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Abstract: This study investigated the unsteady acceleration aerodynamics of bluff bodies through
the study of a channel mounted square cylinder undergoing free-stream acceleration of ±20 m s−2

with Reynolds numbers spanning 3.2× 104 to 3.6× 105. To achieve this, a numerical simulation was
created with a commercial finite volume unstructured computational fluid dynamics code, which was
first validated using Improved Delayed Detached Eddy Simulation against experimental and direct
numerical simulated results. Then, the free stream conditions were subjected to a periodic velocity
signal where data were recorded and ensemble averaged over at least 30 distinct acceleration and
deceleration data points. This enabled the comparison of body forces and flow field variations among
accelerating, steady and decelerating free-stream conditions. Body force analysis determined that
decelerating and accelerating drag forces varied−47% and 44%, respectively, in comparison to steady
free-stream conditions. In addition, several differences were also observed and explored such as
near-body flow structures, wake dynamics, Kármán vortices and vorticity production during the
aforementioned conditions. The primary interest of this study was for the future application towards
road vehicles for predictive dynamic modeling and aerodynamic development.

Keywords: acceleration aerodynamics; added mass; ensemble averaging; bluff body aerodynamics;
Computational Fluid Dynamics (CFD); Improved Delayed Detached Eddy Simulation (IDDES)

1. Introduction

Studies involving bluff body aerodynamics found in the literature primarily focus on a steady
mean free-stream flow velocity. While this encompasses the majority of operating conditions,
the impact of the fluid on the body due to an accelerating free-stream condition is often ignored.
Analytical solutions for accelerating streamlined bodies can be obtained with potential flow analysis
(see Panton [1]), but cannot be applied to bluff bodies due to separated flow regimes. The accelerating
case for bluff bodies is potentially important for engineering applications where large accelerations
occur, such as an automobile attempting to avoid a collision, high performance road vehicles
transversing a course, and missile and aircraft maneuverability, all of which experience transient
weather phenomena such as gusting and wind shear. For those engineering applications mentioned,
we aimed to investigate the accelerating case and developed a numerical process with a simplified
bluff body. The authors’ ultimate objectives include the characterization of a high performance
street or racecar’s dynamic behavior subject to a high longitudinal acceleration or deceleration in the
range of ±10 m s−2 (1G), which occurs during efficient transition from high-speed straightaways to
low-speed corners or vice versa. The additional effect of this longitudinal acceleration can be included
in high-fidelity race-vehicle dynamics models such as the one proposed by Mohrfeld–Halterman
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and Uddin [2] for an improved prediction of vehicle handling characteristics. Computational Fluid
Dynamics (CFD) is already used to complement steady mean free-stream flow experiments, reducing
design overhead, and has the potential for applications testing accelerating free-stream conditions
as well.

The existence of additional forces resulting from accelerating a body through a fluid is not a new
idea. Du Baut [3] proposed adding an additional mass to spheres accelerating in air and water after
his experiments in 1786 failed to agree with Newtons second law of motion. Bessel [4] also proposed
an added mass in 1828 while investigating the motion of pendulums. Bessel found that an added
inertia was required to complete the reduction to a vacuum for his pendulum experiments. Morison [5]
experimentally measured the force distribution of surface waves on cylindrical piles, determining
a coefficient (the Morison Coefficient) of CM = 1.96 representing the added fluid forces for a round
cylinder undergoing acceleration. The coefficient of mass was determined through Equation (1) (the
Morison equation) where the total instantaneous force can be broken down into two components,
Part 1 representing the inertial force and Part 2 representing the drag force. Equation (1) consists of ρ,

A

, CM, V̇x, A, CD and Vx, which represent density of the fluid, volume of the test body, coefficient of
mass, acceleration rate of the fluid or test body, frontal area of the test body, coefficient of drag and the
velocity of the fluid or test body, respectively.

Fx(t) = ρ

A

CMV̇x +
1
2

ρACDV2
x (1)

Several more recent papers have also explored acceleration of lifting devices as well as bluff bodies.
Fackrell [6] investigated free falling spheres and cylinders with both experiments and numerical
simulations, finding that the potential flow theory was sufficient for calculating the added-mass at
initial onset of acceleration, not the total added acceleration force during sustained acceleration when
separation was present. Fernando et al. [7], while investigating the acceleration of a sphere from
both rest and steady-state velocity, concluded that the adverse pressure gradient at the rear of the
sphere could be reduced significantly through body acceleration. Lee [8] experimentally measured
the additional drag on circular and square wall mounted cylinders due to acceleration, concluding
that the square cylinder would always see an increased value of drag for all Reynolds numbers tested,
while other shapes may see variations depending on the location of flow separation onset. Roohani [9],
while investigating the acceleration of 2D objects at both sonic and subsonic conditions, observed that,
for subsonic flows over a NACA 2412 airfoil, there exist differences not only in body forces between
non-accelerating and accelerating conditions but also in the stall angle of the airfoil, which varied
±4 deg. Zhang [10] experimentally measured the velocity front that occurs during the acceleration of
spreading jets, which was found to drastically reduce the overall entrainment, leading to a decreased
decay of the center-line velocity, as well as the overall jet spreading rate.

Vortex lock-on (otherwise known as wake resonance) is another example of unsteady free-stream
conditions, where a forced oscillation induces specific harmonics between the forcing frequency and
the natural vortex shedding of the body. Bearman, Konstantinidis and coworkers produced several
in-depth studies [11–16] (both numerical and experimental) on square and circular cylinders in vortex
lock-on regimes. These studies all demonstrated considerable variations in mean drag force, root mean
squared (rms) lift force, wake size, vorticity, and Reynolds stresses due to their unsteady free-stream
conditions. These works are similar to this paper but do not explore the same phenomenon and are
included to provide insight and draw similarities in flow physics.

Herein, we focus on the differences among decelerating, constant and accelerating conditions
for a square cylinder in channel flow, which is achieved by periodically forcing the inlet to drive
constant acceleration and deceleration rates. We chose the square cylinder as our test article due to the
simplified shape creating constant separation points, eliminating unforeseen complexities in the flow
field. Data were carefully ensemble averaged at a reference velocity of 6 m s−1 for each acceleration
phase to extract flow fields and forces for comparison with steady free-stream results. This process is
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the critical first step to investigate unsteady race vehicle aerodynamics for development of advanced
dynamic handling models. The work presented in this paper are based off of the PhD dissertation
research work of the first author, Brett Peters [17].

2. Numerical Setup

Improved Delayed Detached Eddy Simulations (IDDES) [18,19], with Menter shear stress
transport (SST) k − ω [20] turbulence modeling for the Reynolds Averaging Navier–Stokes
(RANS) region, were performed on a channel mounted square cylinder using STAR-CCM+ v11.04,
an unstructured finite volume commercial code. IDDES is a hybrid RANS Large Eddy Simulation (LES)
model that was developed to provide a cost-effective, yet more flexible and convenient, scale-resolving
simulation (SRS) methodology for high Reynolds number inherently transient flows. IDDES has been
a popular tool in computational fluid dynamics research since it was proposed [21]. IDDES’s primary
advantage is that it is a combination of DDES and Wall Modeled Large Eddy Simulation (WMLES)
in which the SRS modeling approach depends on whether the grid resolution is sufficient to resolve
dominant eddies in the boundary layer or whether the simulation contains inflow turbulence content.
The literature suggests that IDDES approach has the following advantages over the standard DES
model: (a) it provides shielding against Grid Induced Separation (GIS), similar to the DDES model;
(b) it allows the model to run in WMLES mode in case of unsteady inlet/free-stream conditions,
(c) it allows the LES simulation of wall boundary layers at much higher Reynolds numbers than
standard LES models; and (d) it is self-adaptive in such a way that it reverts to DDES when the
requirements/demands for WMLES are not satisfied. However, the model formulation is relatively
complex and beyond the scope of the current paper, thus the interested reader is referred to the original
publications of Shur et al. [19] and Gritskevich et al. [18].

Since the current study is a first step towards simulating road vehicles undergoing longitudinal
acceleration, Direct Numerical Simulation (DNS) and LES approaches were not considered due to
their lack of adoption in the automotive field and due to increased computational overhead. The lack
of adoption is due to high Reynolds number at highway speeds requiring finer grid and temporal
resolutions for both DNS and wall resolved LES simulations (see Equation (2) in the next section).
Previous studies have demonstrated that fully resolving all scales of turbulence may not be required
for predicting major quantities of engineering interest, such as force and moment coefficients, and the
mean flow field, with a reasonable accuracy. For example, Trias [22] performed DNS on the same
channel mounted cylinder as used in this paper for a Reynolds number of 2.2× 104 and achieved
very good correlation with the experimental values. In addition, the current study demonstrates in
Section 2.2 that IDDES also achieves results well within acceptable accuracy using less computational
overhead. Note that as there is an unavoidable increase in simulated time to obtain ensemble averaged
flow fields that smooth out turbulent effects; 33 acceleration–deceleration cycles were used in this study.
Based on the conclusions from the steady-mean-flow transient simulations of similar flows [23,24],
this time period seems to be a good compromise between precision and computational affordability;
the results of Sohankar et al. [24] and Rodi [23] were time-averaged over 20 and 10 vortex-shedding
cycles, respectively. Note that the first acceleration–deceleration period was excluded in ensemble
averaging due to initialization from a previous steady-mean-flow Vinlet solution.

For the range of velocities investigated in this study, the Reynolds number spanned from 3.2× 104

to 3.6× 105, which was centered around the target Reynolds number of 1.9× 105 based on the length
scale of H = 0.5 m and mean Vinlet = 6 m s−1. The square cylinder with dimension H × H × 6H,
was mounted inside a 39H× 15H× 6H channel, which served as the computational domain, as can be
seen in Figure 1. This figure also shows the coordinate system used in this study where x, y, and z
represent the streamwise, vertical and lateral directions, respectively. The origin of the coordinates
system lies at the center of the cylinder on the center xy plane of the channel. Note that all length
scales presented in this paper were normalized by H and are denoted by a superscript ∗; the subscripts
x, y, and z correspond to the stream-wise, wall-normal and span-wise component of a vector quantity.
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All statistics in this paper are presented in the center plane (H∗z = 0), which, according to Rodi et al. [25],
for a 6H wide channel, should be independent of span-wise extent.

A velocity inlet was specified upstream of the cylinder; the domain outlet was held at constant
pressure; top and bottom walls were set as zero-gradient boundaries while the channel side walls were
set as periodic; and all surfaces of the cylinder were treated as viscous wall boundaries. The reference
velocity Vre f is the average of velocities recorded at (0, 7H, 0) and (0,−7H, 0); the locations of these two
points are marked in Figure 1 as well. Varying the inlet velocity, while keeping the object stationary,
is dynamically equivalent to a body moving with an unsteady velocity in a still fluid, as determined
by Wong et al. [26]. The former is a simpler method and provides an easier numerical implementation
for CFD simulations. The domain Vinlet(t) was controlled through a field function driven by the linear
interpolation of a file table containing the periodic signal shown in Figure 2. This table was generated
from a short Python code that allowed the specification of the acceleration rate, the min/max velocity,
and a coast time to aid in smoothing the turn around from acceleration to deceleration. These inputs
were then concatenated together for many periods (this signal seen in black) and then smoothed
via a Savitzky–Golay filter [27] within the Python signal library. The zoomed plot of Vinlet(t) in
Figure 3 demonstrates that majority of the signal is consumed in changing acceleration rate, where
the primary focus was to obtain constant rate of ±20 m s−2 at ±6 m s−1. The inlet turbulence was
specified with a non-dimensional turbulence intensity of 0.01, and turbulent length scale of 30 mm
with a synthetic-eddy-method (SEM); this approach is a more flexible vortex method for realistic inlet
conditions, as proposed by Jarrin et al. [28].

Figure 1. Overall channel dimensions (not to scale).

Simulations were carried out with a constant density fluid due to low Mach number and a
first-order implicit unsteady temporal solver was utilized with coupled hybrid second-order upwind
and bounded central-differencing spatial schemes for the LES and RANS regions, respectively.
A time-step of 1× 10−4 s was used at 6 m s−1, which was increased or decreased as the velocity
was decreased or increased in order to maintain a constant CFL number at all time steps. The entire
simulation required 520 h on 144 × 2.4 GHZ Intel Xeon E5-2665 processors (75,000 core-hours) to run
through a total of 33 acceleration–deceleration periods.

The influence of time-step on the solution veracity was investigated during the initial stages of
the project when the effects of mesh and time-stepping on the solution veracity were investigated.
During this process, time stepping was halved, and no appreciable changes were observed in the
predictions. As this simulation was very computationally intensive, time-stepping was limited to
1× 10−4 s when the velocity was 6 m s−1 for practical purposes. However, as vorticity can be viewed
as another measure of the time-scale ([29]), a posterior indirect rationale for the reliability of the
chosen time-step can be made by looking at the vorticity plots in figures to follow where a maximum
non-dimensional vorticity of 40 is observed vorticity magnitudes presented in other figures are much
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smaller; these will be discussed in details later. The maximum non-dimensionalized vorticity of
40 represents a dimensional vorticity magnitude of 120 s−1. One of the reviewers of the paper
recommended that the rule of thumb for second-order time is about 100 iterations per frequency of
interest. The chosen time step of 1× 10−4 s at 6 m s−1 gives 83 time-step iterations for the highest
frequency of interest, thus is very close to what the reviewer recommended as a rule of thumb
requirement for a second-order time stepping.

Figure 2. The periodic signal for Vinlet(t) over 20 s. Black and red lines represent the raw user input
signal and smoothed signal, respectively. The blue circles and red squares along the dotted black line
indicate instances of recorded deceleration and acceleration events, respectively.

Figure 3. A zoomed plot of the periodic signal for Vinlet(t) during one period. Black and red lines
represent the raw user input signal and smoothed signal, respectively.

2.1. Numerical Grid

Several techniques have been suggested in the past for la priori estimates of the minimum
sufficient grid resolutions for LES. These can be grouped into four major classes: rules of
thumb, techniques based on prior RANS results, single-grid estimators and multi-grid estimators
(see Celik et al. [30]). According to Gant [31], single-grid estimators include: (a) ratio of the SGS to
the laminar viscosity (νt/ν); (b) relative effective viscosity index; (c) ratio of the cell size to the Taylor
microscale; (d) the subgrid activity parameter; (e) ratio of the resolved to total turbulent kinetic energy;
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and (f) analysis of power spectra. Gant [31] also discussed recommended values of these parameters
and examples of their use in the literature. Of these approaches, the current study opted for the
Taylor microscale as the arbitrating parameter to determine the required mesh resolution for a reliable
IDDES simulation.

Kuczaj et al. [32] suggested that, to obtain numerical solutions close to the experimental ones, for a
the turbulent mixing flow in a T-junction, one must resolve the Taylor microscale length; they suggested
that for an optimal simulation the finest mesh should be of the order of the Taylor micro-scale obtained
from the RANS simulations. However, they cautioned that finer meshes must be used to accurately
capture fluctuations in the shear layer close to the center of the mixing zone. In this study, the Taylor
microscale (λ) was first estimated using Equation (2) as given by Tennekes and Lumley [29], where
A1 is an undetermined constant set to 0.5, Re is the Reynolds number and L is the length scale; using
L = H in Equation (2) yields λ = 6 mm. This value of λ was then used as a guide to set the grid spacing
required to resolve majority of the inertia driven eddies. Wilcox [33] indicated that λ is approximately
70 times greater than the Kolmogorov scale, thus this IDDES simulation should leave only the smallest
eddies to be modeled.

λ =
√

15
1√
A1

1√
Re

L (2)

The simulation domain was discretized with hexahedral cells of varying sizes, which are
summarized in Table 1. The upper bound on grid spacing was set to H

2 and can be seen in Figure 4
denoted as Region A. Region C was set to H

16 within ±3H of the cylinder in the cross stream direction
to support SEM length scale advection applied at the velocity inlet. The near field region depicted as
Region D in Figure 5 was set to a spacing of H

32 , which is nearly twice the calculated value of the Taylor
microscale from Equation (2) and spans a region from 2H upstream and 6H downstream of the cylinder
and ±2H about the cylinder in the cross-flow direction. Region E seen in Figure 6 encompasses the
volume within 0.17H of the cylinder and is held to a maximum size of H

128 . Region F was created by
growing two wall normal layers of equal height equal to H

256 , as shown in Figure 6.

Figure 4. Overall mesh viewed at cylinder center line.
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Figure 5. Near body mesh viewed at cylinder center line.

Figure 6. Cylinder corner mesh viewed at cylinder center line.

Table 1. Grid spacing values non-dimensionalized by cylinder height H.

Mesh Region A B C D E F

Grid Spacing H
2

H
4

H
16

H
32

H
128

H
256

2.2. Model Validation

Before attempting to simulate acceleration, a validation study was performed to replicate
the experimental results of Lyn and Rodi [34] for constant-velocity flow past a square cylinder at
Re = 2.1× 104. The previously described IDDES simulation methodology, boundary conditions and
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mesh specifications were first implemented for model validation, which predicted CD and Crms
L to be

2.22 and 1.33, respectively (drag force herein was calculated from integration of both the pressure and
viscous forces). Lyn and Rodi experimentally reported CD = 2.1, which they obtained through the
momentum integral of laser-doppler velocimetry measured mean wake velocity profiles. The computed
value of CD from the current validation study also agrees well with reported values compiled by
Trias et al. [22] of 10 separate studies spanning experimental, LES and direct-numerical-simulations
(DNS), where the CD values for the square cylinder vary from 2.01 to 2.32 and Crms

L range from 1.15
to 1.79. In a recent study, Cao and Tamura [35] experimented with the effect of grid-spacing for LES
predictions of flow over a square cylinder, reporting CD range from 2.19 to 2.24. In addition, Figure 7
shows surface pressure coefficients (CP) at center plane along with the recent numerical LES results of
Cao and Tamura [35], DNS results of Trias [22], and previous experimental results of Lee [36], Bearman
and Obasaju [11] and Nishimura [37], demonstrating that current IDDES results fall well within prior
studies for pressure distribution. This further supports that the IDDES methodology adopted in this
study can produce results with an acceptable accuracy.

After the validation was performed, the process was then scaled up from an H = 0.06 m to
H = 0.5 m in order to increase the volume of the test object. This was done for two reasons: (1) for ease
of force measurements at lower Reynolds numbers; and (2) to approach the characteristic scale of an
automobile. Note that the Taylor microscale and Vinlet(t) were recalculated and scaled accordingly
from validation to large scale.

Figure 7. Surface pressure coefficient taken at center plane (H∗z = 0) in comparison with highly resolved
numerical computations and experiments.

3. Results and Discussion

Three specific flow cases were tested and compared with equivalent free-stream velocities while
undergoing acceleration (0 < ax), non-acceleration or constant-velocity (ax = 0) and deceleration
(ax < 0). Acceleration and deceleration data reported in this paper were obtained via ensemble
averaging 33 total periods while non-accelerating data were obtained by holding Vinlet(t) constant and
averaging for 18 large eddy turnover times in separate simulations; a total of three constant velocity
simulations were run at 5, 6, and 7 m s−1. Body drag force for ax 6= 0 cases was calculated by first
smoothing the transient body force data and then ensemble averaging each respective accelerating or
decelerating period. Crms

L was obtained through segregation of CL for each acceleration or deceleration
period and then summed together across all periods and was left as the non-dimensional lift coefficient
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to not skew results due to Vre f (t). Ensemble averaging was utilized to obtain scalar flow field variables
of velocity (V∗x and V∗y non-dimensionalized by Vre f (t)) and Vorticity (ω∗Z non-dimensionalized by

H
Vre f (t)

) at Vre f = 6 m s−1. Due to the unsteady mean free stream velocity, the overall drag force is

presented as a force in Table 2, which was done intentionally as the drag coefficient CD is reserved for
steady mean velocity flow, which is apparent in Equation (1).

3.1. Body Forces

Figure 8 shows the variation of the drag force as a function of velocity Vre f for the accelerating and
non-accelerating cases for 2.5 ≤ Vre f ≤ 7.5 m s−1. It may appear from Figure 8 that, although positive
and negative accelerations have similar impacts on the drag force for Vre f = 6 m s−1, the effect of
one is more dominant than the other depending on Vre f larger or smaller than 6 m s−1; for example,
the positive acceleration appears to have a larger effect on drag for Vre f < 6 m s−1, and vice versa.
This may be deceiving, as this study was created to focus on the 6 m s−1 velocity, and the inlet velocity
Vinlet(t) was forced to vary between 0.5 and 11.5 m s−1. The closer we get to the inflection velocity
(∂Vinlet/∂t changes sign), i.e., the further away from the mid-point velocity, the artifacts from velocity
inflection may influence the results one way or the other. In support of this, Figure 3 demonstrates that
the inflection velocity occurs near 5 and 7 m s−1. By non-dimensionalizing the body force by V2

re f in

Figure 9, the effect of the inflection velocity from the inlet signal is evident, where at Vre f = 6 m s−1

the acceleration deceleration forces are nearly symmetrical and are skewed about the non-accelerating
force at 5 and 7 m s−1. This further demonstrates that focus should be upon data at the intended
reference velocity, however the authors concede that additional works are required. Data presented
in Table 2 clearly indicate drag force deviations of −47% and +44% from the ax = 0 case for the
ax = −2G, and ax = 2G cases, respectively, all at Vre f = 6 m s−1. Crms

L values are also presented in
Table 2 where the decelerating Crms

L value of 1.92 is 44% larger than the non-accelerating flow and
nearly four times larger than the accelerating case. These are interesting phenomena and are discussed
further in Section 3.2.

Figure 8. Drag force on the cylinder versus Vre f for the decelerating, non-accelerating and
accelerating cases.
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Table 2. Ensemble averaged Drag Force, rms Lift Coefficient, and Morison coefficient CM at
Vre f = 6 m s−1 for the square cylinder during ax = −2G, ax = 0 and ax = 2G.

ax Drag (N) Crms
L CM

−2G 37.5 1.95 1.91
0 71.4 1.33 -

2G 102.9 0.52 1.77

Figure 9. Drag force on the cylinder versus Vre f , non-dimensionalized by Vre f
2 for the decelerating,

non-accelerating and accelerating cases.

The Morison coefficient CM was calculated from Equation (1) by setting Part 2 of the equation
equal to the non-accelerating drag force, and Fx(t) equal to ensemble averaged acceleration and
deceleration forces, resulting in CMd = 1.91 and CMa = 1.77 for the decelerating and accelerating
conditions, respectively. The discrepancy in the added viscous coefficients for decelerating and
accelerating flow conditions (approximately 8%) is an interesting phenomenon, yet may be small
enough to approximate as equivalent for vehicle dynamics modeling purposes. These discrepancies
could be attributed to the body’s vorticity contribution affecting wake dynamics (vortex shedding).
At this time, there is no information to support whether or not this discrepancy would be present at
higher Reynolds numbers or different acceleration rates, insinuating that Equation (1) may require
additional degrees of freedom to accurately model acceleration at varying Reynolds numbers.

3.2. Wake Structure

To investigate the viscous impacts of acceleration, several flow field quantities are discussed.
First, Figure 10 shows ensemble averaged streamlines bounded to the center line plane of the
channel (H∗Z = 0) at a reference velocity of 6 m s−1 corresponding to the cases 0 < ax, ax = 0,
and 0 < ax. Discernible differences can be observed between the accelerating (red), non-accelerating
(or constant-velocity, black), and decelerating (blue) cases. Obviously, the three cases exhibit starkly
different wakes; please note that the slight asymmetry observed for the zero acceleration case can be
attributed to graphics rendering and seeding issues inherent to the hardware and software used in this
study and can be ignored for all practical purposes. Besides this, the most noticeable differences can be
observed with regard to the location and size of the leading edge vortex. The accelerating case has the
smallest leading edge separation bubble with its center located at H∗x ≈ −0.25, and the recirculation at
the rear of the cylinder is contained within H∗x ≈ 1. In addition, this case shows a reattachment of the
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leading edge separation on the cylinder surface making the rear recirculation in the cylinder wake
clearly detached from the one off of the leading edge. Arguably, between the top and bottom vortices,
the top one seems to be more dominant than the bottom one for this ensemble, and its center is slightly
further upstream than the one on bottom. Compared to the accelerating case, the constant-velocity
case has a larger leading edge recirculation with the center located further downstream and, at least,
the top vortex is biased more towards the trailing edge. No flow reattachment on the cylinder surface
is observed. The rear wake shows the presence of two alternating vortices of almost equal strength.
The decelerating case has the largest leading edge separation and unlike the other two cases, the leading
edge and rear re-circulations are somewhat merged.

(a) (b) (c)

Figure 10. Streamlines at cylinder center plane for: (a) 0 < ax; (b) ax = 0; and (c) ax < 0.

To complement these observations in further detail, ensemble averaged probe data were
taken perpendicular to stream-wise flow at five stream-wise locations corresponding to H∗x =

[±0.5,±0.25, 1.00]; these probe locations are illustrated in Figure 11.

Figure 11. Locations of the probe rakes reported. Note that dimensions are not to scale.

The variation in bow wake flow angle in the xy plane can be seen in Figure 12 where ensemble
averaged data was sampled along (−0.25H, H∗y , 0) (see Figure 11 for the location of the probe rakes)
at the leading edge of the cylinder. As expected, the flow angle is orthogonal to the x-axis directly
in front of the cylinder and when H∗y is ±1, flow angles are approximately 27◦, 20◦ and 12◦ for
decelerating, non-accelerating and accelerating cases, respectively. Interestingly, the accelerating
and non-accelerating cases have equivalent flow angle in the bow wake at approximately H∗y = 1.5,
and some asymmetry is also present in the accelerating bow wake. The variations in bow and
downstream wakes are also apparent in Figure 13 where V∗x scalars and deltas clearly show that
the accelerating case experiences reattachment on the sides of the cylinder and higher values of
stream-wise velocity in the wake.



Fluids 2019, 4, 158 12 of 20

Figure 12. Ensemble averaged flow angle in front of the cylinder at (−0.5H, H∗y , 0) computed from V∗x
and V∗y . The red, blue and black lines represent 0 < ax, ax < 0 and ax = 0 cases, respectively.

(a) 0 < ax (b) (0 < ax)− (ax = 0)

(c) ax = 0 (d) (0 < ax)− (ax < 0)

(e) ax < 0 (f) (ax < 0)− (ax = 0)

Figure 13. V∗x scalar fields and deltas at cylinder center line.
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Wall-normal variations of V∗x and V∗y near the cylinder are presented in Figure 14, where a smaller
bow wake is evident for the accelerating case at H∗x = −0.25. In addition, V∗x has a negative component
close to the wall indicating reversed flow and V∗y components are significantly smaller in comparison
to other cases. At H∗x = 0.25, the accelerating case appears to be nearly attached to the side walls of
the cylinder as V∗x = 1 within H∗x ± 0.1. V∗y is small at H∗x = 0.25, however the non-accelerating and
decelerating cases appear to be predominately aligned with the free-stream at this location while the
accelerating case has a tendency towards the cylinder. In the wake behind the cylinder (see Figure 15),
the smaller accelerating wake is apparent at H∗x = 0.5 where values of V∗x = 1 are found very close
to the cylinder walls. The decelerating wake size in comparison to the non-accelerating case is more
apparent further down stream of the cylinder at H∗x = 1 for V∗x . Asymmetry of the wake is present
in V∗y for both the accelerating and decelerating cases biased towards the bottom of the cylinder,
although the accelerating asymmetry does appear to be smaller.

H∗x = −0.25 H∗x = 0.25

Figure 14. Wall-normal variations of: (Top) non-dimensional streamwise velocity, V∗x ; (Middle)
non-dimensional cross-stream velocity V∗y ; and (Bottom) non-dimensional vorticity magnitude |ω|∗ at
probe locations: H∗x = −0.25 (left); and H∗x = 0.25 (right). The red, blue and black lines represent 0 < ax,
ax < 0 and ax = 0 cases, respectively.
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H∗x = 0.50 H∗x = 1.00

Figure 15. Wake variations of: (Top) non-dimensional streamwise velocity, V∗x ; (Middle)
non-dimensional cross-stream velocity V∗y ; and (Bottom) non-dimensional vorticity magnitude |ω|∗

at probe location H∗x = 0.50. The red, blue and black lines represent 0 < ax, ax < 0 and ax = 0
cases, respectively.

The asymmetry in the ensemble averaged streamlines should not be confused with
phase-averaging techniques employed by Lyn and Rodi [38], Cantwell and Coles [39] and others
which were done to obtain ensemble averages of discrete vortex-shedding phases. The authors
propose that the asymmetry is merely due to a slight deficiency of ensemble averaging, causing a
visible shift in both the decelerating and accelerating wakes. Computational resources provided 33
total periods for this study, whereas Cantwell and Coles obtained more than 1.6× 104 rotations at
each position for their flying hotwire probe to obtain a complete phase-averaged dataset. Higher
Crms

L values indicate that an ideal ensemble averaged flowfield for the decelerating case could require
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significantly more periods than the other two cases. Furthermore, ensemble averaged vorticity scalars
presented in Figure 16 appear as expected for a global mean (see Cantwell and Coles [39], Figure 21a)
and do not appear to be an ensemble of constant phase (see Cantwell and Coles [39], Figure 21b).
Nonetheless, the authors cannot deny the streamline asymmetries observed in Figure 10 but will carry
on with further analysis and recommend this for future investigation when computational resources
allow such.

Figure 16 shows that during acceleration there is a reduction in overall vorticity, while during
deceleration there is an increase. This change in overall vorticity near the cylinder can be explained
through flux density of vorticity at the cylinder surface, initially demonstrated by Morton [40] and
recently applied by Konstantinidis and Bouris [16] to describe vortex patterns in the wakes of oscillating
cylinders via Equation (3), where ω̂ is the vorticity vector, n is the surface-normal unit vector, p is the
pressure, v is the kinematic viscosity and V is the relative velocity between the cylinder and the fluid.

− v(n · ∇ω̂) = − (n×∇)p
ρ

− n× dV
dt

(3)

Investigation of Equation (3) indicates that the vorticity flux density is dependent on both
tangential pressure gradient and free stream acceleration. The former contribution is present for
ax = 0 and the latter either decreases or increases the contribution of vorticity for 0 < ax and ax < 0,
respectively. Vorticity scalars in Figures 16 and 17 support this notion where 0 < ax has significantly
less vorticity near the n = < 0,±1, 0 > faces of the cylinder and ax < 0 has a significant increase
in vorticity. The n = < 1, 0, 0 > downstream face of the cylinder also sees changes in vorticity
during each case and is linked to the first component of Equation (3) through the variation of Crms

L
for each respective case. During 0 < ax, Crms

L was significantly lower, thus the magnitude of vorticity
on the downstream surface is lower while ax < 0 experienced the opposite effect. Only half of the
vorticity generated at the wall ends up downstream in the Kármán vortices, as indicated by Griffin
and Ramburg [41], and the deltas in Figure 16 show that only ±|ω|∗ ≈ 5 occur downstream of the
cylinder between cases.

Wall-normal variations of vorticity near the cylinder at H∗x = −0.25 in Figure 14 may seem to
contradict Equation (3), but the increase of vorticity in the region for the accelerating case is merely due
to a stronger leading edge circulation at this location. At H∗x = 0.25, wall-normal vorticity distributions
support Equation (3) with a reduction of vorticity for the accelerating case and an increase for the
decelerating case. In the wake, Equation (3) continues to be supported with a reduction in ensemble
averaged vorticity directly behind the cylinder at H∗x = 0.5 for the accelerating case and an increase
for deceleration.

The formation region was defined by Bloor [42] as the point closest to the test object at which
oscillating downstream wake characteristics are still detected by hot-wire. This is also the point where
flow outside of the wake first crosses the x-axis, drawn cross-stream by the formation of vortices
near the cylinder. According to Gerrard [43], the size of the formation region is governed by an
equilibrium of entrainment into the shear layer and reversed flow replenishing free stream fluid
towards the cylinder.

Figure 18 is a cartoon of vorticity (wavy grey area), vortex core locations (depicted as circles) and
entrainment (direction depicted as arrows) during a single vortex oscillation phase. This cartoon was
inspired by cartoons from both Cantwell and Coles, and Gerrard, and drawn by digitally overlaying
CFD results. Liberties were taken to aid in explaining flow features. The lines connecting each
vortex represent filament lines to visualize the growing and shrinking of shear layers between each
vortex oscillation.
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(a) 0 < ax (b) (0 < ax)− (ax = 0)

(c) ax = 0 (d) (0 < ax)− (ax < 0)

(e) ax < 0 (f) (ax < 0)− (ax = 0)

Figure 16. |ω∗| scalars and deltas at cylinder center line.

This led us to apply the previously discussed formation region mechanisms to the accelerating
flow case. During acceleration of the free stream velocity, Vortex 1 in Figure 18 should have a higher
x-component of velocity than Vortex 7 compared to the non accelerating case. Each successive vortex
that is created during acceleration will have a higher x-component velocity, which should cause the
vortices to stack up on one another along the x-axis. In addition, less vorticity is created by the
body (see Equation (3)) and lower Crms

L indicates less free stream flow crossing the x-axis near the
body, provoking instability downstream of the cylinder. The accelerating cylinder has a higher drag
force, yet a smaller near body wake, along with lower vorticity production. This, in conjunction
with different x-component velocities of vortex cores, requires higher cross stream entrainment down
stream, apparently driving every other vortex core away from the x-axis as seen in Figure 17 (indicated
with an arrow).

The opposite is true for the decelerating case, where Vortex 1 of Figure 18 would have a lower
stream-wise velocity than Vortex 7 and each successive vortex created near the cylinder would have
even lower stream-wise components. Near body vorticity is higher ,which promotes a higher Crms

L
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value, causing the formation region and wake to be larger. Due to these factors, vortex cores remain
closer to the x-axis in comparison to the accelerating case.

0 < ax ax < 0

Figure 17. Instantaneous non-dimensional vorticity Z component ω∗Z at cylinder center plane (H∗z = 0)
for 0 < ax and ax < 0 recorded at Vre f = 6 m s−1. The top and bottom rows represent flow
approximately 180◦ out of phase.

Figure 18. A simple cartoon demonstrating a single phase of vortex shedding and the region of vorticity
(depicted as grey waves) surrounding the cylinder and wake.

4. Conclusions

This study aimed to develop a simulation technique for obtaining body forces and flow fields
for a bluff body undergoing longitudinal acceleration and deceleration with an end application
towards dynamic handling models of road vehicles. Oscillation of the inlet velocity via a forcing
function simulated constant accelerating and decelerating free-stream conditions, which were ensemble
averaged over 30 discrete instances of Vre f (t) = 6 m s−1 to obtain averaged flow fields for each
respective case. In comparison to steady inlet conditions, several body force and flow field variations
were observed for accelerating and decelerating conditions. First, the body drag increased 44%
and decreased 47% for the accelerating and decelerating cases over steady free-stream conditions,
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respectively. Second, the fluctuating lift force (Crms
L ) decreased 60% and increased 46% during

acceleration and deceleration, respectively, in comparison to steady free-stream conditions, indicating
that complicated turbulent phenomenon were present. Third, the near-body leading edge and
downstream wake were both significantly smaller during acceleration, causing reattachment of flow
on the top and bottom sides of the cylinder. During deceleration, the leading edge wake grew away
from the cylinder in comparison to non-accelerating flow leading to a wider wake behind the cylinder.
Fourth, further investigation revealed an imbalance of vorticity, driven by tangential pressure gradients
and longitudinal free-stream acceleration conditions causing a reduction in near wall vorticity for
the accelerating case and an increase for the decelerating case. These changes in the leading edge
separation and vorticity along with variations in free stream velocity during vortex core formation
behind the cylinder caused an imbalance in the accelerating wake, displacing every other vortex core
away from the x-axis. Conversely, the surplus of vorticity during deceleration and free-stream velocity
variation caused vortex cores to align with the x-axis. Finally, the Morison coefficient was calculated to
be used with Equation (1) for prediction of the drag of the square cylinder undergoing acceleration
and deceleration.
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