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Abstract: The evolution of a thin liquid film subject to a volatile solvent source and an air-blow
effect which modifies locally the surface tension and leads to Marangoni-induced flow is shown
to be governed by a degenerate fourth order nonlinear parabolic h-evolution equation of the type
given by ∂th = −divx

(
M1 (h) ∂3

xh +M2 (h) ∂xh +M3 (h)
)
, where the mobility termsM1 (h) and

M2 (h) result from the presence of the source andM3 (h) results from the air-blow effect. Various
authors assumeM2 (h) ≈ 0 and exclude the air-blow effect intoM3 (h). In this paper, the authors
show that such assumption is not necessarily correct, and the inclusion of such effect does disturb
the dynamics of the thin film. These emphasize the importance of the full definition~t · grad (γ) =

gradx (γ)+ ∂xh grady (γ) of the surface tension gradient at the free surface in contrast to the truncated

expression~t · grad (γ) ≈ gradx (γ) employed by those authors and the effect of the air-blow flowing
over the surface.

Keywords: thin liquid film; Long Wave Approximation (LWA); volatile source; constant
pressure-gradient-driven Marangoni flow; chemical interfacial phenomenon

1. Introduction

In this work, we study the influence of a volatile solvent on the evolution of a thin liquid film
on a solid surface. As the volatile solvent diffuses through the atmosphere, a non-uniform solvent
concentration arises which induces surface tension gradient and Marangoni-driven flow [1–3]. This effect
is well-known and was described in the pioneering works of Marangoni [4] and Thomson [5].

This physical phenomena is exploited in the industrial process, and is known as Marangoni
drying whereby a jet of ethanol vapor (or other solvent) is blown onto a wet surface. As the ethanol
interacts with the liquid free surface, a Marangoni flow is generated which helps drying the surface.
This process has motivated a number of studies [6–9]. On experimental side, Marangoni drying
was first studied by Leenaars et al. [6]. They coined the name Marangoni drying to this process.
Leenaars et al. [6] have shown that this drying technique is more effective than spin drying which is
usually carried out by centrifugation: Marangoni drying yields to extremely clean surface whereas
spin drying can contaminate the surface. On the theoretical side, Matar and Craster [7] have given
a mathematical description based on this drying process. The mathematical framework of Matar
and Craster [7] permits the quantitative evaluation of the thinning process due to Marangoni drying.
The model also makes it possible through parametric study to examine the response of the liquid film
to optimize the thinning process. O’Brien [8] has considered the dynamics of a liquid film subjected to
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the action of alcohol-vapor-induced Marangoni effects using asymptotic methods. Taking into account
only terms of leading orders into the generic equations, O’Brien reduces the mathematical description
to a single non-linear partial differential equation whose characteristics are similar to the so-called
Korteweg-de Vries and Burgers equations.

Preluding these studies, Carles and Cazabat had already demonstrated that the surrounding
atmosphere plays an important role in the dynamics of a droplet spreading [10,11]. More specifically,
these authors observe that the usual laws of spreading no longer hold. For some droplets, the spreading
was strongly accelerated and accompanied by instabilities at the contact line, whereas for others,
the process was somewhat reversed: retraction of droplets after a fast initial spreading. In particular,
when a non-volatile droplet was investigated under an inhomogeneous surrounding of volatile solvent,
they observe both the Marangoni effect and instabilities at its edge (see Reference [10]). In the second paper
of Carles and Cazabat (see Reference [11]), the spreading dynamics of droplets under an inhomogeneous
vapor phase of its volatile solvent were further investigated. The authors have investigated the spreading
of an oil droplet under an atmosphere contaminated with a volatile solvent. Still, the observed behaviors
were completely different from the normal ones. For, in some situations the surface tension gradient
counter-accelerates the spreading mechanism while in others it accelerates instead, both along its
directions. After a short time, when the interfacial effect was no longer operative, it was observed
that the droplet either resumes spreading or retracts, again depending on the surface tension of the solvent
(see Reference [11]).

Much research has been devoted to the understanding of Marangoni-driven thin liquid films.
An exhaustive review of such studies is beyond the scope of this introduction but the interested reader
is referred to the reviews by Oron et al. [12] and Craster and Matar [13]. Most of these study have
considered a leading order expression for the surface tension gradient at the free surface. One aim of
this paper is to explore the effect of these terms which have typically been disregarded by others.

Another important aspect in the study of Marangoni drying is the two way-coupling between
the liquid film and the surrounding atmosphere. Few papers appear to have investigated this effect.
One notable exception is the work of Sultan et al. [14] who studied the stability of a two-dimensional
bi-layered liquid-vapor system over a solid substrate. In this paper, the authors generalize the one-sided
study of Burelbach et al. [15] on the evaporation of thin film by including the diffusion of the vapor phase
region. Their results are described in terms of both interfacial and mass transport phenomena. In contrast
to earlier work, we consider here diffusion driven by an air-blow effect in the surrounding atmosphere
and a two-way coupling whereby the air-blow effect in the vapor phase affects the liquid film.

This paper is organized as follows: In Section 2.1, the mathematical descriptions is exposed in
dimensional form; the spatial description of a volatile solvent and the character of the interfacial force
it induces are argued. Thereafter, Sections 2.2 and 2.3 are devoted to perturbation theory so as to
render the mathematical descriptions of earlier sections dimensionless and at leading order. Section 2.4
concerns the numerical side, yet some leading features are exposed in Appendix A. Finally, the results
are discussed through a series of case studies under Section 3 and concluded on this basis under
Section 4.

2. Methods

2.1. Mathematical Formulations

2.1.1. Modeling the Inhomogeneous Vapor Phase Region

Following the works of Carles et al. (see References [10,11]), we describe the presence of a volatile
solvent in the atmosphere, region Ωv ⊂ R2, by a volatile source function S (~x) of the form

S (~x) =
µs Ms√
πλ(v)T

exp

{
−‖~x−~x0‖2

4λ(v)T

}
for all ~x = (x, y) ∈ Ωv. (1)
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In Equation (1), ~x0 = (xs, ys) ∈ Ωv is the point at which the source is located. Further, the scalar
quantities Ms, µs, λ(v) > 0 define the rate of increase in moles of solvent per unit length, the strength
of the source and the diffusion constant of the volatile solvent vapor. The time scale T > 0 serves to
establish a diffusion length lT = 2

√
λ(v)T. In the following, we will consider the transport of volatile

solvent from a point source given by Equation (1).

2.1.2. On the Surface Tension and Its Derivative

For some real t∞ < ∞, let the set It = (0, t∞) denote the period of time over which the study
is carried out. Suppose the scalar field function c(l) (t,~x) be the spatio-temporal distribution of the
chemical concentration in the liquid domain Ωl , where (t,~x) ∈ It × Ωl . Then, according to the
experimental work of Carles et al. [10], the closure relationship relating the scalar field function
c(l) (t,~x) to the surface tension γ (t,~x) at every (t,~x) ∈ It × Γ4 is linear and hence,

γ (t,~x) = κ1 + κ2c(l) (t,~x) in (t,~x) ∈ It × Γ4,

where κ1 > 0 and κ2 ≤ 0 are property-dependant constants. To this end, the directional derivative of
the scalar field function γ (t,~x) along the unit vector~ex yields to

gradx (γ) = κ2
(
∂xc(l) + ∂xh∂yc(l)

)
for all (t,~x) ∈ It × Γ4,

because c(l) = c(l) (x, y = h, t) and h = h (x, t) on Γ4. To the best of our knowledge, the effect of the
term ∂xh∂yc(l) was disregarded in the past. In the sequel, we will show that it has a non-negligible
effect. Before moving on to the next section, we deduce the constants κ1, κ2 of the above expression.
Let γ0,l > 0 be the surface tensions of the liquid in its uncontaminated state. Then, it is evident that one
of these constants describes the surface tension of the liquid film when the liquid film is chemically
stable, and the other equates the surface tension gradient of the liquid whenever that stable condition
is being disturbed chemically. Thus, these equalities follow:{

κ1 = γ (t,~x) = γ0,l for all (t,~x) ∈ {0} × Γ4,

κ2 = Dc(l) γ (t,~x) for all (t,~x) ∈ It × Γ4,

respectively, where Dη (·) denotes the ordinary derivative operator with respect to η; that η = c(l) in
the above description is understood but when η = t, Dη (·) defines itself as the Lagrangian derivative
operator. Consequently, it results by substitution that,

γ (t,~x) = γ0,l +
(
Dc(l) γ

)
c(l) (t,~x) for all (t,~x) ∈ It × Γ4. (2)

2.1.3. Constitutive Equations

Consider a thin liquid film initially sitting on a solid substrate Γ2, having a thickness h0 > 0 and a
length L > 0 (with ord

(
h0/L

)
∼ 10−3, see References [7,8]). For mathematical treatment this liquid

film is designated by Ωl ⊂ R2 and bounded by ∂Ωl =
⋃4

i=1 Γi. Henceforth, subscripts v and l indicate
the vapor and liquid phases, respectively. The vapor phase surrounding is defined by Ωv ⊂ R2 and
bounded by ∂Ωv =

⋃7
i=4 Γi. The volatile solvent source is placed at ~x0 = (xs, ys) ∈ Ωv; Figure 1

supports such geometrical descriptions.
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Figure 1. Geometrical sketch of a thin liquid film (Ωl) over a solid substrate (Γ2) under a line source
S (~x) of volatile surfactant. The functions ~n (t,~x),~t (t,~x) are the unit normal and tangential vectors;
ys = h0 + Ls and yL = h0 + L.

The presence of the source S (~x) gives rise to advection-convection phenomena. Therefore,
if c(k) (t,~x) designates the chemical concentration in Ωk, where (t,~x) ∈ It ×Ωk and k ∈ {l, v}, then the
following advection-diffusion equations result in:

Dt c(k) (t,~x) = λ(k) div
(
~∇c(k)

)
+ δkvS (~x) for all (t,~x) ∈ It ×Ωk, (3)

where the bi-subscripts δkv ∈ {0, 1} is the Kronecker delta (with k ∈ {l, v}). The operator Dt (·) =

∂t (·) +~u · grad (·) designates the Lagrangian derivative operator. Evidently, λ(l) > 0 is the diffusion
constant of the volatile solvent into the liquid film, and ~u = ~u (t,~x) for all (t,~x) ∈ It × Ωk (with
k ∈ {l, v}); ~u (t,~x) is called the velocity vector field distribution within either Ωl or Ωv. For every
k ∈ {l, v}, the flow field ~u (t,~x) within Ωk is described by the incompressible Navier–Stokes equations
of constant fluids properties in a gravitational field, which in vector invariant forms read:

Dt ~u (t,~x) =
1
ρ

div (T) + ~f for all (t,~x) ∈ It ×Ωk, (4)

div (~u) = 0 for all (t,~x) ∈ It ×Ωk,

where the tensor field T (p,~u), which stands for the total stress tensor, is given by
T (p,~u) = −pI+ 2µE (~u) ,

E (~u) =
1
2

{
grad (~u) +

(
grad (~u)

)T
}

.

In Equation (4), tensors I and E (~u), respectively, are the identity and strain-rate tensors, and fields
p (t,~x), ~u (t,~x) =

(
ux, uy

)T and ~f (t,~x) =
(

fx, fy
)T, respectively, denote the pressure, velocity, and

body force (per unit mass). The property constants ρ > 0 and µ > 0, respectively, define the density
and dynamic viscosity of the kth fluid (with k = l for liquid and k = v for vapor phases). The pressure
difference sustained across the interface Γ4 is modeled with the Young-Laplace equation. Thus,

p(l) (t,~x) = p(v) − γ div (n) for all (t,~x) ∈ It × Γ4. (5)

(We note here that grad
(

p(l)
)
= − grad

(
γ~∇ ·~n

)
if the atmosphere has constant pressure; in the sequel,

an alternative form for grad
(

p(v)
)

is established such that the latter operates as an air-blow effect.) In
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addition, it is understood that by the vector field ~u (t,~x) defined in Ωl , we implicitly mean ~u(l) (t,~x),
and so forth for other property constants and variables. The vector fields~n (t,~x),~t (t,~x) are the outer
unit normal and tangent vectors of their boundary. In particular, on Γ4 (see Figure 1), we obtain

~n (t,~x) =
(−∂xh, 1)T√

1 + |∂xh|2
and ~t (t,~x) =

(1, ∂xh)T√
1 + |∂xh|2

for all (t,~x) ∈ It × Γ4.

2.1.4. Initial and Boundary Conditions

At time t = 0, the domains Ωl and Ωv are initially motionless and free from or low in volatile
substances. Thus, these initial conditions follow:{

~u(k) (t,~x) =~0 for every (t,~x, k) ∈ {0} × Γ4 × {l, v},

c(k) (t,~x) = c(k)0 for every (t,~x, k) ∈ {0} × Γ4 × {l, v}.

In these conditions, c(l)0 , c(v)0 ≥ 0 are arbitrary constants which will be used in the
nondimensionalization process so as to obtain a zero concentration in dimensionless forms. On boundaries
Γ5, Γ7, we impose a constant pressure gradient in the atmosphere. If K(v) > 0 stands for such constant and
‖·‖ denotes the Euclidean norm in R2, then∥∥grad

(
p(v)

)∥∥ = K(v) for all (t,~x) ∈ It ×Ωv.

On the boundaries Γ1, Γ3 of the domain Ωl , we prescribe a so-called normal stress-free boundary
conditions. Thus, for every i ∈ {1, 3},

~n · (T~n) = −p(l)0 for all (t,~x) ∈ It × Γi,

where the scalar field p(l)0 > 0 is an arbitrary constant and ~n (t,~x) is the outer unit normal vector of
the boundary in question. For the chemical concentrations, we impose a flux continuity boundary
condition on the interface Γ4,

λ(l)~n · grad
(
c(l)
)
= λ(v)~n · grad

(
c(v)
)

for all (t,~x) ∈ It × Γ4.

Further, we assume the mass transfer process to vanish on Γ6 and to result in a zero-flux boundary
conditions on boundaries Γ1 to Γ3 and Γ5 to Γ7. Thus,

λ(l)~n · grad
(
c(l)
)

= 0 for all (t,~x) ∈ It ×
⋃

i=1,2,3 Γi,

λ(v)~n · grad
(
c(v)
)

= 0 for all (t,~x) ∈ It ×
⋃

i=5,6,7 Γi,

c(v) = c(v)0 for all (t,~x) ∈ It × Γ6.

On the surface Γ2, we consider a Navier slip-with-friction conditions,{
~t· (E (~u)~n + β~u) = 0 for all (t,~x) ∈ It × Γ2,

~n · ~u = 0 for all (t,~x) ∈ It × Γ2,

where β > 0 is the Navier-slip coefficient. For, the movement of the liquid film entails a singularity of
stress at the contact line if the usual no-slip boundary condition, i.e.,~t ·

(
E (~u)~n

)
= 0 on Γ2, is imposed

between the liquid film and the solid substrate (see Reference [16] and references therein). On the
interface Γ4, we require that the substantial derivative of y− h (x, t) vanishes. Therefore,

Dt (y− h) = 0 for all (t,~x) ∈ It × Γ4.
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Finally, to ensure continuity upon tangential shear stress on Γ4, we consider

~t · (T~n) =~t ·
(
Dc(l) γ grad

(
c(l)
))

for all (t,~x) ∈ It × Γ4.

A remark deserves attention at this point. It is very true that Figure 1 does not indicate the
presence of a contact line and, therefore, the discussion of the Navier slip-with-friction condition
seems odd. The authors agreed that the Navier-slip-with-friction conditions on Γ2 should instead be the
classical no penetration boundary conditions; that is, the normal and tangential velocity vector fields
vanish for all (t,~x) ∈ It × Γ2,~n · ~u = 0 and~t · ~u = 0. However, we wish to derive a degenerate fourth
order nonlinear parabolic h-evolution equation that will apply not only in the case considered here
(Navier-slip-with-friction coefficient β > 0 set to zero) but also to the case in which a contact line (or
trijunction) exists and a liquid on a solid substrate spreads and displaces the surrounding fluid (say,
vapor phase region Ωv).

2.2. Scaling Analysis

2.2.1. Asymptotic Approximations

Set ε = h0/L � 1 and, by hypothesis, assume ord (h0/L) ≈ 10−3; obviously, ε denotes the
asymptotic parameter. Geometrical properties are scaled based on the initial film thickness h0 =

εL and physical properties are on the contrary scaled based on interfacial and viscous forces. On
this basis, it is correct to consider ord

(
(x, y)T) ∼ (L, εL)T within the domain Ωl . Let u(l)

0 > 0

characterize the flow field in Ωl . Then, by Equation (4), it follows that ord (~u) ∼
(
u(l)

0 , εu(l)
0
)T in

Ωl . Accordingly, ord (t) ∼ L/u(l)
0 and ord (p) ∼ µu(l)

0 /L. On the interface Γ4, dynamic equilibrium

requires that ord (p) ∼ ε−1 (γ0,l − γ0,v) /L; hence, ord
(
u(l)

0
)
∼ ε−1 (γ0,l − γ0,v) /µ. On the whole, the

set of characteristic scales in Ωl reads

Frl
def
=

ε2 (γ0,l − γ0,v)
2

µ2gL
, Pel

def
=

ε (γ0,l − γ0,v) L
µλ(l)

, Rel
def
=

ε (γ0,l − γ0,v) L
µν

,

t 7→ ε−1µL
γ0,l − γ0,v

t, c(l) 7→ c(l)0 +
(
c(l)∞ − c(l)0

)
c(l), (x, y)T 7→ L (x, εy)T ,

p 7→
ε−1 (γ0,l − γ0,v)

L
p,

(
ux, uy

)T
=

ε (γ0,l − γ0,v)

µ

(
ux, εuy

)T , .

By q 7→ αq is meant that the quantity q is dimensional if it precedes 7→ and dimensionless if it follows
7→; the quantity α is obviously dimensional. The parameters Frl, Pel, Rel > 0 are, respectively, the Froude,
Péclet, and Reynolds numbers in Ωl. By substitution of the above scalings into the dimensional equations,
one obtains a system of dimensionless variables equations. In Ωv, it is obvious that ord

(
(x, y)T) ∼ (L, L)T.

Consequently, ord (~u) ∼
(
u(v)

0 , u(v)
0
)T in Ωv, where the scalar u(v)

0 > 0 designates a characteristic flow

field in Ωv. In addition, ord (S) ∼ λ(v)(c(v)∞ − c(v)0
)
/L2 because the spreading of the volatile solvent is by

diffusion process. On the whole, the following scalings hold reasonable in the domain Ωv:

Frv
def
=

u(v)2
0
gL

, Pev
def
=

u(v)
0 L

λ(v)
, Rev

def
=

u(v)
0 L
ν

, t 7→ L

u(v)
0

t,

c(v) 7→ c(v)0 +
(
c(v)∞ − c(v)0

)
c(v), S 7→ λ(v)

L2

(
c(v)∞ − c(v)0

)
S,

(x, y)T 7→ L (x, y)T ,
(
ux, uy

)T 7→ u(v)
0
(
ux, uy

)T , p 7→ ρu(v)2
0 p.
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Substituting the above scalings into Equation (3), there results in

Dt c(v) =
1

Pev

(
div
(
~∇c(v)

)
+ S (~x)

)
for all (t,~x) ∈ It ×Ωv, (6)

Dt c(l) =
ε−2

Pel

(
ε2∂2

xc(l) + ∂2
yc(l)

)
for all (t,~x) ∈ It ×Ωl .

In a like manner, the dimensionless forms of Equation (4) resolve into

div (~u) = 0 for all (t,~x) ∈ It ×Ωl , (7)

Dt ux =
ε−2

Rel

(
−∂x p + ε2∂2

xux + ∂2
yux
)

for all (t,~x) ∈ It ×Ωl ,

Dt uy =
ε−4

Rel

(
−∂y p + ε4∂2

xuy + ε2∂2
yuy
)

− ε−1

Frl
for all (t,~x) ∈ It ×Ωl ;

and

div (~u) = 0 for all (t,~x) ∈ It ×Ωv, (8)

Dt ux = −∂x p +
1

Rev

(
∂2

xux + ∂2
yuy
)

for all (t,~x) ∈ It ×Ωv,

Dt uy = −∂y p +
1

Rev
( ∂2

xuy + ∂2
yuy )

− 1
Frv

for all (t,~x) ∈ It ×Ωv, ,

respectively. The surface tension of the above dimensionless scaling set is termed the spreading pressure,
πs = (γ0,l − γ0,v) [7], where γ0,k > 0 is the surface tension of the kth fluid (with k = l, v), as already

pointed out. The quantities c(k)0 , c(k)∞ are prescribed values characterizing the initial and final values
of the concentrations of the kth fluids (with k = l, v). The control parameters Frv, Pev, Rev > 0,
respectively, are obviously the Froude, Péclet, and Reynolds numbers in Ωv.

It now remains to nondimensionalize the set of initial and boundary conditions. Beginning with
the initial conditions given in Section 2.1.4 for the field functions ~u(k) (t,~x), c(k) (t,~x) (with k = l, v),
respectively, we obtain, for every k ∈ {l, v},{

~u(k) (t,~x) =~0 for all (t,~x) ∈ {0} ×Ωk,

c(k) (t,~x) = 0 for all (t,~x) ∈ {0} ×Ωk,

where the property constants c(k)0 , c(k)∞ (with k = l, v) have now disappeared. Likewise, nondimensionalizing
the normal stress-free boundary condition given in Section 2.1.4 yields to−p + ∂xux = −P(l). Imposing on
boundaries Γ1, Γ3, respectively, a zero viscous stress along with a Dirichlet condition on p (~x, t) gives

p (t,~x) = p(l)0 for all (t,~x) ∈ It ×
⋃

i=1,3 Γi.

To nondimensionalize the flux-continuity boundary condition, one should be careful. In fact, away
from Γ4, ord

(
~∇
)
∼
(

L−1, L−1)T in Ωv, whereas immediately above Γ4, ord
(
~∇
)
∼
(

L−1, ε−1L−1)T.
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Therefore, letting λ(l)/λ(v) =
(
c(v)∞ − c(v)0

)
/
(
c(l)∞ − c(l)0

)
, the dimensionless form of the flux-continuity

boundary condition writes

−ε2∂xh∂xc(l) + ∂yc(l) = −ε2∂xh∂xc(v) + ∂yc(v) for all (t,~x) ∈ It × Γ4.

In like manner, after nondimensionalizing the other boundary conditions given in Section 2.1.4,
one deduces

∂xc(l) = 0 for all (t,~x) ∈ It ×
⋃

i=1,2,3 Γi,

∂xc(v) = 0 for all (t,~x) ∈ It ×
⋃

i=5,6,7 Γi,

c(v) = c(v)0 for all (t,~x) ∈ It × Γ6.

For the dimensionless form of the so-called Navier slip-with-friction conditions, we proceed in
two steps. In the first place, we nondimensionalize the conditions given there. Then, we replace the
Navier-slip coefficient β by (2εβL)−1. This gives{

ux = β
(
∂yux + ε2∂xuy

)
for all (t,~x) ∈ It × Γ2,

uy = 0 for all (t,~x) ∈ It × Γ2.

Likewise, after nondimensionalizing the kinematic boundary conditions given in Section 2.1.4,
we obtain

uy = ∂th + ux∂xh for all (t,~x) ∈ It × Γ4,

∂yux =
(
∂xc(l) + ∂xh∂yc(l)

)
Dc(l) γ

+ ε2(2∂xh∂xux − 2∂xh∂yuy − ∂xuy + (∂xh)2 ∂yux
)

+ ε4 (∂xh)2 ∂xuy for all (t,~x) ∈ It × Γ4.

Note that the dimensionless unit normal vector and tangential vectors~n (t,~x) and~t (t,~x), respectively,
defined in Section 2.1.3 are approximated as follows, ord (~n) ∼ (−ε∂xh, 1)T, ord

(
~t
)
∼ (1, ε∂xh)T,

respectively. We now wish to combine Equation (2) with Equation (5), given in Section 2.1.3. To do so,
define two dimensionless numbers, namely, the Capillary (Ca) and Marangoni (Ma) numbers as

Ca =
(γ0,l − γ0,v) L

µλ(l)
and Ma = −

Dc(l) γ

µλ(l)

(
c(l)∞ − c(l)0

)
L,

respectively. The construction of these dimensionless numbers Ca, Ma > 0 is based on the following
line of thought. Since ord

(
u(l)

0
)
∼ ε (γ0,l − γ0,v)/µ and ord (γ) ∼ εµλ(l)/L, in order to establish the

Capillary number Ca, it suffices to substitute ε (γ0,l − γ0,v)/µ and εµλ(l)/L for u(l)
0 and γ, respectively,

into Ca = µu(l)
0 /γ. On the one hand, the Marangoni number Ma being regarded as proportional to

(thermal-)surface tension forces divided by viscous forces, i.e., Ma = −∂Tγ (T∞ − T0) L/µα, where T and
α, respectively, designate the temperature and thermal diffusivity, so to adapt this dimensionless number
with the problem under consideration, it suffices to replace the field T by c(l), and the coefficient α by λ(l).
Thence, the dimensionless numbers so far defined. Using those dimensionless numbers into Equation (2),
the resulting expression in dimensional form reads,

γ
(
c(l)
)
= γ0,l +

Ma
Ca

γ0,l − γ0,v

c(l)∞ − c(l)0

c(l) (t,~x) for all (t,~x) ∈ It × Γ4.
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Combining the above expression with Equation (5), the resulting dimensional expression writes

p(l) = p(v) +
(

γ0,l +
Ma
Ca

γ0,l − γ0,v

c(l)∞ − c(l)0

c(l)
)

∂2
xh for all (t,~x) ∈ It × Γ4.

Let us now investigate into p(v) (t,~x). In the immediate vicinity of every point~x = (x, h (t, x)) ∈ Γ4,
it is clear that

ord (δp) = ord
(

p(l) − p(v)
)
∼

ε−1 (γ0,l − γ0,v)

L
for all (t,~x) ∈ It × Γ4,

which, in other words, suggests to scale δp as such, δp 7→ ε−1 (γ0,l − γ0,v) δp/L; obviously,
the differential quantity δp is dimensional if it precedes 7→ and dimensionless otherwise. Hence,
taking into account the characteristic scales given in Section 2.2.1, setting γ0,l 7→ γ0,l (γ0,l − γ0,v) (γ is
dimensional if it precedes 7→ and dimensionless otherwise) and then rescaling the dimensionless
constant property γ0,l by γ0,l − (Ma / Ca) c(l)0 /

(
c(l)∞ − c(l)0

)
, the dimensionless form of the pressure

field p(l) (t,~x) resolves into

p(l) ≈ p(v) + ε2
(

γ0,l +
Ma
Ca

c(l)
)

∂2
xh for all (t,~x) ∈ It × Γ4.

The dimensionless form of the (chemical)-surface tension is now given by the expression γ
(
c(l)
)
=

γ0,l + (Ma / Ca) c(l).

2.3. Leading Order Model

To begin, some simple analysis is now in order. With L ≈ 10−4 [m], u(v)
0 ≈ 10−4 [m·s−1] and

λ(v) ≈ 10−5 [m2·s−1], one obtains ord (Pev) ≈ 10−3; hence, ord (Pev) ∼ ε. (These numerical values
are extracted from References [7,8].) On the other hand, we may assert that ord

(
Pe−1

l
)
∼ ε2, since the

spreading pressure πs is a predominant factor. At this point, we are now well-prepared for the search
of a simplified model.

In the limit that the quantities ε2 and Pev, respectively, tend to zero and to unity, the leading order
forms of the dimensionless equations for the fields c(k) (t,~x) (with k = l, v) reduce to

div
(
~∇c(v)

)
+ S (~x) = 0 for all (t,~x) ∈ It ×Ωv, (9)

Dt c(l) − ∂2
yc(l) = 0 for all (t,~x) ∈ It ×Ωl .

Some analysis is now in order to support the assumption made upon Pel . Suppose that the flow
induced within the region Ωl is an ε−|k|-order of the Péclet number, i.e., ord (Pel) ∼ ε−|k| (with k 6= 0).
Then, if we express Frl , Pel and Rel in terms of the quantity ε (γ0,l − γ0,v) /µ it can be shown that

ord
(

ε−|k|

L/λ(l)

)
∼ ord

(
Rel
L/ν

)
∼ ord

(√
Frl

1/gL

)
(with k 6= 0).

And, consequently,

ord
(

ε−2|k|

Rel

)
� ord

(
ε−|k|

Rel

)
∼ ord

(
ν

λ(l)

)
∼ ord

(
ν

g
ε−2|k|

Frl

)
� ord

(
ε−
|k|
2

Frl

)
,

where ν ∼ ε|k|g (with k 6= 0). The above approximation enables us to obtain some information as to
the nature of the order of magnitube of one dimensionless number with respect to the other. Moreover,
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for the case of water, we found k ≈ 2, based on the data of O’Brien [8]; hence, the assertion made in so
far. With this view in mind, taking k ≈ 2 there follows that

ord
(

ε−4

Rel

)
� ord

(
ε−2

Rel

)
� ord

(
ε−1

Frl

)
,

which simply asserts a small Bond number (Bol), since Bol = ε Rel / Frl � 1. Consequently, the system
of Equation (7) reduces to

∂xux + ∂yuy = 0 for all (t,~x) ∈ It ×Ωl , (10)

∂2
yux − ∂x p = 0 for all (t,~x) ∈ It ×Ωl ,

∂y p = 0 for all (t,~x) ∈ It ×Ωl .

On the other hand, paying little attention to the effects arising from body and viscous forces in Ωl ,
i.e., Fr−1

v , Re−1
v � 1, the system of Equation (8) results in

∂xux + ∂yuy = 0 for all (t,~x) ∈ It ×Ωv, (11)

Dt ux + ∂x p = 0 for all (t,~x) ∈ It ×Ωv,

Dt uy + ∂y p = 0 for all (t,~x) ∈ It ×Ωv.

2.3.1. Alternative Form for the Pressure Field in the Vapor Phase

We postulate that the pressure field in Ωv varies according to

p(v) (t,~x; ε) ≈ p(v)0 + K(v)x + εj p(v)j (t,~x) for all (t,~x) ∈ It ×Ωv,

where j ≥ 1. Consequently, the leading order of the flow equations in Ωv in vector form writes

Dt ~u(v) (t,~x; ε) ≈ −K(v)~ex + εj~∇p(v)j (t,~x) for all (t,~x) ∈ It ×Ωv,

where j ≥ 1. Therefore, Dt ~u(v) + K(v)~ex =~0 at leading order; that is, we force the acceleration of every
fluid parcel carrying the volatile solvent to depart from its respective trajectory; thence, a translational
movement of the volatile substances towards the x-direction.

2.3.2. Method of Solution

Computing the system Equation (10) using the leading order Neumann and Dirichlet kinematic
boundary conditions given in Section 2.2.1, one obtains

ux (t,~x) = − ∂x p
2
(
2h (y + β)− y2)+ Ma

Ca
Lh
[
c(l)
]
(y + β) ,

uy (t,~x) = − ∂2
x p
6
(
y3 − 3h (y + 2β) y

)
+

1
2

Ma
Ca
L2

h
[
c(l)
]
(y + 2β) y

+
∂x p

2
∂xh (y + 2β) y for all (t,~x) ∈ It ×Ωl ,

where Lh [·] =
(
∂x + ∂xh∂y

)
[·], and

L2
h [·] ≡

(
∂x + ∂xh∂y

)2
[·] =

(
∂2

x + (∂xh)2 ∂2
y + 2∂xh∂xy + ∂2

xh∂y
)
[·] .
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To settle the spatial derivative ∂x p appearing in ~u (~x, t), the pressure field model p(v) (t,~x; ε) is
invoked into the pressure expression p(l) (t,~x), giving

∂x p(l) ≈ ε2 ∂

∂x

{(
γ0,l +

Ma
Ca

c(l)
)

∂2
xh
}
+ K(v) + εk∂x p(v)j .

where j ≥ 1. To augment the interfacial hydrodynamics by an ε−2-order, we assume that ord (γ0,l) ∼
ε−2. Consequently, this assertion suggests to rescale the surface tension of the liquid film by substituting
ε−2γ0,l for γ0,l . Thence,

∂x p(l) (t,~x) ≈ K(v) + γ0,l∂
3
xh (t, x) for all (t,~x) ∈ It × Γ4. (12)

A similar approach was suggested by Oron et al. [12]. In the following section, the h-evolution
equation is established.

2.3.3. Evolution Equation for the Interface

Using the general form of the Leibniz integral rule, one obtains

∂th = −divx

(∫ h

0
uxdy

)
for all (t, x) ∈ It × Γ2.

When all these are considered, we deduce after integration the h-evolution equation, which writes

∂th = divx

(
h3

3

(
1 +

3β

h

) [
K(v) + γ0,l∂

3
xh
])

− divx

(
h2

2

(
1 +

2β

h

)
Ma
Ca
Lh
[
c(l)
])

for all (t, x) ∈ It × Γ2. (13)

In particular, it may well be pointed out here that when the hitherto neglected term ∂xh∂yc(l), the induced
pressure gradient ∂x p(v) = K(v), and the Navier-Slip coefficient β > 0 are disregarded into Equation
(13), we deduce the well-known extended thin film model, written as

∂th = −div
(

h2

2µ
~∇γ− h3

3µ
~∇p
)

for all (t, x) ∈ It × Γ2,

in its general and dimensional form.

2.4. Numerical Method

2.4.1. Preliminaries

Define three mobility terms, namely,M1 (h),M2 (h), andM3 (h), respectively, as follows

M1 (h)
def
= −h3

3

(
1 +

3β

h

)
γ0,l , M2 (h)

def
=

h2

2

(
1 +

2β

h

)
Ma
Ca

∂yc(l),

M3 (h)
def
=

h2

2

(
1 +

2β

h

)
Ma
Ca

∂xc(l) − h3

3

(
1 +

3β

h

)
K(v),

so that Equation (13) may be rewritten as such:

∂th = −divx
(
M1 (h) ∂3

xh +M2 (h) ∂xh +M3 (h)
)

for all (t, x) ∈ It × Γ2.

(14)
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Having settled the h-evolution equation in condensed form, we now set forth the latter into a weak
differential formulation by re-defining the functions h, ∂2

xh as thus,
(
h, ∂2

xh
)
=
(
h, h′′

)
; the idea of doing

so is to help numerical implementation. This yields to the following
(
h, h′′

)
-system:

∂th = −∂x
{
M1 (h) ∂xh′′ +M2 (h) ∂xh +M3 (h)

}
, (15)

0 = −∂2
xh + h′′ for all (t, x) ∈ It × Γ2, (16)

which is now a degenerate second order nonlinear parabolic system.
To adapt the situation, we construct at every point ~x of the surface Γ2 and time t a depth average

flow field ~̂u =
(
ûx, ûy

)T with the velocity field ~u (t,~x) as follows

~̂u (t, x, h) =
1
h

∫ h

0
~u (t, x, y) dy for all (t, x) ∈ It × Γ2.

Substituting the vector field ~u (~x, t), established in Section 2.3.2, into the above integral yields

ûx (t, x, h) =
1
2

Ma
Ca

(h + 2β)Lh
[
c(l)
]
− h

2
(h + 4β) ∂x p, (17)

ûy (t, x, h) =
1
6

Ma
Ca

h2 (h + 3β)L2
h
[
c(l)
]
+

h2

6
(h + 3β) ∂xh∂x p

− h3

8
(h + 4β) ∂2

x p for all (t, x) ∈ It × Γ2. (18)

Having laid enough foundations, we are now well-prepared to address the problem numerically;
this is the duty of what follows.

2.4.2. Computing with the COMSOL Multiphysics Software

In summary, the flow of interest takes place in the vapor domain Ωv and the liquid domain Ωl
with a strong coupling through the free surface Γ4 among the fields c(l) (t,~x), c(v) (t,~x), and h (t, x).
Let their respective systems of equations be designated by

(
Sc(v)

)
,
(
Sc(v)

)
, and (Sh), respectively. Then,

for the evolution of the chemical concentration function c(l) (t,~x) into Ωl , the corresponding system(
Sc(l)

)
writes (

Sc(l)
)

: D̂tc(l) − ∂2
yc(l) = 0 for all (t,~x) ∈ It ×Ωl ,

∂yc(l) − ∂yc(v) = 0 for all (t,~x) ∈ It × Γ4,

∂yc(v) = 0 for all (t,~x) ∈ It ×
⋃

i=1,2,3 Γi,

where the hatted operator D̂t (·) = ∂t (·) + ~̂u · grad (·) designates the Lagrangian derivative operator
subjected to the previously established depth averaged flow field ~̂u =

(
ûx, ûy

)T. For the evolution of
the chemical concentration function c(v) (t,~x) in Ωv, the corersponding system

(
Sc(v)

)
writes(

Sc(v)
)

: div
(
~∇c(v)

)
+ S = 0 for all (t,~x) ∈ It ×Ωv,

∂yc(v) − ∂yc(l) = 0 for all (t,~x) ∈ It × Γ4,

∂yc(v) = 0 for all (t,~x) ∈ It ×
⋃

i=5,7 Γi,

c(v) = 0 for all (t,~x) ∈ It × Γ6,
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and, finally, for the evolution of the free-surface function h (t, x), the corresponding system writes

(Sh) : ∂th + divx (F ) = 0 for all (t, x) ∈ It × Γ2,

∂xh = 0 for all (t, x) ∈ It × {0, L},

where the scalar function F (h, h′′), designating the flux functions of the thin film equation, is defined as

F
(
h, h′′

) def
=M1 (h) ∂xh′′ +M2 (h) ∂xh +M3 (h) for all (t, x) ∈ It × Γ2.

Appendix A gives an account on Modeling Methodology using the COMSOL Multiphysics interfaces.
With all these features settled conveniently into appropriate COMSOL Multiphysics interfaces, we ran
several numerical simulations, whose solutions are discussed in the next section.

3. Results and Discussion

Herein, the results are discussed, emphasizing the hitherto neglected term ∂xh∂yγ and the hitherto
overlooked term grad

(
p(v)

)
= K(v) (air-blow effect; K(v), a prescribed constant).

3.1. Preliminaries

By an interfacial surface tension gradient is meant the vector gradient ~∇Γ4 γ, where the operator
gradΓ4

(·) = (I−~n⊗~n) grad (·) is termed the Γ4-interface gradient operator on Γ4; ⊗ is called the tensor
product operator: for given vector fields~v =

(
vx, vy

)
, ~w =

(
wx, wy

)
∈ R2, their tensor product results in

a 3× 3 matrix with the entries ~v⊗ ~w =
(
viwj

)
(i,j)∈{x,y}2 . Let

∥∥gradΓ4

∥∥ be its characteristic scale. Then,

gradΓ4
(·) 7→

∥∥gradΓ4

∥∥ gradΓ4
(·). (Note: gradΓ4

(·) is dimensional if it precedes 7→ and dimensionless
otherwise.) After nondimensionalizing the latter, this results in

∥∥gradΓ4

∥∥ gradΓ4
(·) ≈ 1

L
(
~ex∂x +~ex∂xh∂y

)
+

ε

L
(
~ey∂x

)
+

ε2

L
(
~ey (∂xh)2 ∂x

)
.

Further, asserting that ord
(∥∥gradΓ4

∥∥) ∼ L−1—which is reasonable—yields

gradΓ4
(·) ≈ ~ex

(
∂x + ∂xh∂y

)
(·) (= ~exLh [·]),

at leading order. With these features beforehand together with the following definition and approximation,

~ex · grad (·) = ~∇‖ (·) , ~∇⊥ (·) ≈ gradΓ4
(·)− ~∇‖ (·) ,

respectively, there follows that gradΓ4
(γ) ≈ ~∇‖γ+ ~∇⊥γ. Upon perusal of earlier works, one finds that

the term gradΓ4
(γ) was approximated as follows: gradΓ4

(γ) ≈ ~∇‖γ. In other words, their authors
considered thin film equations of the form

∂thc[~∇⊥γ=0] = H
(
~π; h, ~∇‖γ

)
for all (t,~x) ∈ It × Γ2.

For example, in the paper of O’Brien [8], the explicit form ofH
(
~π; h, ~∇‖γ

)
at leading order—which is

the ε0-order treated in the present work—reads

H
(
~π; h, ~∇‖γ

)
= ~∇‖

(
h2

2
~∇‖γ

)
for all (t,~x) ∈ It × Γ2, (19)

whereas, in the present work the following extended model is proposed, namely,

∂th
⌋
[~∇⊥γ 6=0] = H

(
~π; h, ~∇‖γ

)
+ δH

(
~π; h, ~∇⊥γ, ~∇p(v)

)
for all (t,~x) ∈ It × Γ2,
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where the property ~π stands as the set of control parameters, for instance, ours reads ~π
def
=(

~x0, µs, Ca, Ma
)
; and the differential δH goes to zero whenever ~∇⊥γ and ~∇p(v) simultaneously go

to zero. Thus, to distinguish our results with respect to others, it suffices to demonstrate through
numerical experiments the following inequality:

∂th
⌋
[~∇⊥γ 6=0] − ∂th

⌋
[~∇⊥γ=0] = δH

(
~π; h, ~∇‖γ, ~∇⊥γ, ~∇p(v)

)
6= 0,

Graphically, the effects/intepretations of the terms ~∇‖γ = ~ex∂xγ, ~∇⊥γ = ~ex∂xh∂yγ and ~∇p(v) =
K(v)~ex, and δH can be discussed by the aid of two new concepts, namely, coarse, fine approximations.

Physically speaking, if an orthogonal projection is considered the vector quantity ~∇Γ4 γ approximates
to ~∇Γ4 γ ≈ ~∇‖γ. This is the case of a coarse approximation of ~∇Γ4 γ. The works of Matar et al. [7] and
O’Brien [8] are, among others, two examples in which are found coarse approximation. Contrarily, if a
rotational projection is adopted instead, this would result to ~∇Γ4 γ ≈ ~∇‖γ + ~∇⊥γ. Thus, the h-evolution
proposed here yields a better approximation, termed fine approximation. The left-hand side of Figure 2
illustrates those two concepts. In addition, when the free surface of the liquid film is subjected to an
air-blow effect, ~∇p(v) = K(v) (K(v) constant), the right-hand side of Figure 2 follows.

~ex∂xh∂yγ∂xγ

~t · ~∇γ

~ex∂xh∂yγ∂xγ

~t · ~∇γ
~∇p(v) Γ4

Γ4

δH

Figure 2. Geometrical interpretations of surface tension and air-blow effects.

Throughout what follows, by the statement steady-state regime/profile is meant that there exists a
property t∞ > 0 such that the property h (t, x) at every point x ∈ Γ2 is invariant for all t ≥ t∞.

3.2. Case 1. The h-Evolution Equation versus the Term ~∇⊥γ

3.2.1. On Spatial Inhomogeneity

We describe here the h-evolution equations h
⌋
[~∇⊥γ=0] and h

⌋
[~∇⊥γ 6=0] to stress on the effects of an

inhomogeneous vapor phase and the consequence entails when ~∇⊥γ 6= 0. The plots of h
⌋
[~∇⊥γ=0] and

h
⌋
[~∇⊥γ 6=0] are depicted in Figure 3.
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Solid Substrate: x

h c[~∇⊥γ 6=0]

h c[~∇⊥γ=0]
~x0

Figure 3. Plots of the h-evolution equation in the steady-state regime. The point ~x0 = (L/2, 5H/4) is
occupied by the source S (~x). The term ~∇p(v) is set to zero. (Note that the numerical experiments are
carried out based on the data given in Table 1.)

Table 1. Data for case studies 1. through 4. Some data are extracted from the papers of O’Brien,
Matar et al., and Buckingham et al. [7,8,16], respectively.

ε β γ0,l µs K(v) ~x0 Ca Ma

10−3 10−2 1.8 10 10−2 (k, 5ε) L/4 0.5 500
Reference [7] Reference [16] Reference [8]

It will be remarked in Figure 3 that in both cases the observed film thickness distribution is somewhat
very similar, differing only in magnitudes. Consequently, this put forward the following fact:∣∣h⌋[~∇⊥γ 6=0] − h

⌋
[~∇⊥γ=0]

∣∣ 6= 0,

which demonstrates that the term ~∇⊥γ (t,~x) does affect the solution of the thin film proplem. It is,
therefore, of interest to examine in which situations the term ~∇⊥γ (t,~x) is of negligible consequence,
which is argued in what follows.

3.2.2. Of the Strength of the Source

What happens when we augment the strength µs ≥ 0 of the source is here discussed. We carried
out two parametric studies, one including and the other excluding the term ~∇⊥γ (t,~x), with respect to µs

ranging from µs = 10 to µs = 41. In Figure 4 are exposed the graphical results which we shall now discuss.
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Source Strength: µs

m
in

h
(t

∞
,x
)

ord (ε)

ord (1)

h c~∇⊥γ=0

h c~∇⊥γ 6=0

Figure 4. Plots of the function min h (t, x) with respect to the strength µs of the source within the range
[10, 40] in the steady-state regime. These plottings are based on a zero pressure gradient basis, i.e.,
~∇p(v) = 0. (Note that the numerical experiments are carried out based on the data given in Table 1.)

Glancing at Figure 4, one sees that the evolution of min h (µs) with respect to µs is linear only
when ~∇⊥γ (~x, t) = 0. So to speak, when ~∇⊥γ (~x, t) 6= 0 the quantity min h (t, x) decays nonlinearly.
On this basis, if the nonlinear effect arises when ~∇⊥γ (t,~x) is included in the mathematical model,
obviously the rate at which the liquid film will dry or coat its substrate will be faster. Consequently,
the higher be the effect of the volatile solvent, i.e., µs � 1, the more effective will be the effect of the
term ~∇⊥γ (t,~x); thus, this shows that its presence does affect the solution of the problem.

3.2.3. A Liquid Film of Infinitesimal Thickness

It be interesting to see how fast the quantity min h (t, x) goes to zero. In this section, upon the
following substitution, 0.15 h0 for h0, we consider an extreme case, a liquid film of infinitesimal
thickness, to describe these situations. With these features beforehand, two simulations were
ran, of which one takes account of the term ~∇⊥γ (t,~x) and the other disregards it. The resulting
superimposed curves are shown in Figure 5.

Figure 5. Graphs of h (t, x) versus x-coordinate in the steady-state regime. (Note that for t ranging
from 1.75 to 2.5 the results gives h

⌋
[~∇⊥γ 6=0] = 0, while, contrarily, h

⌋
[~∇⊥γ=0] 6= 0 within the same

range; also, plottings h (t, x) = 0 (solid line) and h (t, x) = h0 (dotted line) are used to delineate the
solid substrate and its free surface initially.)
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Of these curves, the lower curve—the one such that min h (t, x) = 0 (i.e., h c[~∇⊥γ 6=0])—describes

the case for which ~∇⊥γ (t,~x) 6= 0; the upper curve—the other one such that min h (t, x) 6= 0 (i.e.,
h c[~∇⊥γ=0])—describes the case for which ~∇⊥γ (t,~x) = 0. Physically speaking, it would appear that if

the liquid film is of infinitesimal thickness, the higher the magnitude of the diffusive flux, the larger
will be the deformation of the liquid film.

For that matter of comparison, cases for which ~∇⊥γ 6= 0 and ~∇⊥γ = 0 are exposed in Figure 6.
As can be easily seen in Figure 6, the curve h

⌋
~∇⊥γ 6=0 goes to zero faster than h

⌋
~∇⊥γ=0.

Figure 6. Plots of the function min h (t, x) versus time when the numerical experiments includes (circular
markers, ◦) and excludes (square markers, 2) the term ~∇⊥γ; solid and dotted lines are approximations
based upon the linear expression h (t, x = L/2) = −π1t + π2. (We note that this expression does not hold
when t goes to zero, say, when t is within the range [0, 0.5), for min h (t = 0, x) 6= h0, as can be easily seen.)

Numerically, we found in the linear regime that min h
⌋
[~∇⊥γ 6=0] ≈ −0.08t + 0.14,

min h
⌋
[~∇⊥γ=0] ≈ −0.012t + 0.03,

(only in the linear regime).

As a result, both expressions can, therefore, be described by a linear (dimensionless) relationship of
the form h (t, x = L/2) = −π1t + π2, where π1, π2 > 0 are property dependent constants.

At this point, we thought it desirable to ascertain how long does min h (t, x) take to goes to zero.
Based on the foregoing statements, it would also appear that the time at which min h

⌋
[~∇⊥γ 6=0] ≈ 0

is t ≈ 2.5 and that at which min h
⌋
[~∇⊥γ 6=0] ≈ 0 is t ≈ 1.75 - so to speak, a discrepancy of about

30 %. Recall the characteristic scales of t and h (t, x), namely, t ∼ ε−1µL/ (γ0,l − γ0,v) and h ∼ εL,
respectively, the dimensional form of h (t, x = L/2) = −π1 · t + π2 writes

h (t, x = L/2) = − ε2π1

µ
(γ0,l − γ0,v) t + εLπ2.

In particular, if τref > 0 designates a reference time at which min h (t, x) vanishes, it follows that

τref c[~∇⊥γ 6=0] ≈
π2

π1

ε−1µL
γ0,l − γ0,v

⌋
[~∇⊥γ 6=0]

<
π2

π1

ε−1µL
γ0,l − γ0,v

⌋
[~∇⊥γ=0]

≈ τref c[~∇⊥γ=0] ;
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thence, knowing π1 (= min ∂th), π2 (≈ αh0; α ≤ 1, a correcting factor fitting the above linear law),
one can deduce τref c[~∇⊥γ 6=0], τref c[~∇⊥γ=0], and conversely. Using the following numerical values,

γ0,l = 7.26× 10−2 [N·m−1], γ0,v = 3.26× 10−2 [N·m−1], µ ≈ 10−3 [kg·m−1·s−1], and L = 5× 10−2

[m], respectively, we obtain

τref c[~∇⊥γ 6=0] ≈ 2.18 [s] and τref c[~∇⊥γ=0] ≈ 3.13 [s],

respectively. Thus, an error of one second in the time at which min h (x, t) ≈ 0 will account for the
term ~∇⊥γ. (Of these numerical values, the values of the physical property constants γ0,l , γ0,v, and µ

are those found in the paper of [8].)

3.2.4. On Capillary and Marangoni Effects

The impact of Capillary (Ca) and Marangoni (Ma) numbers on the behavior of the thin film equation
is now discussed. The resulting graphical results are shown in Figures 7–9, respectively. On inspecting
those figures, it is easily seen that, on augmenting the number Ca the liquid film thins (Figure 8), while
on the contrary, on incrementing the number Ma, it thickens (Figure 9). Thus, out of these situations, it
follows that, by careful variations of the control parameters Ca, Ma, respectively, one can regulate the
thinning rate.

m
in

h
(t

∞
,x
)

Marangoni Number: Ma

h c[~∇⊥γ=0]

h c[~∇⊥γ 6=0]

Figure 7. Graphs of the functions h (t, x) with respect to the Marangoni number Ma in the steady-rate
regime. The term ~∇⊥γ is set to zero in one case. (Note the numerical experiment is carried out based
on the data given in Table 1.)

As can been easily seen, Figure 7 shows that the evolution of the quantity min h (Ma) thins almost
linearly with respect to Ma when ~∇⊥γ (t,~x) = 0. But, since this is not the case when such term is
taken into account, there obviously follows that the higher be the quantity Ma the more effective be
consequence arising from ~∇⊥γ (t,~x). Clearly, in the context of so-called Marangoni Drying, it acts as a
additive effect, and, therefore, should not be left out of account.

Since the Capillary number Ca is a measure of the relative effect of viscous effects with respect to
surface tension forces acting across the interface Γ4, an interesting way of interpreting this number is
as follows: Let

∥∥~Fµ

∥∥,
∥∥~Fγ

∥∥ denote the viscous and surface tension forces. Write Caref =
∥∥~Fµ

∥∥/
∥∥~Fγ

∥∥ to
designate a reference Capillary number. Then, variations of these forces by

∥∥δ~Fµ

∥∥,
∥∥δ~Fγ

∥∥ results in the
following strict inequalities ∥∥~Fµ

∥∥∥∥~Fγ

∥∥+ ∥∥δ~Fγ

∥∥ < Caref <

∥∥~Fµ

∥∥+ ∥∥δ~Fµ

∥∥∥∥~Fγ

∥∥ .

The resulting curves are exposed in Figure 8 for Ca = Caref±0.5, where Caref = 1.0.
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Time: t

m
in

h
(t

,x
)

Caref = 1.0

Ca = 1.5

Ca = 0.5

Figure 8. The vanishing rate of the quantity min h (t, x) relative to the Capillary numbers Ca = Caref±0.5,
where Caref = 1.0 designates a so-called reference Capillary number.

On the other hand, the Marangoni number Ma may be regarded as that dimensionless quantity
which describes the relative effect of chemical surface tension forces with respect to viscous forces
acting across the interface Γ4. Thus, if the quantity

∥∥~Fγ( c(l) )

∥∥ designates the chemical surface tension

force, and
∥∥δ~Fγ( c(l) )

∥∥ an increment of it, the following strict inequalities hold

∥∥~Fγ( c(l) )

∥∥∥∥~Fµ

∥∥+ ∥∥δ~Fµ

∥∥ < Maref <

∥∥~Fγ( c(l) )

∥∥+ ∥∥δ~Fγ( c(l) )

∥∥∥∥~Fµ

∥∥ .

In the above condition, the quantity Maref =
∥∥~Fγ( c(l) )

∥∥/
∥∥~Fµ

∥∥ designate a reference Marangoni number.

Maref = 80

Ma = 70

Ma = 90

Time: t

m
in

h
(t

,x
)

Figure 9. The vanishing rate of the quantity min h (t, x) relative to the Marangoni numbers Ma = Maref±10,
where Maref = 80 designates a so-called reference Marangoni number.

The resulting curves are depicted in Figure 9 for Ma = Maref±10, where Maref = 80.

3.3. Case 2. The h-Evolution Equation Versus the Term ~∇p(v)

3.3.1. Effect of an Air Blow with ~∇⊥γ = 0

When volatile solvent issues under a constant pressure gradient, i.e., ~∇p(v) ≡ K(v), from the
source S (~x) in the vapor phase region Ωv, the interface Γ4 undergoes remarkable transformations.



Fluids 2019, 4, 198 20 of 26

For example, an air blow over the liquid film is an instance which reflects this situation and is discussed
here. In Figure 10 is displayed such a situation where ~∇p(v) ≡ K(v) = 0.1. It shows how the shapes
of the function h (t, x) describe themselves for subsequent instants of time when subjected to such a
constant pressure gradient.

Solid Substrate: x

Th
ic

kn
es

s
:h

(t
=

1,
x )

K(v) = 0.1

K(v) = 1.0

Figure 10. Plots of the function h (t, x) at time t = 1.0 [1]. Here, ~∇p(v) ≡ −K(v) = −k/10, k = 1, . . . , 10.
The term ~∇⊥γ, ~∇p(v) is set to zero. (Note that the numerical experiments are carried out based on the
data given in Table 1.)

From these, it is observed that they all retain their sinusoidal forms and, furthermore, resolve
themselves in a more or less regular manner into a deformed travelling waves, as can be easily seen
in Figure 10. It is interesting to see how the interface h (t, x) evolves when we increase the quantity
K(v) > 0 by 0.1, the resulting quantity by the same amount, and so forth. In other words, we wish to see
what happens when we augment the strength of the air blow. Physically, the following statements do
hold. Increasing the quantity ~∇p(v) will both weaken and deviate the diffusive fluxes hitting the interface
Γ4. Consequently, min |h (t, x)− h0| with a constant pressure gradient amounting to K(v) = 0.1 would
be less than that which would amount to K(v) = 1.0, and thence the graphical results of Figure 10.
(Note that the placement of the curved arrow appearing there is merely to aid theoretical understanding.)

3.3.2. Effect of an Air Blow with ~∇⊥γ 6= 0

We saw in earlier sections that including the term ~∇p(v) > 0 results in translating the contaminated
zone to the east, whereas including the term ~∇⊥γ results in thinning the liquid film faster. In this
section, both terms are operative. Clearly, under this condition, the dynamics of the interface h (t, x)
would be a combined translational movement accompanied by a fast thinning process. Indeed, glancing at
Figure 11, one observes that this is clearly the case. However, while in Figure 10 the curved arrow
is towards the north-east direction, that of Figure 11 is towards the south-east. We found a simple
explanation to explain this mechanism. In fact, if for a prescribed value of ~∇p(v) = K(v) = 1.0 we
additionally take into account the term ~∇⊥γ = ∂xh∂yγ, the resulting effect would be, more diffusive
fluxes will strike the interface Γ4 while undergoing motion. Consequently, when time evolves, that
region of the interface Γ4 which is contaminated will move to the east while thinning the thickness of
the liquid film to the south; thence, the curved arrow shown in Figure 11 is towards the south-east.
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Solid Substrate: x

t = 1.0

t = 0.1

h c[~∇⊥γ=0]

h c[~∇⊥γ 6=0]

Figure 11. Plots of h (t, x) with respect to time, for t = k/10 such that k = 1, . . . , 10; and ~∇p(v) ≡
K(v) = 1.0. (Note that the curved arrow indicates the evolution of the h-evolution equation with respect
to time; and the numerical experiments are carried out based on the data given in Table 1.)

If the gradient ~∇p is disregarded in Equation (14), and the latter expressed in dimensionless form,
a γ-dominated h-evolution equation is obtained, whose mathematical description writes

∂th + divx

(
h2

2
Ma
Ca

gradx C
(l)
)
= 0 for all (t,~x) ∈ It × Γ2, (20)

This equation is similar to that leading order model proposed by O’Brien [8]; it is identical when
C(l) = C(l)O’Brien, where

C(l)O’Brien (t,~x) =
2Λ1

t
exp

{
−Λ2 ‖~x−~x0‖2

4t

}
for all (t,~x) ∈ It × Γ4. (21)

If variable field hO’Brien (t,~x) stands for that solution when Equation (20) is computed using Equation (21),
then to validate the h-evolution equation of the present work, it suffices to prove through numerical
experiments that Ord

(
|h− hO’Brien|

)
, Ord

(∣∣C(l) − C(l)O’Brien
∣∣) ∼ ε. Indeed, a simple calculation, after

neglecting terms of orders |h− hO’Brien|
k and

∣∣C(l) −C(l)O’Brien
∣∣k (with k ≥ 2), shows that

∂t
(
h− hO’Brien

)
+ divx

(
h2

2
Ma
Ca gradx

(
C(l) − C(l)O’Brien

))
∼ Ord

(∣∣h− hO’Brien
∣∣ ,
∣∣C(l) − C(l)O’Brien

∣∣) for all (t,~x) ∈ It × Γ2.
(22)

When those two orders of magnitudes are proved negligible, one says that the solutions of the variable fields
in question give agreement with respect to themselves. Consequently, in order to show such agreement, it
only necessitates to display by means of numerical experiments graphical results elucidating the relative
departure of C(l) (t,~x) with respect to C(l)O’Brien (t,~x) and of h (t, x) with respect to hO’Brien (t, x).

In Figure 12 is portrayed the graph of (h− hO’Brien) (x, t), and in Figures 13 and 14, respectively, are

portrayed the superposition of the graphs C(l) (t,~x) and C(l)O’Brien (t,~x), and of h (t, x) and hO’Brien (t, x);
these variable field functions are plotted against the substrate coordinate x ∈ [−L,+L], where L = 5/2 [1].
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Figure 12. Graph of the thickness difference
(
h− hO’Brien

)
(t, x) against the substrate coordinate

x ∈ [−L,+L], where L = 5/2 [1].

Exploring the discussion a step further, one deduces from Figure 12 the following inequalities:

3ε/10 ≤ |h− hO’Brien| ≤ ε for all (t,~x) ∈ {t∞} × Γ2. (23)

C(
l )
(t

,~ x
),
C(

l ) O
’B

ri
en

(t
,~ x
)

Solid Substrate: x

: C(l)O’Brien (t,~x)

: C(l) (t,~x)

Figure 13. Graphs of the chemical concentration functions C(l) (t,~x) and C(l)O’Brien (t,~x) against the
substrate coordinate x ∈ [−L,+L], where L = 5/2 [1].
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Figure 14. Graphs of the thickness functions h (t, x) and hO’Brien (t, x) against the substrate coordinate
x ∈ [−L,+L], where L = 5/2 [1].

Figure 15 illustrates the distribution of chemical concentration c(l) (t,~x) into the liquid film Ωl
when the ~∇⊥γ = 0 (left-hand side), and when ~∇⊥γ 6= 0 (right-hand side).

Thickness: h0

Substrate: L Substrate: L

(Ωl) (Ωl)

Case: ~∇⊥γ = 0 Case: ~∇⊥γ 6= 0

Figure 15. Distribution of chemical concentration c(l) (t,~x) into the liquid film Ωl . The arrows designate
the directions along which they are distributed. (Note that at leading order the computational domain
is a rectangular box h0 × L.)

The Marangoni flow induced in Ωl by the presence of the volatile solvent is illustrated in Figure 16
for the case ~∇⊥γ = 0. In the next section, we conclude the work.
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Figure 16. Marangoni flow in the liquid film Ωl at time t = 1.0 (dimensionless unit). The arrows
designate the directions of the flow fields. (Note that at leading order the computational domain is a
rectangular box h0 × L.)

4. Conclusions

We have studied the movement of a liquid film in an endeavor to examine in which situation does
the hitherto neglected term ~∇⊥γ = ∂xh∂yγ have an effect, and a constant pressure-gradient-driven
flow ~∇p(v) = K(v) promotes the equilibrium thickness of the liquid film. On trial, the means of several
numerical experiments gave graphs which do not have the same shapes. When ~∇⊥γ 6= 0, our results
showed that the thinning process produced by the presence of the volatile source is much increased by
the inclusion of the term—a phenomenon evidently occasioned in Marangoni drying. Thus, if a liquid
film is used to realise a specific functional property relative to its contact surface, asserting that the term
~∇⊥γ is negligibly small could in some cases have a profound effect upon that property, and, therefore,
can led to inaccurate predictions. When ~∇p(v) = K(v) is considered, the liquid film thins less rapidly
but undergoes translational movement in the direction of the pressure-gradient-driven flow so as
to deviate the diffusive fluxes from hitting the free surface of the liquid film horizontally. Although
there are applications in coating and drying processes when thin film flow instability resulting from
a pressure-gradient-driven flow is undesirable, it is to be noted that the latter is desirable insofar
that other transport phenomena come into play as, for instance, when heat transfer is concerned.
Furthermore, if the effect of an air blow is too stiff and the thickness of the liquid film quite thin,
instabilities result. On the whole, we have expounded conclusively at the following points:

• The discrepancy between the several results is owing to the effect of the hitherto neglected term
~∇⊥γ on the dyamics of the liquid film.

• The inclusion of a constant pressure-gradient-driven flow ~∇p(v) = K(v) in the vapor phase
domain might be of some advantage in supporting the thinning process.
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Appendix A. Modeling Methodology with COMSOL

The modeling methodology is herein explained. For illustration, Figure A1 is considered.
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Mod-1 (2D)

Mod-2 (1D)

Phys Int. for c(v)

Phys Int. for c(l)

Phys Int. for h

Opt-1( )

Opt-2( )

(Ωl)

(Ωv)

~ey

~ex

~ex

COMSOL FILE
PHYSICAL DOMAINS

SOLID SUBSTRATE

Figure A1. An overview of numerical method. The COMSOL File includes two models, Mod-k (with
k = 1, 2). Of these, Mod-1 is a 2D-Model containing two Physics Interfaces for the scalar fields c(j) (with
j = 1, 2); Mod-2 is a 1D-Model comprising only one Physics Interface, that computes the h-evolution
equation. Additionally, each models includes a coupling operator Opt-k (·) (with k = 1, 2) which passes
data from one model.

Let those models be Mod-1, Mod-2, respectively. With this view in mind the methods of solutions
are based on the following sequences of operations. In the first place, add two models to the COMSOL
model builder, one two dimensional model (i.e., Mod-1) to solve problem statements

(
Sc(l)

)
,
(
Sc(v)

)
,

respectively, and one one dimensional model (i.e., Mod-2) to solve problem statement (Sh). In the
second place, add two Coefficient Form PDE interfaces to the two dimensional model and to the one
dimensional model one Coefficient Form PDE interface. To construct the so-called 1D, 2D computational
geometries, we proceed as follows. Under Mod-1 construct a large rectangular box whose length from
(x, y) = (0, 0) spans L = 1 to the east and h0 + L = 2 to the north. To describe the free-surface of the
liquid film, a horizontal line defined by the equation y (x) = h0 is inserted. (we note that the respective
scalings L, h0 are all dimensionless quantities, but, however, they are here employed to reflect the nature
of the thin film.) In like manner, under Mod-2 construct a line segment whose length from x = 0
spans L = 1 to the east. We pointed out that the fields c(l) (t,~x), c(v) (t,~x) and h (t, x) are coupled.
Consequently, to ensure these couplings from Mod-1 to Mod-2, we add a coupling operator Opt-1 to
Mod-1 and another coupling operator Opt-2 to Mod-2. Logically, the inclusion of these operators Opt-1,
Opt-2 is merely to pass data from a (source) domain to a destination domain. For the operator Opt-1,
we let the interface Γ2 be its source domain and the line segment defined under the model Mod-2 be
its destination domain. For the operator Opt-2, we reverse the situation, letting the interface Γ2 be its
destination domain and the line segment defined under the model Mod-2 be its source domain. Thus,
to invoke the functions c(l) (t, x, 0) of Mod-1 into Mod-2 and h (t, x) of Mod-2 into Mod-1, we shall use{

Opt-1
(
c(l) (t, x, h0)

)
,

Opt-2
(
h (t, x)

)
,

(A1)

respectively. (More precisely, we used two linear extrusion operators, since, we wish to force out (that
is, extrude) the source domain of definition of its functions onto an equivalent destination domain;
see the COMSOL Reference Guide for further details.) To implement (Sh), we switch the coefficient
form PDE interface of model Mod-2 to a two-dimensional system

(
h, h′′

)
-system so to speak we set

~Ξ =
(
h, h′′

)T . Note that for all the problem statements
(
Sc(l)

)
,
(
Sc(v)

)
, and (Sh), the discretization

method for computing the solution is quadratic. In Table 1 is exposed all the scalar quantities used, of
which, some are partly extracted from the papers of O’Brien, Matar et al. and Buckingham et al. [7,8,16],
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while others are based on the underlying philosophy of the problem at hand. These are entered in
the parameters table, found under the COMSOL global definitions interface. We made no mention of
the imposed initial and boundary conditions. Their implementation are immediate, for, it suffices to
consider the default and added nodes to implement them.
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