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Abstract: We develop incompressible magnetohydrodynamic (IMHD) energy budget equations with
a spatial filtering kernel and estimate the scaling of the structure functions. The Politano-Pouquet
law is recovered as an upper bound on the scale-to-scale energy transfer. The primary result of
this work is the relation of the scaling of IMHD invariants. It can be produced by hypothesizing a
scale-independent energy transfer rate. These results have relevance in plasma regimes where the
approximations of IMHD are justified. We measure structure functions with solar wind data and find
support for the relations.
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1. Introduction

In turbulent flows, obtaining theoretical solutions for the field (velocity, density, magnetic, etc.)
structure is made difficult by the problem of closure of the equations (e.g., Navier-Stokes). The standard
way to skirt this issue is to propose a self-similar relation on the statistical distribution function. This is
the key content of Andrei Kolmogorov’s breakthrough in turbulence theory [1]. This connection is born
from a result on the Navier-Stokes equation for stationary, statistically homogeneous, ideal turbulence
(large Reynolds’ number or vanishing viscosity) [2,3]. Kolmogorov noted that a set of scales will be
dominated by non-linear interactions that are independent of the viscous details. This represents a
definition of universality, which together with the hypothesis of constant skewness of the fluctuations,
allows one to theorize the shape of the power spectrum of velocity fluctuations at intermediate
scales [4]. A wealth of research followed these efforts introducing corrections and further questions on
the precise mathematical account of the scale similarity.

Kolmogorov’s phenomenological result can also be produced in a seemingly more rigorous
fashion by introducing a filter [5], identifying the scale-to-scale energy flux and using estimates [6].
This approach leads to the consideration that, for ideal turbulence, the energy will not reshuffle,
say among the Fourier modes of the velocity field, unless the velocity field suffices a Hölder condition.
This relates the increments of the velocity field to its spatial scaling as Kolmogorov had done
(although with some differences, which are noted below). In the literature, this is termed the “Onsager
minimal assumption" and has been charmingly recapped, among other non-published works, by Lars
Onsager in [7]. In this article, we follow the general method put forth by Onsager, but applied to the
incompressible magnetohydrodynamic (IMHD) equations instead of Navier–Stokes, and derive a set
of scaling exponents. Although this is not a novel result [8,9], we have recapped the derivation with
precise detail and an alternative set of scaling exponents, for reasons we briefly expose in the following.

The power spectral density of the interplanetary magnetic field was measured by the Mariner
2 spacecraft and presented by Paul J. Coleman Jr. [10] in a formative article that birthed the research
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field of solar wind turbulence. Direct measurement of the solar wind, a hot tenuous rarely collisional
ionized gas, has presented physicists a massive test bed for plasma and turbulence theories [11].
Among the many persisting topics with unresolved theory, the prediction of the power spectral density
plays a central role. Formalized versions of Kolmogorov’s work, called the Kármán-Howarth-Monin
relations, have been applied to various versions of the magnetohydrodynamic equations [12], but the
scale-similarity assumptions are complicated by an anisotropy to the direction of the magnetic field.
Notable attempts on the subject have been made with degrees of success [13–15]. However, thus far,
there is no exact theory for the form of the IMHD power spectral density. For this reason, we seek here
a different approach.

2. Definitions and Notation

Let us begin by defining a general spatial filtering kernel =`(x − x′) that is positive definite,
normalized, centered and rapidly decreasing towards infinity so it satisfies the following properties:

=`(x− x′) ≥ 0; lim
r→±`

=`(x− x′)→ 0 (1)∫
V(`)

d3x′ =`(x− x′) = 1 (2)∫
V(`)

d3x′ =`(x− x′) |xi − x′i | = 0 (3)

=`(x− x′) = `−3 =`(U) ; U =
|xi − x′i |

`
lim
`→0

`−3 =`(|xi − x′i |/`)→ ∆(|xi − x′i |) , (4)

where the separation vector r = x′ − x is written bold as argument of a function and with index
notation outside, and the norm is defined as |ri| =

√
ri ri. The above kernel ensures the standard

convolution integral definition. The quantity ` is the radius of the integration volume, and it is not
identified with any physically identifiable scale. This can also be seen in the right-hand limit of
Equation (4), where the unorthodox symbol ∆ is used (for notational issues) to indicate the Dirac delta
function. The large- and small-scale filters on a generic vector field y are defined, respectively, as:

ỹ`i (x) =
∫

V(`)
d3x′ =`(x− x′)yi(x′) (5)

ȳ`i (x) = yi(x)− ỹ`i (x) = −
∫

V(`)
d3x′ =`(x− x′)δyi(x; r) , (6)

with the definition δyi(x; r) = yi(x + r)− yi(x) indicating the standard two-point, scale-dependent
field increment. From Equation (4), it follows that, at small-scales,

∫
V(`) d3x′=`(x − x′) f (x) =

f (x)
∫

V(`) d3x′=`(x− x′) = 1.

2.1. Commutation with Derivative

To display further properties, we show that the derivative commutes with the filter:

∂j f (x)
:`

=
∫

V(`)
d3x′ =`(x− x′)∂′j f (x′) =

∫
V(`)

d3x′
[
∂′j=`(x− x′) f (x′)− f (x′)∂′j=`(x− x′)

]
, (7)

where we used the product rule. From the divergence theorem on the first term of Equation (7) follows:

∂j f (x)
:`

=
∫

S(`)
d2x′ x̂′j=`(x− x′) f (x′)−

∫
V(`)

d3x′ f (x′)∂′j=`(r) . (8)
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As the kernel is defined to be zero on the surface S(`), the first term on the right-hand side of
Equation (8) is zero. The derivative on the kernel thus gives:

∂j f (x)
:`

= −
∫

V(`)
d3x′ f (x′)`−1 rj

|ri|
∂U=`(U) , (9)

where we use U = |rj|/` and the derivative is ∂U
.
= ∂/∂U, introduced with the chain rule. We have

also worked out that:

∂′jU
.
=

∂

∂x′j

1
`
(riri)

1/2 =
1
2`

(riri)
−1/2 ∂

∂x′j

(
x2

i + x′2i − 2x′i xi
)

=
1
2`

(riri)
−1/22δij(x′i − xi) =

1
`
(riri)

−1/2rj
.
=

1
`

rj

|ri|
(10)

∂jU
.
=

∂

∂xj

1
`
(riri)

1/2 =
1
2`

(riri)
−1/2 ∂

∂xj

(
x2

i + x′2i − 2x′i xi
)

=
1
2`

(riri)
−1/22δij(xi − x′i) =

−1
`
(riri)

−1/2rj
.
=
−1
`

rj

|ri|
. (11)

The definition of the Kronecker delta δij was used, and the chain rule on the kernel is such: ∂j =`(x−
x′) = −∂′j =`(x− x′). The derivative on the filtered field is thus:

∂j f (x)
:` = ∂j

∫
V(`)

d3x′ =`(x− x′) f (x′) =
∫

V(`)
d3x′ f (x′)∂j=`(x− x′) . (12)

This is a convolution integral, integrated over d3x′, and by this definition:

∂j f (x)
:` = −

∫
V(`)

d3x′ f (x′)`−1 rj

|ri|
∂U=`(U) , (13)

because ∂j f (x′) = 0. The derivative of the kernel thus produces a minus sign this go-around. We have
shown the filter and derivative commute under the assumption of integrability of the kernel and of
the functions.

2.2. Cumulants

This allows us to generalize the cumulants of higher order, following from the definition of the
kernel. The definition of the covariance (second order cumulant) is:

τ`
ij
(

f (x), g(x)
)
=
∫

V(`)
d3x′ =`(x− x′) fi(x′) gj(x′)

−
[ ∫

V(`)
d3x′ =`(x− x′) fi(x′)

] [ ∫
V(`)

d3x′ =`(x− x′)gj(x′)
]

, (14)

where index of the tensor τ`
ij follows to the parentheses in the order that they appear. It is possible to

simplify the notation by defining:

τ`
ij
(

f (x), g(x)
) .
= τ`

ij
(

f , g
)
= f̃igj − f̃i g̃j . (15)

The third-order cumulants appear:

τ`
ijk( f , g, h) = figjhk

:
− τ`

ij( f , g)h̃k − τ`
ik( f , h)g̃j − τ`

jk(g, h) f̃i − f̃i g̃j h̃k (16)

= figjhk
:

− figj
:

h̃k − fihk
:

g̃j − gjhk
:

f̃i + 2 f̃i g̃j h̃k . (17)
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This notation uses the order of the cumulant as the number of terms separated by commas and the
rank of the tensor as the number of non-paired indexes.

2.3. Norms and Inequalities

Above, we define the Euclidean norm | fi| =
√

fi fi. In the following, the Lebesque space norms
of order p, which we call Lp-norms, are necessary. We define here such norm as:

|| fi||p =

[
1
V

∫
V

d3x | fi|p
]1/p

< ∞ , (18)

where the measure is the physical space x. Note that || fi||∞ = sup{|| fi||p}. We further introduce the
Hölder inequality:

||Πj f (j)
i ||p ≤ Πj || f

(j)
i ||pj ; ∑

j

1
pj

= p, p ≥ 1 , (19)

where Πj is the product operation. Furthermore, we make use of the Minkowski inequality:

|| fi + gi||p ≤ || fi||p + ||gi||p , (20)

and, finally, Young’s inequality for convolutions, which in the notation of the present paper appears as:

||ỹ`i (x)||r ≤ ||=`(x− x′)||p ||yi(x′)||q ; 1 +
1
r
=

1
p
+

1
q

, (21)

(note that proof of this equation does require integrating d3x, d3x′).

2.4. Estimates

We use the Hölder condition given above to estimate various terms in our derivation. In the
Euclidean space, the condition can be stated as:

| f (x′)− f (x)| ≤ a |x′ − x|b , (22)

for a, b real positive numbers. The condition is understood, assuming a < ∞, so that for 0 < b < 1 the
function f is continuous, for b = 1 the function f is Lipschitz continuous and for b > 1 the function f
is constant. A sharp function appears discontinuous to an increment |x′ − x| that is too large, and as
the increment is decreased it changes dramatically, once the sharpness is resolved, becoming again
continuous. The sharper is the function, the more dramatic and smaller is the event that occurs.
Sharper functions have smaller Hölder exponent b, for functions on the interval 0 < b < 1.

3. Filtered Incompressible Magnetohydrodynamic Equation

The incompressible magnetohydrodynamic (IMHD) equations can be written as:

∂tyi + ∂jwjyi = −∂i p + ν∂2
j yi ; ∂iyi = 0 . (23)

The vector field yi = ui + bi, wi = ui − bi are the Elsasser variables, so that switching yi → wi and
wi → yi recovers the two other equations, and sum/differences recover the momentum equations for
the velocity ui and Alfvén velocity bi, respectively. The dissipative coefficient ν requires resistivity equal
to the viscosity (i.e., Prandtl number Pr = 1). Note that, as the limit ν → 0 is only considered in the
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following, we are not interested in specific dissipation range physics, where the IMHD approximation
fails. Writing the filtered IMHD equation:

∂tỹi + ∂jw̃jyi = −∂i p̃ + ν∂2
j ỹi ; ∂i ỹi = 0 , (24)

since the derivative and filter commute. We use the simplified notation:

ỹ`i (x′)→ ỹ′i ỹ`i (x)→ ỹi (25)

ȳ`i (x′)→ ȳ′i ȳ`i (x)→ ȳi (26)

=`(x− x′)→ =` (27)

4. Energy Budget

In these sections, we build energy budget equations for the large, small and total scales of the
system. The technique essentially consists of writing an energy-like equation for the fields, writing all
terms as fluxes through surfaces or internal change within the volume, and then sub-categorizing into
scale-to-scale transfer when they appear in large- or small-scale equations, or inter-scale otherwise.
We start by obtaining a tensor version of the equation, so that the role of anisotropy can be discussed.
Additionally, we write the time-evolution equation for the cross-field, which is the non-linear term in
the IMHD equation (Equation (23)).

4.1. Large-Scale Budget Equations

In these sections, we develop the large-scale budget equations. Let us define the
large-scale densities:

ẽy
ij =

1
2

ỹi ỹj, ẽw
ij =

1
2

w̃iw̃j, ẽr
ij = ỹiw̃j . (28)

These quantities are the fields averaged over a volume characterized by arbitrary `, and represent the
quantities associated to the large scale. Obviously, the true energies can be recovered by applying a
Kronecker delta δij and integrating:

Ẽy
ii =

1
V

∫
V

d3x δij ẽ
y
ij (29)

Ẽw
ii =

1
V

∫
V

d3x δij ẽw
ij (30)

Ẽr
ii =

1
V

∫
V

d3x δij ẽr
ij (31)

4.1.1. Energy

Here, we develop an equation for ∂tỹi ỹj. As done before, we write the IMHD equations:

∂tỹi + ∂kwkyi
: = −∂i p̃ + ν∂2

k ỹi , (32)

introduce the second order cumulant for the non-linear terms:

∂tỹi + ∂k
(
τ`

ik(y, w
)
+ w̃k ỹi) = −∂i p̃ + ν∂2

k ỹi , (33)

then take the inner product with ỹj:

ỹj∂tỹi + ỹj∂k
(
τ`

ik(y, w
)
+ w̃k ỹi) = −ỹj∂i p̃ + νỹj∂

2
k ỹi , (34)
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and perform the same calculation for the ỹi∂tỹj = ... to eventually produce:

ỹi∂tỹj + ỹi∂k
(
τ`

jk(y, w
)
+ w̃k ỹj) = −ỹi∂j p̃ + νỹi∂

2
k ỹj . (35)

Summing the two above equations, and using incompressibility and product rule to recombine the
terms, we obtain:

∂tỹi ỹj + ∂k ỹjτ
`
ik(y, w

)
− τ`

ik(y, w
)
∂k ỹj + ∂k ỹiτ

`
jk(y, w

)
− τ`

jk(y, w
)
∂k ỹi + ∂kw̃k ỹi ỹj

= −
(
ỹj∂i + ỹi∂j

)
p̃ + ν

[
∂2

k ỹi ỹj − 2(∂k ỹi)(∂k ỹj)
]

. (36)

Note that we unravel d the term containing the second-order cumulant, as it is convenient below. The
same procedure for the w̃-field produces:

∂tw̃iw̃j + ∂kw̃jτ
`
ik(w, y

)
− τ`

ik(w, y
)
∂kw̃j + ∂kw̃iτ

`
jk(w, y

)
− τ`

jk(w, y
)
∂kw̃i + ∂k ỹkw̃iw̃j

= −
(
w̃j∂i + w̃i∂j

)
p̃ + ν

[
∂2

kw̃iw̃j − 2(∂kw̃i)(∂kw̃j)
]

. (37)

4.1.2. Cross-Field

We are now interested in the evolution of a second order term r̃ij = ỹiw̃j, often referred to as the
residual energy density for j = i. Thus, we write an equation for each, take the scalar product with the
other field, for the two equations:

w̃j∂tỹi + w̃j∂k
(
τ`

ik(y, w) + ỹiw̃k
)
= −w̃j∂i p̃ + νw̃j∂

2
k ỹi (38)

ỹi∂tw̃j + ỹi∂k
(
τ`

jk(w, y) + w̃jỹk
)
= −ỹi∂j p̃ + νỹi∂

2
kw̃j . (39)

After summing the equations and some simplifications:

∂tỹiw̃j + w̃j∂k
(
τ`

ik(y, w) + ỹiw̃k
)
+ ỹi∂k

(
τ`

jk(w, y) + w̃jỹk
)
=

−w̃j∂i p̃− ỹi∂j p̃ + ν

[
w̃j∂

2
k ỹi + ỹi∂

2
kw̃j

]
. (40)

This is the temporal evolution of the non-linear terms in the IMHD equations. Notice that here
swapping i, j does change the equation.

4.2. Small-Scale Energy Budget

We now seek the-small scale energy equations; most intuitively, we define the total energy in the
yi-field: 1

2

∫
V d3x y2

i so that the small scale energy is:

1
2

∫
V

d3x ȳ2
i =

1
2

∫
V

d3x
[
y2

i − ỹ2
i
]

, (41)

as obtained by subtracting off the large-scale contribution. With the definition of the filtered equation∫
V d3x f̃ =

∫
V d3x f :

1
2

∫
V

d3x ȳ2
i =

1
2

∫
V

d3x
[

y2
i

:
− ỹ2

i

]
. (42)

This is the second-order cumulant τ`
ii(y, y), as defined above. We introduce now some definitions

relative to the small-scale energy density:

ēy
ij =

1
2

τ`
ij(y, y), ēw

ij =
1
2

τ`
ij(w, w), ēr

ij = τ`
ij(y, w) , (43)
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and the actual small-scale energies:

Ēy
ii =

1
V

∫
V

d3x δij ē
y
ij (44)

Ēw
ii =

1
V

∫
V

d3x δij ēw
ij (45)

Ēr
ii =

1
V

∫
V

d3x δij ēr
ij . (46)

Thus, we seek a time-evolution equation for the cumulant: τ`
ij(y, y), τ`

ij(w, w) τ`
ij(y, w).

4.2.1. Small-Scale Cross-Field

Let us start by writing an equation for ∂t yiwj using the IMHD Equation (23) as done above,
but without using the filter. Taking the inner product with each other to couple them, and then
summing produces:

∂tyiwj + wj∂kwkyi + yi∂kykwj = −yi∂j p− wj∂i p + νyi∂
2
kwj + νwj∂

2
kyi . (47)

This can be rewritten as:

∂tyiwj + ∂kwjwkyi + ∂kyiykwj − yi∂kwkwj − wj∂kykyi = −yi∂j p− wj∂i p + νyi∂
2
kwj + νwj∂

2
kyi . (48)

By using the product rule on the pressure and viscous terms:

∂tyiwj + ∂kwjwkyi + ∂kyiykwj − yi∂kwkwj − wj∂kykyi

= −∂jyi p + p∂jyi − ∂iwj p + p∂iwj − 2ν
(
∂kyi

)(
∂kwj

)
+ ν∂2

kwjyi . (49)

Now, let us apply the filter:

∂tyiwj
: + ∂kwjwkyi

: + ∂kyiykwj
: − yi∂kwkwj

:
− wj∂kykyi
:

= −∂jyi p
:+ p∂jyi

:
− ∂iwj p

: + p∂iwj
:

− 2ν
(
∂kyi

)(
∂kwj

):
+ ν∂2

kwjyi
: . (50)

Next, we subtract the time evolution equation for ∂tỹiw̃j (Equation (40)), but after shuffling the
third-order terms with product rule as:

∂tỹiw̃j + ∂k ỹiτ
`
jk(w, y)− τ`

jk(w, y)∂k ỹi + ∂k ỹi ỹkw̃j − w̃j∂k ỹk ỹi

+ ∂kw̃jτ
`
ik(y, w)− τ`

ik(y, w)∂kw̃j + ∂kw̃jw̃k ỹi − ỹi∂kw̃kw̃j

= −∂iw̃j p̃ + p̃∂iw̃j − ∂jỹi p̃ + p̃∂jỹi + ν∂2
k ỹiw̃j − 2ν

(
∂k ỹi

)(
∂kw̃j

)
. (51)

We can now write the second order cumulants and notice cancellation of therms:

∂tỹiw̃j + ∂k ỹiwjyk
: − wjyk

:∂k ỹi + ∂kw̃jyiwk
: − yiwk

:∂kw̃j

= −∂iw̃j p̃ + p̃∂iw̃j − ∂jỹi p̃ + p̃∂jỹi + ν∂2
k ỹiw̃j − 2ν

(
∂k ỹi

)(
∂kw̃j

)
. (52)

Now, we want to write an equation for ∂tτ
`
ij
(
y, w

)
, thus we write Equation (50) minus Equation (52) as:
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∂tτ
`
ij
(
y, w

)
+ ∂kwjwkyi
: + ∂kyiykwj

: − yi∂kwkwj
:

− wj∂kykyi
:

− ∂k ỹiwjyk
: + wjyk

:∂k ỹi − ∂kw̃jyiwk
: + yiwk

:∂kw̃j

= −∂jτ
`
i (y, p) + τ`

ji(p,∇y)− ∂iτ
`
j (w, p) + τ`

ij(p,∇w)

+ ν∂2
kτ`

ij(y, w)− 2ντ`
kikj
(
∇y,∇w) . (53)

Notice that after using incompressibility on the fourth in the first line of last equation, it can be
combined with he fourth term line two, for a second-order cumulant, and then the same can be applied
to the fifth term in line one with the second term on line two, so that:

∂tτ
`
ij
(
y, w

)
+ ∂kwjwkyi
: + ∂kyiykwj

:− τ`
ikkj
(
yw,∇w

)
− τ`

jkki
(
wy,∇y

)
− ∂k ỹiwjyk

:− ∂kw̃jyiwk
:

= −∂jτ
`
i (y, p) + τ`

ji(p,∇y)− ∂iτ
`
j (w, p) + τ`

ij(p,∇w) + ν∂2
kτ`

ij(y, w)− 2ντ`
kikj
(
∇y,∇w) . (54)

We can now introduce two more second-order cumulants to combine the remaining terms:

∂tτ
`
ij
(
y, w

)
+ ∂kτ`

ikj
(
yw, w

)
+ ∂kτ`

kji
(
yw, y

)
− τ`

ikkj
(
yw,∇w

)
− τ`

jkki
(
wy,∇y

)
= −∂jτ

`
i (y, p) + τ`

ji(p,∇y)− ∂iτ
`
j (w, p) + τ`

ij(p,∇w) + ν∂2
kτ`

ij(y, w)− 2ντ`
kikj
(
∇y,∇w) . (55)

Note that setting the fields as equal, yi = wi = ui, gives the hydrodynamic version of the equation, and
it is easy to show this reduces to the published result in Germano [5]. Finally, we write here another
form of this result, using results of the cumulants, which are needed below:

∂tτ
`
ij
(
y, w

)
+ ∂kτ`

ikj
(
yw, w

)
+ ∂kτ`

kji
(
yw, y

)
− yiwk∂kwj
:

+ τ`
ik(y, w)∂kw̃j

+ ỹiw̃k∂kw̃j − wjyk∂kyj
:

+ τ`
jk(w, y)∂k ỹi + w̃jỹk∂k ỹi = −∂jτ

`
i (y, p)

+ τ`
ji(p,∇y)− ∂iτ

`
j (w, p) + τ`

ij(p,∇w) + ν∂2
kτ`

ij(y, w)− 2ντ`
kikj
(
∇y,∇w) . (56)

4.2.2. Small-Scale Energy

We write the small-scale equations for τ`
ij(y, y), τ`

ij(w, w) in the same manner as done above.
Starting with the y-field, we look for an evolution equation for ∂tỹiyj. Writing the IMHD equation,

∂tyi + ∂kwkyi = −∂i p + ν∂2
j yi , (57)

taking the inner product with yj:

yj∂tyi + yj∂kwkyi = −yj∂i p + νyj∂
2
kyi , (58)

and making the reverse calculation leads to:

yi∂tyj + yi∂kwkyj = −yi∂j p + νyi∂
2
kyj . (59)

Summing those equations and using incompressibility and product rule gives:

∂tyiyj + ∂kwkyiyj = −(yj∂i + yi∂j)p + ν
[
∂2

kyiyj − 2(∂kyi)(∂kyj)
]

. (60)

Applying the filter gives:

∂tyiyj
: + ∂kwkyiyj

: = −yj∂i p
:

− yi∂j p
:

+ ν
[
∂2

kyiyj
: − 2(∂kyi)(∂kyj)
: ]

. (61)
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Let us re-write the large-scale equation and rework some of the terms with incompressibility and
product rule:

∂tỹi ỹj + ∂k ỹjτ
`
ik(y, w

)
− τ`

ik(y, w
)
∂k ỹj + ∂k ỹiτ

`
jk(y, w

)
− τ`

jk(y, w
)
∂k ỹi + ∂kw̃k ỹi ỹj

= −
(
ỹj∂i + ỹi∂j

)
p̃ + ν

[
∂2

k ỹi ỹj − 2(∂k ỹi)(∂k ỹj)
]

. (62)

Subtracting this equation from Equation (61), we can write the desired time evolution equation:

∂tτ
`
ij(y, y)− ∂k ỹjτ

`
ik(y, w

)
+ τ`

ik(y, w
)
∂k ỹj − ∂k ỹiτ

`
jk(y, w

)
+ τ`

jk(y, w
)
∂k ỹi − ∂kw̃k ỹi ỹj + ∂kwkyiyj

:

= −τ`
ji(y,∇p)− τ`

ij(y,∇p) + ν
[
∂2

kτ`
ij(y, y)− 2τ`

kikj(∇y,∇y)
]

. (63)

Notice that terms two, four, six and seven can be rewritten as a third-order cumulant and an additional
term:

∂tτ
`
ij(y, y) + ∂kτ`

ijk(y, y, w
)
+ ∂kw̃kτij(y, y) + τ`

ik(y, w
)
∂k ỹj + τ`

jk(y, w
)
∂k ỹi

= −τ`
ji(y,∇p)− τ`

ij(y,∇p) + ν
[
∂2

kτ`
ij(y, y)− 2τ`

kikj(∇y,∇y)
]

. (64)

Finally, repeating the same procedure for the w-field, which is equivalent to substituting
yi → wi, yj → wj, wk → yk, we obtain the following equation:

∂tτ
`
ij(w, w) + ∂kτ`

ijk(w, w, y
)
+ ∂k ỹkτij(w, w) + τ`

ik(w, y
)
∂kw̃j + τ`

jk(w, y
)
∂kw̃i

= −τ`
ji(w,∇p)− τ`

ij(w,∇p) + ν
[
∂2

kτ`
ij(w, w)− 2τ`

kikj(∇w,∇w)
]

. (65)

4.3. Ideal Turbulence

Once the large/small -scale equations have been written, it is necessary to introduce a way to
distinguish between scale-to-scale, inter-scale and dissipative energy transfers. The introduction of the
filter ensures the following convenient property of the viscous terms:

lim
ν→0

ν∂2
j w̃i = 0 . (66)

To demonstrate the above result, we make use of the commutation of operations, the properties of the
convolution and the previously described result on the derivative of the kernel:

∂2
j w̃i =

∫
V(`)

d3x′ w′i∂
2
j=` =

∫
V(`)

d3x′ w′i`
−2∂2

U=`(U) . (67)

As square-integrable real valued functions are concerned here, the Cauchy–Schwartz
inequality provides:∣∣∣∣ ∫V(`)

d3x′ w′i`
−2∂2

U=`(U)

∣∣∣∣2 ≤ ∫V(`)
d3x′

∣∣w′i ∣∣2 ∫
V(`)

d3x′
∣∣∣∣`−2∂2

U=`(U)

∣∣∣∣2 . (68)

The integral that contains the kernel is constant if the latter is differentiable and square-integrable. Let
us set the entire integral term to a constant:

∫
V(`)

d3x′
∣∣∣∣`−2∂2

U=`(U)

∣∣∣∣2 → C` ⇒
∣∣∣∣ ∫V(`)

d3x′ w′i`
−2∂2

U=`(U)

∣∣∣∣2 ≤ C`

∫
V(`)

d3x′
∣∣w′i ∣∣2 . (69)
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If the integral on the right-hand side of the above inequality is finite, the left-hand side must be finite.
This proves that:

lim
ν→0

ν∂2
j w̃i = 0 . (70)

This result affirms that, for ideal turbulence (ν → 0), if the generalized energy density ∼ |wi|2 stays
finite, then the details of viscous dissipation can be disregarded without singularities in the large-scale
equations. Similarly, when writing the IMHD equation and applying the filter:

lim
ν→0

∂2
k ỹiw̃i = 0 , (71)

then write the Elsasser variables explicitly in terms of the primitive variables:

∂2
k ỹiw̃i = ∂2

k ṽ2
i − ∂2

k b̃2
i , (72)

so that if the energy in both the velocity and magnetic fields stays finite, the limit does not create
singularities. This result can be generalized to the anisotropic case by demanding that the integral over
the individual fields themselves stay finite. The only term that can not be disregarded appears in the
small-scale terms: τ`

kikj(∇ f ,∇g) for both f = g, f 6= g.

4.4. Ideal IMHD Equations

We now proceed with the IMHD version. Let us write the ideal, large-scale equations in the ideal
case, namely after taking the limit ν→ 0 in the large-scale equations:

∂tỹi ỹj + ∂k ỹjτ
`
ik(y, w

)
+ ∂k ỹiτ

`
jk(y, w

)
− ∂kw̃k ỹi ỹj

= τ`
jk(y, w

)
∂k ỹi + τ`

ik(y, w
)
∂k ỹj −

(
ỹj∂i + ỹi∂j

)
p̃ (73)

∂tw̃iw̃j + ∂kw̃jτ
`
ik(w, y

)
+ ∂kw̃iτ

`
jk(w, y

)
− ∂k ỹkw̃iw̃j

= τ`
jk(w, y

)
∂kw̃i + τ`

ik(w, y
)
∂kw̃j −

(
w̃j∂i + w̃i∂j

)
p̃ (74)

∂tỹiw̃j + ∂k ỹiτ
`
jk(w, y) + ∂k ỹi ỹkw̃j + ∂kw̃jτ

`
ik(y, w) + ∂kw̃jw̃k ỹi + ∂iw̃j p̃ + ∂jỹi p̃

= ỹi∂kw̃kw̃j + τ`
ik(y, w)∂kw̃j + τ`

jk(w, y)∂k ỹi + w̃j∂k ỹk ỹi + p̃∂iw̃j + p̃∂jỹi . (75)

The previous equations include some rearranging for the sake of clarity, and writing in one of the
several forms that can be written. By multiplying the first two equations by 1/2 and integrating each
equation in space V−1

∫
V d3x to disregard surface flux terms, one obtains:

∂t
1
V

∫
V

d3x ẽy
ij =

1
2V

∫
V

d3x
[

τ`
jk(y, w

)
∂k ỹi + τ`

ik(y, w
)
∂k ỹj −

(
ỹj∂i + ỹi∂j

)
p̃
]

(76)

∂t
1
V

∫
V

d3x ẽw
ij =

1
2V

∫
V

d3x
[

τ`
jk(w, y

)
∂kw̃i + τ`

ik(w, y
)
∂kw̃j −

(
w̃j∂i + w̃i∂j

)
p̃
]

(77)

∂t
1
V

∫
V

d3x ẽr
ij =

1
V

∫
V

d3x
[

ỹi∂kw̃kw̃j + τ`
ik(y, w)∂kw̃j + τ`

jk(w, y)∂k ỹi

+ w̃j∂k ỹk ỹi + p̃∂iw̃j + p̃∂jỹi

]
. (78)

Note that here we use the above definitions in Equation (28) to redefine the equations. The same
procedure on the small-scale energies provides:
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∂t
1
V

∫
V

d3x ēy
ij =

1
2V

∫
V

d3x
[
− τ`

ik(y, w
)
∂k ỹj − τ`

jk(y, w
)
∂k ỹi

− τ`
ji(y,∇p)− τ`

ij(y,∇p)− 2ντ`
kikj(∇y,∇y)

] (79)

∂t
1
V

∫
V

d3x ēw
ij =

1
2V

∫
V

d3x
[
− τ`

ik(w, y
)
∂kw̃j − τ`

jk(w, y
)
∂kw̃i

− τ`
ji(w,∇p)− τ`

ij(w,∇p)− 2ντ`
kikj(∇w,∇w)

] (80)

∂t
1
V

∫
V

d3x r̄e
ij =

1
V

∫
V

d3x
[

yiwk∂kwj
:

− τ`
ik(y, w)∂kw̃j − ỹi∂kw̃kw̃j + wjyk∂kyi

:

− τ`
jk(w, y)∂k ỹi − w̃j∂k ỹk ỹi + τ`

ji(p,∇y) + τ`
ij(p,∇w)− 2ντ`

kikj
(
∇y,∇w)

]
.

(81)

The scale-to-scale transfers can now be identified through the terms appearing in the large-scale and
small scale equations, but with opposite sign. We define them so they correspond to transfer from
large to small scale:

Πy
ij =

1
2

[
− τ`

ik(y, w
)
∂k ỹj − τ`

jk(y, w
)
∂k ỹi + (ỹj∂i + ỹi∂j) p̃

]
(82)

Πw
ij =

1
2

[
− τ`

ik(w, y
)
∂kw̃j − τ`

jk(w, y
)
∂kw̃i + (w̃j∂i + w̃i∂j)

]
(83)

Πr
ij = −τ`

ik(y, w)∂kw̃j − ỹi∂kw̃kw̃j − τ`
jk(w, y)∂k ỹi

− w̃j∂k ỹk ỹi − p̃∂iw̃j − p̃∂jỹi . (84)

The remaining non-viscous terms in each equation correspond to inter-scale transfers:

Ξy
ij = −

1
2

[
yi∂j p
:

+ yj∂i p
:]

(85)

Ξw
ij = −

1
2

[
wi∂j p
:

+ wj∂i p
:]

(86)

Ξr
ij = yiwk∂kwj
:

+ wjyk∂kyi
:

+ p∂iwj
:

+ p∂jyi
:

. (87)

Finally, the viscous dissipation terms are:

ε
y
kikj = −ντ`

kikj(∇y,∇y) (88)

εw
kikj = −ντ`

kikj(∇w,∇w) (89)

εr
kikj = −2ντ`

kikj(∇y,∇w) . (90)

All of the above terms are written in their anisotropic form for completeness and to emphasize
the peculiar non-linearity in IMHD. When using the isotropic form, the scale-to-scale transfer
equations read:

Πy
ii = −τ`

ik(y, w
)
∂k ỹi (91)

Πw
ii = −τ`

ik(w, y
)
∂kw̃i (92)

Πr
ii = −τ`

ik(y, w)∂kw̃i − ỹi∂kw̃kw̃i − τ`
ik(w, y)∂k ỹi − w̃i∂k ỹk ỹi . (93)
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Note that the pressure terms become surface terms using incompressibility, and thus are not
scale-to-scale transfer terms. Similarly, the isotropic inter-scale transfers can be written as:

Ξr
ij = yiwk∂kwi
:

+ wiyk∂kyi
:

. (94)

Note here that the y, w inter-scale and cross-field terms become surface terms. Finally, the viscous
dissipation terms in their isotropic form are given by:

ε
y
kiki = −ντ`

kiki(∇y,∇y) (95)

εw
kiki = −ντ`

kiki(∇w,∇w) (96)

εr
kiki = −2ντ`

kiki(∇y,∇w) . (97)

In this case, the y, w viscous dissipation terms are positive definite, while this is not necessarily
guaranteed for the cross-field viscous term.

5. Primitive Variables

Thus far, we work with the equations written in terms of the Elsasser variables, as they provide
easier calculations. It is now possible to recover the energy and cross helicity versions in the primitive
variables, by using the following equalities:

yiyj = (ui + bi)(uj + bj) = ujuj + uibj + biuj + bibj

wiwj = (ui − bi)(uj − bj) = ujuj − uibj − biuj + bibj

yiwj = (ui + bi)(uj − bj) = uiuj − uibj + biuj − bibj ,

Additionally, we introduce the following definitions of the large-scale energy, cross-field and cross
helicity densities:

ẽE
ij =

1
2
(
ũiũj + b̃i b̃j

)
=

1
4
(
ỹi ỹj + w̃iw̃j

)
(98)

ẽH
ij =

1
2
(
ũi b̃j + b̃iũj

)
=

1
4
(
ỹi ỹj − w̃iw̃j

)
(99)

ẽr
ij = ũiũj − ũi b̃j + b̃iũj − b̃i b̃j , (100)

as well as the small-scale densities:

ēE
ij =

1
2
(
τij(u, u) + τij(b, b)

)
=

1
4
(
τij(y, y) + τij(w, w)

)
(101)

ēH
ij =

1
2
(
τij(u, b) + τij(b, u)

)
=

1
4
(
τij(y, y)− τij(w, w)

)
(102)

ēr
ij = τij(u, u)− τij(u, b) + τij(b, u)− τij(b, b) = τij(y, w) , (103)

and derive the time-evolution equations for all of the above terms.

5.1. Transfer Terms

The energy and cross-helicity are easily recovered by adding and subtracting the transfer terms
from before:
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ΠE
ij =

1
2

[(
τ`

jk(u, u)− τ`
jk(b, b)

)
∂kũi +

(
τ`

ik(u, u)− τ`
ik(b, b)

)
∂kũj

+
(
τ`

jk(b, u)− τ`
jk(u, b)

)
∂k b̃i +

(
τ`

ik(b, u)− τ`
ik(u, b)

)
∂k b̃j +

(
ũi∂j p̃ + ũj∂i p̃

)]
(104)

ΠH
ij =

1
2

[(
τ`

jk(b, b)− τ`
jk(u, u)

)
∂k b̃i +

(
τ`

ik(b, b)− τ`
ik(u, u)

)
∂k b̃j

+
(
τ`

jk(u, b)− τ`
jk(b, u)

)
∂kũi +

(
τ`

ik(u, b)− τ`
ik(b, u)

)
∂kũj +

(
b̃i∂j + b̃j∂i

)
p̃
]

. (105)

Note that we do not include the cross-field term here, as it diverges. As for the inter-scale terms:

ΞE
ij = −

1
2

[
ui∂j p
:

+ uj∂i p
:]

(106)

ΞH
ij = −1

2

[
bi∂j p
:

+ bj∂i p
:]

. (107)

Again, it is not advantageous to write out the cross-field term. For the viscous dissipation terms:

εE
kikj = −ν

[
τ`

kikj(∇u,∇u) + τ`
kikj(∇b,∇b)

]
(108)

εH
kikj = −ν

[
τ`

kikj(∇u,∇b) + τ`
kikj(∇b,∇u)

]
(109)

εre
kikj = −2ν

[
τ`

kikj(∇u,∇u)− τ`
kikj(∇u,∇b) + τ`

kikj(∇b,∇u)− τ`
kikj(∇b,∇b)

]
. (110)

The isotropic versions can also be derived:

ΠE
ii =

(
τ`

ik(u, u)− τ`
ik(b, b)

)
∂kũi +

(
τ`

ik(b, u)− τ`
ik(u, b)

)
∂k b̃i

ΠH
ii =

(
τ`

ik(b, b)− τ`
ik(u, u)

)
∂k b̃i +

(
τ`

ik(u, b)− τ`
ik(b, u)

)
∂kũi . (111)

Again, the inter-scale terms become surface flux terms, and the isotropic viscous dissipation terms read:

εE
kiki = −ν

[
τ`

kiki(∇u,∇u) + τ`
kiki(∇b,∇b)

]
(112)

εH
kiki = −2ντ`

kiki(∇u,∇b) (113)

εre
kikj = −2ν

[
τ`

kiki(∇u,∇u)− τ`
kiki(∇b,∇b)

]
. (114)

6. Estimating the Scale-to-Scale Energy Transfer

In this section, we show how to estimate the behaviour of the above terms making use of the
Hölder inequality and of Lebesque space norms (Lp-norms). This naturally opens the path towards
Kolmogorov-like phenomenologies that incorporate intermittency and other phenomena. Here, we
only use the isotropic forms of y, w-fields and the energy/helicity, as those are the ideal invariants of
IMHD. In this section, we work out the estimate on the y-field scale-to-scale transfer, and generalize to
the others.

6.1. Structure Functions

Some simple identities on the cumulants can be proved by noting that
∫

V(`) d3x′ =`(r) f (x) =

f (x)
∫

V(`) d3x′ =`(r) = f (x), so that we can write:

τ`
ij
(

f , g
)
= τ`

ij
(
δ f , δg

)
(115)

τ`
ijk
(

f , g, h
)
= τ`

ij
(
δ f , δg, δh

)
. (116)
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Additionally, by noting that
∫

V(`) d3x′ rj/|ri| ∂U=`(U) = 0; U = |rj|/`, we can write:

∂j f̃ =
∫

V(`)
d3x′ `−1 rj

|ri|
∂U=`(U) δ f , (117)

where we made use of previous definition of the increment δ f = f (x′)− (x).

6.2. Estimating the Scale-to-Scale Energy Flux

To estimate the scale-to-scale energy flux in the y-field term, we can write it as:

Πy
ii = −τ`

ij(δy, δw)∂jỹi . (118)

We start the derivation by making the following general statement, following the definition of
the Lp-norm:

|| f̃ ||p =

[ ∫
V

d3x
∣∣∣∣ ∫V(`)

d3x′ =`(x− x′) f (x′)
∣∣∣∣p]1/p

. (119)

Then, applying Young’s convolutions theorem:

|| f̃ ||p ≤ ||=`(x− x′)||q || f (x′)||r ; 1 +
1
p
=

1
q
+

1
r

, (120)

where we assume that these quantities are integrable over both d3x and d3x′. Choosing q = 1 and
noting that the coarse-grain kernel is positive defined and normalized, we recover:

|| f̃ ||p ≤ || f (x′)||r ; p = r , (121)

a very useful result for this approach. A similar estimate can be worked out for the second-order
cumulant of the energy transfer term of interest, first by means of the Minkowski inequality:

∣∣∣∣τ`
ij(δw, δy)

∣∣∣∣
p ≤

∣∣∣∣∣∣∣∣ ∫V(`)
d3x′ =`δwiδyj

∣∣∣∣∣∣∣∣
p
+

∣∣∣∣∣∣∣∣ ∫V(`)
d3x′ =`δwi

∫
V(`)

d3x′ =`δyj

∣∣∣∣∣∣∣∣
p

≤
∣∣∣∣∣∣∣∣ ∫V(`)

d3x′ =`δwiδyj

∣∣∣∣∣∣∣∣
p
+

∣∣∣∣∣∣∣∣ ∫V(`)
d3x′ =`δwi

∣∣∣∣∣∣∣∣
pw

∣∣∣∣∣∣∣∣ ∫V(`)
d3x′ =`δyj

∣∣∣∣∣∣∣∣
py

.
(122)

In the second line of the above equation, we use the Hölder inequality so that 1/p = 1/pw + 1/py.
Using then Young’s inequality:∣∣∣∣τ`

ij(δw, δy)
∣∣∣∣

p ≤
∣∣∣∣δwiδyj

∣∣∣∣
p +

∣∣∣∣δwi
∣∣∣∣

pw

∣∣∣∣δyj
∣∣∣∣

py
.

Using again the Hölder inequality leads to the following relation:∣∣∣∣τ`
ij(δw, δy)

∣∣∣∣
p ≤

∣∣∣∣δwi
∣∣∣∣

p′w

∣∣∣∣δyj
∣∣∣∣

p′y
+
∣∣∣∣δwi

∣∣∣∣
pw

∣∣∣∣δyj
∣∣∣∣

py
, (123)

where we have 1/p = 1/p′w + 1/p′y and in general p′α 6= pα. As a next step, we want to provide an
estimate for the derivative ∂jw̃i, which can be written as follows with the increment:

∂jw̃i =
∫

V(`)
d3x′ `−1 rj

|ri|
∂U=`(U) δwi . (124)
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With this form, the Young inequality reads:

∣∣∣∣∂jw̃i
∣∣∣∣

q ≤ `−1
∣∣∣∣∣∣∣∣ rj

|ri|
δwi

∣∣∣∣∣∣∣∣
q1
���

���
�:1∣∣∣∣∂U=`(U)

∣∣∣∣
q2

, (125)

which is valid for an infinitely differentiable coarse-grain kernel and for any choice of q2. By setting
q2 = ∞⇒ q = q1, and using again the Hölder inequaltiy, we obtain:

∣∣∣∣∂jw̃i
∣∣∣∣

q ≤ `−1
∣∣∣∣∣∣∣∣ rj

|ri|

∣∣∣∣∣∣∣∣
q3

∣∣∣∣δwi
∣∣∣∣

q4
. (126)

The first norm in the right-hand side of the above equation is a non-important number for q3, thus,
choosing q3 = ∞, we have: ∣∣∣∣∂jw̃i

∣∣∣∣
q ≤ C′`−1∣∣∣∣δwi

∣∣∣∣
q . (127)

Putting all these estimates together, and using the Hölder inequality once more, we have:∣∣∣∣τ`
ij(δw, δy) ∂jw̃i

∣∣∣∣
r ≤

∣∣∣∣τ`
ij(δw, δy)

∣∣∣∣
p

∣∣∣∣∂jw̃i
∣∣∣∣

q

≤ `−1∣∣∣∣δwi
∣∣∣∣

q

∣∣∣∣δwi
∣∣∣∣

p′w

∣∣∣∣δyj
∣∣∣∣

p′y
+ `−1∣∣∣∣δwi

∣∣∣∣
q

∣∣∣∣δwi
∣∣∣∣

pw

∣∣∣∣δyj
∣∣∣∣

py
. (128)

If we consider the increments to be Besov regular, the change of variables is permitted and we write
the increment as:

||δ fi||p ≤ Cp|ri|αp ; 0 < α < 1 , (129)

we can finally write:∣∣∣∣τ`
ij(δw, δy) ∂jw̃i

∣∣∣∣
r ≤ `−1Cq,p′w ,p′y |ri|

αq,p′w ,p′y + `−1Cq,pw ,py |ri|αq,pw ,py , (130)

where the following definitions have been used:

Cq,p′w ,p′y = CqCp′w Cp′y (131)

Cq,pw ,py = CqCpw Cpy (132)

αq,p′w ,p′y = αq + αp′w + αp′y (133)

αq,pw ,py = αq + αpw + αpy . (134)

6.3. Onsager’s "Minimal Assumption" for Incompressible Magnetohydrodynamics

The idea of defining the minimal conditions necessary to obtain a turbulent cascade is
well-founded in hydrodynamics, but it takes a different enlightenment in IMHD. Consider the energy
flux term: ∣∣∣∣τ`

ij(δw, δy) ∂jw̃i
∣∣∣∣

r ≤ Cq,p′w ,p′y |`|
αq,p′w ,p′y

−1
+ Cq,pw ,py |`|

αq,pw ,py−1 . (135)

For the real fields (` → 0), the energy transfer rate goes to zero, unless the following condition
is satisfied:

αq,p′w ,p′y ≤ 1 , αq,pw ,py ≤ 1 . (136)
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In hydrodynamics, we have wj = yi, as is usually reported, leading to the standard result:

αq = αp′w = αp′y ⇒ αq ≤ 1/3 . (137)

When the equality is taken, the Kolmogorov’s 1941 scaling is retrieved, for which homogeneity
is necessary. For real turbulence, there is a cut-off at the Kolmogorov scale η. However, in the
case of IMHD, the exponents are certainly not equivalent because there are two fields involved,
thus the inequality

αq,pw ,py = αq + αpw + αpy ≤ 1 (138)

can be satisfied without the restrictions of hydrodynamics (Equation (137)). Namely, one of the two
fields can be smooth while the other is free to be irregular, and the cascade will still occur. This can
be seen in Equation (138) as the sum of the three exponents (corresponding to two fields, either
the Elsasser variables or the primitive variables) must satisfy the inequality giving freedom to the
exponents, not permitted in the hydrodynamic case.

6.4. Scalings for Homogenous IMHD

For the inertial range of statistically homogeneous turbulence, the scaling of the energy flux terms
must be linear [12]. This argument does require consideration of geometry, but we only use it here to
motivate the following discussion. For the energy transfer, this takes on the form:

|ΠE
ii | ≤ |τ`

ik(u, u)∂kũi|+ |τ`
ik(b, b)∂kũi|+ |τ`

ik(b, u)∂k b̃i|+ |τ`
ik(u, b)∂k b̃i| (139)

following Section 6 to give the scaling:

|ΠE
ii | ≤ |ri|αuuu−1 + |ri|αbbu−1 + |ri|αbub−1 + |ri|αubb−1 . (140)

The subscripts of the αs denote the terms estimated as in Equation (138). The principal of scale
independent energy transfer (for example, αbbu = 1 ) is the main result of the article. Here, we note
that, for multi-fractal fields, the global scaling relations appear:

〈 f (|ri|)p〉 ∼ |ri|γ(p) (141)

where p = 2 is the second-order structure function, our primary data analysis object, and the ratios
γ(p)/γ(p′) are not obvious, also known as intermittency. Our result (Equation (140)), for one of the
exponents in terms of multi-fractal fields, takes on the form:

〈δbp
i 〉 ∼ |ri|γb(p) ⇒ αbub = 2γb(p = 1) + γu(p = 1) = 1 (142)

This is important to point out, because our relation necessitates the functions γb(p) to be known to
predict the power spectrum.

7. Application to Observation

We finish by demonstrating the significance of the calculations described in this paper to the
structure functions measured in space plasmas, as for example in the solar wind, as discussed in
the Introduction. In Section 6, we present a general method for estimating the scale-to-scale energy
transfers using the notation of an upper bound. The use of indicator functions and some differentiability
conditions for the fields lead us to conclude a reasonable bound on the second-order cumulants to be:∣∣τ`

ij(δw, δy)
∣∣ ≤ ∣∣δwiδyj

∣∣⇒ ∣∣δwiδyj
∣∣ ≤ Cy,w|ri|αy,w , (143)
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retaining the correlation between the two field increments. This suggests that the scalings of these
functions follow a balance relation. Recalling the form of the scale-to-scale energy transfer:

ΠE
ii =

(
τ`

ik(u, u)− τ`
ik(b, b)

)
∂kũi +

(
τ`

ik(b, u)− τ`
ik(u, b)

)
∂k b̃i , (144)

some straightforward steps lead us to suggest the following balance relations:

|ΠE
ii | ≤ |ri|αEr ,u−1 + |ri|αEc ,b−1 , (145)

where the following definitions have been used:

αEr ,u = αEr + αu, αEc ,b = αEc + αb (146)

|
(
τ`

ik(δu, δu)− τ`
ik(δb, δb)

)
| ≤ CEr |ri|αEr , |

(
τ`

ik(δb, δu)− τ`
ik(δu, δb)

)
| ≤ CEc |ri|αEc . (147)

This retains the correlations of the fields (e.g., τ`
ik(δb, δb)) into the scaling of the scale-to-scale energy

transfer estimate. This is the unique result of this article. We obtain scaling relations that involve the
mixed second-order cumulants. This gives a better understanding of the role that the cross-helicity
and residual energy play in IMHD turbulence.

7.1. Analysis

The IMHD equations are often invoked as a model for the large spatiotemporal scales of the solar
wind. We test the relations (Equation (145)) directly using data from the WIND spacecraft [16,17].
In 2004, the WIND spacecraft settled to the Lagrange point between the Earth and Sun where it
made measurements of the pristine solar wind. This provides a public dataset at ∼3 s cadence of the
magnetic field and velocity field. We subset the year 2005 into 6 h intervals and organize the data by
the quantities,

σr =
y′i w′i

y′i y′i + w′i w′i
, σc =

v′i b′i
v′i v′i + b′i b′i

(148)

normalized cross helicity σc and the normalized residual energy σr defined by fluctuating quantities
(i.e., u′i = ui − 〈ui〉T) of the velocity field vi, Alfvèn velocity bi and the Elsasser variables
yi = ui + bi, wi = ui − bi. We use 6 h = T for the Reynold’s decomposed fluctuations.
This restricts the data (σ2

r + σ2
c ≤ 1) due to the geometry of the vectors [18]. In Figure 1, we provide

a two-dimensional histogram of the 1158 6-h intervals conditioned on (σc, σr). We then take each
individual 6-h interval and measure the structure functions:

Sr(τ) = 〈(yi(t + τ)− yi(t))(wi(t + τ)− wi(t))〉T (149)

Sc(τ) = 〈(ui(t + τ)− ui(t))(bi(t + τ)− bi(t))〉T (150)

Su(τ) = 〈(ui(t + τ)− ui(t))〉T (151)

Sb(τ) = 〈(bi(t + τ)− bi(t))〉T (152)

The lag τ is studied for the corresponding inertial range of IMHD and the interval time span (T) is
six hours so that we cover many correlation times of the turbulence. We then fit the inertial range with
a power law fit. In Figure 2, we condition the data again by (σc, σr) and show bins that are populated
by more than five events. The color corresponds to the exponent of the power law fit.
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Figure 1. Two-dimensional histogram of the samples conditioned on the normalized cross helicity and
normalized residual energy.
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Figure 2. Bins, conditioned on the normalized cross helicity and normalized residual energy show the
exponents of power law fits to structure functions. The structure functions correspond to definitions in
the text.

7.2. Discussion of Analysis

We tested the hypotheses of Section 7 by measuring the exponents of power law fits to structure
functions. Figure 2 displays the steepening (i.e., larger exponent) for lighter colors, which, between
the two plots, the structure functions steepen in different regions, balancing each other. This is the
expectation considering statistical homogeneity, that of a scale independent energy transfer rate.
Having the correct intermittency model, as pointed out in Section 6.4, would better serve the exact
relations. To the knowledge of the authors, these results are new.

8. Conclusions

In this article, we propose a step-by-step illustration of the use of the filtered approach to obtain
the equations describing the scale-by-scale energy transfer in incompressible magnetohydrodynamic
turbulence. While most of the results presented here are not new, we believe a detailed description
of the calculation can contribute to clarify the procedure, and help in the possible extension to other
systems, such as Hall MHD. Additionally, we show how this approach naturally leads to the estimation
of the Kolmogorov spectrum, without the need of invoking phenomenological arguments. We have
identified a balance relation between the scaling of the energy transfer associated with the different
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components, which could be verified using numerical simulations, and eventually be of interest for
application to space plasmas and in particular for the determination of the different contributions to
the global energy transfer. Finally, we used solar wind data from the WIND spacecraft to measure the
exponents of the structure functions, alluded to in Section 7, and found the balance relations being
satisfied. Any lack of perfect agreement can be attributed to the insufficient sampling for statistical
homogeneity and the use of a mono-fractal model. We leave this for future work. The balance relations
give a better understanding of the role of the normalized residual energy and normalized cross helicity
in IMHD turbulence.
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