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Abstract: The behavior of a conducting droplet and a dielectric droplet placed under an electric
potential is analyzed. Expressions for drop height based on electrode separation and the applied
voltage are found, and problem parameters associated with breakup and droplet ejection are
classified. Similar to previous theoretical work, the droplet interface is restricted to an ellipse shape.
However, contrary to previous work, the added complexity of the boundary condition at the electrode
is taken into account. To gain insight into this problem, a two-dimensional droplet is addressed.
This allows for conformal maps to be used to solve for the potential surrounding the drop, which gives
the total upward electrical force on the drop that is then balanced by surface tension and gravitational
forces. For the conducting case, the maximum droplet height is attained when the distance between
the electrode and the drop becomes sufficiently large, in which case, the droplet can stably grow to
about 2.31 times its initial height before instabilities occur. In the dielectric case, hysteresis can occur
for certain values of electrode separation and relative permittivity.
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1. Introduction

Electrified fluids appear in a wide variety of applications, such as inkjet printing [1–3], electrospray
ionization/mass spectrometry [4,5], electrospinning [6,7], focused ion beam (FIB) technology [8,9],
and nanotechnology [10]. However, an early motivation for Rayleigh and Taylor to study the behavior
of droplets in electric fields came from nature, as electrified fluids play an important role in producing
thunderstorms [11,12]. Many early theoretical papers by Taylor [11], and others, primarily focused on
droplets suspended in uniform fields [13,14]. To analyze this problem, Taylor assumed that the interface
was an ellipsoidal shape, derived a two-point approximation satisfying the Young-Laplace’s equation
at the poles and equator of the ellipsoid, which resulted in an expression relating droplet height to
the strength of the surrounding field. After Taylor’s original work on conducting drops in uniform
fields, Miksis [15] extended Taylor’s approach to dielectric drops, and also performed numerical work
which showed that hysteresis or bistability could occur for certain values of relative permittivity.

However, in many applications and experiments, an electric potential is placed directly above
the droplet, and the electric field surrounding the drop is not uniform. This creates a new problem,
which is sketched in Figure 1. Taylor and McEwan theoretically analyzed this problem, but instead
of assuming an ellipsoidal shape and solving for the surrounding potential, they assumed that
the interface was horizontal at its poles and guessed a potential that satisfied the upper boundary
condition at the electrode [16]. Since then, Corson et al. [17,18] theoretically analyzed a conducting drop
in the limiting case where the distance between the substrate and the electrode was large, and obtained
asymptotic results which predicted drop height for small surrounding electric fields.
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Figure 1. Two-dimensional sketch of the problem. The initial radius of the cylindrical drop is given by
r, the distance between the substrate and the electrode by h, the applied voltage by V0, and the new
height of the drop with the applied voltage by b.

When a sessile drop on a substrate is placed under an electric potential difference between
the substrate and an electrode above the drop, for sufficiently large potentials (where ellipsoidal
shapes are no longer stable), the drop forms a conical shape known as the Taylor cone [11]. In [6],
Yarin et al. showed that the Taylor cone which is a specific self-similar solution is not unique
and that there could also exist nonself-similar solutions that do not admit a Taylor cone. The theory
and numerical simulations of the jetting of the Taylor cone has been described in some recent papers,
e.g., [19–21]. Recently, a study conducted by Elele et al. [22] sparked new interests in this problem, as it
experimentally analyzed a dynamic Taylor cone and found three possible modes that the droplet could
form depending on the applied voltage. The first mode happened for small voltages when the droplet
took on an ellipsoidal shape and steadily rose as the applied voltage increased. Another mode
happened for the largest applied voltages where strong instabilities such as droplet ejection arose.
An intermediate mode happened for moderate voltages where the droplet would form a pointed
protrusion and periodically rose to touch the electrode, and in this mode, a universal self symmetry
independent of the applied voltage was observed [22]. This work served as an early motivation for us
to study the behavior of an electrified droplet.

In this paper, we analyze a perfectly conducting drop and a dielectric drop to mathematically
understand why droplet behavior in both cases is similar for large values of permittivity but drastically
different for small values of permittivity, and why bistability only happens for in-between values of
permittivity. We take the boundary condition at the electrode into account and derive formulas
that signify when instabilities such as droplet ejection or droplet beak-up occur. To achieve
this, we address the two-dimensional version of this problem. We assume that the droplet takes
on an ellipse shape, which allows us to approximate the potential surrounding the droplet
and obtain the total upward electrical force on the droplet that is then balanced by surface tension
and gravitational forces. These assumptions describe a problem that is different from the one that has
been experimentally studied in [12,17,22,23], and thus, our exact values for droplet height and applied
voltage that are associated with droplet stability deviate slightly from those observed in experiments.
However, our approach reasonably predicts the overall behavior of the drop and gives further insight
into how droplet behavior changes as a function of the permittivity.

2. Conducting Drop

For the case of a perfectly conducting drop, we have that the potential VE surrounding the drop
satisfying the Laplace’s equation,

∆VE = 0, (1)

with a Dirichlet boundary condition at the electrode,
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VE(0, h) = V0, (2)

a homogeneous Dirichlet boundary condition at the droplet interface, which we parameterize by t,

VE(a cos t, b sin t) = 0, (3)

a homogeneous Neumann boundary condition far away from the interface,

∂VE
∂x

(x0, y) = 0, (4)

and finally, we take advantage of the symmetry about the major axis of the ellipse and only analyze
the part of the interface which corresponds to 0 < t < π

2 , which gives one extra homogeneous
Neumann boundary condition on the y-axis,

∂VE
∂x

(0, y) = 0. (5)

To solve for VE, we use the conformal map defined by,

f (z) =
az +

√
(bz)2 − (a + b)2b2

a + b
, (6)

which maps a rectangle with height ĥ to a region that approximates the domain that we are working
on (i.e., it maps the region on the right in Figure 2 to the region on the left), where

ĥ =
ah−

√
b2h2 + a2b2 − b4

a− b
. (7)

Thus, we have that the inverse of this map defined by,

g(x + iy) =
1

a− b

(
ax−

√√
(b2(x2 − y2)− a2b2 + b4)2 + 4b4x2y2 + b2(x2 − y2)− a2b2 + b4

2
+

i
(

a y−

√√
(b2(x2 − y2)− a2b2 + b4)2 + 4b4x2y2 − b2(x2 − y2) + a2b2 − b4

2

))
(8)

will map a region which approximates our domain into a simple rectangle with height ĥ, which gives
us the approximate surrounding potential,

VE(x, y) = V0
ĥ(a−b)

(
a y−

√√
(b2(x2−y2)−a2b2+b4)2+4b4x2y2−b2(x2−y2)+a2b2−b4

2

)
. (9)

This gives the potential field shown in Figure 3 that is zero at the interface, and approximately
linear far away from the interface.
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(a) (b)

Figure 2. The map given in Equation (6) maps from (b) to (a), and the inverse map given in Equation (8)
maps in the opposite direction.

Figure 3. Example of the plot of the potential given in Equation (9) for b = 2, a = 1, and h = 5.

While the potential given above is not an exact solution to Equation (1) with the corresponding
boundary conditions, as the boundary condition at the electrode is slightly warped, for most values
of b and h the relative error at the interface is small. For instance, Figure 4a plots ErrorV for varying
values of b where ErrorV is defined as

ErrorV =
‖VE −Vn‖1

‖VE‖1
. (10)

Here Vn stands for a numerical finite element solution to Laplace’s equation on the exact domain,
and the L1-norm is approximated by the function values at the grid points of the scheme. Furthermore,
the error in the electric field at the interface which we define as

ErrorE =
‖(∇VE · n−∇Vn · n)int‖1

‖(∇VE · n)int‖1
, (11)

is plotted in Figure 4b for varying values of b (where (·)int stands for · evaluated the interface).
Both Figure 4a,b indicate that our analytical solution breaks down as b approaches h, as in this regime
the top and right boundaries of our conformal mapped domain deviate from that of straight lines
(see Figure 4c–e).
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Figure 4. (a) The relative error between our analytical potential given in Equation (9) and a finite
element solution for the potential on the exact domain, which we define as ErrorV (see Equation (10)) is
potted for varying values of b. (b) The relative error in the electric field strength at the droplet interface
given by our analytical solution (see Equation (12)) and a finite element solution on the exact domain,
which we define as ErrorE (see Equation (11)) is plotted for varying values of b. (c–e) The exact domain
( ) is plotted against our approximate conformal mapped domain ( ) for b = 1.5, b = 2, and b = 3.
(a–e) We fix h to 5 and a to 1.

3. Total Force on the Conducting Drop

The potential in Equation (9) provides the surrounding electric field,

~E = −∇VE =
−V0

ĥ(a− b)

(
Ex

Ey

)
, (12)

where

Ex =
bx
(

a2−b2−x2−y2+
√

4x2y2+(a2−b2−x2+y2)2
)

√
2
√
(4x2y2+(a2−b2−x2+y2)2)(a2−b2−x2+y2+

√
4x2y2+(a2−b2−x2+y2)2)

, (13)

and,

Ey = a− by(a2−b2+x2+y2+
√

4x2y2+(a2−b2−x2+y2)2)
√

2
√
(4x2y2+(a2−b2−x2+y2)2)(a2−b2−x2+y2+

√
4x2y2+(a2−b2−x2+y2)2)

. (14)

This gives a total electrical force per-unit area that is normal to the interface with magnitude
given by,

fEn =
1
2

ε2E2
int, (15)

where Eint stands for |~E| evaluated at the interface, and ε2 is the permittivity of the medium
surrounding the droplet [24,25]. In our case, this medium is air which means that ε2 ≈ ε0.
Setting x = a cos t and y = b sin t, we evaluate Equation (15) at the interface to get that

fEn =
ε2V2

0

ĥ2

(a + b)2 sin2 t
2(b2 cos2 t + a2 sin2 t)

, (16)
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which gives the force distribution shown in Figure 5.

Figure 5. Electrical force distribution around a conducting drop.

Integrating the expression given in Equation (16) and accounting for surface tension, pressure
(we neglect the effect that the non-constant curvature of the ellipse has on the Laplace pressure
and assume that the internal pressure is constant as in [11]), and gravitational forces dictates that
the total upward force per-unit length on our cylindrical drop is,

FTotal = −ρ
πr2g

2
+ γ

(2a
r
− 2
)
+

ε0V2
0

ĥ2

(
a(a + b)

a− b
+

b2
√

b + a

(b− a)
3
2

arctan
(√b2 − a2

a

))
. (17)

Here r is the radius of the semi-circular drop, ρ is the density of the fluid, γ is the surface tension
constant, and g is the acceleration due to gravity. Assuming incompressibility of the liquid gives us

a = r2

b , which allows us to express the total upward force per-unit length on the drop in terms of b.

Finally, we pick our characteristic length scale to be r and nondimensionalize Equation (17)
to get that

F = −Bog +
1
B − 1 + Boe

(
R2

(R−B
√

R2B2+1−B4)2

(
1−B4

B + B3
√

B4 − 1 arctan (
√

B4 − 1)
))

, (18)

where our new variables are
F =

FTotal
2γ

, (19)

and
B =

b
r

. (20)

Our problem parameters are,

Bog = ρ
πr2g
4γ

, (21)

Boe =
ε0V2

0 r
2γh2 , (22)

and
R =

h
r

. (23)
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4. Results

Setting the total upward force on the droplet given in Equation (18) equal to zero gives us Boe

in terms of Bog, R, and B. For simplicity, we set Bog = 0, and plot Boe in terms of B for various
values of electrode separation R. Similar to earlier analytical results by Taylor [11] and Miksis [15]
for droplets in uniform fields and numerical results for the full three dimensional problem in [15,26,27],
our method gives one stable branch of fixed points (solid line) and one unstable branch (dotted line).
From Figure 6 which plots log (Boe + 1) vs log B for varying values of R, we can see that our formula
for two-dimensional drops, which takes into account electrode separation allows for larger drop
heights and applied voltages than previous theoretical results for ellipsoidal drops by Miksis [15].
However, in Figure 6 we can also see that for small voltages our two dimensional approximation
and Miksis’s [15] three dimensional approximation seem to agree well. Furthermore, from Figure 6,
we have that for each value of R there is a certain threshold value of Boe and a corresponding value of
B which identifies the maximum stable height that the droplet can grow to. These threshold values
are plotted in Figure 7, showing that a two-dimensional drop can only grow to 2.31 its initial height
before instabilities arise and that this maximum height happens when Boe = 0.14, and in the limiting
case where R → ∞ or identically h → ∞. This maximum value of B = 2.31 deviates from Taylor’s
analytical results in three dimensions which predict a maximum value of B = 1.38 [11], and Taylor’s
experiential results with thin films which predict a maximum value of B = 1.48 [12]. However, our
results are in agreement with experimental values in [22,23]. For instance, experiments by Macky [23]
show that a free-falling drop in an electric field can grow to anywhere between 1.7 and 2.2 its original
length before instabilities occur. Experiments done by Inculet and Kromann [28] on water droplets
doped with alcohol and suspended in oil show that the droplet can stably grow to 2.15 its initial height.
Most recently, experiments done by Elele et al. [22] on electrified droplets on the International Space
Station show that a droplet can stably grow to 2.61 its original length. However, it is also important
to note that in many of these experiments, the curvature at the tip of the droplet may be starting
to deviate from that of an ellipse. Furthermore, this deviation from an ellipse shape might also be
the reason why experiments give a voltage threshold that is higher than the one given by our method.
For example, experiments carried out by Elele et al. [22] on a drop of slightly conducting water on
Earth gravity with r = 1.68 mm and an electrode separation of h = 2.10 mm, found that the maximum
voltage that could be applied before spontaneous shoot-up occurred was V0 = 1.61 kV. However,
our method predicts that for these problem parameters, the maximum voltage that can be applied
before an ellipse is no longer a stable solution is V0 = 1.19 kV. Nevertheless, in this case, gravitational
forces are strong in comparison to the electrical forces, and because of this, electrode separation is quite
small which means that the error in our calculated potential could also be having an effect.
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Figure 6. Electrical bond number Boe is plotted against B on a log- log scale for R = 3, R = 5, R = 10,
and R = 50 ( , ), and values of Boe obtained from Miksis’s [15] generalization of Taylor’s two
point method for 3-dimensional ellipsoidal droplets in uniform electric fields is also plotted ( ).
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Here we can see that the stable branch of fixed points approaches a fixed curve as R → ∞,
while the unstable branch of fixed points reaches all the way to R, which corresponds to unstable drop
heights that approach the height of the electrode.

(a) (b)

Figure 7. (a) For each value of electrode separation (R), the maximum height that the droplet can stably
achieve is plotted. (b) For each value of electrode separation (R), the applied potential (Boe) associated
with this maximum height is plotted.

5. Dielectric Drop

For the case of a dielectric drop, the boundary condition at the interface changes; instead of
a Dirichlet boundary condition, we have a Neumann boundary condition at the interface,
which specifies the jump in permittivity and is given by

ε2∇V2(x(t), y(t)) ·~n− ε1∇V1(x(t), y(t)) ·~n = 0. (24)

Here~n is the unit normal vector of the interface, ε1 is the permittivity of the fluid, V2 is the electric
potential outside the droplet, and V1 is the electric potential inside the droplet. Note that this
boundary condition assumes that the fluid is a perfect dielectric and that no free charges build
up at the interface [25].

Because we consider the potential inside the droplet, we cannot use the map given in Equation (8),
so instead we use the map given by

f (z) = i
√

b2 − a2 cos (z) =
√

b2 − a2(sin (x) sinh (y) + i cos (x) cosh (y)), (25)

which maps the rectangle with width π
2 and height arctanh ( a

b ) to the region enclosed by the quarter
of an Ellipse with major axis b and minor axis a. Furthermore, the horizontal line segment given by,

z = x + iH, (26)

where 0 < x < π
2 , and

H = cosh-1
( h√

b2 − a2

)
, (27)

gets mapped to the region enclosed by the quarter of an ellipse with major axis h and minor axis√
h2 − b2 + a2 (see Figure 8). From here, we can see that for most values of b, the width of this outer

ellipse will be much bigger than a.
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Thus, the inverse of this map, given by

w = f−1(z) = cos−1
( y− ix√

b2 − a2

)
, (28)

will allow us to solve the desired equations on an elliptical annulus; however, this requires us to define
a boundary condition on the outer ellipse. To ensure that this boundary condition is physically relevant
and approximates the boundary condition at the electrode, we define V2 on this outer ellipse to be
equal to our conducting potential VE given in Equation (9). This turns out to be a good approximation
for the boundary condition at the electrode, as we find that the error for our potential in the dielectric
case is bounded by the error in the conducting case (results not show here).

Because we are only working in the first quadrant, we can define a branch of f−1(z) = X(x, y) +
iY(x, y) that is analytic everywhere on the elliptical annulus except at the point x = 0, y =

√
b2 − a2.

This branch of f−1(z) = X(x, y) + iY(x, y) is defined by the branch of arccos z given by,

arccos (x + iy) =

arctan2
(

y +

√√
(x2 − y2 − 1)2 + 4x2y2 − x2 + y2 + 1

2
, x−

√√
(x2 − y2 − 1)2 + 4x2y2 + x2 − y2 − 1

2

)
− i

2
ln
(

x2 + y2 +
√
(x2 − y2 − 1)2 + 4x2y2

+
√

2
(
− x

√√
(x2 − y2 − 1)2 + 4x2y2 + x2 − y2 − 1 + y

√√
(x2 − y2 − 1)2 + 4x2y2 − x2 + y2 + 1

))
. (29)

(a) (b)

Figure 8. Example of the map given in Equation (25) and the branch of its inverse define by
Equations (28) and (29) for b = 3, a = 1

2 , and h = 5. Here f (z) maps from (b) to (a).

Using the fact that conformal maps preserve both the Laplace’s equation and homogeneous
Neumann boundary conditions, we arrive at,

V1(x, y) =
ε2V0(b2 − a2)y

ε1(ab
√

h2 − b2 + a2 − a2h) + ε2(hb2 − ab
√

h2 − b2 + a2)
, (30)

and,

V2(x, y) =
V0

h
y+

V0(ε1 − ε2)a b(b2 − a2)

h(ε1(ab
√

h2 − b2 + a2 − a2h) + ε2(hb2 − ab
√

h2 − b2 + a2))

(
h√

b2 − a2
cos(X) sinh (Y)−

√
h2 − b2 + a2y

b2 − a2

)
, (31)

where X and Y are given by a branch of the inverse transformation. Here we notice that the potential
inside the droplet is linear, which implies that the field in that region is uniform, and we can also see
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that the potential inside the droplet approaches zero as ε1 → ∞, which implies that in the limiting
case where the permittivity of the drop goes to infinity V1 goes to zero and V2 goes to VE (the potential
surrounding the conducting drop). Additionally, the example plot (Figure 9 ) of the potential given in
Equations (30) and (31) shows that while the potential inside the droplet is linear, the potential directly
outside the drop is nonlinear and approaches a linear function for values of x, and y that are large.

Figure 9. Example plot of the potential for the dielectric case when b = 3, a = 1, h = 5, and V0 = 10.

6. Total Force on the Dielectric Drop

Equation (30) gives the vertical electric field inside the droplet, defined by,

E1 =
−ε2V0(b2 − a2)

ε1(ab
√

h2 − b2 + a2 − a2h) + ε2(hb2 − ab
√

h2 − b2 + a2)

(
0
1

)
. (32)

Equation (31) gives an electric field outside of the drop that has an x-component of,

E2x = − V0(ε1 − ε2)a b(b2 − a2)

ε1(ab
√

h2 − b2 + a2 − a2h) + ε2(hb2 − ab
√

h2 − b2 + a2)

sin t cos t
a2 sin2 t + b2 cos2 t

, (33)

and a y-component of,

E2y = −V0
h
−

V0(ε1 − ε2)a b
h(ε1(ab

√
h2 − b2 + a2 − a2h) + ε2(hb2 − ab

√
h2 − b2 + a2))

(
abh

(a2 sin2 t + b2 cos2 t)
−
√

h2 − b2 + a2
)

. (34)

This allows to calculate the total force exerted at interface, yielding

fn(t) = [εEn]−
1
2
[εE2], (35)

where fn(t) is the normal electrical force per-unit area at the interface (note that since there are no
free charges, the electrical force will be in the interface normal direction), and [·] stands for the jump
in · at the interface [24,25]. The expression in Equation (35) gives the force distribution shown in
Figure 10. From here, we observe that the electrical force distribution is almost uniform for small
values of relative permittivity.
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(a) (b) (c)
Figure 10. Electrical force distribution around the dielectric drop for (a) ε = 5, (b) ε = 10, and (c)
ε = 50.

By integrating Equation (35) from 0 to π
2 , accounting for surface tension and gravitational

forces, and non-dimensionalizing, we get that the total dimensionless force (see Equation (19)) on
the droplet is,

F = −Bog +
1
B
− 1+

R2Boe

(
2B√

B4 − 1

(B2(B2Ĉ1(ε− 1) + Ĉ2)
2

B4 − 1
− εĈ1

2
(B2 − 1

B2 )−
Ĉ1

2

2
(ε− 1)2(B2 +

1
B2 )− Ĉ1Ĉ2(ε− 1)

)
(

2 arctan
(√

B4 − 1
)
− arctan

(√
B4 − 1− B2

)
− arctan

(√
B4 − 1 + B2

))
− 2(Ĉ1B2(ε− 1) + Ĉ2)

2

B(B4 − 1)
+

2εĈ1
2

B3 (B2 − 1/B2) +
Ĉ1

2

B
(ε− 1)2 − Ĉ2

2

B
+ εĈ1

2 1
B
(B2 − 1

B2 )
2
)

, (36)

where,

Ĉ1 =
1

ε
(√

R2 − B2 + 1
B2 − R

B2

)
+ RB2 −

√
R2 − B2 + 1

B2

, (37)

and

Ĉ2 =
1
R
− ε− 1

R
Ĉ1

√
R2 − B2 +

1
B2 . (38)

Equation (36), therefore, gives the total upward force on the droplet in terms of three
non-dimensional parameters Boe, Bog, and R that are identical to that of the conducting case, and one
new parameter

ε =
ε1

ε2
. (39)

7. Results

As before, we set the expression for total force given in Equation (36) equal to zero, which allows
us to express Boe in terms of B. This gives three different types of behavior based on the values of ε.
In case one, where ε� 1, and R is fixed we predict that the droplet behaves similarly to the conducting
drop (see Figure 11). In case two, where ε > 29 we have that hysteresis or the presents of two stable
branches of fixpoints can occur for certain values of R (see Figure 12). Finally, in the third case,
where ε < 29, a wide range of stable fixed points exists, which extends to just below the electrode
(see Figure 13). The existence of two stable branches of fixed points for certain values of ε agrees well
with numerical results for the three dimensional problem, as Ramos and Castellanos [27] and Wohlhuter
and Basaran [26] predict a similar behavior, however, their minimum value for which hysteresis can
occur is ε = 20 as opposed to our prediction of ε = 29 for the two dimensional problem.
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Figure 11. Boe as a function of B on a log-log scale for ε = 78 (which approximates the relative
permittivity of water). We can see that for values of R that are small in comparison to ε, the droplet
behaves similarly to a conducting droplet.
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Figure 12. Boe as a functions of B on a log-log scale for ε = 29, which is close to the minimum value of
ε for which hysteresis can occur. We see that hysteresis can only happen for a small range of R values.
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Figure 13. Boe as a functions of B on a log-log scale for ε = 10, we see that for small values of ε a large
range of stable fixed points exist, and the two-dimensional droplet can stably approach the electrode.
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8. Conclusions

Conformal maps are used to analyze the behavior of a substrate supported two-dimensional
droplet that is placed under an electric potential. In both the conducting case and the dielectric case,
the behavior of a two-dimensional droplet is similar to that of a three dimensional one. In the case
of a conducting drop, we find that the maximum stable high for an ellipse shape droplet is B = 2.31,
which has a corresponding voltage value of Boe = 0.14. In the dielectric case, we find that when
problem parameters are fixed and permittivity is large, the potential surrounding a dielectric drop
approaches the potential that surrounds a conducting drop, and thus a dielectric drop behaves similar
to a conducting drop. However, in the intermediate range where the permittivity of the drop is above 29
but also not too large, we have that hysteresis can occur for certain values of electrode separation.
Finally, when the permittivity of the drop is below 29 we have that the behavior of a dielectric drop is
far different than that of a conducting drop, as a wide range of stable fixed points that rise to just below
the electrode exists. In the future, we hope to apply this conformal map approach to address droplets
with varying contact angles, and general droplets with interfaces that are not restricted to an ellipse.
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