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Abstract: We validate and test two algorithms for the time integration of the Boussinesq form of the
Navier—Stokes equations within the Large Eddy Simulation (LES) methodology for turbulent flows.
The algorithms are implemented in the OpenFOAM framework. From one side, we have implemented
an energy-conserving incremental-pressure Runge–Kutta (RK4) projection method for the solution
of the Navier–Stokes equations together with a dynamic Lagrangian mixed model for momentum
and scalar subgrid-scale (SGS) fluxes; from the other side we revisit the PISO algorithm present in
OpenFOAM (pisoFoam) in conjunction with the dynamic eddy-viscosity model for SGS momentum
fluxes and a Reynolds Analogy for the scalar SGS fluxes, and used for the study of turbulent channel
flows and buoyancy-driven flows. In both cases the validity of the anisotropic filter function, suited
for non-homogeneous hexahedral meshes, has been studied and proven to be useful for industrial LES.
Preliminary tests on energy-conservation properties of the algorithms studied (without the inclusion
of the subgrid-scale models) show the superiority of RK4 over pisoFoam, which exhibits dissipative
features. We carried out additional tests for wall-bounded channel flow and for Rayleigh–Bènard
convection in the turbulent regime, by running LES using both algorithms. Results show the RK4
algorithm together with the dynamic Lagrangian mixed model gives better results in the cases
analyzed for both first- and second-order statistics. On the other hand, the dissipative features
of pisoFoam detected in the previous tests reflect in a less accurate evaluation of the statistics of
the turbulent field, although the presence of the subgrid-scale model improves the quality of the
results compared to a correspondent coarse direct numerical simulation. In case of Rayleigh–Bénard
convection, the results of pisoFoam improve with increasing values of Rayleigh number, and this may
be attributed to the Reynolds Analogy used for the subgrid-scale temperature fluxes. Finally, we point
out that the present analysis holds for hexahedral meshes. More research is need for extension of the
methods proposed to general unstructured grids.

Keywords: OpenFOAM; Runge–Kutta (RK4); PISO; wall-resolved Large Eddy Simulation (LES);
Rayleigh–Bènard convection; channel flow

1. Introduction

Since the seminal works of Chorin [1] and Temam [2], different variants of the fractional-step
method have been proposed and used for the integration of the incompressible form of the unsteady
Navier–Stokes Equations (NSE). Over the years, different algorithms have been developed using
multistep time advancement techniques, conceived to be used with generalized grid topologies
and different locations of the flow variables (co-located or staggered). Algorithms developed for
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the analysis of unsteady laminar flows have been successfully employed for the Direct Numerical
Simulations (DNS) and for the Large Eddy Simulation (LES) of turbulent flows. The latter, by requiring
some forms of parametrization for the smallest scales of turbulence, is computationally less demanding.
In principle, even non-conservative or dissipative numerical algorithms may give reasonable results
when used for DNS, provided that the time step of the simulation and the cell size are smaller than the
Kolmogorov scales, so that the truncation error remains confined in the insignificant part of the power
spectrum. This is not true for LES though, where a low-pass filter is applied to the NSE to separate the
large energy-carrying scales of motion from the small and more isotropic ones; here the truncation
error necessarily affects both the resolved and the modeled part of the spectrum, hence the importance
of using energy-conserving and non-dissipative algorithms for LES of turbulent flow.

In a sequence of papers [3,4] numerical algorithms for the solution of the NSE in conservative form
have been proposed, using Cartesian staggered grids. There, 2nd-order accurate central difference
schemes were used for the discrete spatial operators, second-order time accurate schemes for the
diffusive terms, and, at least second-order accurate schemes for time integration of the non-linear
term (i.e., Adams–Bashforth or Runge–Kutta). The need to move toward complex grid topologies has
pushed the development of algorithms using curvilinear coordinate transformations or unstructured
grids. A very popular curvilinear-grid fractional-step algorithm is that of Zang et al. [5]: they used
a semi-implicit time advancement scheme in conjunction with a second-order accurate explicit
Adams–Bashforth scheme for the time integration of the non-linear term. Since the algorithm co-locates
the flow variables on the cell centroids it requires a non-conservative formulation of the NSE [6] thus,
high-order upwind flux schemes were used for the spatial discretization of the advective term of
momentum and scalar transport. The algorithm was successfully employed for the study of LES
of turbulent flows over curvilinear geometries. Later, the algorithm was modified using central
differences for the calculation of non-linear momentum and scalar fluxes in several papers (see [7] for a
general discussion). On the other side, energy-conserving, second-order fractional-step algorithms for
finite-differences/volumes have been proposed and used for the LES of turbulent flows in unstructured
grids [8].

Given the Courant-Friedrich-Lewis (CFL) restrictions imposed by the semi-explicit methods
mentioned earlier, implicit multistep methods for the solution of the NSE were sought. In its
incompressible version, the NSE present some difficulties in enforcing mass conservation and in
writing the discrete non-linear operator of velocities when numerically integrated using implicit
multistep methods. The most widely used algorithm for the implicit integration of the incompressible
NSE is the PISO algorithm, proposed by Issa [9], which is first-order accurate in time. As it is a
non-iterative predictor-corrector method, the momentum equation (predictor) is solved once and,
afterward, the non-solenoidal velocities obtained are ‘corrected’ (at least twice) in order to enforce
conservation of mass, by solving the pressure equation and an explicit algebraic corrector equation.
It is important to note that for the algorithm to be implicit, the advective term must be linearized.
Details on such linearization will be revisited in later sections.

OpenFOAM [10–12] is a numerical library based on the idea of offering an unified mathematical
framework for the description of systems of hyperbolic Partial Differential Equations (PDE) in a
natural way, where the finite-volume (FV) approach is used for the ‘discretization’ of spatial derivative
operators and where multistep time integration techniques are present. In particular, the PISO
algorithm present in OpenFOAM, referred also as pisoFoam, has become a tool of widespread use in
industry as well as in academia for the solution of the incompressible NSE. In academia, the code
has been largely used for unsteady simulations using Detached Large Eddy, wall-resolving Large
Eddy (A simulation where the near-wall turbulent structures are fully resolved and a no-slip boundary
condition is applied at the wall), implicit Large Eddy (ILES) (a simulation where the SGS model is
replaced by the truncation error of the numerical algorithm) models and more recently for DNS. There,
it has proven to be the go-to code in many groups for the simulation of a wide class of flows of interest
for industrial and environmental applications.
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Special attention has been given to ILES in the early years of the code for use in compressible and
incompressible flows, given that low-order FV methods are amenable to use within the Monotone
Implicit LES, or MILES, framework (for a review, see [13]). In general, the use of pisoFoam along with
MILES for the numerical simulation of high-Reynolds number flows has proven to be accurate in a
wide range of scenarios [13,14]. However, it is difficult to determine a-priori whether for a given grid
resolution (and type of grid elements) MILES would resolve accurately the backscattering effects of
turbulence or, more importantly, whether the numerical diffusion may be considered representative of
the unresolved scales of turbulence: a finite-scale analysis proves the existence of a ‘scale-similar term’
for structured grids, but not so for more general, unstructured, grids composed of non-hexahedral
elements. In other words, if special care is not taken, solutions obtained using MILES may tend
to be over-dissipative particularly in cases where non-linear effects are predominant or needed to be
accurately modeled.

More recently wall-resolving and Wall-Modeled LES models (WMLES) (a LES where the near-wall
dynamics is not resolved and the wall shear stress is parametrized using a model), although present
since the early stages of OpenFOAM, have begun to be used for the simulation of turbulent flows.
However, most studies have focused on high-Reynolds external, or wall-bounded, flows with massive
separation, i.e., airfoils, wind turbines, flows over complex topography, where over-dissipation may
not be noticeable. A more recent account on low-Reynolds LES on channel flows using pisoFoam was
made by Vuorinen et al. [15]. There, it was shown that DNS results for a wall-bounded channel flow
obtained using pisoFoam are over-dissipative with respect to the results obtained for the same case
using a Runge–Kutta Navier–Stokes Equation solver, implemented within the OpenFOAM framework.
In an attempt to remedy the over-dissipative properties of pisoFoam, various authors [15,16] have
implemented non-incremental projection methods for the solution of the incompressible NSE in
OpenFOAM. All such works consider the Rhie–Chow interpolation for the momentum fluxes projected
onto the faces, in order to guarantee velocity-pressure coupling on the discrete PDE system.
However, note that by not considering the pressure gradient in the predictor step (non-incremental),
the pressure obtained is only first-order accurate in time, depending on the Reynolds number. The latter
term is often referred to as computational pressure since it differs from the physical one by a term
proportional to the computational parameters. Furthermore, boundary conditions for the pressure
equation are not trivial: an accurate definition of the pressure gradient in the no-slip boundaries
require the projection of the momentum equations onto the boundary which, at the corrector step,
are unknown. A deferred-correction approach can be used for determining the projection of the NSE
onto the no-slip boundaries. However, the cited works fail to mention how the boundary conditions
for the pressure equation are treated.

A more accurate account on the over-dissipative properties of pisoFoam and other commercial
codes was made by Komen et al. [17]. An analysis of the turbulent kinetic energy budget shows
that for the resolved and residual dissipation rates there is only an 8% difference, for quasi-DNS
turbulent channel flows. Furthermore, explicit LES calculations on channel flows show that subgrid
scale contributions are at least 3.5 times lower compared to residual contributions due to numerical
dissipation, and such ratio varies little with Reτ . The authors argue that no clear improvement is
gained when using an explicit LES model compared to just running an under-resolved DNS when
using pisoFoam. This issue will be exploited in a successive Section.

Incidentally, the work of Tuković et al. [18] has revisited the PISO implementation present in
pisoFoam and shown that the time integration order of pressure and velocity is time-dependent,
passing from first-order accuracy for small time-steps to second-order accuracy for bigger time-steps,
and errors on pressure tend to accumulate in time for very low CFL numbers. There, the authors
propose to project in time the face fluxes of momentum, in an attempt to mitigate the error caused by
the splitting of the non-linear term in PISO. Please note that the former remark is not new: the original
work of Issa [9] shows that the operator-splitting in time is only first-order accurate.
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The present work focuses on the analysis of the overall performance of the standard
implementations of pisoFoam compared to those of an incremental-pressure correction version
of the Runge–Kutta algorithm proposed by Le and Moin [4] (hereinafter RK4). Specifically, first,
two benchmark cases are run to test energy-conservation properties of the two algorithms: (1) a 2-D
Taylor vortex, in which boundary condition consistency can be verified; (2) the calculation of the
energy decay rate of a 2D Tollmien–Schlichting wave in a channel, to determine the time integration
order of the algorithm.

Successively, the algorithms are validated for LES of neutral and buoyant flows. In this context,
filter consistency and associated boundary conditions are also tested and compared with the standard
solvers available in OpenFOAM. In particular, pisoFoam is used in conjunction with the Dynamic
Smagorinsky model for turbulent neutral and buoyancy flows available in the framework. To be
noted that in OpenFOAM the subgrid-scale (SGS) scalar fluxes are parametrized using the Reynolds
Analogy, namely assuming a constant value for the SGS Prandtl number. Our implementation of
RK4 is used with a Dynamic Mixed Lagrangian Smagorinsky model [19,20] implemented in the present
work. Also, a new model for the calculation of the turbulent SGS scalar fluxes, in the spirit of the one
proposed by Armenio and Sarkar [21], is implemented and compared with results obtained using
the Reynolds Analogy for the SGS scalar fluxes present in OpenFOAM for simulations where buoyancy
is active.

The verification of the LES models along with the fluid flow solver for turbulence flows uses two
cases: (1) a turbulent neutral Poiseuille flow, where the consistency of the filters and of the SGS model
can be evaluated; and (2) Rayleigh–Benard convection between infinite plates, which may serve as a
test of the overall performance in the presence of active scalars.

The paper is organized as follows: Section 2 reports the mathematical formulation of the different
algorithms just discussed, including the description of the SGS model for the momentum and
scalar transport equations; Section 3 reports a description of the two algorithms tested in this paper,
namely PISO and RK4; Section 4 reports results of tests aimed at verifying the energy-conservation
properties of the two algorithms; Section 5 reports verification tests of the two algorithms for LES of
turbulent flows and, finally, concluding remarks and a discussion are given in Section 6.

2. Mathematical Formulation

In this section, a description of the Boussinesq form of the unsteady NSE for the filtered flow
variables is presented. We recall that the Boussinesq form allows the study of systems with variable
density, only when the density variations are much smaller than the bulk density of the flow. Spatial
filtering over the NSE produces unresolved terms (SGS fluxes) which need to be modeled.

The filtered Boussinesq form of the Navier–Stokes equations read as:

∂ui
∂xi

= 0, (1)

∂ui
∂t

+
∂uj ui

∂xj
=− 1

ρ0

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
−

∂τr
ij

∂xj
− ρgδi,3, (2)

∂ρ

∂t
+

∂uj ρ

∂xj
= κ

∂2ρ

∂xj∂xj
−

∂ηr
j

∂xj
, (3)

where ui is the velocity component in the i-direction, ρ is the density perturbation with respect to the
bulk density ρ0, p is the hydrodynamic pressure, g is gravity, ν is the kinematic viscosity, and κ the
scalar diffusivity. The quantities

τr
ij = uiuj − uiuj, (4)

ηr
j = ρuj − ρ uj, (5)
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are the SGS, or residual, fluxes of momentum and density.
The frame of reference has x1 and x2 over the streamwise and spanwise horizontal directions,

and x3 vertical upward. The streamwise, spanwise, and vertical directions may be also referred to as
(x, y, z); similarly, for the velocity components we also use (u, v, w), depending on the context.

2.1. Turbulence Modeling: LES

This apart will provide a description of the LES models used in this work. The Dynamic Lagrangian
Mixed Smagorinsky Model (DLMM) for scalar and momentum turbulence will be described first,
along with the filter used. Afterwards, a brief description of the Dynamic ‘Mean’ Smagorinsky Model
(DMM) for momentum turbulence and the Reynolds Analogy (RA) for modeling the scalar SGS fluxes
will be made. Notice that the latter methodologies (DMM and RA) are also available in foam-extend,
a fork of OpenFOAM.

2.1.1. Dynamic Lagrangian Mixed Smagorinsky for Scalar and Momentum Turbulence

By applying a second filter, (̂·) of size ∆̂ = 2∆ on Equation (4) and after some algebraic
manipulations, a relation for the residual stresses, referred to as the Germano Identity, is obtained:

τ̂r
ij = Tij − Lij, (6)

Lij = ûi uj − ûi ûi, (7)

Tij = ûiuj − ûi ûi. (8)

The same holds for the residual scalar fluxes, just by replacing ui with ρ.
The SGS fluxes of momentum can be expressed as the sum of a scale-similar part and a

Smagorinsky eddy-viscosity term:

τr
ij ≈ mij = (ui uj − ui uj)︸ ︷︷ ︸

τSS
ij

−2cs∆2|S|Sij, (9)

where |S| is the contraction of the strain rate tensor of the filtered field, and cs∆2 ∼ l2 is a measure of
the mixing length for the unresolved eddies. By using identity (6), one can obtain an expression for cs.

By writing the mixed Smagorinsky model for the NSE using the filter (̂·), one obtains

Tij = (
̂̂
ui ûj −

̂̂
ui
̂̂
ui)− 2cs∆̂

2
|Ŝ|Ŝij,

which, once substituted in Germano’s identity Equation (6), gives:

Hij + cs Mij = Lij, (10)

Mij = −2∆̂
2
|Ŝ|Ŝij + 2∆2 |̂S|Sij, (11)

where cs is assumed constant at the filter level.
The system (10) is overdetermined. A least-square approach for finding cs leads to the following

final expression:

cs =
〈Mij(Lij − Hij)〉
〈Mij Mij〉

. (12)

Please note that the brackets 〈(·)〉 indicate some form of averaging. By time-averaging along
Lagrangian trajectories (i.e., pathlines), one obtains a mixed version of the Dynamic Lagrangian Model [19]
where
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cs =
Flm
Fmm

, (13)

DFlm
Dt

=
1
T
[
Mij(Lij − Hij)−Flm

]
, (14)

DFmm

Dt
=

1
T
(Mij Mij −Fmm), (15)

T =
3
2

∆(FmmFlm)
−1/8. (16)

For the unresolved SGS fluxes of density, one can define the subgrid buoyancy flux in a similar way
to the subgrid stress tensor, as follows:

ηr
j ≈ nj = (ρ uj − ρ uj)− cc∆2|S| ∂ρ

∂xj
(17)

By analogy, the same procedure for the derivation of the LES model for the momentum equation
follows, thus one can determine the constant cc in a least-square sense:

cc =
〈Mc

j (Lc
j − Hc

ij)〉
〈Mc

j Mc
j 〉

(18)

where

Hc
j = (ρ uj − ρ uj)− (

̂̂
ρ ûj −

̂̂
ρ
̂̂
uj), (19)

Lc
j = ρ̂ uj − ρ̂ ûj, (20)

Mc
j = −∆̂

2
|Ŝ| ∂ρ̂

∂xj
+ ∆2 ̂|S| ∂ρ

∂xj
. (21)

Notice that the averaging procedure proposed in Equation (18) can be made also along Lagrangian
trajectories, therefore:

cc =
F c

l
F c

m
, (22)

DF c
l

Dt
=

1
T

[
Mc

j (Lc
j − Hc

j )−F c
l

]
, (23)

DF c
m

Dt
=

1
T
(Mc

j Mc
j −F c

m) (24)

T =
3
2

∆ σc(F c
mF c

l )
−1/4, (25)

where σc is the standard deviation of the scalar concentration. Notice that the particular choice of scalar
turbulence timescale goes in correspondence with the timescale proposed for the residual momentum
fluxes; that is, T is reduced in regions where the scalar gradients or velocity-scalar correlations are
large, and vice-versa. The dynamic evaluation of the SGS fluxes for the scalar equation, instead of
using the Reynolds Analogy for the SGS Prandtl number (Prr = νr/κr), is particularly advantageous
when studying stable stratified turbulence (see [21] for a discussion).

Here we use the non-uniform Laplacian filter [22], i.e., a Laplace filter where the filter width is
non-constant. It is a generalization of the Laplacian filter proposed by Germano [23]. Such filter is a
Reynolds operator in space, i.e., it commutes with derivatives, it preserves constants, and is self-adjoint.
For structured grid one has the following:
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f = f +
1

24
∂

∂xk

(
∆k

∂ f
∂xk

)
, (26)

where f is the field being filtered, and ∆i is the filter width along the i-direction. In structured grids,
the filter width is just a multiple of the width, height, or length of the volume cell where the field is
being filtered. The filtered field does not necessarily ‘inherit’ the boundary conditions of the unfiltered
field: here we will assume that they do, under the assumption that ∆k → 0 as one approaches
the boundaries.

Finally, please note that for the family of Gaussian filters the following identity

∆̂
2
= ∆2

+ ∆̂2

is valid. Previous works [5,6] using finite-difference codes have considered the filter width at the test
level as

∆̂ = 2∆, (27)

which is only valid for spectral cutoff filters. Such inconsistency in finite-volume and finite-difference
algorithms is noted by Vreman et al. [20]. The standard implementation of the Smagorinsky models in
OpenFOAM has said inconsistency.

2.1.2. Dynamic ‘Mean’ Smagorinsky for Momentum and Reynolds Analogy for Scalar Turbulence

A difference in the implementation of the Dynamic Smagorinsky Model is present in OpenFOAM,
where the parameter cs is volume-averaged across the domain instead of being averaged along
homogeneous directions as proposed by Germano et al. [24], i.e., starting from Equation (9),
the calculation of the dynamic coefficient for the sgs mixing length is as follows:

cs =

〈
MijLij

Mij Mij

〉

v

,

where 〈·〉v means volume-averaging (hence the term ‘Mean’). Notice that the calculation of cs does not
consider the Hij term, since is not a mixed formulation (τSS

ij = 0). The terms Mij and Lij are calculated
directly from Equations (11) and (7), respectively. As noted previously, the test filter width in this

formulation is taken as ∆̂ = 2∆.
The Reynolds Analogy for the scalar SGS fluxes simply considers that the turbulent mixing length

for scalars lc scales linearly with that of momentum ls, where such scaling factor PrSGS = lc/ls (the
ratio between turbulent mixing lengths) remains constant. This assumption leads to the expression:

ηr
j ≈ nj =

νr

PrSGS

∂ρ

∂xj
. (28)

3. Numerical Formulations

In this section, we briefly describe two algorithms for the numerical solution of the incompressible
NSE. First, we describe the one present in the OpenFOAM framework, PISO, in its implicit form.
Such form (pisoFoam) is a generalization of the time integration in PISO. Some particularities on
the PISO implementation for implicit Euler time integration are discussed as well. These peculiarities
appertain only the implicit Euler time integration scheme implemented in OpenFOAM for PISO.
Afterward, we give a description of our semi-implicit three-stage Runge–Kutta incremental
projection method.
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3.1. PISO Algorithm

A finite-volume implementation of the incompressible NSE is carried out implicitly, using the
PISO algorithm, which will be described next. Hereafter, c denotes the index of an arbitrary velocity
node, λ is the index that indicates neighboring points, n is a superscript denoting the current time
iteration, m denotes the inner iterations within each n iteration, Q any source term that may be function
of velocity (i.e., the Coriolis force) or not (i.e., the buoyancy force), and A is the coefficient matrix
resulting from the linearization of spatial operators. The momentum equation is advanced in time by
means the following implicit-in-time linear system:

Ac(ui)un+1
i,c + ∑

λ

Aλ(ui)un+1
i,λ = Qn+1(ui)−

(
δPn+1

δxi

)

c
,

where P is the hydrodynamic pressure divided by the bulk density ρ0. Please note that this system
is non-linear for ∑λ Aλ(ui)un+1

i,λ thus one has to resort to inner iterations for which the coefficient
matrix A is no longer constant. Also, the mass conservation constraint cannot be directly enforced
in the system. By projecting the momentum equation in a solenoidal space one can enforce mass
conservation, i.e., at a certain time step n one solves a predictor equation for an intermediate velocity u∗i :

Ac(ui)u
∗,m
i,c + ∑

λ

Aλ(ui)u
∗,m
i,λ = Qm−1(ui)−

(
δPm−1

δxi

)

c
,

which is not solenoidal. In order to enforce the mass conservation, a corrector step is applied to the
intermediate velocity to obtain a solenoidal intermediate velocity ũ∗i :

ũ∗,mi = u∗,mi − 1
Ac(ui)

(
δPm−1

δxi

)

c
.

Please note that the final solenoidal velocity, after m inner iterations, is obtained using

um
i = ũ∗,mi − 1

Ac(ui)

(
δPm

δxi

)

c
,

where δPm/δxi is obtained by solving the pressure Poisson equation

δ

δxi

[
1

Ac(ui)

(
δPm

δxi

)]

c
=

[
δũ∗,mi

δxi

]

c

.

The OpenFOAM framework implements the PISO algorithm for arbitrary grid topologies, and
various time-integration schemes where the flow variables are co-located at the element’s centroid.
For this purpose, the Rhie–Chow [25] interpolation is made to guarantee velocity-pressure coupling.
If one defines the off-diagonal coefficient flux matrix:

Hλ,i(un+1
i ) = Qm

λ (ui)−∑
λ

Aλ(ui)un+1
i,λ ,

According to the Rhie–Chow method, one can calculate the momentum fluxes, Uλ, onto the faces
with surface area normal Sλ of each volume cell, in the following way

Uλ =
Hλ,i(un+1

i )

Aλ(ui)
Sλ,i −




δpn+1

δxi

Ac(ui)




λ

Sλ,i.
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In an attempt to increase robustness of the Euler-Implicit time scheme in OpenFOAM, a relaxation
on the face momentum fluxes is made, in the following manner

Un+1
λ = Uλ + Uλ,relax, (29)

Uλ,relax =
Kc

∆t
(Un

λ − (un
i )λ Sλ) (Ac(ui))λ,

Kc = 1−min
( |Un

λ − (un
i )λ Sλ|

|Uλ|+ ε2 , 1
)

,

where ∆t is the time step. Please note that as the simulation arrives to a stationary state (in a RANS
sense), Kc → 0. In the case of unsteady simulations, it might be interpreted as a correction for
interpolation errors due to non-orthogonality of the grid. However, note that this correction introduces
a O(1/∆t) error in the time integration of the advective term in the case of having structured grids.

3.2. Runge–Kutta Algorithm

Here we present a finite-volume implementation of an incremental-pressure projection method,
where the advective term is projected in time using a classical RK4 scheme whereas the diffusive term
is projected using Euler-Implicit scheme. The linearized system is as follows

u∗,mi − um−1
i

∆t
=(αm + βm)L(um−1

i )

− βmL(u∗,mi − um−1
i )

− γmC(um−1
i )− ξmC(um−2

i )

− (αm + βm)
δP∗,m

δxi
(30)

um
i − u∗,mi

∆t
=− δ(δP)

δxi
, (31)

where the discrete diffusion operator is indicated by L, and the advective operator by C. Please note
that the explicit treatment of the advective term avoids the linearization of uiuj. Mass conservation is
enforced via Poisson equation for pressure:

δ

δxi

[
δ(δP)

δxi

]
=

1
∆t

δu∗,mi
δxi

(32)

P∗,m =P∗,m−1 + δP (33)

Please note that each time iteration n is split in three substeps m, where m = 1 gives m− 1 = n
and m = 3 = n + 1. The Runge–Kutta coefficients are the following:

α1 = β1 = 4/15, α2 = β2 = 1/15, α3 = β3 = 1/6

γ1 = 8/15, γ2 = 5/12, γ3 = 3/4

ξ1 = 0, ξ2 = −17/60, ξ3 = −5/12

To preserve the velocity-pressure coupling in a co-located finite-volume mesh, a Rhie–Chow
interpolation is used.

As mentioned earlier, in order to guarantee consistency in the calculation of the
pressure, appropriate boundary conditions for the Poisson equation are needed [1,3,5,26].
Classical non-incremental projection methods obtain the following Neumann boundary condition for
pressure on non-periodic boundaries, by projecting the momentum equations onto said boundary with
surface-normal ni:
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∂P
∂xi

ni = −
u∗,mi − um−1

i
∆t

ni (34)

Please note that the right-hand-side of Equation (34) is unknown at the corrector stage of the
algorithm, so deferred extrapolation methods for projecting the velocity components normal to the
boundaries are needed [3]. In the present case, note that the Poisson equation is written in terms of
pressure increments, δP. Thus, it is valid to use a homogeneous Neumann boundary condition [27] for
δP. This strategy is also used in PISO.

4. Verification of Conservation Properties

Here a study on the energy-conservation properties of the algorithms discussed above is presented.
Specifically, we make a formal comparison with known analytic solutions and benchmark cases.
First, we consider the case of the unsteady and inviscid 2D Taylor vortex but where the boundary
conditions for velocity are imposed from the analytic solution. Then we consider the energy growth of
one unstable mode for the case of Poiseuille flows, for which an analytic expression exists for the first
phase of the growth of a linear disturbance; in this case the flow is confined between two solid walls
and, differently from the previous case, the diffusion term becomes part of the solution algorithm.
In the latter case only the RK4 algorithm is tested for reasons that will be explained later in this section.
For both algorithms, the discretization of the divergence and gradient operators are set to be Gauss
linear, which corresponds to the central differences schemes; also, fourth-order schemes are used for
the Laplacian operator. Finally, unless explicitly specified, hereinafter the time integration used for
PISO will be the implicit Crank-Nicolson method to avoid the relaxation function present in the Euler
algorithm in OpenFOAM.

4.1. The Two-Dimensional Inviscid Taylor Vortex

Previous studies have reviewed the low-dissipative properties of the fully explicit Accelerated
Runge–Kutta and classic Runge–Kutta projection methods for incompressible flows in OpenFOAM [15,16].
To show that, the two-dimensional Taylor vortex has been used as benchmark due to its simplicity and
the existence of a viscous analytic solution. In the case of finite viscosity, the velocity and pressure
fields in a domain x ∈ [0, 2 π], y ∈ [0, 2π] are the following:

u(x, y, t) = sin x cos y e−νt

v(x, y, t) =− sin y cos x e−νt

p(x, y, t) =
1
4
(cos 2x + cos 2y) e−2νt

The present array of vortices, in the absence of viscosity, must yield zero dissipation and
remain stationary, i.e., dE/dt = 0. From the definition of kinetic energy, an analytic solution for
volume-averaged kinetic energy, E, is the following:

E(t) =
1
4

e−8νt (35)

In the inviscid case, it is clear that E(t) = E0 = 1/4. The kinetic energy resulting from the
numerical integration of the aforementioned solution using PISO and RK4 is shown in Figure 1.
Here, a grid of size 32× 32 with uniform spacing is used; additionally, a second-order flux interpolation
is used for the calculation of the advective term. The RK4 conserves the energy of the system,
while pisoFoam exhibits dissipative properties with an error proportional to the time step. From the
results shown in Figure 1 is easy to show that the error increases linearly with ∆t. According to what
was previously stated, such error in the PISO algorithm is not due to the relaxation term of Equation (29)
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neither from the spatial schemes for the different operators used nor to the Rhie–Chow interpolation,
since these are also used for RK4. This error originates from the treatment of the advective term, as will
be shown next.
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Figure 1. Normalized volume-averaged kinetic energy for the inviscid two-dimensional Taylor vortex:
Solid line, RK4 with Cou = 0.8; dashed line, pisoFoam with Cou = 0.2; dotted line, pisoFoam with Cou = 0.8.

The class abstraction for the multiphysics finite-volume framework present in OpenFOAM is thought
around the premise of writing hyperbolic PDEs in a natural way, more specifically transport equations.
To this end, the following assumption must be made for the time integration of the transport equation
of some quantity φ:

(
∂uj φ

∂xj

)n+1

≈
∂un

j φn+1

∂xj
+ O(∆tα), α > 1

Please note that the error induced by this time-splitting depends on the degree of coupling that
exists between the velocity and the transported variable φ. In the case of momentum transport, such
splitting introduces an additional approximation, since a Taylor expansion around the time step yields
the following

un+1
j un+1

i = un
j un+1

i + un+1
j un

i − un
j un

i + O(∆t2) (36)

Please note that the formulation in OpenFOAM only retains one or two of the three terms shown
in the right-hand side of the previous equation, depending on the time scheme selected. Such
approximation is remedied by the addition of inner iterations in the corrector cycle of PISO, and overall,
the algorithm behaves as being first-order accurate in time. On the other hand, in RK4 this operation is
not required, and it makes the algorithm more accurate than pisoFoam.

4.2. Hydrodynamic Instabilities: 2D Tollmien–Schlichting Waves

Two-dimensional disturbances occurring in laminar Poiseuille flow, causing transition to
turbulence, may be determined using the Orr-Sommerfeld/Squire equations. Such transition, being the
least stable mode of the aforementioned equations, is often called K-type transition. This case is
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of particular interest in the verification of energy-conserving Navier–Stokes solvers since analytic
expressions exist for the energy growth rate

log
(

E(t)
E0

)
= 2|αci|t.

Please note that the wave velocity c is a complex number, defined as

c = cr + ci i = − λ

iα
,

where λ is the eigenvalue of the least stable mode for the laminar Poiseuille flows. The least stable
mode is then chosen by obtaining the eigenspectrum of the Orr-Sommerfeld equation for a certain
critical Reynolds number, Recr, based on the centerline velocity, and a streamwise wavelength, α. We use
the same parameters used by [28], i.e., we use Recr = 5000 and α = 1.12 which according to the
neutral stability curve for Poiseuille flows, is stable. The resulting eigenspectrum (wave celerities) and
eigenvectors for the least stable mode are shown in Figure 2. As a reminder, the velocities (u, v) relate
to the eigenvectors (û, v̂) in the following way:

u(x, y, t) = û(y) exp[i(αx + ωt)],

v(x, y, t) = v̂(y) exp[i(αx + ωt)].

−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1 1.2

c i

cr

(a)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.5 0 0.5

y
/δ

streamwise velocities

R(û)
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Figure 2. (a) Eigenspectrum of the Orr-Sommerfeld/Squire equations for a 2D TS wave of Recr = 5000
and α = 1.12. The arrow indicates its least stable wave celerity c = 0.2817524273− 0.0024847328i;
(b) streamwise (left) and vertical (right) velocity perturbation coefficients for the least stable mode.

The computational domain is of dimensions (2π/α)× 2, and the resolution of the coarsest mesh is
64× 100. Notice that due to the linearity and 2-dimensionality of the present initial field, the spanwise
direction does not need to be refined nor solved. The perturbation velocities are used as initial fields
for the viscous simulation using an amplitude equal to 3% the centerline velocity, in order to guarantee
linearity of the solution for the first few iterations.

As a reference the energy growth rate for the first few seconds of the simulation is shown in
Figure 3, where time is normalized by T = 2 π/(αλr). Notice that the present method over-predicts
the energy growth, situation common when using 4th-order spatial stencils [28], whereas PISO predicts
a decay, meaning that the algorithm behaves as simulating a smaller value of Re which does not lie on
a stability curve.
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Figure 3. Energy growth rate obtained for the finest grid using RK4, and for PISO.

An order-of-accuracy analysis is made for which two additional grids are constructed by just
doubling the vertical resolution of the previous one. The rate of error reduction can be calculated as

p log (2) = log

(
φmedium − φcoarse

φfine − φmedium

)
,

where φ represents a value over which the error is to be calculated, and p the order of error reduction.
For the RK4 solver, using the data shown in Table 1, a value of p ≈ 2 is obtained. The reduction order
in this case corresponds to the second-order interpolation used for the discretization of the advective
operator. Please note that the error-reduction analysis is made only for the RK4 algorithm, since for
PISO it would not make sense in this case.

Table 1. Computed energy growth at t/T = 0.025.

Mesh Refinement E(t/T = 0.025) × 10−5

coarse 1.4945492
medium 1.4947583

fine 1.4948110

5. LES of Turbulent Flows

In this Section we report results for LES of two classical turbulent problems. First we consider the
canonical plane turbulent channel flow, where the two algorithms are validated for the case of neutral
stratification. Successively, we study the Rayleigh–Bènard convection between two horizontal plates

RK4 is used with the Dynamic Lagrangian Mixed Model (DLMM) already described, while the
simulations with PISO use the Dynamic ‘Mean’ Model (DMM) available in OpenFOAM. Note that in
both cases we employ the non-uniform Laplacian filter described in Equation (26). Furthermore,
for the Rayleigh–Bènard problem, the dynamic evaluation of the sgs scalar fluxes is used except
otherwise stated.
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Here, the following convention will be used to distinguish between resolved and sgs intensities
(or fluctuation) of a certain quantity, φ,

φ(x, y, z, t) = 〈φ〉(x, y, z) + φ′′(x, y, z, t) + φsgs(x, y, z, t),

where 〈·〉 denotes a mean quantity, φ′′ are the resolved fluctuations, and φsgs are the sgs contributions.
Thus, the total fluctuations of φ are

φ′(x, y, z, t) = φ′′(x, y, z, t) + φsgs(x, y, z, t). (37)

5.1. LES of Turbulent Poiseuille Flow: Physical Analysis

We consider a turbulent plane channel flow driven by a constant pressure gradient. The frame of
reference has x in the streamwise direction, y along the cross-stream direction and z as the wall-normal
direction. Here we use the DNS database reported in [29] for a channel flow at Reτ = (uτδ)/ν = 800,
where the friction velocity is uτ =

√
τwall/ρ0, the half height of the channel is δ, and the kinematic

viscosity is ν. The grid spacing is uniform in the x− y plane, whereas the grid is stretched along the
z-direction to guarantee adequate resolution near the solid walls. A geometric growth function is used
in which the first off-the-wall cell centroid is at ∆z+ ≈ 0.34. In order to guarantee a minimum of eight
grid points within z+ = 10 a stretching ratio of 7% is used, following Komen et al. [17].

A total of seven simulations were run using different grid distributions in the horizontal
direction, and different solvers/LES models. Table 2 summarizes the cases with their respective
characteristics. A first set of cases, hereinafter baseline cases (RK4M, PISOM, PISONM, PISOuDNS),
use the horizontal grid spacing constraints proposed by Choi and Moin [30], which are commonly
used in the literature of wall-bounded turbulence using LES [24,31–33]. Notice that an additional
control group composed of three fine grid cases (RK4Mf, PISOMf, PISONMf), using the grid spacing
constraints of Komen et al. [17], is studied in order to follow the recommendations made by the
aforementioned work regarding resolved LES using commercial codes.

Table 2. Test and control cases for the verification of the proposed methods in turbulent channel flows.

Case Grid Dimensions Domain Size (∆x+, ∆y+) Solver LES Model

RK4Mf
100× 100× 60 4

3 π × 2
3 π × 2 (33.5, 16.76)

RK4 DLMM
PISOMf PISO DLMM
PISONMf DMM

RK4M

80× 80× 60 4
3 π × 2

3 π × 2 (41.9, 20.9)

RK4 DLMM
PISOM

PISO
DLMM

PISONM DMM
PISOuDNS None

Figure 4 shows the non-dimensional velocity profiles obtained with the two algorithms and
different sgs models, together with the uDNS and the DNS reference profiles. The left panel contains
data for the baseline grid, the right panel refers to the fine grid. The results obtained using the RK4
algorithm exhibit a very good agreement with reference data; on the other hand, solutions using
PISO overestimate the velocity profile, although the results substantially improve with respect to the
uDNS. In this kind of simulations, given a constant longitudinal pressure gradient, one obtains the
nominal wall shear stress as given by the integral balance of momentum, and a dissipative algorithm
overestimates the velocity profile due to an incorrect curvature in the buffer layer. For PISO algorithm,
the results show that in the presence of coarser grid, the velocity profile is rather insensitive to the SGS
model; on the other hand, when using a finer grid the velocity profile obtained with the eddy-viscosity
dynamic model appears somewhat worse than that obtained with the dynamic mixed model.
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Figure 4. Mean velocity profile scaled using the friction velocity as a function of the distance from the
wall in wall units. The dash-dot line represents the log-law profile u+ = (1/κ) log y+ + 4.9 and the
viscous boundary layer velocity profile u+ = y+. (a) Baseline cases; (b) control, or fine grid, cases.

The rms of the diagonal terms of the total (resolved plus SGS) Reynolds stress tensor are shown
in Figure 5 for the two grids. The RK4 together with the DLMM gives satisfactory results for the
three statistics. PISO exhibits a higher level of fluctuations of the streamwise velocity and smaller
level of fluctuations for the other velocity components. Results similar to the ones obtained here
are reported also in Komen et al. [17]; in general the over-prediction of the rms of the streamwise
velocity component (and under-prediction of the rms of the other components) is due to an abnormal
energy redistribution through the pressure-strain correlation of turbulent fluctuations among the three
directions. The results are even worse in case of uDNS. Finally, note that the peak of the streamwise
component of the Reynolds stresses for the solution obtained with PISO is slightly displaced towards
the center of the channel: this may offer a reason for the incorrect resolution of the buffer layer,
as previously commented. Overall, the presence of the SGS model in PISO improves the results with
respect to the uDNS case, showing that the numerical dissipation does not overwhelm the effect of
the model. Also, the dynamic mixed model gives second-order statistics in better agreement when
compared with the performance of the dynamic eddy diffusivity model. This is particularly true in the
presence of coarse grids.
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Figure 5. Total root-mean-square profiles of the velocity components (u, v, w) made non-dimensional
with the friction velocity. (a) Baseline cases; (b) control, or fine grid, cases.

The mean Reynolds shear stress profiles shown in Figure 6 exhibit behavior within the ranges
expected for LESs of channel flow. No particularity can be drawn between the results obtained with
PISO using the turbulence model, except for a slight underestimation of τxz in the outer region of the
flow for PISO with LES model. This justifies the mismatch in the mean velocity profile due to the
fact that the molecular part of the shear stress appears slightly overestimated by PISO. Furthermore,
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the uDNS Reynolds stress may give the impression of attaining results similar to DNS but, from the
velocity profiles it is clear that such results corresponds to an artificially lower Reτ . Once again, the SGS
model in the PISO algorithm improves the quality of the results compared to an under-resolved
(or equivalently ILES) solution. As for the second-order statistics, the baseline cases using the DLMM
seem more accurate than the results obtained with DMM; on the other hand, results obtained for the
fine grid cases using DLMM are more accurate, specially for RK4. To be mentioned that the authors
have run also simulations using RK4 and the DMM (not shown), obtaining similar results to those
obtained with PISO and the DMM.
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Figure 6. Total and residual (SGS) Reynolds shear stress profiles. (a) Baseline cases; (b) control, or fine
grid, cases.

With the aim to analyze the behavior of the filters/LES models herein employed, we carried out
an additional analysis which gives an estimation of the growth of the residual eddy viscosity and of
the scale-similar shear stress close to the wall. Considering that

u(x, y, z, t) = a(x, y, t)z, (38)

v(x, y, z, t) = b(x, y, t)z, (39)

w(x, y, z, t) = c(x, y, t)z2, (40)

If one filters the u − w components of the velocity fields using Equation (26), the following
relations are obtained:

u = az +
a

12

(
∂∆z

∂z

)
,

w = cz2 +
c

12

(
∂∆z

∂z
z + ∆z

)
.

Now, if one takes the definition of the residual stress component τr
13 as

τr
13 = uw− u w, (41)

The terms on the RHS are written as:

uw = acz3 +
3ac
24

(
∂∆z

∂z
z2 + 2∆zz

)
,

u w =
1

122

(
a

∂∆z

∂z
+ 12az

)(
c∆z + c

∂∆z

∂z
z + 12cz2

)
.

From the same empirical relations expressed in Equations (38)–(40) it can be shown that in the
vicinity of the wall [34]:



Fluids 2019, 4, 171 17 of 25

τr
13 = 2νrS13 ∼ 2νra, (42)

Meaning that

νr

ν
∼ O(z3 + z2 + z). (43)

The same scaling applies for the scale-similar SGS shear stress. Notice that the previous relation
holds for the filter herein used; the relation may change if different filters are used, whether filtering
is made only along certain directions, or whether the filtering is made in physical space (for a more
complete discussion see [35]). For instance, the top-hat filter when used following the approach
proposed by Jordan [36] for finite-difference/volume methods leads to the relation

νr

ν
∼ O(z3).

The near-wall scaling profiles of the residual viscosity as well of the scale-similar shear stress are
shown in Figure 7. Please note that both the eddy diffusivity and the scale-similar contribution are
in good agreement with the scaling estimate presented in Equation (43), for the DLMM algorithm
proposed in the present work. The normalized turbulent viscosity profiles obtained for the DMM
algorithm do not match the scaling estimates presented earlier, and seems to remain roughly constant
across the channel. Notice that the sgs contribution of the DMM is about two orders of magnitude less
compared to the contributions obtained with DLMM in the logarithmic region.
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Figure 7. (a,c) Mean SGS viscosity profile normalized by the molecular viscosity; (b,d) Mean
scale-similar contribution to the residual Reynolds stress.
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5.2. LES of Rayleigh–Benard Convection

In this section, we analyze the performance of the two algorithms in a problem of wide interest in
the scientific community, namely Rayleigh–Benard Convection (RBC). In canonical RBC the fluid is
confined between two horizontal plates, the lower of which is hotter than the upper one. The Rayleigh
number rules the intensity of buoyancy with respect to momentum and heat diffusion

Ra =
U2

f H2

νκ
=

gα∆TH3

νκ

where α is the thermal expansion coefficient, ∆T is the imposed temperature difference between lower
and upper plate and H is the gap between the plates; κ is the thermal diffusivity of the fluid and
U f =

√
gα∆TH the free-fall velocity of a fluid parcel. Other parameters ruling convective processes

are the Prandtl number Pr = ν/κ and the aspect ratio of the cell Γ = L/H where L is the horizontal
length scale of the domain. In the atmosphere, the convective motions [37] can be very energetic,
with values of the Rayleigh number of the order of 1018. Physical experiments with Rayleigh numbers
close to that of the atmosphere have been carried out by [38]. Numerical experiments of RBC are
typically carried out using Direct Numerical Simulation (DNS) or by LES. The former can afford
low-to-moderate values of Rayleigh number, the latter can push the limit of Ra to larger values. LES of
RBC in cubic cavities have been performed by [39] and by [40] in the presence of grooves.

Here, particular attention is paid the study of the relation between Ra, a measure of the forcing
acting on the flow, and Nu which is a measure of the heat exchange properties of the flow. Such relation
may be expressed in the form

Nu = γRaβ. (44)

Such power law is not universal [41]: the γ, β coefficients may be function of other
non-dimensional parameters. Universality may be assumed in cases where the aspect ratio is
unimportant (namely infinite plates), the Rayleigh Number is not very large (< 1011), and for Prandtl
numbers larger than > 0.4. Comparisons with power laws calibrated via DNS [42] and physical
experiments [43] will be made, in order to test the performance of the algorithms discussed in the
present paper.

Here we study turbulent convection between two infinite horizontal plates, so that the aspect
ratio of the domain is not a free parameter of the problem. The computational domain is Lx = Ly =

6H, Lz = H and the grid is composed of 307, 200 hexahedral cells. The spacing along the horizontal
directions is set constant, while the mesh is stretched along the vertical direction, in order to adequately
reproduce the thermal boundary layer, δθ . Following the meshing strategy proposed by Verzicco and
Camussi [41], at least 6 grid points have been placed within the thermal boundary layer defined as
δθ ' H/2 Nu. Notice that for Pr ≤ 1, the Kolmogorov scale, η, is lower or equal to the Batchelor
length scale, ηT , but for the Pr = 1 herein considered these can be regarded as equal. This implies that
for wall-resolving LES, the meshing criteria may be based on an accurate resolution of the thermal
boundary layer, for which estimates are readily available. The distribution of the grid points is made
using the hyperbolic tangent function, clustering them near the plates. The first cell node off the
wall is located at ∆z/H = 0.001, which is much smaller than δθ/H ∼ 1/2Nu = 0.025 for the largest
Rayleigh number herein examined (Ra = 2× 107). Periodic boundary conditions are imposed on the
horizontal direction (to mimic infinite plates) and no-slip condition on the plates. A summary of the
different settings used for the simulations ran in this section are presented in Table 3. The results of
three different Rayleigh numbers are analyzed Ra = 6.3× 105, 2× 106, 2× 107. For the sake of clarity,
normalization of the wall-normal coordinate, temperature and velocity are made in the following way:



Fluids 2019, 4, 171 19 of 25

Θ =
T − Tcold

∆T
,

(u, v, w) = (u1, u2, u3)/U f ,

z = x3/H,

where Tcold refers to the temperature in the cold plate, and U f the free-fall velocity. A first level of
analysis of the results obtained using the proposed algorithms can be made by calculating Nu along
the vertical. The integral relation

Nu =

√
Ra
Pr
〈wΘ + ηc

z〉 −
∂〈Θ〉

∂z
(45)

Dictates that the Nusselt number must remain constant along the vertical. Please note that the
above relation considers the SGS scalar fluxes product of the LES formulation used.

Table 3. Test cases for the verification of the proposed methods in Rayleigh Bernard Convection.

Case Grid Dimensions Domain size (∆x, ∆y, ∆zmin) Solver LES Model

RK4DLMM 80× 80× 48 6× 6× 1 (0.075, 0.075, 0.001) RK4 DLMM
PISODLMM 80× 80× 48 6× 6× 1 (0.075, 0.075, 0.001) PISO DLMM
RK4DLMMRA 80× 80× 48 6× 6× 1 (0.075, 0.075, 0.001) RK4 DLMM + RA

Vertical profiles for each of the terms just discussed, for the Ra considered in this work, are plotted
in Figure 8a–c. These results for Nu lie between the ranges calculated using different empirical
relations, obtained either by physical or numerical experiments, proposed in the literature [42,43].
Additionally, Figure 8d show the results obtained running the DLMM for momentum and using the
RA for the scalar. Near-wall predictions of the Nusselt number are similar to the other simulations,
although predictions in the core of the channel show higher SGS fluctuations than expected leading to
a non-constant Nusselt profile. The latter results will not be discussed further.

A second level of analysis involves the calculation of the temperature rms profiles. As shown
in Figure 8e, the resolved rms profiles are underestimated compared to the DNS results of [44] for
the lowest of Ra. This is not surprising since the SGS temperature fluctuations are not present in the
statistical quantity. The trend of temperature fluctuations seems to physically represent the thinning of
the temperature boundary layer as Ra increases. In general, the solutions obtained with PISO exhibit a
higher state of temperature fluctuations, as expected for over-dissipative algorithms.

For an accurate estimation of the γ, β parameters of the function Nu = f (Ra), several other ways
of calculating Nu are proposed in the literature:

Nu = 1 +
√

Ra Pr〈ε〉eff, (46)

Nu =
√

Ra Pr〈N〉, (47)

Nu =
∂〈Θ〉

∂z

∣∣∣∣
wall

(48)

where 〈ε〉eff is the effective averaged energy dissipation rate (sgs contributions included), and 〈N〉 the
resolved averaged temperature variance dissipation rate. By volume-averaging each of the quantities
just presented at every iteration, one may obtain for each Ra a distribution of Nu in time. The sampling,
and time-averaging, is performed over a period of 300H/U f , starting from a fully developed flow field.
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Figure 8. Vertical profiles of the Nusselt number, Nu, the viscous heat flux contribution ∂Θ/∂z,
the turbulent contribution 〈wΘ〉, and the sgs contributions for: (a) Ra = 6.3× 105; (b) Ra = 2× 106;
(c) Ra = 2 × 107; and (d) Ra = 2 × 107 using the Reynolds Analogy; using RK4 and pisoFoam;
Additionally, the (e) temperature RMS for the Ra considered are presented.

Results obtained both with pisoFoam and RK4, each using its corresponding turbulence models,
is shown in Figure 9. The results obtained using RK4 with the Lagrangian mixed model show increasing
variability in the calculation of Nu as Ra increases, whereas for PISO using the Reynolds Analogy such
variability is not as strong as it can also be seen in Table 4. A least-square fit, considering the variance
of Ra, for the RK4 data gives a slope β which is very similar to experiments, and the theoretical value
βt = 2/7. On the other hand the slope β for PISO is slightly higher, indicating the presence of a small
amount of ‘artificial’ heat exchange caused by the overall model. However, the rather strong variability
shown for the highest Ra using the different approaches for Nu is expected in this case, given the
relative under-resolution of the mesh in the horizontal directions.
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Figure 9. Nusselt number as a function of the Rayleigh number for the results obtained using PISO
and RK4. Please note that the results obtained are presented with their corresponding error-bars,
taken as one standard deviation of the Nu distributions obtained using different definitions. Line-dots:
From [43]; Line-double dots: From [42].

Table 4. Nusselt number as a function of the Rayleigh number for the results obtained using PISO and
RK4, in which the error is taken as the time standard deviation.

Ra Nu± 〈σ2〉1/2

PISO RK4

6.3× 105 7.561356± 0.029477 7.4051439417± 0.1218679281
2.0× 106 10.660694± 0.071748 10.4987945729± 0.2913541913
2.0× 107 20.700736± 0.168435 19.6569584688± 0.9787957580

Typically, the Reynolds Analogy considers that mixing of temperature occurs at the same rate as
mixing of momentum, namely that the turbulent Prantdl number Prr = νr/κr ∼ O(1). This assumption
is made explicit by the relation

PrSGS = νSGS/κSGS = 1,

In the context of LES modeling. Nevertheless, the work of [21], and literature therein cited, shows
that this quantity is not constant along the vertical.

The SGS Prandtl number for the three RBC flows obtained using the present algorithms is shown
in Figure 10. Please note that as the Ra increases, the PrSGS increases in the core region. Nevertheless,
such ratio does not remain constant across the channel height, and its variation is not monotonic.
In the core of the channel, as Ra increases, SGS turbulent momentum mixing tends to be higher than
its scalar counterpart. Such scenario may explain the trend of the PISO predictions shown in Figure 10:
the assumption PrSGS = 1 under-predicts scalar turbulent mixing for the core portion of the channel,
as Ra increases.
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Figure 10. Profiles of PrSGS calculated using the present RK4 LES model for the scalar.

6. Conclusions

In the present paper, we compare two different solution methods for the time integration of the
Boussinesq form of the NSE, namely the RK4 and PISO. The PISO along with the DMM algorithms
are present within the OpenFOAM library, whereas the RK4 and the DLMM models shown in this work
are not.

We first consider the standard implementation of the algorithms in the framework and study the
conservation properties using literature test cases, namely the two-dimensional unsteady Taylor vortex
and the growth of the linear disturbance in a plane Pouseuille flow under critical conditions. Results of
these tests reveal the superiority of the RK4 algorithm over pisoFoam, since the former predicts better
the time evolution of the non-linear term in both cases, whereas the latter exhibits dissipative features
which may have negative consequences in the study of transitional flows.

Successively, we test the two algorithms within the Smagorinsky LES philosophy: the Dynamic
Lagrangian Mixed Model (DLMM), on the other hand the Dynamic ‘Mean’ Model present in
OpenFOAM/foam-extend. Also, in case of buoyant flows, the SGS Prandtl number is either evaluated
dynamically by the DLMM, or just by setting PrSGS constant. The studies involving the DLMM and
DMM use the anisotropic Laplace filter.

The use of the RK4 algorithm in conjunction with the DLMM for momentum turbulence show
better results compared to those obtained using pisoFoam along with DMM. RK4 together with the
DLMM provides good first- and second-order statistics for the neutral wall-bounded flow whereas
the results obtained with pisoFoam, although reasonable, are less accurate. This has been attributed
both the dissipative character of pisoFoam and to the particularities in the SGS models present in
the distributions of OpenFOAM. Interestingly, the use of the SGS model substantially improves the
performance of pisoFoam, compared to corresponding coarse DNS (or equivalently ILES) solutions,
regardless the LES model. This means that although PISO being more dissipative than RK4,
numerical dissipation is not able to overwhelm the effect of the SGS model, and this is probably
the feature which has made the algorithm successful in the scientific and engineering communities.

In case of buoyant flows, the Nusselt number predicted using RK4 behaves somewhat better
than pisoFoam, although it exhibits some deviations when calculated using different methods.
Such deviation is the result of taking into account quantities for which no SGS model is implemented
(i.e., the temperature variance.) The analysis of the behavior of the SGS Prandtl number,
calculated dynamically within the RK4 LES methodology shows that it tends to 1 in the core region.
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This clearly shows that the assumption of constant SGS Pr number may produce higher inaccuracies
as the Ra number increases, as the cases studied here have shown.

Overall, although pisoFoam exhibits some dissipative features, our tests show that a consistent
SGS model is able to improve the results when compared to under-resolved DNS and, as such, it can
be still considered a reasonable good algorithm for LES studies. It is robust and provides good results
even in the presence of unstructured non-hexahedral meshes, needed when studying very complex
geometrical configuration. The RK4 algorithm appears more accurate because of its energy-conserving
properties, but its own efficiency in the presence of very stable stratification or in the presence of
non-hexahedral meshes has still to be verified. Also, an accurate and robust filter function to be used
for non-hexahedral meshes is needed. These issues will be analyzed in upcoming research.

Author Contributions: S.L.C.: Conceptualization, Software, Validation, Writing–Original Draft, Formal Analysis.
V.A. & A.P.: Supervision, Writing–Review & Editing. V.A.: Investigation, Formal analysis, Funding acquisition.
G.P.: Validation.

Funding: This project received no external funding.

Acknowledgments: The present research has been supported by Region FVG-POR FESR 2014-2020,
Fondo Europeo di Sviluppo Regionale, Project PRELICA “Metodologie avanzate per la progettazione idroacustica
dell’elica navale”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chorin, A.J. Numerical Solution of the Navier-Stokes Equations. Math. Comp. 1968, 23, 341–362. [CrossRef]
2. Temam, R. Une methode d’approximation de la solution des equations de Navier-Stokes. Bull. Soc. Math. Fr.

1968, 96, 115–152. [CrossRef]
3. Kim, J.; Moin, P. Application of a fractional-step method to incompressible Navier-Stokes equations.

J. Comput. Phys. 1985, 59, 308–323. [CrossRef]
4. Le, H.; Moin, P. An improvement of fractional step methods for the incompressible Navier-Stokes equations.

J. Comput. Phys. 1991, 92, 369–379. [CrossRef]
5. Zang, Y.; Street, R.L.; Koseff, J.R. A non-staggered Grid, fractional step method for time-dependent

incompressible Navier-Stokes equations in Curvilinear Coordinates. J. Comp. Phys. 1994, 114, 18–33.
[CrossRef]

6. Zang, Y.; Street, R.L.; Koseff, J.R. A dynamic mixed subgrid-scale model and its application to turbulent
recirculating flows. Phys. Fluids A Fluid Dyn. 1993, 5, 3186–3196. [CrossRef]

7. Armenio, V. Large Eddy Simulation in Hydraulic Engineering: Examples of Laboratory-Scale Numerical
Experiments. J. Hyd. Eng. 2017, 143. [CrossRef]

8. Mahesh, K.; Constantinescu, G.; Moin, P. A numerical method for large-eddy simulation in complex
geometries. J. Comput. Phys. 2004, 197, 215–240. [CrossRef]

9. Issa, R.I. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys.
1986, 62, 40–65. [CrossRef]

10. Jasak, H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows.
Ph.D. Thesis, University of London, London, UK, 1996.

11. Chen, G.; Xiong, Q.; Morris, P.J.; Paterson, E.G.; Sergeev, A.; Wang, Y. OpenFOAM for computational fluid
dynamics. Not. AMS 2014, 61, 354–363. [CrossRef]

12. Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics
using object-oriented techniques. Comput. Phys. 1998, 12, 620–631. [CrossRef]

13. Grinstein, F.F.; Margolin, L.G.; Rider, W.J. Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics;
Cambridge University Press: Cambridge, UK, 2007.

14. Lysenko, D.A.; Ertesvåg, I.S.; Rian, K.E. Large-eddy simulation of the flow over a circular cylinder at
Reynolds number 3900 using the OpenFOAM toolbox. Flow Turbul. Combust. 2012, 89, 491–518. [CrossRef]

15. Vuorinen, V.; Keskinen, J.P.; Duwig, C.; Boersma, B. On the implementation of low-dissipative Runge–Kutta
projection methods for time dependent flows using OpenFOAM R©. Comput. Fluids 2014, 93, 153–163.
[CrossRef]

http://dx.doi.org/10.1090/S0025-5718-1969-0242393-5
http://dx.doi.org/10.24033/bsmf.1662
http://dx.doi.org/10.1016/0021-9991(85)90148-2
http://dx.doi.org/10.1016/0021-9991(91)90215-7
http://dx.doi.org/10.1006/jcph.1994.1146
http://dx.doi.org/10.1063/1.858675
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001357
http://dx.doi.org/10.1016/j.jcp.2003.11.031
http://dx.doi.org/10.1016/0021-9991(86)90099-9
http://dx.doi.org/10.1090/noti1095
http://dx.doi.org/10.1063/1.168744
http://dx.doi.org/10.1007/s10494-012-9405-0
http://dx.doi.org/10.1016/j.compfluid.2014.01.026


Fluids 2019, 4, 171 24 of 25

16. D’Alessandro, V.; Binci, L.; Montelpare, S.; Ricci, R. On the development of OpenFOAM solvers based
on explicit and implicit high-order Runge–Kutta schemes for incompressible flows with heat transfer.
Comput. Phys. Commun. 2018, 222, 14–30. [CrossRef]

17. Komen, E.; Camilo, L.; Shams, A.; Geurts, B.J.; Koren, B. A quantification method for numerical dissipation in
quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved
DNS of turbulent channel flows. J. Comput. Phys. 2017, 345, 565–595. [CrossRef]
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