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Abstract: A review on instability and consequent natural convection in rotating porous media is
presented. Taylor-Proudman columns and geostrophic flows exist in rotating porous media just
the same as in pure fluids. The latter leads to a tendency towards two-dimensionality. Natural
convection resulting from density gradients in a gravity field as well as natural convection induced by
density gradients due to the centripetal acceleration are being considered. The former is the result of
gravity-induced buoyancy, the latter is due to centripetally-induced buoyancy. The effect of Coriolis
acceleration is also discussed. Linear stability analysis as well as weak nonlinear solutions are being
derived and presented.

Keywords: rotating flows; porous media; natural convection; instability; Taylor-Proudman column;
centrifugal buoyancy; Coriolis acceleration

1. Introduction

The research into the effects of rotation on the flow and transport phenomena in porous media is
driven by the fundamental scientific significance as well as by engineering and geophysical applications.
To be specific, one refers to flows in porous geological formations subject to earth rotation, to the flow
of magma in the earth mantle close to the earth crust (Fowler [1]) as geophysical applications. The food
process industry, chemical process industry, centrifugal filtration processes, and rotating machinery
are examples of engineering applications.

For example, packed bed mechanically agitated vessels are being used in the food processing and
chemical engineering industries in batch processes. The packed bed consists of solid particles or fibers
of material, which form the solid matrix while fluid flows through the pores. As the solid matrix rotates,
due to the mechanical agitation, a rotating frame of reference is a necessity when investigating these
flows. The role of the flow of fluid through these beds can vary from drying processes to extraction of
soluble components from the solid particles. Two examples of such processes are the molasses subject
to centrifugal crystal separation in the sugar milling industry and the extraction of sodium alginate
from kelp. Additional industrial applications are being presented in Vadasz [2–4], Nield and Bejan [5,6],
and Bejan [7] in comprehensive reviews of the fundamentals of heat convection in porous media.

With the emerging utilization of the porous medium approach in non-traditional fields, including
some applications in which the solid matrix is subjected to rotation (like physiological processes in
human body subject to rotating trajectories, cooling of electronic equipment in a rotating radar, cooling
of turbo-machinery blades, or cooling of rotors of electric machines) a thorough understanding of
the flow in a rotating porous medium becomes essential. Its results can then be used in the more
established industrial applications like food processing, chemical engineering or centrifugal processes,
as well as to the less traditional applications of the porous medium approach.
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The fundamental equations and assumptions applicable to single-phase convective heat transfer
were presented by Dagan [8], Acharya [9]. A review of the effects of rotation on heat transfer in general
was presented by Wiesche [10].

Reviews of the fundamentals of flow and heat transfer in rotating porous media were presented
by Vadasz [2–4,11–15].

No reported results were found on isothermal flow in rotating porous media prior to 1994.
Research of a pioneering nature on natural convection in rotating porous media were reported by
Rudraiah et al. [16], Patil and Vaydianathan [17], Jou and Liaw [18,19], and Palm and Tyvand [20].
Nield [21] found that the effect of rotation on convection in a porous medium attracted limited interest
in a comprehensive review of the stability of convective flows in porous media.

The fact that isothermal flow in homogeneous porous media following Darcy law is irrotational
and hence the effect of rotation on this flow is insignificant contributed to the limited interest for this
type of flow. However, for natural convection in a non-isothermal homogeneous porous medium
or for a heterogeneous medium with spatially dependent permeability the flow is not irrotational
anymore, and therefore the effects of rotation become significant. More recent interest in this type flow,
during the past three decades, led to an increased number of publications. For example, Nield [22],
Auriault et al. [23,24], Govender [25,26], Havstad and Vadasz [27], Vadasz and Havstad [28], Govender
and Vadasz [29–32], Vadasz [2–4,11–15,33–42], Vadasz and Govender [43,44], Vadasz and Heerah [45],
Vadasz and Olek [46], Bhadauria [47], Malashetty, Pop, Heera [48], Vanishree and Siddheshwar [49],
Agarwal et al. [50], Bhadauria et al. [51], Agarwall and Bhadauria [52], Malashetty et al. [53], Malashetty
and Swamy [54], Rana and Agarwal [55], Yadav et al. [56], Rashidi et al. [57], Makinde et al. [58],
Straughan [59], Lombardo and Mulone [60], Falsaperla, Mulone and Straughan [61,62], Falsaperla,
Giacobbe and Mulone [63], Capone and De Luca [64], Capone and Rionero [65], Capone and De
Luca [66].

2. Governing Equations

The equations governing the flow and heat transfer in rotating porous media are presented in a
dimensionless form subject to the assumptions of constant angular velocity of rotation, Boussinesq
approximation (Boussinesq [67]), and local thermal equilibrium (LTE or Lotheq). The latter implies
that the difference in the local temperature between the solid and fluid phases in the porous medium is
insignificantly small and can be neglected. Boussinesq approximation [67] applicable to buoyancy
flows states that the density id constant in all terms of the governing equations except the buoyancy
terms in the momentum equation. The notation being used refers to symbols having an asterisk as
dimensional, while symbols without an asterisk represent dimensionless quantities, except symbols
carrying the subscript “c” representing characteristic values, or the subscript “o” representing reference
values, both being dimensional. The continuity equation is presented in the form

∇ ·V = 0 (1)

where V = u êx + v êy + w êz is the filtration velocity vector presented in Cartesian coordinates, u, v, w
are the components of the the filtration velocity vector in the x, y, z directions, respectively, and êx, êy, êz

are unit vectors in the x, y, z directions, respectively. The operator ∇· is the divergence operator defined
in the form ∇· ≡

[
êx∂()/∂ x + êy∂()/∂ y + êz∂()/∂ x

]
·.

The momentum transport in porous media is governed primarily by the Darcy law, which is
presented in the rotating frame of reference of the solid matrix in the following dimensionless form

V = −Np∇p + Frρ êg −Cnρ êω × (êω ×X) −
ρ

Ek∆
êω ×V (2)
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where four dimensionless groups emerged, i.e., a pressure number Np (equivalent to a porous media
Euler number where µ∗lc/K∗ replaces ρouc), a porous media Froude number Fr, a centrifugal number
Cn, and a porous media Ekman number Ek∆ defined in the form

Np =
K∗∆pc

µ∗uclc
, Fr =

g∗K∗
ν∗uc

, Cn =
K∗ω2

∗ lc
ν∗uc

, Ek∆ =
φν∗

2ω∗K∗
(3)

and where K∗ and φ are the permeability and the porosity of the porous matrix, respectively, µ∗ is the
dynamic viscosity, ρo is a constant reference value of the fluid density used to convert the density into
a dimensionless form, ν∗ = µ∗/ρo is the kinematic viscosity of the fluid, ω∗ is the constant angular
velocity of rotation, p and ρ are the dimensionless pressure and density, respectively, êg is a unit vector
in the direction of the gravity acceleration, êω is a unit vector in the direction of the angular velocity of
roation, and X = x êx + y êy + z êz is the position vector measured from the axis of rotation. Also lc, uc, pc

are constant dimensional characteristic values of length, filtration velocity, and pressure, respectively,
used to convert the space variables, the filtration velocity, and the pressure into dimensionless forms.
The gradient operator in Equation (2) is defined in the form ∇ ≡

[
êx∂()/∂ x + êy∂()/∂ y + êz∂()/∂ x

]
.

The third term in the brackets in Equation (2) represents the centrifugal force while the fourth
term represents the Coriolis acceleration.

When fast transients or high frequency effects are of interest there is another extension to the
Darcy equation that is applicable. Then, the time resolution obtained by assuming a very fast reaction
of Darcy flow to changes and therefore the quasi-steady approximation which is inherent in the
formulation of the Darcy law is not sufficient and a time derivative of the filtration velocity needs to be
incorporated leading to the following dimensionless form of the extended Darcy equation in a rotating
frame of reference

DaReM f

φ
ρ
∂V
∂ t

+ V = −Np∇p + Frρ êg −Cnρ êω × (êω ×X) −
ρ

Ek∆
êω ×V (4)

where the additional dimensionless groups that emerged are the Darcy number Da, and the Reynolds
number Re

Da =
K∗
l2c

, Re =
uclc
ν∗

(5)

and M f is a ratio of heat capacities that its the definition will follow later. The corresponding length
scale is a macro-level length scale, not the pore-size, despite the fact that it is the porous media filtration
velocity that emerged in the definition of the Reynolds number. However the Reynolds number
appears in Equation (4) in a product combination with the Darcy number, bringing therefore the
pore-scale effects into account too.

Following the definition of the dimensionless temperature in the form

T =
(T∗ − To)

∆Tc
(6)

where T∗ is the dimensional temperature, To is a reference value of temperature, and ∆Tc is a
characteristic temperature difference, the dimensionless form of the energy equation subject to local
thermal equilibrium (LTE or Lotheq) is presented in the form

∂T
∂ t

+ V · ∇T =
1

Pe
∇

2T (7)

where Peclet number emerged as an additional dimensionless group, defined in the form

Pe =
uclc
αe∗

= Pr Re (8)
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where the porous media Prandtl number Pr is defined by

Pr =
ν∗
αe∗

(9)

The effective thermal diffusivity of the porous medium appearing in (8) and (9) is defined as α̃e∗ = ke∗/γe∗

and M f = γ f ∗/γe∗ is the heat capacity ratio, i.e., the ratio between the effective heat capacity of the fluid
phase and the effective heat capacity of the porous medium, where γe∗ = γs∗ + γ f ∗, ke∗ = ks∗ + k f ∗ are
the effective heat capacity and effective thermal conductivity of the porous medium and subscripts “s”
and “f” refer to the solid and fluid phases, respectively. Then the adjusted effective thermal diffusivity
is defined as follows αe∗ = α̃e∗/M f = ke∗/γ f ∗.

To complete the governing equations one needs a relationship between the density, temperature
and pressure (and solute concentration when the fluid is a solution of soluble substances, e.g., salt in
water, alcohol in water, etc., in which case an additional species equation needs to be added to). A linear
approximation for this relationship is usually sufficiently accurate if the temperature and pressure
differences are no excessively high. The dimensionless form of the linear approximation of the equation
of state can be obtained by using the definition of the dimensionless temperature from Equation (6)
and the dimensionless pressure in the form p = (p∗ − po)/∆pc. Then the equation of state becomes

ρ =
[
1− βT T + βp p

]
(10)

where ρ = ρ∗/ρo is the dimensionless density, and βT = βT∗ ∆Tc, βp = βp∗ ∆pc are the dimensionless
thermal expansion and pressure compression coefficients, respectively. For most fluid flows
and especially for incompressible flows, i.e., flows of liquids, βp << βT. Therefore the common
approximation of the dimensionless equation of state is

ρ = [1− βT T] (11)

There are some identities relevant to flows in a rotating frame of reference and in buoyancy flows that
are useful in the following derivations. These identities are

êg = ∇
(
êg ·X

)
(12)

êω × (êω ×X) = −∇
[1
2
(êω ×X) · (êω ×X)

]
(13)

êω × (êω ×X) = (êω ·X) êω −X (14)

Their proof can be found in Vadasz [3].
Although for a significantly high number of practical instances Darcy’s model (or its extension)

for a rotating frame of reference is sufficient for representing the effects of rotation, non-Darcy models
have been used as well. Their relevance and limitations are subject to professional discourse (e.g.,
Nield [68–70] and Vafai and Kim [71]).

3. Taylor-Proudman Columns and Geostrophic Flow in Rotating Porous Media

By using Equations (12) and (13), considering isothermal conditions (no heat transfer) and
consequently the density is constant ρ∗ = ρo hence ρ = 1, Darcy Equation (2) becomes

V = −∇
[
Npp− Fr

(
êg ·X

)
−Cn

(1
2
(êω ×X) · (êω ×X)

)]
−

1
Ek∆

êω ×V (15)

The term under the common gradient operator is a reduced pressure pr, defined as

pr = Npp− Fr
(
êg ·X

)
−

Cn
2
(êω ×X) · (êω ×X) (16)



Fluids 2019, 4, 147 5 of 30

By using (16) and choosing the direction of the angular velocity of rotation to be aligned with the
vertical axis, i.e., êω = êz, the Darcy Equation (2) can be presented in the following rearranged form

[Ek∆ + êz×]V = −∇(Ek∆pr) (17)

For typical values of viscosity, porosity and permeability the range of variation of Ekman number can
be evaluated in some engineering applications. Consequently, the angular velocity may vary from
10 rpm to 10,000 rpm leading to Ekman numbers in the range from Ek∆ = 1 to Ek∆ = 10−3. The latter
value is very small, pertaining to the conditions considered here. Therefore, in the limit of Ek∆ → 0 ,
say Ek∆ = 0, Equation (17) takes the simplified form

êz ×V = −∇(Ek∆pR) (18)

and the effect of permeability variations disappears. Taking the “curl” of Equation (18) leads to

∇× (êz ×V) = 0 (19)

Evaluating the “curl” operator on the cross product of the left-hand side of Equation (19) leads to

(êz · ∇)V = 0 (20)

Equation (20) is identical to the Taylor-Proudman theorem for pure fluids (non-porous domains); it thus
represents the proof of the Taylor-Proudman theorem in porous media, and can be presented in the
following simplified form

∂V
∂z

= 0 (21)

The conclusion expressed by Equation (21) is that V = V(x, y), i.e., it cannot be a function of z, where
z is the direction of the angular velocity vector. This means that all filtration velocity components
can vary only in the plane perpendicular to the angular velocity vector. This result leads to the
existence of Taylor-Proudman columns in rotating porous media as presented in detail by Vadasz [3].
The consequence of this result can be demonstrated by considering a particular example that was
presented by Vadasz [36] (see Greenspan [72] for the corresponding example in pure fluids).

A further significant consequence of Equation (21) is represented by a geostrophic type of flow.
Taking the z-component of Equation (21) yields ∂w/∂z = 0, and the continuity Equation (1) becomes
two dimensional

∂u
∂x

+
∂v
∂y

= 0 (22)

Therefore the flow at high rotation rates has a tendency towards two-dimensionality and a stream
function, ψ, can be introduced for the flow in the x− y plane in the form

u = −
∂ψ

∂y
; v =

∂ψ

∂x
(23)

which satisfies identically the continuity Equation (1). Substituting u and v with their stream function
representation given by Equation (23) into Equation (18) yields

∂ψ

∂x
=
∂(Ek∆pR)

∂x
(24)

∂ψ

∂y
=
∂(Ek∆pR)

∂y
(25)

As both the pressure and the stream function can be related to an arbitrary reference value, the conclusion
from Equations (24) and (25) is that the stream function and the pressure are the same in the limit of
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high rotation rates (Ek→ 0). This type of geostrophic flow means that isobars represent streamlines at
the leading order, for Ek→ 0 .

4. Natural Convection Due to Centrifugal Buoyancy

Natural convection is the effect of flow and convection heat transfer due to the existence of
density gradients in a body force field (such as gravity or centrifugal force field). As density depends
on temperature as demonstrated in the derivation of the equation of state, temperature gradients
may create natural convective flows when a body force field is present. What characterizes natural
convection is the lack of a known value of characteristic filtration velocity that can be applied upfront in
a problem. No characteristic velocity can be specified because the latter is dictated by the temperature
gradients and their resulting buoyancy rather than being known upfront. Therefore a sensible choice
of uc would be uc = αe∗/lc. With this choice of uc the Froude number Fr, the pressure number Np,
and the centrifugal dimensionless group Cn in Equations (12) and (14) become Fr = g∗K∗lc/ν∗αe∗,
Np = K∗∆pc/µ∗αe∗, Cn = ω2

∗ l2c K∗/ν∗αe∗. Without loss of generality for the same reason as for the
filtration velocity one can chose the characteristic pressure difference to be such that the pressure
number Np becomes unity, i.e., ∆pc = µ∗αe∗/K∗ leading to Np = 1. Also the Reynolds number in
Equation (5) renders into the reciprocal Prandtl number Re = αe∗/ν∗ = 1/Pr and the Peclet number in
Equations (7) and (8) becomes equal to one by definition Pe = uclc/αe∗ = αe∗lc/lcαe∗ = 1. One may
define the effective Prandtl number in terms of the effective thermal diffusivity α̃e∗ (see the equation and
the text following Equation (9)) Pre = ν∗/α̃e∗ = Pr/M f . Then the coefficient to the time derivative term
in Equation (4) becomes DaReM f /φ = DaM f /φPr = Da/φPre = 1/Va a new dimensionless group
that Straughan [73] named the Vadasz number (Va), or the Vadasz coefficient named by Straughan [73]
(see also Sheu [74] and Govender [26]). By using Equations (11)–(13) leads to transforming Equations (2)
and (4) into the following form

V = −∇pr + RagT êg −RaωT [(êω ·X) êω −X] −
1

Ek∆
êω ×V (26)

1
Va

∂V
∂ t

+ V = −∇pr + RagT êg −RaωT [(êω ·X) êω −X] −
1

Ek∆
êω ×V (27)

The product of βT by Fr and Cn produced two new dimensionless groups in the form of the gravity
related Rayleigh number and the centrifugal Rayleigh number, respectively in the form

Rag = Fr βT =
βT∗∆Tcg∗K∗lc

ν∗αe∗
(28)

Raω = Cn βT =
βT∗∆Tcω2

∗ l2c K∗
ν∗αe∗

(29)

The particular cases when êg = −êz and êω = êz will be considered later. Subject to this orientation of
the gravity and angular velocity of rotation Equations (26) and (27) take the form

V = −∇pr + RagT êz −RaωT
(
x êx + y êy

)
−

1
Ek∆

êz ×V (30)

1
Va

∂V
∂ t

+ V = −∇pr + RagT êz −RaωT
(
x êx + y êy

)
−

1
Ek∆

êz ×V (31)

The vector r = (x êx + y êy) in Equations (30) and (31) represents the perpendicular radius vector
from the axis of rotation to any point in the flow domain. Three dimensionless groups emerged in
Equation (30) when fast transients or high frequencies are not of interest. These dimensionless groups
control the significance of the different phenomena. Therefore, the value of Ekman number (Ek∆)
controls the significance of the Coriolis effect, and the ratio between the gravity related Rayleigh
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number (Rag) and centrifugal Rayleigh number (Raω) controls the significance of gravity with respect
to centrifugal forces as far as natural convection is concerned. This ratio is Rag/Raω = g∗/ω2

∗ lc.
When fast transients or high frequencies are of interest Equation (27) is to be considered. In such a
case one additional dimensionless group emerged, the Va number representing the ratio between
two characteristic frequencies, i.e., the fluid flow frequency ων∗ = φν∗/K∗ and the thermal diffusion
frequency ωα∗ = α̃e∗/l2c , i.e., Va = ων∗/ωα∗ = φν∗l2c /K∗α̃e∗ = φPre/Da, or alternatively the ratio
between two time scales, i.e., the thermal diffusion time scale τα∗ = l2c /α̃e∗, and the fluid flow time
scale τν∗ = K∗/φν∗, i.e., Va = τα∗/τν∗ = φν∗l2c /K∗α̃e∗ = φPre/Da. In addition to such cases Equation
(27) should be used also when the effective Prandtl number is of the order of magnitude of Darcy
number, i.e., Pre = O(Da) i.e., a very small number (as Da << 1 in most porous media). Such small
values of the Prandtl number are typical for liquid metals. In such cases too the time derivative term in
Equation (27) should be retained.

Considering the Darcy regime subject to a centrifugal body force and by neglecting gravity effects
(Rag/Raω << 1) Equations (1), (7) and (26) with Rag = 0 and Pe = 1 represent the mathematical model
for this case. The objective in the first instance is to establish the convective flow under small rotation
rates, then Ek >> 1, and as a first approximation the Coriolis effect can be neglected, i.e., Ek→∞ .
Following these conditions the governing equations become (by using identity (14))

∇ ·V = 0 (32)

V = −[∇p−RaωT êω × (êω ×X)] (33)

∂T
∂t

+ V · ∇T = ∇2T (34)

There are three cases corresponding to the relative orientation of the temperature gradient with
respect to the centrifugal body force as presented in Figure 1. Case 1(a) in Figure 1 corresponds to
a temperature gradient, which is perpendicular to the direction of the centrifugal body force and
leads to unconditional convection. The solution representing this convection pattern is presented by
Vadasz [3,4,34]. Cases 1(b) and 1(c) in Figure 1 corresponding to temperature gradients collinear with
the centrifugal body force represent stability problems and hence our present focus. The objective is
then to establish the stability condition as well as the convection pattern when this stability condition
is not satisfied.Fluids 2017, 2, x FOR PEER REVIEW  8 of 31 
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Figure 1. The effect of the relative orientation of the temperature gradient with respect to the body force
on the setup of convection. (a) Unconditional convection; (b) conditional convection; (c) no convection.

An example of a case when the imposed temperature is perpendicular to the centrifugal body
force is a rectangular porous domain rotating about the vertical axis, heated from above and cooled
from below. For this case the centrifugal buoyancy term in Equation (33) becomes RaωT x êx leading to

V = −∇p−RaωT x êx (35)

An analytical two-dimensional solution to this problem (see Figure 2) for a small aspect ratio of the
domain was presented by Vadasz [3,4,34]. The solution to the non-linear set of partial differential



Fluids 2019, 4, 147 8 of 30

equations was obtained through an asymptotic expansion of the dependent variables in terms of a
small parameter representing the aspect ratio of the domain.
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An analytical two-dimensional solution to this problem (see Figure 2) for a small aspect ratio of the 
domain was presented by Vadasz [3,4,34]. The solution to the non-linear set of partial differential 
equations was obtained through an asymptotic expansion of the dependent variables in terms of a 
small parameter representing the aspect ratio of the domain.  

 
Figure 2. A rotating rectangular porous domain heated from above, cooled from below, and 
insulated on its sidewalls. (Reprinted from [37], with permission from Elsevier Science Ltd.) 

The convection in the core region far from the sidewalls was the objective of the investigation. 
To first order accuracy, the heat transfer coefficient represented by the Nusselt number was 
evaluated in the form 

Nu = − 1 +
Raω

24
+ O H 2( )





 (36) 

where Nu  is the Nusselt number and the length scale used in the definition of Raω , Equation (54), 

was lc = H *
. Vadasz [37] used a different approach to solve a similar problem without the restriction 

of a small aspect ratio. A direct extraction and substitution of the dependent variables was found to 
be useful for de-coupling the non-linear partial differential equations, resulting in a set of 
independent non-linear ordinary differential equations, which was solved analytically. To obtain an 
analytical solution to the non-linear convection problem we assume that the vertical component of 
the filtration velocity, w , and the temperature T  are independent of x , i.e., ∂ w ∂ x = ∂T ∂ x = 0  
∀x ∈ 0, L( ) , being functions of z  only. It is this assumption that will subsequently restrict the 
validity domain of the results to moderate values of Raω  (practically Raω < 5 ). Subject to the 

(a) (b) (c)

Unconditional 
  Convection

Conditional 
Convection No Convection

B∇T B∇T B∇T

TC*

TH*

x

∂T
∂x 

=0
∂T
∂x 

=0

L *

ω*

ω*x*
2

H*

z

z=1

z=0

x=0 x=L

Figure 2. A rotating rectangular porous domain heated from above, cooled from below, and insulated
on its sidewalls. (Reprinted from [37], with permission from Elsevier Science Ltd).

The convection in the core region far from the sidewalls was the objective of the investigation.
To first order accuracy, the heat transfer coefficient represented by the Nusselt number was evaluated
in the form

Nu = −
[
1 +

Raω
24

+ O
(
H2

)]
(36)

where Nu is the Nusselt number and the length scale used in the definition of Raω, Equation (54),
was lc = H∗. Vadasz [37] used a different approach to solve a similar problem without the restriction of
a small aspect ratio. A direct extraction and substitution of the dependent variables was found to be
useful for de-coupling the non-linear partial differential equations, resulting in a set of independent
non-linear ordinary differential equations, which was solved analytically. To obtain an analytical
solution to the non-linear convection problem we assume that the vertical component of the filtration
velocity, w, and the temperature T are independent of x, i.e., ∂w/∂x = ∂T/∂x = 0 ∀x ∈ (0, L), being
functions of z only. It is this assumption that will subsequently restrict the validity domain of the
results to moderate values of Raω (practically Raω < 5). Subject to the assumptions of two-dimensional
flow v = 0 and ∂(·)/∂y = 0 and that w and T are independent of x the governing equations take
the form

∂ u
∂ x

+
dw
dz

= 0 (37)

u = −
∂p
∂x
−Raω x T (38)

w = −
∂p
∂z

(39)

d2T
dz2 −w

dT
dz

= 0 (40)

The method of solution consists of extracting T from Equation (38) and expressing it explicitly in terms
of u, ∂p/∂x and x. This expression of T is then introduced into Equation (40) and the derivative ∂/∂x is
applied to the result. Then, substituting the continuity Equation (37) in the form ∂u/∂x = −dw/dz
and Equation (39) into the results yields a non-linear ordinary differential equation for w in the form

d3w
dz3 −w

d2w
dz2 = 0 (41)

An interesting observation regarding Equation (41) is the fact that it is identical to the Blasius equation
for boundary layer flows of pure fluids (non-porous domains) over a flat plate. To observe this,
one simply has to substitute w(z) = − f (z)/2 to obtain 2 f ′′′ + f f ′′ = 0, which is the Blasius equation.
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Unfortunately, no further analogy to the boundary layer flow in pure fluids exists, predominantly due
to the different boundary conditions and because the derivatives [d(·)/dz] and the flow (w) are in the
same direction. The solutions for the temperature T and the horizontal component of the filtration
velocity u, are related to the solution of the ordinary differential equation

ϕ′ϕ′′′ −ϕ′′ 2 + ϕϕ′2 = 0 (42)

where (·)′ stands for d(·)/dz and
u = xϕ(z) (43)

T(z) = −
1

Raω
[P + ϕ(z)] (44)

where P is a constant defined by

P = −Raω

∫ 1

0
T(z)dz (45)

The Relationship (45) is a result of imposing a condition of no net flow through any vertical cross-section

in the domain, stating that
∫ 1

0 udz = 0.
The following boundary conditions are required to the solution of (41) for w:

w = 0 at z = 0 and z = 1 representing the impermeability condition at the solid boundaries and
T = 0 at z = 0 and T = 1 at z = 1. Since ∂u/∂x = ϕ according to Equation (43), then following the
continuity Equation (37) ϕ = −dw/dz and the temperature boundary conditions can be converted into
conditions in terms of w by using Equation (44), leading to the following complete set of boundary
conditions for w:

z = 0 : w = 0 and
dw
dz

= P (46)

z = 1 : w = 0 and
dw
dz

= P + Raω (47)

Equations (46) and (47) represent four boundary conditions, while only three are necessary to solve
the third order Equation (41). The reason for the fourth condition comes from the introduction of the
constant P, whose value remains to be determined. Hence, the additional two boundary conditions are
expressed in terms of the unknown constant P and the solution subject to these four conditions will
determine the value of P as well. A method similar to Blasius’s method of solution was applied to
solve Equation (41). Therefore, w(z) was expressed as a finite power series and the objective of the
solution was to determine the power series coefficients. Once the solution for w(z) and the value of P
were obtained, u and T were evaluated by using ϕ(z) = −dw/dz and Equations (43) and (44).

For presentation purposes a stream function ψ was introduced to plot the results (u = ∂ψ/∂z,
w = −∂ψ/∂x). An example of the flow field represented by the streamlines is presented in Figure 3 for
Raω = 4 and for an aspect ratio of 3 (excluding a narrow region next to the sidewall at x = L). Outside
this narrow region next to x = L the streamlines remain open on the right hand side. They are expected
to close in the end region. On the left-hand side, however, the streamlines close throughout the domain.
The reason for this, is the centrifugal acceleration, which causes u to vary linearly with x, thus creating
(due to the continuity equation) a non-vanishing vertical component of the filtration velocity w at all
values of x. The local Nusselt number Nu, representing the local vertical heat flux was evaluated as
well by using the definition Nu = |−∂T/∂z|z=0 and using the solution for T. A comparison between
the heat flux results obtained from this solution and the results obtained by Vadasz [34] using an
asymptotic method was presented graphically by Vadasz [37]. The two results compare well as long as
Raω is very small. However, for increasing values of Raω the deviation from the linear relationship
pertaining to the first order asymptotic solution (Nu = 1 + Raω/24, according to Vadasz [34]) was
evident. The stability of this convection flow was not evaluated, although it is of extreme interest.
This would be an interesting though not simple task recommended for future research.
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Figure 3. Graphical description of the resulting flow field; five streamlines equally spaced between
their minimum value ψmin = 0 at the rigid boundaries and their maximum value ψmax = 1.554. The
values in the figure correspond to every other streamline. (Reprinted from [37], with permission from
Elsevier Science Ltd).

The problem of stability of free convection in a rotating porous layer when the temperature
gradient is collinear with the centrifugal body force was treated by Vadasz [38] and Vadasz [40] for
a narrow layer adjacent to the axis of rotation (Vadasz [38]) and distant from the axis of rotation
(Vadasz [40]), respectively. The problem formulation corresponding to the latter case is presented in
Figure 4. In order to include explicitly the dimensionless offset distance from the axis of rotation x0,
and to keep the coordinate system linked to the porous layer, Equation (33) was presented in the form

V = −∇p− [Raωo + Raωx]Têx (48)

Two centrifugal Rayleigh numbers appear in Equation (48); the first one, representing the contribution of
the offset distance from the rotation axis to the centrifugal buoyancy is Raωo = βT∗∆Tcω2

∗x0∗L∗Ko/αe∗ν∗,
while the second, Raω = βT∗∆Tcω2

∗L2
∗Ko/αe∗ν∗, represents the contribution of the horizontal location

within the porous layer to the centrifugal buoyancy. The ratio between the two centrifugal Rayleigh
numbers is dimensionless reciprocal distance from the axis of rotation

η =
Raω
Raωo

=
1
x0

(49)

and can be introduced as a parameter in the equations transforming Equation (48) into the form

V = −∇p−Raωo[1 + ηx]Têx (50)

From Equation (50) it is observed that when the porous layer is far away from the axis of rotation then
η << 1 (x0 >> 1) and the contribution of the term η x is not significant, while for a layer close enough
to the rotation axis η >> 1 (x0 << 1) and the contribution of the first term becomes insignificant. In the
first case the only controlling parameter is Raωo while in the latter case the only controlling parameter
is Raω = ηRaωo. The flow boundary conditions are V · ên = 0 on the boundaries, where ên is a unit
vector normal to the boundary. These conditions stipulate that all boundaries are rigid and therefore
non-permeable to fluid flow. The thermal boundary conditions are: T = 0 at x = 0, T = 1 at x = 1
and ∇T · ên = 0 on all other walls representing the insulation condition on these walls. The governing
equations accept a basic motionless conduction solution in the form

[Vb, Tb, pb] =
[
0, x,

(
−Raωo(x2/2 + ηx3/3) + C

)]
(51)

The objective of the investigation was to establish the condition when the motionless solution (51) is
not stable and consequently a resulting convection pattern appears. Therefore a linear stability analysis
was employed, representing the solution as a sum of the basic solution (51) and small perturbations in
the form

[V, T, p] = [Vb + V′, Tb + T′, pb + p′] (52)



Fluids 2019, 4, 147 11 of 30

where (·)′ stands for perturbed values. Solving the resulting linearized system for the perturbations
by assuming a normal modes expansion in the y and z directions, and θ(x) in the x direction, i.e.,
T′ = Aκθ(x) exp

[
σt + i

(
κyy + κzz

)]
, and using the Galerkin method to solve for θ(x) one obtains at

marginal stability, i.e., for σ = 0, a homogeneous set of linear algebraic equations. This homogeneous
linear system accepts a non-zero solution only for particular values of Raωo such that its determinant
vanishes. The solution of this system was evaluated up to order 7 for different values of η, representing
the offset distance from the axis of rotation. However, useful information was obtained by considering
the approximation at order 2. At this order the system reduces to two equations, which lead to the
characteristic values of Raωo in the form

R0,c =
β
[
(1 + α)2 + (4 + α)2

]
2α(β2 − γ2)

±

√
β2

[
(1 + α)2 + (4 + α)2

]2
− 4(β2 − γ2)(1 + α)2(4 + α)2

2α(β2 − γ2)
(53)

where the following notation was used

Ro =
Raωo

π2 ; R =
Raω
π2 ; α =

κ2

π2 ; β = 1 +
η

2
; γ2 =

256η2

81π4
(54)

and κ is the wavenumber such that κ2 = κ2
y + κ2

z while the subscript c in Equation (53) represents
characteristic (neutral) values (values for which σ = 0). A singularity in the solution for Ro,c,
corresponding to the existence of a single root for Ro,c, appears when β2 = γ2. This singularity
persists at higher orders as well. Resolving for the value of η when this singularity occurs shows
that it corresponds to negative η values implying that the location of the rotation axis falls within the
boundaries of the porous domain (or to the right side of the hot wall-a case of little interest due to its
inherent unconditional stability). This particular case will be discussed later in this section. The critical
values of the centrifugal Rayleigh number as obtained from the solution up to order 7 are presented
graphically in Figure 5a in terms of both Ro,cr and Rcr as a function of the offset parameter η. The results
presented in Figure 5 are particularly useful in order to indicate the stability criterion for all positive
values of η. It can be observed from the figure that as the value of η becomes small, i.e., for a porous
layer far away from the axis of rotation, the critical centrifugal Rayleigh number approaches a limit
value of 4π2. This corresponds to the critical Rayleigh number in a porous layer subject to gravity
and heated from below. For high values of η it is appropriate to use the other centrifugal Rayleigh
number R, instead of Ro, by introducing the relationship R = ηRo (see Equations (49) and (54)) in
order to establish and present the stability criterion. It is observed from Figure 5a that as the value of
η becomes large, i.e., for a porous layer close to the axis of rotation, the critical centrifugal Rayleigh
number approaches a limit value of 7.81π2. This corresponds to the critical Rayleigh number for the
problem of a rotating layer adjacent to the axis of rotation as presented by Vadasz [38]. The stability
map on the Raω −Raωo plane is presented in Figure 5b, showing that the plane is divided between the
stable and unstable zones by the straight line

(
Raω,cr/7.81π2

)
+

(
Raωo,cr/4π2

)
= 1.
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Figure 4. A rotating fluid saturated porous layer distant from the axis of rotation and subject to different
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Figure 5. (a) The variation of the critical values of the centrifugal Rayleigh numbers as a function of η;
(b) The stability map on the Raω −Raωo plane showing the division of the plane. (Reprinted from [40],
with permission from Springer).

The results for the convective flow field are presented graphically in Figure 6 following Vadasz [40],
where it was concluded that the effect of the variation of the centrifugal acceleration within the porous
layer is definitely felt when the box is close to the axis of rotation, corresponding to an eccentric shift of
the convection cells towards the sidewall at x = 1. However, when the layer is located far away from
the axis of rotation (e.g., x0 = 50) the convection cells are concentric and symmetric with respect to
x = 1/2 as expected for a porous layer subject to gravity and heated from below (here “below” means
the location where x = 1).
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Figure 6. The convective flow field at marginal stability for three different values of x0; 10 stream
lines equally divided between ψmin and ψmax. At x0 = 10−10 : ψmin = −1.378;ψmax = 1.378,
at x0 = 0.02 : ψmin = −1.374; ψmax = 1.374 and at x0 = 50 : ψmin = −1.319; ψmax = 1.319. (Reprinted
from [40], with permission from Springer).

Although the linear stability analysis is sufficient for obtaining the stability condition of the
motionless solution and the corresponding eigenfunctions describing qualitatively the convective flow,
it cannot provide information regarding the values of the convection amplitudes, nor regarding the
average rate of heat transfer. To obtain this additional information, Vadasz and Olek [46] analyzed and
provided a solution to the non-linear equations by using Adomian’s decomposition method to solve a
system of ordinary differential equations for the evolution of the amplitudes.

This system of equations was obtained by using the first three relevant Galerkin modes for the
stream function and the temperature in the form

ψ = 2θ
√

2γ(R− 1)X(t) sin(πx) sin
(
πz
H

)
(55)

T = x +
2
√

2γ(R− 1)
πR

Y(t) sin(πx) cos
(
πz
H

)
+

(R− 1)
πR

Z(t) sin(2πx) (56)

where γ = H2/
(
H2 + 1

)
, θ =

(
H2 + 1

)
/H, H being the layer’s aspect ratio, R = ξ/π2θ2, ξ = Raωo +

Raω/2, and X, Y, Z the possibly time dependent amplitudes of convection. In this model it was
considered of interest including the time derivative term in Darcy’s equation in the form (1/Va) ∂V/∂t,
where Va = φPre/Da, and Da, Pre are the Darcy and the effective Prandtl numbers, respectively,
defined as Da = K∗/L2

∗ and Pre = ν∗/α̃e∗ (see Equation (58) with Rag = 0 and Ek→∞ ). The reason for
including the time derivative term in the Darcy equation was the fact that one anticipates oscillatory and
possibly chaotic solutions for which very high frequencies may occur. Then, the following equations
were obtained for the time evolution of the amplitudes X(t), Y(t), Z(t)

.
X = α (Y −X) (57)

.
Y = R X −Y − (R− 1)X Z (58)

.
Z = 4γ (X Y −Z) (59)

where α = γVa/π2, and R is a rescaled Rayleigh number introduced above according to the definitions
in the text following Equation (56). The results obtained are presented in Figure 7 in the form of
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projection of trajectories data points onto the Y −X and Z−X planes. Different transitions as the value
of R varies are presented and they relate to the convective fixed point which is a stable simple node in
Figure 7a, a stable spiral in Figure 7b,c, and loses stability via an inverse Hopf bifurcation in Figure 7d,
where the trajectory describes a limit cycle, moving towards a chaotic solution presented in Figure 7e,f.
A further transition from chaos to a periodic solution was obtained at a value of R slightly above 100,
which persists over a wide range of R values. This periodic solution is presented in Figure 7g,h for
R = 250.

Previously in this section (see Equation (53)) a singularity in the solution was identified and
associated with negative values of the offset distance from the axis of rotation. It is this resulting
singularity and its consequences, which were investigated by Vadasz [41] and are the objective of
the following presentation. As this occurs at negative values of the offset distance from the axis
of rotation it implies that the location of the rotation axis falls within the boundaries of the porous
domain, as presented in Figure 8. This particular axis location causes positive values of the centrifugal
acceleration on the right side of the rotation axis and negative values on its left side. The rotation axis
location implies that the value of x0 is not positive. The solution for this case is similar to the previous
case leading to the same characteristic equation for Rc at order 2 as obtained previously in Equation
(53) for Ro,c, with the only difference appearing in the different definition of β and γ as follows

β =
(1

2
− |x0|

)
; γ2 =

256
81π4

(60)

It is therefore convenient to explicitly introduce this fact in the problem formulation specifying
explicitly that x0 = −|x0|. As a result Equation (50) can be expressed in the form

V = −∇p−Raω[x− |x0|]Têx (61)

The singularity is obtained when β2 = γ2, corresponding to β = γ or β = −γ. Since β is uniquely
related to the offset distance |x0| and γ = 16/9π2 is a constant, one can relate the singularity to specific
values of |x0|. At order 2 this corresponds to |x0| = 0.3199 and |x0| = 0.680. It was shown by Vadasz [41]
that the second value |x0| = 0.680 is the only one, which has physical consequences. This value
corresponds to a transition beyond which, i.e., for |x0| ≥ 0.68, no positive roots of Rc exist. It therefore
implies an unconditional stability of the basic motionless solution for all values of R if |x0| ≥ 0.68.
The transitional value of |x0| was investigated at higher orders showing |x0| ≥ 0.765 at order 3 and the
value increases with increasing the order. The indications are that as the order increases the transition
value of |x0| tends towards the limit value of 1. The results for the critical values of the centrifugal
Rayleigh number expressed in terms of Rcr vs. |x0| are presented graphically by Vadasz [41], who
concluded that increasing the value of |x0| has a stabilizing effect. The results for the convective flow
field as obtained by Vadasz [41] are presented in Figures 9–11 for different values of |x0|. Keeping in
mind that to the right of the rotation axis the centrifugal acceleration has a destabilizing effect while
to its left a stabilizing effect is expected; the results presented in Figure 9b,c reaffirm this expectation
showing an eccentric shift of the convection cells towards the right side of the rotation axis. When the
rotation axis is moved further towards the hot wall, say at |x0| = 0.6 as presented in Figure 10a, weak
convection cells appear even to the left of the rotation axis. This weak convection becomes stronger as
|x0| increases, as observed in Figure 10b for |x0| = 0.7 and formation of boundary layers associated with
the primary convection cells is observed to the right of the rotation axis. These boundary layers become
more significant for |x0| = 0.8 as represented by sharp streamlines gradients in Figure 11a. When
|x0| = 0.9 Figure 11b shows that the boundary layers of the primary convection are well established
and the whole domain is filled with weaker secondary, tertiary and further convection cells. The results
for the isotherms corresponding to values of |x0| = 0, 0.5, 0.6 and 0.7 are presented in Figure 12 where
the effect of moving the axis of rotation within the porous layer, on the temperature is evident.
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Figure 7. Different transitions in natural convection in a rotating porous layer. (Reprinted from [46],
with permission from Elsevier Science Ltd.) (a) projection on the Y-X plane for R = 1.1; (b) projection
on the Y-X plane for R = 10; (c) projection on the Y-X plane for R = 23; (d) projection on the Y-X plane
for R = 24.32; (e) projection on the Y-X plane for R = 26; (f) projection on the Z-X plane for R = 26;
(g) projection on the Y-X plane for R = 250; (h) projection on the Z-X plane for R = 250.
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Figure 9. The convective flow field at marginal stability for three different values of |x0|; 10 streamlines
equally divided between ψmin and ψmax. (a) streamlines for a layer adjacent to the rotation axis |x0| = 0;
(b) streamlines for the axis of rotation located at |x0| = 0.3; (c) streamlines for the axis of rotation located
at |x0| = 0.5; (Reprinted from [41], with permission from Elsevier Science Ltd).

Previously the discussion focused on centrifugally driven natural convection under conditions
of small rotation rates, i.e., Ek >> 1. Then, as a first approximation the Coriolis effect was neglected.
In this section the effect of the Coriolis acceleration on natural convection is presented even when
this effect is small, i.e., Ek >> 1. A long rotating porous box where the temperature gradient was
perpendicular to the centrifugal body force was considered by Vadasz [35]. The possibility of internal
heat generation was included but the case without heat generation, i.e., when the box is heated from
above and cooled from below was dealt with separately. The leading order basic flow was evaluated
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analytically. From the solutions it was concluded that the Coriolis effect on natural convection is
controlled by the combined dimensionless group

σ =
Raω
Ek

=
2βT∗∆Tcω3

∗L∗H∗K2
o

αe∗ν2
∗φ

(62)
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Figure 10. The convective flow field at marginal stability for two different values of |x0|; 10 streamlines
equally divided between ψmin and ψmax. (a) streamlines for the axis of rotation located at |x0| = 0.6;
(b) streamlines for the axis of rotation located at |x0| = 0.7; (Reprinted from [41], with permission from
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Figure 11. The convective flow field at marginal stability for two different values of |x0|; 10 streamlines
equally divided between ψmin and ψmax. (a) streamlines for the axis of rotation located at |x0| = 0.8;
(b) streamlines for the axis of rotation located at |x0| = 0.9; (Reprinted from [41], with permission from
Elsevier Science Ltd).
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Figure 12. The convective temperature field at marginal stability for four different values of |x0|;
10 isotherms equally divided between Tmin = 0 and Tmax = 1. Isotherms for the axis of rotation located
at (a) |x0| = 0; (b) |x0| = 0.5; (c) |x0| = 0.6; (d) |x0| = 0.7; (Reprinted from [41], with permission from
Elsevier Science Ltd).

The flow and temperature fields in the plane y − z, perpendicular to the leading order natural
convection plane as evaluated through the analytical solution shows single or double vortices secondary
flow in this plane, perpendicular to the basic flow.

5. Coriolis Effect on Natural Convection Due to Gravity Buoyancy

The problem of a rotating porous layer subject to gravity and heated from below (see Figure 13) was
originally investigated by Friedrich [75] and by Patil and Vaidyanathan [17]. Both studies considered a
non-Darcy model, which is probably subject to the limitations as shown by Nield [68]. Friedrich [74]
focused on the effect of Prandtl number on the convective flow resulting from a linear stability analysis
as well as a non-linear numerical solution, while Patil and Vaidyanathan [17] dealt with the influence
of variable viscosity on the stability condition. The latter concluded that variable viscosity has a
destabilizing effect while rotation has a stabilizing effect. Although the non-Darcy model considered
included the time derivative in the momentum equation the possibility of convection setting-in as
an oscillatory instability was not explicitly investigated by Patil and Vaidyanathan [17]. It should be
pointed out that for a pure fluid (non-porous domain) convection sets in as oscillatory instability for
a certain range of Prandtl number values (Chandrasekhar [76,77]). This possibility was explored by
Friedrich [75], which presents stability curves for both monotonic and oscillatory instability. Jou and
Liaw [19] investigated a similar problem of gravity driven thermal convection in a rotating porous
layer subject to transient heating from below. By using a non-Darcy model they established the stability
conditions for the marginal state without considering the possibility of oscillatory convection.

An important analogy was discovered by Palm and Tyvand [20] who showed, by using a Darcy
model, that the onset of gravity driven convection in a rotating porous layer is equivalent to the case of
an anisotropic porous medium. The critical Rayleigh number was found to be

Rag,cr = π2
[
(1 + Ta)1/2 + 1

]2
(63)
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where Ta is the Taylor number defined here as

Ta =

(
2ω∗Ko

φν∗

)2

(64)

and the corresponding critical wave number is π(1 + Ta)1/4. The porosity is missing in Palm and
Tyvand [20] definition of Ta. Nield [21,22] has pointed out that these authors and others have omitted
the porosity from the Coriolis term. This result, Equation (63) (amended to include the correct definition
of Ta), was confirmed by Vadasz [41] for a Darcy model extended to include the time derivative
term (see Equation (31) with Raω = 0), while performing linear stability as well as a weak non-linear
analyses of the problem to provide differences as well as similarities with the corresponding problem
in pure fluids (non-porous domains). As such, Vadasz [42] found that, in contrast to the problem in
pure fluids, overstable convection in porous media at marginal stability is not limited to a particular
domain of Prandtl number values (in pure fluids the necessary condition is Pr < 1). Moreover, it was
also established by Vadasz [42] that in the porous media problem the critical wave number in the
plane containing the streamlines for stationary convection is not identical to the critical wave number
associated with convection without rotation, and is therefore not independent of rotation, a result
which is quite distinct from the corresponding pure-fluids problem. Nevertheless, it was evident that in
porous media, just as in the case of pure fluids subject to rotation and heated from below, the viscosity
at high rotation rates has a destabilizing effect on the onset of stationary convection, i.e., the higher
the viscosity the less stable is the fluid. An example of stability curves for overstable convection is
presented in Figure 14 for Ta = 5, where κ is the wave number. The upper bound of these stability
curves is represented by a stability curve corresponding to stationary convection at the same particular
value of the Taylor number, while the lower bound was found to be independent of the value of Taylor
number and corresponds to the stability curve for overstable convection associated with Va = 0.
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from Cambridge University Press).

Two conditions have to be fulfilled for overstable convection to set in at marginal stability, i.e.,
(i) the value of Rayleigh number has to be higher than the critical Rayleigh number associated with
overstable convection, and (ii) the critical Rayleigh number associated with overstable convection has
to be smaller than the critical Rayleigh number associated with stationary convection. The stability
map obtained by Vadasz [42] is presented in Figure 15, which shows that the Ta− γ (γ= Va/π2) plane
is divided by a continuous curve (almost a straight line) into two zones, one for which convection sets
in as stationary, and the other where overstable convection is preferred. The dotted curve represents
the case when the necessary condition (i) above is fulfilled but condition (ii) is not. Weak non-linear
stationary as well as oscillatory solutions were derived, identifying the domain of parameter values
consistent with supercritical pitchfork (in the stationary case) and Hopf (in the oscillatory case)
bifurcations. Unfortunately due to a typo affecting the sign of one of the nonlinear terms in the weak
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nonlinear analysis the direction of the bifurcations presented seems to be incorrect. The identification
of the tricritical point corresponding to the transition from supercritical to subcritical bifurcations was
presented on the γ − Ta parameter plane. The possibility of a codimension-2 bifurcation, which is
anticipated at the intersection between the stationary and overstable solutions, although identified as
being of significant interest for further study, was not investigated by Vadasz [42].
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Figure 14. Stability curves for overstable gravity driven convection in a rotating porous layer heated
from below (γ = Va/π2, R = Rag/π2). [42]. (Reproduced with permission from Cambridge University
Press).

Fluids 2017, 2, x FOR PEER REVIEW  21 of 31 

is not. Weak non-linear stationary as well as oscillatory solutions were derived, identifying the 
domain of parameter values consistent with supercritical pitchfork (in the stationary case) and Hopf 
(in the oscillatory case) bifurcations. Unfortunately due to a typo affecting the sign of one of the 
nonlinear terms in the weak nonlinear analysis the direction of the bifurcations presented seems to 
be incorrect. The identification of the tricritical point corresponding to the transition from 
supercritical to subcritical bifurcations was presented on the γ − Ta  parameter plane. The 

possibility of a codimension-2 bifurcation, which is anticipated at the intersection between the 
stationary and overstable solutions, although identified as being of significant interest for further 
study, was not investigated by Vadasz [42]. 

 
Figure 15. Stability map for gravity driven convection in a rotating porous layer heated from below (

γ = Va π 2 , R = Ra
g

π 2 ) [42]. (Reproduced with permission from Cambridge University Press). 

6. Natural Convection Due to Combined Centrifugal and Gravity Buoyancy 

Previous sections dealt with natural convection due to centrifugal buoyancy, when the gravity 
body force contribution was negligible, Rag = 0, satisfying the condition: Rag Raω = g* ω *

2 L* << 1 , 

or with gravity buoyancy when the centrifugal body force contribution was insignificant, Raω = 0 , 

satisfying the condition: Raω Rag = ω *

2 L* g* << 1. In the present section the focus is on conditions 

when both centrifugal buoyancy as well as gravity buoyancy effects are significant, Rag ∼Raω , but 
at small rotation rates, i.e., Ek >> 1 . Then, as a first approximation the Coriolis effect can be 
neglected. Figure 4 still applies to the present problem, subject to a slight modification of drawing 
the gravity acceleration g*

 in the negative z  direction. The notation remains the same and 
Equation (50) becomes 

V = −∇p − Raωo 1 + ηx[ ]Têx + RagTêz
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6. Natural Convection Due to Combined Centrifugal and Gravity Buoyancy

Previous sections dealt with natural convection due to centrifugal buoyancy, when the gravity
body force contribution was negligible, Rag = 0, satisfying the condition: Rag/Raω = g∗/ω2

∗L∗ << 1,
or with gravity buoyancy when the centrifugal body force contribution was insignificant, Raω = 0,
satisfying the condition: Raω/Rag = ω2

∗L∗/g∗ << 1. In the present section the focus is on conditions
when both centrifugal buoyancy as well as gravity buoyancy effects are significant, Rag ∼ Raω, but at
small rotation rates, i.e., Ek >> 1. Then, as a first approximation the Coriolis effect can be neglected.
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Figure 4 still applies to the present problem, subject to a slight modification of drawing the gravity
acceleration g∗ in the negative z direction. The notation remains the same and Equation (50) becomes

V = −∇p−Raωo[1 + ηx]Têx + RagTêz (65)

where η = 1/x0 = Raω/Raωo represents the reciprocal of the offset distance from the axis of rotation.
The approach being the same as before, the solution is expressed as a sum of a basic solution and
small perturbations as presented in Equation (52). However, because of the presence of the gravity
component in Equation (65), a motionless conduction solution is not possible any more. Therefore,
the basic solution far from the top and bottom walls is obtained in the form

ub = vb = 0; wb = Rag

(
x−

1
2

)
; Tb = x;pb =

1
2

Ragz−Raωox2
[1
2
+

1
3
ηx

]
+ const. (66)

Substituting this basic solution into the governing equations and linearizing the result by neglecting
terms that include products of perturbations, which are small, yields a set of partial differential equations
for the perturbations. Assuming a normal modes expansion in the y and z directions in the form

T′ = Aκθ(x) exp
[
σt + i(κyy + κzz)

]
(67)

where κy and κz are the wave numbers in y and z directions respectively, i.e., κ2 = κ2
y + κ2

z , and using
the Galerkin method, the following set of linear algebraic equations is obtained at marginal stability
(i.e., for σ = 0)

M∑
m=1

{[
2
(
m2π2 + κ2

)2
− κ2Raωo(2 + η)

]
δml+[

16mlκ2Raωo
π2(l2−m2)

− i
8mlκzRag

π2(l2−m2)2

[
π2

(
l2 + m2

)
+ 2κ2

]]
δm+l,2p−1

}
am = 0

(68)

for l = 1, 2, 3, . . . , M and i =
√
−1. In Equation (68) δml is the Kronecker delta function and the index p

can take arbitrary integer values, since it stands only for setting the second index in the Kronecker
delta function to be an odd integer. A particular case of interest is the configuration when the layer is
placed far away from the axis of rotation, i.e., when the length of the layer L∗ is much smaller than the
offset distance from the rotation axis x0∗. Therefore for x0 = (x0∗/L∗)→∞ or η→ 0 the contribution
of the term ηx in Equation (65) is not significant. Substitution of this limit into Equation (68) and
solving the system at the second order, i.e., M = 2, yields a quadratic equation for the characteristic
values of Raωo. This equation has no real solutions for values of α = κ2

z/π2 beyond a transitional value
αtr = (27π3/16 Rag)2. This value was evaluated at higher orders too, showing that for M = 10 the
transitional value varies very little with Rag, beyond a certain Rag value around 50π. The critical values
of Raωo were evaluated for different values of Rg(= Rag/π) and the corresponding two-dimensional
convection solutions in terms of streamlines are presented graphically for the odd modes in Figure 16a,
showing the perturbation solutions in the x− z plane as skewed convection cells when compared with
the case without gravity. The corresponding convection solutions for the even modes are presented in
Figure 16b, where it is evident that the centrifugal effect is felt predominantly in the central region of
the layer, while the downwards and upwards basic gravity driven convection persists along the left
and right boundaries, respectively, although not in straight lines. Beyond the transition value of α,
the basic gravity driven convective flow (Equation (66)) is unconditionally stable. These results were
shown to have an analogy with the problem of gravity driven convection in a non-rotating, inclined
porous layer (Govender and Vadasz [29]). Qualitative experimental confirmation of these results was
presented by Vadasz and Heerah [45] by using a thermo-sensitive liquid-crystal tracer in a rotating
Hele-Shaw cell. When the layer is placed at an arbitrary finite distance from the axis of rotation no
real solutions exist for the characteristic values of Raωo corresponding to any values of γ other than
γ = κzRag = 0. In the presence of gravity Rag , 0, and γ = 0 can be satisfied only if κz = 0. Therefore
the presence of gravity in this case has no other role but to exclude the vertical modes of convection.
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The critical centrifugal Rayleigh numbers and the corresponding critical wave numbers are the same
as in the corresponding case without gravity as presented in Section 4. However, the eigenfunctions
representing the convection pattern are different as they exclude the vertical modes replacing them
with a corresponding horizontal mode in the y direction. Therefore, a cellular convection in the x− y
plane is superimposed to the basic convection in the x− z plane.
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7. Additional Effects on Flow and Natural Convection in Rotating Porous Media

Not much research results are available for thermo-haline convection in porous media subject to
rotation. Chakrabarti and Gupta [78] investigated a non-Darcy model, which includes the Brinkman
term as well as a non-linear convective term in the momentum equation (in the form (V · ∇)V). Therefore
the model’s validity is subject to the limitations pointed out by Nield [69]. Both linear and non-linear
analyses were performed and overstability was particularly investigated. Overstability is affected in
this case by both the presence of a salinity gradient and by the Coriolis effect. Apart from the thermal
and solutal Rayleigh numbers and the Taylor number, two additional parameters affect the stability.
These are the Prandtl number Pr = ν∗/αe∗, and the Darcy number Da = Ko/H2

∗ , where H∗ is the layer’s
height. The authors found that, in the range of values of the parameters, which were considered, the
linear stability results favor setting-in of convection through a mechanism of overstability. The results
for non-linear steady convection show that the system becomes unstable to finite amplitude steady
disturbances before it becomes unstable to disturbances of infinitesimal amplitude. Thus the porous
layer may exhibit subcritical instability in the presence of rotation. These results are surprising at least
in the sense of their absolute generality and the authors mention that further confirmation is needed
in order to increase the degree of confidence in these results. A similar problem was investigated by
Rudraiah et al. [16] while focusing on the effect of rotation on linear and non-linear double-diffusive
convection in a sparsely packed porous medium. A non-Darcy model identical to the one used by
Chakrabarti and Gupta [78] was adopted by Rudraiah et al. [16], however the authors spelled out
explicitly that the model validity is limited to high porosity and high permeability which makes it
closer to the behavior of a pure fluid system (non-porous domain). It is probably for this reason that the
authors preferred to use the non-porous medium definitions for Rayleigh and Taylor numbers which
differ by a factor of Da and Da2, respectively, from the corresponding definitions for porous media. It is
because of these definitions that the authors concluded that for small values of Da number the effect of
rotation is negligible for values of Ta < 106. This means that rotation has a significant effect for large
rotation rates, i.e., Ta > 106. If the porous media Taylor number had been used instead, i.e., the proper
porous media scales, then one could have significant effects of rotation at porous media Taylor numbers
as small as Ta > 10. Hence, the results presented by Rudraiah et al. [16] are useful provided Da = O(1)
which is applicable for high permeability (or sparsely packed) porous layers. Marginal stability as well
as overstability were investigated and the results show different possibilities of existence of neutral
curves by both mechanisms, i.e., monotonic as well as oscillatory instability. In this regard the results
appear more comprehensive in the study by Rudraiah et al. [16] than in Chakrabarti and Gupta [78].
The finite amplitude analysis was performed by using a severely truncated representation of a Fourier
series for the dependent variables. As a result a seventh-order Lorenz model of double diffusive
convection in a porous medium in the presence of rotation was obtained. From the study of steady,
finite amplitude analysis the authors found that subcritical instabilities are possible, depending on the
parameter values. The effect of the parameters on the heat and mass transport was investigated as well,
and results presenting this effect are discussed in Rudraiah et al. [16]. The onset of double-diffusive
convection in a rotating porous layer was investigated by Lombardo and Mulone [60], Malashety,
Pop, and Heera [48], Falsaperla, Giacobbe and Mulone [63]. Triple-diffusion effects in rotating porous
layers were investigated by Capone and De Luca [64]. They evaluated the ultimate boundedness
of the solutions and found a necessary and sufficient condition for the global nonlinear asymptotic
L2-stability of the motionless conduction solution.

Lack of local thermal equilibrium (LaLotheq) or local thermal non-equilibrium (LTNE) means that
distinct temperature values exist between the solid and fluid phases within the same Representative
Elementary Volume (REV). Malashetty et al. [53] presented the linear stability and the onset of
convection in a porous layer heated from below and subject to rotation, accounting for the Coriolis
effect as in Vadasz [42] but allowing for distinct temperature values between the solid and fluid
phases, i.e., lack of local thermal equilibrium (LaLotheq), or local thermal non-equilibrium (LTNE).
The nonlinear part of the analysis was undertaken by using a truncated mode spectral system, such as
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the one used by Vadasz and Olek [46] but adapted for the LaLotheq conditions. The effect of finite
heat transfer between the phases leading to lack of local thermal equilibrium was investigated also by
Govender and Vadasz [32] while investigating also the effect of mechanical and thermal anisotropy
on the stability of a rotating porous layer heated from below and subject to gravity. The topic of
anisotropic effects is discussed in the next section. Bhadauria [47] investigated the effect of temperature
modulation on the onset of thermal instability in a horizontal fluid-saturated porous layer heated
from below and subject to uniform rotation. An extended Darcy model, which includes the time
derivative term, has been considered, and a time-dependent periodic temperature field was applied
to modulate the surfaces’ temperature. A perturbation procedure based on small amplitude of the
imposed temperature modulation was used to study the combined effect of rotation, permeability,
and temperature modulation on the stability of the fluid saturated porous layer. The correction of
the critical Rayleigh number was calculated as a function of amplitude and frequency of modulation,
the porous media Taylor number, and the Vadasz number. It was found that both rotation and
permeability suppress the onset of thermal instability. Furthermore, the author concluded that
temperature modulation could either promote or retard the onset of convection.

The effect of anisotropy on the stability of convection in a rotating porous layer subject to
centrifugal body forces was investigated by Govender [25]. The Darcy model extended to include
anisotropic effects and rotation was used to describe the momentum balance and a modified energy
equation that included the effects of thermal anisotropy was used to account for the heat transfer.
The linear stability theory was used to evaluate the critical Rayleigh number for the onset of convection
in the presence of thermal and mechanical anisotropy. It was found that the convection was stabilized
when the thermal anisotropy ratio (which is a function of the thermal and mechanical anisotropy
parameters) increased in magnitude. Malashetty and Swamy [54], and Govender and Vadasz [32]
investigated the Coriolis effect on natural convection in a rotating anisotropic fluid-saturated porous
layer heated from below and subject to gravity as the body force. Malashetty and Swamy [54] assumed
local thermal equilibrium while Govender and Vadasz [32] dealt with lack of local thermal equilibrium
(LaLotheq), or local thermal non-equilibrium (LTNE). Malashetty and Swamy [54] used the linear
stability theory as well as a nonlinear spectral method. The linear theory was based on the usual
normal mode technique and the nonlinear theory on a truncated Galerkin analysis. The Darcy model
extended to include a time derivative and the Coriolis terms with an anisotropic permeability was
used to describe the flow through the porous media. A modified energy equation including the
thermal anisotropy was used. The effect of rotation, mechanical and thermal anisotropy parameters
and the Prandtl number on the stationary and overstable convection was discussed. It was found
that the effect of mechanical anisotropy is to prefer the onset of oscillatory convection instead of the
stationary one. It was also found, just as in Vadasz [42], that the existence of overstable motions in
case of rotating porous media is not restricted to a particular range of Prandtl number as compared to
the pure viscous fluid case. The steady finite amplitude analysis was performed using the truncated
Galerkin modes to find the Nusselt number. The effect of various parameters on heat transfer was
investigated. Govender and Vadasz [32] analyzed the stability of a horizontal rotating fluid saturated
porous layer exhibiting both thermal and mechanical anisotropy, subject to lack of local thermal
equilibrium (LaLotheq), or local thermal non-equilibrium (LTNE). All of the results were presented as
a function of the scaled inter-phase heat transfer coefficient. The results of the linear stability theory
have revealed that increasing the conductivity ratio and the mechanical anisotropy has a destabilizing
effect, whilst increasing the fluid and solid thermal conductivity ratios is stabilizing. In general it was
found that rotation has a stabilizing effect in a porous layer exhibiting mechanical or thermal (or both
mechanical and thermal) anisotropy. Additional results for the effect of rotation on thermal convection
in an anisotropic porous medium were presented by Vanishree and Siddheshwar [49].

An interesting, more recent, application is related to nanofluids. A nanofluid is a suspension of
nanoparticles or nanotubes in a liquid. When the liquid is saturating a porous matrix one deals with
nanofluids in porous media. Chand and Rana [79] analyzed the Coriolis effect on natural convection in
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a rotating porous layer saturated by a nanofluid. Agarwal an Bhadauria [52], Rana and Agarwal [55],
investigated the natural convection in a rotating porous layer saturated by a nanofluid and a binary
mixture. This implies that the nanoparticles are suspended in a binary mixture, e.g., in a water and
salt solution. Therefore double-diffusive convection is anticipated. The model used for the nanofluid
incorporates the effects of Brownian motion and thermophoresis, while the Darcy model is used for the
porous medium. The neutral and critical Rayleigh numbers for stationary and oscillatory convection
have been obtained in terms of various dimensionless parameters. The authors concluded that the
principle of exchange of stabilities is applicable in the present problem, while more amount of heat is
required in the nanofluid case for convection to set-in. Agarwal et al. [50] considered the convection in
a rotating anisotropic porous layer saturated by a nanofluid. The model used for nanofluid combines
the effect of Brownian motion along with thermophoresis, while for a porous medium the Darcy
model has been used. Using linear stability analysis the expression for the critical Rayleigh number
has been obtained in terms of various dimensionless parameters. Agarwal et al. [50] indicate that
bottom-heavy and top-heavy arrangements of nanoparticles tend to prefer oscillatory and stationary
modes of convection, respectively. The onset of double-diffusive nanofluid convection in a rotating
porous layer was investigated by Yadav et al. [56].

During solidification of binary alloys the solidification front between the solid and the liquid
phases is not a sharp front but rather a mushy layer combining liquid and solid phases each one being
interconnected. It is not surprising therefore that the treatment of this mushy layer follows all the rules
applicable to a porous medium. Natural convection due to thermal as well as concentration gradients
occurs in the mushy layer resulting in possible creation of freckles that might affect the quality of the
cast. When such a process occurs in a system that is subject to rotation, centrifugal buoyancy as well as
Coriolis effects are relevant and essential to be included in any model of this process. Govender and
Vadasz [31] investigated such a system via a weak nonlinear analysis for moderate Stefan numbers
applicable to stationary convection in a rotating mushy layer. Consequently Govender and Vadasz [30]
investigated a similar system via a weak nonlinear analysis for moderate Stefan numbers applicable to
oscillatory convection in a rotating mushy layer. A near-eutectic approximation and large far-field
temperature were employed in both papers in order to decouple the mushy layer from the overlying
liquid melt. The parameter regimes in terms of Taylor number for example where the bifurcation is
subcritical or supercritical were identified. In the case of oscillatory convection increasing the Taylor
number lead to a supercritical bifurcation.

Linear stability was the primary method used in previous sections to establish the stability
criteria for the onset of natural convection in a rotating porous layer. Straughan [73] pioneered
the introduction of a nonlinear analysis producing a sharp nonlinear stability threshold in rotating
porous convection. The application and generalization of this method was presented by Lombardo
and Mulone [60], while deriving necessary and sufficient conditions of global nonlinear stability for
double-diffusive convection in rotating porous media. The nonlinear method was expanded and
summarized by Straughan [59]. The application of this nonlinear method to natural convection in
non-rotating porous media was expanded showing the coincidence between linear and global nonlinear
stability of non-constant through-flows was presented by Capone and De Luca [66] by using the
“Rionero Auxiliary System Method”. Weak nonlinear solutions were presented by Bhadauria et al. [51].
Investigations into the effects of inertia on rotating porous convection were undertaken by Falsaperla,
Mulone, and Straughan [62], and by Capone and Rionero [65]. The latter used again the “Rionero
Auxiliary System Method” to derive a set of conditions for the significance of inertia in this problem and
for global nonlinear stability in terms of the porous media Taylor number as well as Vadasz number.

Other studies considered effects of rotation for a combination of previously presented conditions.
For example Capone and Gentile [80] presented sharp stability results in a rotating anisotropic porous
layer subject to lack of local thermal equilibrium (LaLotheq, LTNE). Double diffusive convection
in a rotating anisotropic porous layer was presented by Galkwad and Kouser [81], Malashetty and
Heera [82], and Malashetty and Begum [83]. Double diffusive convection in a rotating porous medium
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saturated with a coupled stress fluid was considered by Malashetty et al. [84], while double diffusive
convection in a rotating porous layer saturated by a viscoelastic fluid was investigated by Kumar and
Bhadauria [85]. The effect of rotation on a micropolar ferromagnetic fluid heated from below saturating
a porous medium was presented by Sunil et al. [86]. Rotation effects on convection in a porous layer
saturated by nanofluids was further considered by Bhadauria and Agrawal [87], for a porous medium
model including the Brinkman term. A similar model was presented by Yadav and Lee [88] for the
case of lack of local thermal equilibrium (LaLotheq, LTNE), and by Yadav et al. [89] for a Darcy model
Soret driven convection in a rotating porous medium saturated by a nanofluid. Brinkman convection
induced by internal heating in a rotating porous medim layer saturated by a nanofluid was investigated
by Yadav et al. [90], while thermal instability in a rotating porous layer saturated by a non-Newtonian
nanofluid was considered by Yadav et al. [91]. Yadav et al. [92] presented the conditions for the onset
of convection in a rotating porous layer due internal heating by using a Brinkman model. The effects
of thermal modulation, i.e., top and bottom imposed temperatures are allowed to vary slightly in
time, were considered by Malashetty and Swamy [93] using a Darcy model and Bhadauria [94] using a
Brinkman model. A similar Brinkman model was applied for investigating the effects of centrifugal
buoyancy in a rotating porous layer far away from the center of rotation subject to modulation of
rotation by Om et al. [95], i.e., the angular velocity was allowed to slightly vary periodically in time.
The same conditions applied to a rotating porous layer distant an arbitrary distance from the center of
rotation was presented by Om et al. [96]. Coriolis effect on thermal convective instability of viscoelastic
fluids in a rotating porous cylindrical annulus was investigated by Kang et al. [97]. Küppers-Lortz
instability in rotating Rayleigh-Benard convection in a porous medium was studied by Rameshwar et
al. [98].

8. Conclusions

A review of the variety of instability problems linked to natural convection in rotating porous
media was presented. The effect of centrifugal buoyancy was investigated separately, and later in
combination with gravitational buoyancy. The cases when the Coriolis effect is significant were also
analyzed and the corresponding results were discussed. The diversity of additional effects linked to
natural convection in rotating porous media, such as thermo-solutal and double-diffusive convection,
the effect of anisotropy of the porous medium, the inclusion of nanofluids in rotating porous media,
solidification of binary alloys, and lack of local thermal equilibrium are examples that were also shortly
reviewed. The pioneering studies on global nonlinear analyses and investigations of the effect of inertia
on natural convection in rotating porous media concluded the present review.
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