjoint (12) equations are solved.
2. Based on the primal and adjoint fields, the sensitivity derivatives are computed using

Equation (13).
3. In the NBP (only), gradients are smoothed out through Equation (14).
4. The design variables are updated using steepest descent as~bnew =~bold− ηGold, where Gold denotes

the previously computed (possibly smoothed) gradient.
5. The mesh is then adapted to the change of the design variables. In the NBP, an inverse

distance morphing method is use to adapt the rest of the mesh nodes, the coordinates of which
are not design variables. In the PAP, each mesh region is peripherally displaced following
the baffle “rotation”.

6. The process is repeated starting from Step 1 until the convergence criterion is satisfied.

3. Results

The static mixer consists of a main 0.77 m long cylindrical body (tube) with inner diameter of
0.1 m, two inlets, one outlet and comprises seven baffles as shown in Figure 1. The baffles have
semi-circular shapes, every second of which is placed exactly at the same angle; two consecutive
baffles are placed with 180◦ difference (reference geometry). Their role is to force the flow to recirculate
for increasing mixing. The longitudinal positions of the baffles are listed in Table 1, with number 1
corresponding to the baffle closest to the two inlets.



Fluids 2020, 5, 11 8 of 16

Table 1. Longitudinal positions of the baffles across the static mixer.

Baffle No. 1 2 3 4 5 6 7

Longitudinal Position [m] 0.05 0.125 0.2 0.275 0.350 0.425 0.5

Two different fluids enter the device, from a different inlet each, with known mass flow rates
(0.29 and 0.26 kg/s, respectively). The first (second) fluid properties are: density 1500 kg/m3

(1300 kg/m3) and kinematic viscosity 1.5 × 10−5 m2/s (1.3 × 10−5 m2/s).
The Reynolds number of the flow based on the mean values of viscosity and mass flow rate of the

two fluids is ∼450 and, thus, the simulation is performed assuming laminar flow. An unstructured
hexahedral-based mesh with approximately 200 K cells is generated. This mesh is sufficiently
refined, as further increase in the mesh size has no impact on the values of the objective functions.
Two optimization cases with the same flow properties, though with different degrees of freedom,
have been studied in [17]. Recall that the purpose of this paper is to combine the parameterizations
proposed in [17] and, by doing this, get even better solutions for the same objectives.

In this section, all plots presenting the computed optimal solutions use the objective functions
FU (Equation (5)) and FP (Equation (6)) divided by the (fixed) volume flow rate; no special symbols for
the so-modified functions are used.

3.1. Optimization Scenario 1

In Scenario 1, a two-stage optimization process is performed. In the first stage, the optimization is
based on the NBP, running until convergence; this is then followed by a second optimization stage
based on the PAP. In this second stage, the shapes (and, of course, the longitudinal positions) of the
baffles computed in the first stage are retained but the baffles are allowed to change their angular
positions. Figure 4 demonstrates the fronts of non-dominated solutions that result upon completion
of each optimization stage. Six different value-sets of weights (w̄1, w̄2) are used as in the caption of
Figure 4. An important observation, is that the front of non-dominated solutions at the end of the
second stage clearly dominates over all the members of the first stage front. The way the flow develops
inside the mixer is presented in Figure 5 which illustrates the velocity streamlines coloured by the
phase fraction.
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Figure 4. Scenario 1. Fronts of non-dominated solutions computed at the end of each stage for the
two-stage optimization approach using six different sets of weight values.

Figure 5. Scenario 1. Velocity streamlines coloured by the phase fraction for the reference
geometry (top-left), the optimized geometry with w̄1 = 1, w̄2 = 0 (top-right), and that with
w̄1 = 0, w̄2 = 1 (bottom).

The geometries of the non-dominated solutions are shown in Figure 6. Also, Figure 7 demonstrates
the phase fraction over the outlet plane for each value-set of weights for all the non-dominated solutions.
It is noticeable that, for high w̄2 values, the NBP tries to remove material from the baffles in order to
avoid increasing the total pressure losses caused as a consequence of intensive flow recirculation. This,
of course, has a negative impact on the mixing of the two fluids. In addition, in the extreme case where
w̄1 = 1 and w̄2 = 0, the PAP turns all the baffles towards the same side of the mixer and makes “space”
for the fluid to flow with the least resistance to its motion. On the other hand, when higher weighting
values are associated with FU , the profile of the baffles acquires a “wavy” shape which improves the
mixing performance. In addition, by optimizing the angular positions of the baffles, these are placed
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so as to redirect the vorticity vector of the recirculation causing increased flow mixing. The way the
flow develops in the devices corresponding to the two extreme points of the front (the ones with either
w̄1 = 0 or w̄2 = 0) is presented in Figure 5.

Figure 6. Scenario 1. Optimal baffle shapes for each set of weights.

Figure 7. Scenario 1. Final distribution of the phase fraction at the outlet for each set of weights.

Figure 8 demonstrates the shape change of the first and the last baffle during the two-stage
optimization process for all the value-sets of weights.
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w̄1 =0.2, w̄2 =0.8 w̄1 =0, w̄2 =1 w̄1 =0.2, w̄2 =0.8 w̄1 =0, w̄2 =1

Figure 8. Scenario 1. Optimized shape and angular position of the first (left, in each pair of plots)
and the last (right) baffle, for each value-set of weights.

3.2. Optimization Scenario 2

In this scenario, again a two-stage optimization is carried out, this time in reverse order though.
This means that the PAP (starting from the same reference geometry as in the previous section) runs
first until convergence, followed by the NBP optimization stage. In the second stage, the angular
positions of the baffles are fixed (to their values computed in the first stage). Figure 9 demonstrates the
fronts of non-dominated solutions of the two optimization stages. An interesting difference resulting
from the comparison of the front of non-dominated solutions in Figure 9 with the one obtained from
Scenario 1, is that the first stage gives greater improvements in the objective functions (creating a more
extended front) compared to the first stage of Scenario 1. In addition, the second stage contributes less
to the overall reduction in the objective function values.
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Figure 9. Scenario 2. Fronts of non-dominated solutions computed at the end of each stage using six
different sets of weight values.
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Figure 10 presents the final baffle geometries using the two-stage optimization for the six value-sets
of weights. Here, similarly to Scenario 1, the same behaviour is observed depending on the weights
of the objective functions. If emphasis is laid on FU , alternating baffles with “wavy” profiles must be
used; in contrast, if FP is given priority the baffles become shorter and are placed towards the same
side of the mixer walls.

Figure 10. Scenario 2. Perspective views of the optimal baffle shapes and peripheral locations for each
set of weights.

3.3. Optimization Scenario 3

In the third optimization scenario, the same two parameterization techniques are used but,
this time, not as the synthesis of two successive stages, as in Scenarios 1 and 2. In this case, a “coupled”
optimization is used according to which, in each optimization cycle, both parameterizations are
simultaneously used. Figure 11 presents the front of non-dominated solutions computed using this
coupled optimization workflow together with the fronts resulted by the two two-stage optimizations
(Scenarios 1 and 2). As it can be seen from Figure 11, all the optimization approaches are contributing
to the final front with four members each. The solutions obtained using Scenario 1 (first NBP, then PAP)
dominate in the area of small FP values. In contrast, the solutions for Scenario 2 (first PAP, then NBP)
perform better in the area of small FU values. Finally, Scenario 3 (“coupled”) has a wider spread across
the front contributing the two extreme points to the “Front of Fronts” (namely the points with the
smallest FU and FP value).
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Figure 11. Fronts of non-dominated solutions for all the optimization scenarios. The final front of
non-dominated solutions (empty squares) from all optimizations (“Front of Fronts”) as well as the
reference configuration are included.

3.4. Optimization of a Reduced Length Mixer

To further investigate how different geometric characteristics impact the performance of the
mixing device, the length of the mixer is reduced together with the number of the baffles. The goal is
to measure and compare (with the previous scenarios) the performance of the reduced length tube
when using the “coupled” approach (Scenario 3). The purpose of choosing the “coupled” approach is
because it has been shown that is offers the most wide-spread non-dominated front compared to other
approaches. In detail, the length of the new tube is 0.54m and the number there are only four baffles.
The diameter of the mixer and the characteristics of the two fluids remain the same. The longitudinal
positions of the baffles are given in Table 2. Figure 12 presents the mixer geometry coloured by the
mesh regions that each baffle belongs to.

Figure 12. Geometry of the mixer with reduced length and number of baffles.

Table 2. Reduced Length Mixer. Longitudinal positions of the four baffles.

Baffle No. 1 2 3 4

Longitudinal Position [m] 0.05 0.125 0.2 0.275
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By solving the primal equations, the computed values of FU and FP for the reduced length mixer
(reference configuration) are presented in Table 3 together with the ones computed for the regular
length mixer (reference configuration, too). As expected, due to the smaller length and the reduced
number of baffles, a higher drop in FP is observed at the expense, of course, of worst FU values.

Table 3. Reduced Length Mixer. Objective function values for the reference mixer geometries of two
different lengths.

FP FU

Regular Length Mixer 300.69 Pa 0.0538
Reduced Length Mixer 221.07 Pa 0.0734

Running six optimization problems using the “coupled” approach (as in Scenario 3) with the
same value-sets of weights, the non-dominated front of optimal solution is computed and depicted
in Figure 13 together with the objective values of the reference (reduced length) geometry. In the
same graph, the non-dominated front of the regular tube geometry is included too. It can be seen
that the optimal solutions of the reduced length mixer are dominating in the low FP region extending
the range of the front of non-dominated solutions towards this area. Finally, Figure 14 demonstrates
the phase fraction distribution at the outlet patch of the mixer for the three different optimization
scenarios and for the reduced length mixer (computed with Scenario 3). The demonstrated results
concern optimizations done targeting only the FU . As it can be seen in Figure 14, Scenario 3 delivers an
almost perfectly homogeneous mixture, whereas the reduced length mixer has noticeable differences
from all the regular length scenarios.

For all scenarios, a single optimization run convergences in around 6 CPU hours using 4 Intel
Core i7-6800K 3.40 GHz processors. The optimization turnaround time can be significantly reduced by
switching to a much faster quasi-Newton method based on approximations to the objective function;
this, however, affects only the computational cost and not the quality of the obtained results.
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Figure 13. Reduced Length Mixer. Fronts of non-dominated solutions for the reduced length mixer,
using Scenario 3. The final front of non-dominated solutions (“Front of Fronts”) from all optimizations
is demonstrated (empty squares).
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Reduced Length Mixer (Scenario 3)

Figure 14. Phase fraction distribution at the outlet for all optimization scenarios for the regular mixer
and Scenario 3 for the reduced length mixer. The weights used are ~w1 =1 and ~w2 =0. Note that scale is
narrowed down to [0.48, 0.52] to better illustrate the differences among them.

4. Conclusions

The optimization of two static mixers with different lengths and number of baffles was carried
out using the continuous adjoint method. Different combinations of parameterizations were tried out,
with each one contributing differently into the computed front of non-dominated solutions.

The performed studies show that the consecutive combination of two parameterizations during
the optimization is beneficial as it allows either to further improve the optimal solution(s) obtained
with only one parameterization (see also [17]) or to converge to other non-dominated solutions,
enriching this way the final front. More specifically, Scenario 1 (first NBP, then PAP) produced better
results in terms of FP, whereas Scenario 2 (first PAP, then NBP) performed better in the area of low FU
values. Also, when the two parameterizations were simultaneously used, a new set of well-spread
non-dominated solutions, without favoring a particular objective, came out. In an additional study,
the length of the tube and the number of baffles were reduced, offering this way a significant drop in
total pressure losses, compromising on the mixture uniformity, compared to the regular length mixer.
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