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Abstract: Techniques for the experimental determination of velocity fields such as particle image
velocimetry (PIV) can often be hampered by spurious vectors or sparse regions of measurement
which may occur due to a number of reasons. Commonly used methods for detecting and replacing
erroneous values are often based on statistical measures of the surrounding vectors and may be
influenced by further poor data quality in the region. A new method is presented in this paper using
Linear Stochastic Estimation for vector replacement (LSEVR) which allows for increased flexibility
in situations with regions of spurious vectors. LSEVR is applied to PIV dataset to demonstrate
and assess its performance relative to commonly used bilinear and bicubic interpolation methods.
For replacement of a single vector, all methods performed well, with LSEVR having an average error
of 11% in comparison to 14% and 18% for bilinear and bicubic interpolation respectively. A more
significant difference was found in replacement of clusters of vectors which showed average vector
angle errors of 10◦, 9◦ and 6◦ for bilinear, bicubic and LSEVR respectively. Error in magnitude was
3% for both interpolation techniques and 1% for LSEVR showing a clear benefit to using LSEVR for
conditions that require multiple clustered vectors to be replaced.
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1. Introduction

In the field of fluid mechanics, experimental techniques for the measurement of velocity play a
crucial role. Non-intrusive techniques such as particle image velocimetry (PIV) continue to develop
year-on-year. With the advent of high-speed optical diagnostics equipment and ever more powerful
processing equipment, the potential data yield has never been higher. However, a persistent problem
in any experimental technique is how to deal with erroneous data. In PIV experimental data this often
is realised as single spurious vectors or sparse velocity regions.

The causes of spurious vectors are myriad and varied; sub-optimal experimental set-up, misaligm
ent of optics, mismatched sheet thickness, high external noise (such as background light and
reflections/glare), seeding density inhomogeneity, choice of processing parameters such as window
size for example. Some presence of erroneous vectors is inevitable regardless of how competently the
experiments are carried out. Therefore, research and development effort in this area focuses on the
identification and replacement of spurious vectors during vector post-processing [1].

One of the first and still most commonly used techniques is based on a local test where vectors are
compared to their neighbouring vectors to identify potential outliers based on significant deviations in
magnitude or direction. Many variations of ‘tests’ are suggested in literature [2–4], including the widely
used local median test [5]. Once spurious vectors have been detected and removed, interpolation
methods are then typically used to replace the removed vector and smoothing applied [1].
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Due to the significance placed on experimentally obtained velocity measurements, research on
alternative methods for both improved detection and replacement of spurious vectors is on-going. As a
starting point, multiple studies suggest how human sight is able to very effectively identify outliers [6].
Thus, some approaches are based around this idea. Velocity gradients and thresholds form the basis
for some techniques [3,7], others consider adaptive local coherency [8].

Similarly, artificial neural networks (ANNs), consisting of elements or neurons are commonplace
in many image analysis and computer vision processes. Liang et al. presents a technique using cellular
neural networks, claiming the technique offers improved identification of spurious vectors when
compared to median methods due to simulating the procedure through which the human brain detects
vector errors [9].

Once spurious vectors are detected, there must be a procedure for determining the replacement
vector. For some processes, the same proposed techniques may both detect spurious vectors and offer
a replacement. Statistical based approaches such as the penalized least-squares method [10] or Kriging
regression [11] are two such techniques. More recently, proper orthogonal decomposition (POD) based
techniques have been introduced for the purpose of invalid vector detection and replacement, named
POD-OC (outlier correction). Wang et.al. [12] uses low-order POD modes to construct a reference
velocity field allowing for outlier detection and correction using an iterative approach, assuming
instantaneous spurious vectors will not influence the lower order modes. The approach requires
iteration of the POD calculation and includes a user-defined parameter.

Higham et al. [13] remark on the computational expense of iterative POD-OC methods and propose
a non-iterative method (PODDEM). This is achieved through the analysis of generated temporal
coefficients, specifically a spike detection. However, the authors suggest that their current approach
is most suited to datasets with outliers in every vector field; suggesting that if this is not the case,
alternative approaches to spike detection should be carried out. Further, the authors remark on the
requirement of a user-defined parameter which impacts the accuracy of the estimation, tr which they
suggest may be estimated from a visual inspection of the PIV data.

The currently presented work introduces the two-point statistical technique, linear stochastic
estimation (LSE) as an alternative vector post-processing routine to identify and replace spurious
vectors in grid velocity vector fields such as those obtained through PIV measurements without the need
for multiple iterations or user defined parameters. Replacement of vectors in such a manner allows their
inclusion in the calculation of any derived parameters required such as turbulent kinetic energy (TKE).
LSE is discussed in the context of fluid mechanics research and mathematically defined. The vector
replacement methodology (LSEVR) is then introduced and described in the application to PIV data.
Finally, the performance of the technique is compared to the widely used interpolation approach.

2. Linear Stochastic Estimation

Linear stochastic estimation was introduced to the field of turbulent fluid flows by Adrian [14,15]
as a way to approximate conditional averages of turbulent flow. In brief, the LSE technique exploits
the conditional (or instantaneous) information contained within a flow and its relationship with the

two-point correlation tensor, Ri j

(
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x ,
→
x
′
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to allow estimations within the flow. It should be noted that

there is a class of techniques related to LSE that use higher-order correlations; quadratic stochastic
estimation (QSE). However as well as the increase in computational demand there is often little
improvement to be gained from these approaches [16]. Therefore, application in the presented work
will be using the linear, or first order technique (LSE).

In fluid mechanics the LSE technique has found many beneficial applications. A typical application
is the replacement of high spatial density measurements—such as PIV—with simpler sensors such as
microphones [17] or wall mounted pressure arrays [18–21]. In each of these studies, the correlation
between planar velocity measurements and the sensor readings is determined. This in turn allows
synchronised estimation of velocity from only the sensor measurements. The limitation of using
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this sensor type is described, particularly the importance of the proximity and distribution of these
sensors [22].

Further, given flow field knowledge a priori, sensor location may be optimised to improve
correlation [23] provided there is flexibility regarding selection of sensors. As an alternative,
point velocity measurements may be used to predict velocity elsewhere in the velocity vector field [24].
By using velocity as a sensor in this manner there is an increase in correlation between the field
and sensors within it. However it is shown that despite the increased spatial correlation of velocity,
the proximity of sensors and the location of vectors to be estimated is significant [25]. Therefore, for the
application presented here, the sensor locations should be carefully considered. However, unlike other
interpolation-based techniques the adjacent vectors (provided they are not used as sensors) have no
impact on the estimation, allowing the technique to be used in regions with more than a single, isolated
spurious vector.

In application, LSE is often combined with Proper orthogonal decomposition. The two techniques
are complementary given that POD may identify coherent motions, represented as lower order, higher
energy modes, while LSE can effectively estimate these structures from a reduced dataset. Butcher and
Spencer reveal a coupling due to this effect [24]. Druault and Guibert introduce the combination of
POD and LSE for the purpose of the replacement of spurious vectors [26]. It is important to note that
when POD filtering data, small scale structures are effectively removed, leaving only coherent, typically
large-scale motions. Druault and Guibert show how these structures are successfully estimated using
the combination of POD and LSE. However, as several of the approaches in literature such as POD-OC
and PODDEM require user defined inputs [13], in order to develop a robust vector replacement
approach, they will not be considered further within the presented work.

The application of LSE is best described in two steps. Firstly, the correlation matrix, ‘a’ is computed.
This describes the relationship between each sensor and the location where an estimation is desired.
For this step, a valid data set is required with good data at all sensor locations and the location
of desired estimation simultaneously—in the case of PIV experimental data, the time series may
be scanned to compile a set of valid snapshots (referred to as slave fields). The calculation of the
correlation matrix is defined by Equation (1) where u, p and NS are velocity, sensor reading and number
of sensors respectively.

〈u(x, t)pq(t)〉 =
NS∑
s=1

as(x)〈ps(t)pq(t)〉 (1)

Equation (2) defines how the correlation matrix is combined with values at the sensor locations to
generate the estimation, where uest is the estimated velocity.

uest(x, t) =
NR∑
s=1

as(x)ps(t) (2)

According to the definition, it is possible to use one velocity component in the estimation of
another, i.e., using a cross-correlation—this term is often weaker than a correlation with the same
velocity component—therefore the estimations should when possible be calculated for each required
velocity component independently.

3. Vector Replacement Methodology

In the current section, the LSE vector replacement methodology (LSEVR) is described and
demonstrated on a PIV test case. The performance of LSEVR is then compared to commonly
used techniques.

The LSEVR methodology deals only with the replacement of an identified invalid vector and not
the identification process itself and therefore this section will cover the replacement of vector which
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is already identified as spurious (or sparse). By implication, LSEVR may only be used as part of an
iterative PIV process after the first pass which would identify spurious vectors.

To apply the LSE technique, it is important that there exist valid data at some time at the point of
interest. Therefore, any perpetually occurring invalid regions may not be corrected using the suggested
technique. Whilst this requirement seems obvious, its implications are not trivial in the intended
application of the correction of spurious experimental data. Common experimental set-up issues
such as glare, shadows or insufficiently illuminated regions may not be corrected with this technique,
in these cases it is possible that other methods such as interpolation may perform sufficiently. However,
it is expected that regions in which there are incidentally sparse multiple vector measurements, LSEVR
would perform favourably. Therefore, the first step of the technique is to assess the suitability of
the site.

Assuming the vector meets the criteria, information about the vector’s relationship with
the surrounding vector field should be determined. Two-point statistics and in-particular the
cross-correlation function (CCF) coefficient provides a suitable metric for this purpose. At each
point in the flow, the CCF coefficient, Rij may be calculated according to Equation (3) where subscripts i
and j are velocity components to be correlated, r and τ are the separation in space and time respectively.
In this context, only the spatial correlation is required and therefore τ = 0.

Ri j(r, τ) =
〈ui(x, t)u j(x + r, t + τ)〉√
〈u2

i (x, t)〉
√
〈u2

j (x + r, t)〉
(3)

The integral length scales may then be calculated in each direction, k and for each velocity
component, i and j. Integrating Rij according to Equation (4) provides the length scales but in practice
is only evaluated up until the first zero crossing of Rij. In the case of 2D/2C experimental data there are
four length scales. For 3D/3C experiments there are nine.

kLi j (x) =

∞∫
0

Ri j(x, ∆Sk)ds (4)

As there are four resulting length scales, they may be used as a guide or limit for the distribution
of LSEVR sensors. I.e., sensors should not be selected that sit outside of the area defined by these length
scales. It is possible to bypass this calculated and computational expense, if there is an understanding
of the flow dynamics a priori which allow a suitable region size to otherwise be defined.

Within the region defined, a number of valid vectors surrounding the one to be replaced should
be identified; there is no requirement for these to be immediately adjacent and it may be beneficial for
them not to be due to proximity effects [25].

At all other instances, and where only valid data at the site of uest and sensors exist, Equation (1)
should be applied to calculate the correlation matrix, ar which relates each sensor location to the uest site.
The ar matrix may be combined with sensor values according to Equation (2) to generate a replacement
vector, uest.

The LSEVR process may be summarised in the following steps:

1. Check probability density of spurious/sparse occurrences at the site
2. For valid only instances generate spatial correlation distribution and assess length scales in region
3. Select number of sensors within region of high-correlation (i.e., within length scale) analogous

to a filter region size in other approaches. These locations should be valid at instance of
required replacement

4. For valid only instances generate ar matrix using Equation (1)
5. At the instance of required replacement, use sensors combined with ar matrix according to

Equation (2) to generate estimated velocity component(s)
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It should be noted that while points 1–5 above describe the full approach for LSEVR, it is possible
to carry out the technique with fewer steps. This is particularly the case when flow information is
known a priori. For example, if the user is confident that the experimental set-up is such that there are
no shadow or glare affected regions within the area over which the vector field is calculated then step 1
may be omitted.

Similarly, if the approximate expected integral length scales are known then step 2 may also be
omitted. These steps would be by-passed by appropriate manual selection of sensor region size in step
3. Such an approach would significantly reduce the computational effort required for the application,
but should be used with caution as reducing the sensor region size may reduce the effectiveness of the
estimation obtained due to the proximity of the sensors [25].

3.1. LSEVR—Application to Test Case

The process described is applied to an experimental data set from a test case to demonstrate
and assess the accuracy of replaced vectors. For this purpose, vectors are removed as required from
an other-wise complete and spurious vector-free set. As the underlying data is known in this case,
any LSEVR replaced vector may be compared to the original as a direct assessment.

3.2. Experimental Set-Up and Data Acquisition

The demonstration and validation of the LSEVR technique will be carried out on measurements
taken downstream of a cylinder mounted in cross-flow. A single 1” (25.4 mm) diameter brass cylinder
was placed in an experimental water flow tunnel, arranged as depicted in Figure 1. The working
section was 0.3 m × 0.37 m and the cylinder was spanned the full height of the working section. Further
details of the tunnel may be found in [27].
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Figure 1. Schematic of experimental set-up for cylinder flow (test case). The brass cylinder and
measurement plane are represented by a brass bar and green line respectively. Nominal flow direction
is indicated with arrows.

Two-component PIV measurements were carried out on a plane at half-height of the working
section (0.15 m) and covered a region of approximately 0.12 m × 0.12 m immediately downstream of
the cylinder. Illumination was provided by a New Wave Pegasus 527 nm laser operating at 1 kHz
with 10 mJ/pulse. Images were acquired using a Photron APX 1MP camera (Photron, Tokyo, Japan).
Timing and synchronisation of the components were controlled using LaVision PTU 8 and DaVis
v7 software. Calculation of the PIV vector fields was carried out within the DaVis software using
multi-pass, reducing interrogation region. A single initial pass at 64 × 64, 50% overlap was followed
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by two passes at 32 × 32, 50% overlap. The final vector spatial resolution of 1.905 mm × 1.905 mm and
temporal resolution of 1 kHz.

A total of 3072 vector fields were calculated and a summary of the flow fields is provided in
Figure 2. The ensemble average (Figure 2a), velocity RMS (Figure 2b) and Reynolds stresses (Figure 2c,d)
exhibit the well-known downstream wake region and vortex shedding behaviour commonly reported
for this flow case [28,29]. Considering the turbulent areas in which the vortex shedding is occurring,
one would expect high spatial velocity gradients. It is in this condition where modelling of the velocity
field (by interpolation or otherwise) for the purposes of vector replacement would be most challenging.
Therefore, a point is selected in this region, approximately half-way downstream in the measured area
as a site for analysis and demonstration of the LSEVR technique. It should be noted that it would be
possible to demonstrate the technique elsewhere within the domain such as the free-stream region.
However, in this region with high spatial uniformity, it is expected that linear interpolation techniques
would be fully capable of performing well and should have a lower computational cost than the
LSEVR technique.
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3.3. Validation Point, VP1 Analysis

A validation point, VP1 located at x = 72.14 mm, y = 6.90 mm is chosen as the site for demonstration
and validation. It is important that this point be within the free-sheer layer and be exposed to turbulent
vortex shedding in order to test the robustness of the technique. To demonstrate the nature of the
turbulent flow, an example of an instantaneous velocity field (tfr = 1) is presented in Figure 3a with
VP1 marked. A zoomed view showing only the few surrounding vectors is presented in Figure 3b
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where the unsteady nature is demonstrated by presentation of another timestep overlaid (tfr = 10).
Observing the differences between the two flow field time steps in Figure 3b shows how due to an
approaching eddy at that time, there is significant change in a few of the vectors surrounding VP1.
However, VP1 itself does not change significantly. This illustrates the potential difficulties that need to
be overcome by any vector replacement technique applied.Fluids 2019, 4, x FOR PEER REVIEW 7 of 18 
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The true oscillatory nature of the flow in this region is not revealed so far, however by plotting the
time history for VP1 this is revealed in Figure 4. A frequency related to the shedding of vortices in this
region is revealed and evidence of turbulence is further exhibited. It is therefore recommended that
the point VP1 be considered as a worst case for application of the LSEVR technique.
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In order to apply the technique, the vector data at VP1 will be removed from a number of time
steps to emulate the situation requiring the replacement of a spurious vector. To clarify, this would be
the situation once the vector has already been identified as spurious, removed and requires calculation
of an estimate for replacement.

Firstly, Figure 4 presents evidence that the site does regularly have valid, non-sparse data and
therefore is suitable for LSEVR. Following this step, using valid time samples, the spatial correlation
for each velocity component, in this case two-component, is calculated (according to Equation (3)) and
presented in Figure 5.

Before proceeding, there are some interesting observations about the flow revealed by Figure 5.
Firstly, the oscillatory nature is further evidenced in Figure 5b which shows a vertical band of
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high-correlation with two adjacent highly negative correlations. Secondly, a chequerboard effect is
exhibited in Figure 5a.Fluids 2019, 4, x FOR PEER REVIEW 8 of 18 
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Taking straight-line profiles through VP1 in Figure 5 allows the spatial velocity correlation (SVC)
for each component in each direction to be quantified and is presented in Figure 6. Further, this allows
for calculation of the integral length scales.
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Figure 6. Spatial velocity correlation (SVC) in x and y directions for VP1 for (a) x-component and
(b) y-component.

It should be noted that for this calculation, all profiles are required to have a zero-crossing by
definition of integral length scale. Often in experimentally determined SVCs and therefore integral
length scales, it is possible that there is no zero crossing. This may be the case when there is large
correlation in one (or more) directions, the measurement region is not sufficient to capture all scales of
flow structure or the point selected is close to an extremity of the measurement region. The former is
demonstrated in Figure 5b and subsequently Figure 6b. It can be observed that a highly anisotropic
correlation exists in the y-component of velocity. Hollis discusses how this may be overcome with a
curtailment model, Equation (5), where subscript c denotes the value at curtailed point [30]. Hollis
discusses several approaches to modelling the curtailment and the impact on obtained length scales.
However, for the purposes of the calculation here, it is desired that a robust method be used that is
suitable for many areas within the flow, and whilst Equation (5) may effect the absolute obtained length
scale, it would not significantly impact on the selection of sensors and subsequent LSEVR calculation.
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Ri j =

( Ri j,c

e−∆Sc

)
e−∆S (5)

The length-scales may be calculated in all directions for all components. A summary of the
resulting length scales is presented in Table 1. Firstly, it should be noted that all but the aforementioned
y-direction, y-component velocity have a length scale of approximately 10 mm. This value should
be carefully considered when selecting the region in which sensors should be selected. It is therefore
determined that the points to be selected as sensors for the LSEVR should be within 10 mm of VP1

to maximise LSEVR effectiveness. Given the vector grid resolution of 1.90 mm × 1.90 mm, a region
of no greater than 5 × 5 should be considered. Again, it could be noted that the region need not be
square, and the anisotropy of the correlations could be considered if required; however, that is not the
case here.

Table 1. Summary of calculated length scales at VP1.

Length Scale Description VP1 Value [mm]
1L11 x-direction, x-component 13.20
1L22 x-direction, y-component 10.24
2L11 y-direction, x-component 10.35
2L22 y-direction, y-component 35.82

The next step of the procedure requires a sensor network to be distributed around the site (VP1)
to calculate the ‘a’ matrix and allow subsequent estimation of the missing vector at VP1. It is suggested
that for accuracy of 75%, then at least 7 sensors should be used [24]. However, it should be noted in
that work by Butcher, the points were distributed randomly around the domain with no optimisation
or effects of proximity to the point to be estimated exploited. It is expected in this application,
a greater accuracy may be achieved due to the previous step of identifying highly correlated regions.
Nonetheless, these values may serve as an upper limit to the number of points that should be required.

Within the defined limits and within the indicated region, a network of sensors is distributed as
depicted in Figure 7. Sensors are selected along the lines of the profiles represented in Figure 6 with an
additional point at each corner of the region giving a total of 12 sensors.
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The next step involves the calculation of the ‘a’ matrix over a number of time-step in which valid
data exists. For this exercise, 100 randomly selected instances; from the 3072 available, shall have
the vector at VP1 deleted in order to emulate a removed spurious vector. This is achieved using
random permutation function in Matlab for 1–3072 to generate frame number. For each condition, a
symmetrical temporal window with the span of 100 time-steps shall be used to generate the ‘a’ matrix.
It should be noted that while 100 is used nominally (±50 excluding t), in the case where any of the
time steps contain erroneous data, or t < 51 (i.e., there are less than 50 preceding time steps available),
there may be less than 100 frames used as inputs to Equation (1). This approach is selected to improve
efficiency of LSEVR by not carrying out the calculation unnecessarily. Further, given the periodic
nature demonstrated in Figure 4, the approach could lead to improved performance by selecting only
data in the temporal vicinity of the vector to be estimated. For brevity, only the steps for the first
randomly selected timestep are presented (t = 2503), however all further analysis and performance
evaluation will be carried out on the full set of 100 estimations.

For the test case to be presented, t = 2503, the velocity component values at sensor location at
t = 2453 to 2502 and 2504 to 2553 are extracted and used together with the VP1 values to generate
the ‘a’ matrix according to Equation (1). Then, only the sensor values at t = 2503 are used with
the ‘a’ matrix and Equation (2) to produce the estimate of vector at VP1 at t = 2503. This is plotted
together with the original data for comparison in Figure 8. The plot reveals a high similarity of the
replacement vector with the original data set. It should be emphasised that while the original vector
at VP1, t = 2503 was known, it was not used in the calculation of the ‘a’ matrix nor in the estimation.
The purpose of retaining the value at this point was to provide a direct comparison to replacement for
validation purposes.
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3.4. Performance Relative to Other Approaches

To fully test the effectiveness of LSEVR, it shall be compared to other common techniques of
data replacement. For this purpose, 2 techniques of interpolation shall be considered: bilinear and
bicubic, both of which will be implemented using Matlab and only the values at sensor locations for
the applicable time step. Similar to the previous demonstration, the comparison will be presented
for a single time, t = 2503, but performance shall be assessed and summarised based on applying the
technique to the 100 test cases randomly selected from all time steps.

A direct comparison to bilinear and bicubic interpolation for the time step t = 2503 is presented
in Figure 9a with a zoomed view of the replaced vector in Figure 9b. It can be deduced that in
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this particular situation, there is minimal difference between the replacement methods with bicubic
interpolation performing marginally better, however it is reasonable in this case that either bicubic or
LSEVR would be suitable. The similarity of performance may be attributed to smaller velocity gradients
within the immediate vicinity at this time instance. Analysing the next randomly selected timestep,
t = 2782 reveals a condition with increased velocity gradients. Figure 9c,d present the estimations
and zoomed views respectively. In this condition, there is some difference between the estimations.
The magnitude for both bilinear and bicubic are overestimated while the LSEVR magnitude is closer to
the original data. However, all show some difference in the vector direction. It is expected that with
further increases in velocity gradient the disparity between the interpolation methods and LSEVR
may increase.
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Further to the two presented conditions, the vectors at VP1 are estimated for the remaining 98 of
100 randomly selected test conditions. For each time condition, the error is calculated according to
Equation (6), where Uoriginal refers to the original velocity at VP1 for that timestep, i.e., the value that
should be estimated.

E =

∣∣∣∣∣∣−−→Uest −
−−−−−−→
Uoriginal

∣∣∣∣∣∣∣∣∣∣∣∣−−−−−−→Uoriginal

∣∣∣∣∣∣
(6)
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Equation (6) is evaluated across all timesteps and for each of the three replacement methods
independently. Table 2 summarises the resulting performance metrics for each method. Firstly, there is
compelling evidence that on average the LSEVR technique outperforms both bilinear and bicubic
interpolation techniques over the range tested. It should be noted that a region was purposefully
selected in the flow in which reconstruction techniques would typically suffer, and this is evident
in the average errors. Further, analysis of the results revealed that many of the high errors from all
three techniques occur when the real velocity magnitude at VP1 is close to zero. If the low velocity
conditions are disregarded, the percentage errors for all techniques reduce to 13.03%, 10.62% and 7.12%
for bilinear, bicubic and LSEVR respectively.

Table 2. Summary of comparative performance metrics. * CPU time includes time for ‘a’ matrix
generation and velocity estimate.

Method Average Error [%] Reconstructions with
Greater Than 10% Error Mean CPU Time [ms] *

Bilinear 18.55 57 1.4

Bicubic 14.34 50 1.4

LSEVR 11.29 25 17.27

The number of instances in which there is greater than 10% error is also reduced using the LSEVR
technique in comparison to the two interpolation methods which themselves rank as expected. However,
the cost of LSEVR is increased computational expense. It has been shown how the computation
time for ‘a’ matrix generation in proportional to the square of the number of sensors [24]. It would
therefore be possible to reduce the cost by reducing number of sensors at potential expense of increased
estimation error.

3.5. Further Validation Points, VP2 and VP3

The previous section has demonstrated the ability of LSEVR in an area which would typically
be problematic for interpolation-based techniques due to the high velocity gradients present in a
turbulent, free-shear region. For completeness, this section will apply LSEVR within the free-stream
area, comparing the relative performance against bilinear and bicubic interpolation. The points selected,
VP2 and VP3 are presented in Figure 10.
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For each of the two additional test points, the process set out in Sections 3.3 and 3.4 have been
followed, with the additional bounding of the wall proximity of VP3. This has resulted in the same
sensor configuration style as that applied to VP1. For brevity, equivalent cross-correlation plots for
each of these points is not presented here as this is described in detail for VP1. The resulting error for
VP2 and VP3 are presented in Table 3.

There are a few observations to note about the performance and relative performance of each of the
replacement techniques for each VP2 and VP3. Firstly, all techniques for both points perform better than
was the case for VP1 due to smaller velocity gradients in the case of interpolation and fewer significant
velocity fluctuations in the case of LSEVR. Of the two points, VP3 is closer to free-stream behavior,
and each technique performs well. In this situation, it could be beneficial to perform interpolation
rather than LSEVR, due to the reduction in computational requirement with little benefit gained from
LSEVR in this situation.

Table 3. Assessment of accuracy for VP2 and VP3.

Method VP2 Average Error [%] VP3 Average Error [%]

Bilinear 6.76 4.55

Bicubic 5.86 3.82

LSEVR 4.26 2.79

3.6. Regions with Multiple Removed Vectors

It was shown in the previous section how the performance of LSEVR produced more accurate
replacement vectors than the bilinear and bicubic techniques over a range of tests conducted in a
turbulent region of flow for a single removed vector. The condition in which LSEVR offers a more
significant advantage is when multiple vectors in close proximity have been removed. This can
commonly occur in experimental measurements, for example inhomogeneity in seeding creating sparse
or overly-dense regions can affect multiple interrogation regions (in the case of PIV) for example and
therefore vector locations.

Interpolation methods rely on information from the nearest neighbours to estimate gradient and
therefore value at the missing location. The LSEVR technique allows freedom to distribute the sensor
network freely within the defined region. Considering the vector field partially presented in Figure 9c
(t = 2782), multiple vectors may be removed. These removed vectors and reconfigured sensor network
are presented in Figure 11.
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The resulting replacement vectors are compared in Figure 12. For all but one vector replacement,
the LSEVR technique produces a visibly closer representation of the originally removed vector. Further,
its accuracy does not appear impacted for any one vector in comparison to another, evidence of the
insensitivity to velocity gradient. In general, the bilinear and bicubic methods offer similar vectors,
but both are significantly different to the LSEVR vector and original data.Fluids 2019, 4, x FOR PEER REVIEW 14 of 18 
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The error at each vector position is calculated in the same manner as previous discussed and the
results are summarised in Table 4. It should be noted that all of the technique performed well for the
vector located at x = 70.2 mm, y = 6.9 mm with errors of 7.33%, 8.06% and 4.61% for bilinear, bicubic
and LSEVR respectively. This has contributed to a lower average error than was stated in Table 2
for LSEVR, but in general the average is representative of the approximate error expected. Certainly,
the two interpolation methods may suffer up to 55–70% error in the worst case; the two lower vectors
in Figure 12.

Table 4. Summary of accuracy of vector replacement techniques for clumped data for time shown and
across set of 100 timesteps. Vector angle and magnitude error given for full set.

Method Average Error [%]
(t = 2782, Figure 11) Average Angle Error [◦, abs] Average Magnitude

Error [%]

Bilinear 41.36 10.21 3.08

Bicubic 40.09 9.52 3.32

LSEVR 10.78 6.68 1.13

Applying the same approach of using 100 randomly selected timesteps, statistics are calculated
the three approaches and compared in Table 4. Here, the error is broken down to the error angle, that is
the angle between the original vector and the replacement vector, and the error in magnitude (as %).
This further reveals how errors manifest in each technique. It can be seen that each technique performs
satisfactorily in estimating the vector magnitude, with LSEVR proving the most accurate. However,
when the vector angle is considered, the two interpolation methods are significantly less representative
than the LSEVR approach. This is visibly evident in the example provided in Figure 11 where whilst
some error in magnitude is just visible, the LSEVR angle is well estimated.

In addition to the average values presented in Table 4, it is useful to consider the distribution of
the errors associated with each of the three techniques in the form of probability density functions
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(PDFs), presented in Figure 13. This is calculated on all five vectors to be replaced in the clumped
sparse region (according to Figure 11) over 100 time-steps, i.e., 500 total vectors for each technique.

Considering Figure 13a,c, the vector angle and magnitude errors respectively, the LSEVR technique
provides a significant reduction in error of the replacement vector. In terms of the vector error angle
there are far fewer occurrences of high angle error in comparison to the other two techniques.
When considering the error in vector magnitude, the advantage is less significant, however the LSEVR
offers a clear advantage.

It is in this condition, when there are multiple adjacent or blocks of vectors that the LSEVR is
most useful. Here, interpolation techniques have been shown to perform poorly, particularly in the
estimation of vector angle.

Throughout the examples and values presented thus far, it has been discussed how close to
zero values for the vector to be replaced can result in a disproportionally large error across all three
techniques. Therefore, an additional two PDFs are presented in Figure 13b,d which are based only on
data with a greater (original) magnitude of 0.1 ms−1. As one may expect, all three techniques show
reduced error.

Fluids 2019, 4, x FOR PEER REVIEW 15 of 18 

Throughout the examples and values presented thus far, it has been discussed how close to zero 
values for the vector to be replaced can result in a disproportionally large error across all three 
techniques. Therefore, an additional two PDFs are presented in Figure 13b,d which are based only 
on data with a greater (original) magnitude of 0.1 ms−1. As one may expect, all three techniques show 
reduced error. 

(a)

 

(b)

 

(c)

 

(d)

 

Figure 13. Probability density functions (PDF) of errors for each technique. (a,b) present the PDFs for 
absolute vector angle for all replaced vectors and those non-near zero respectively. (c,d) present the 
PDFs for vector magnitude error for all replaced vectors and non-near zero respectively. 

A noteworthy observation from this part of the study is that due to the independent application 
of LSE equations for each vector to be replaced, the technique is readily adapted for parallelisation 
which was the case here. The result is that there was no significant increase in computational time to 
replace five vectors rather than one (considering wall time not CPU time), providing there are the 
necessary computational provisions available. 

4. Conclusions 

In the experimental determination of velocity fields, there are myriad potential causes of 
erroneous vectors. These may present themselves either as clumps or regions of sparse vectors, 
individual erroneous vectors or a combination within the measurement volume. The erroneous 
regions may be persistent or instantaneously occurring. Much research effort has been carried out 
particularly in the field of PIV analysis to detect and replace these problematic vectors. 

Figure 13. Probability density functions (PDF) of errors for each technique. (a,b) present the PDFs for
absolute vector angle for all replaced vectors and those non-near zero respectively. (c,d) present the
PDFs for vector magnitude error for all replaced vectors and non-near zero respectively.

A noteworthy observation from this part of the study is that due to the independent application
of LSE equations for each vector to be replaced, the technique is readily adapted for parallelisation
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which was the case here. The result is that there was no significant increase in computational time
to replace five vectors rather than one (considering wall time not CPU time), providing there are the
necessary computational provisions available.

4. Conclusions

In the experimental determination of velocity fields, there are myriad potential causes of erroneous
vectors. These may present themselves either as clumps or regions of sparse vectors, individual
erroneous vectors or a combination within the measurement volume. The erroneous regions may be
persistent or instantaneously occurring. Much research effort has been carried out particularly in the
field of PIV analysis to detect and replace these problematic vectors.

The presented work introduces the use of LSE as a vector replacement methodology LSEVR,
highlighting advantages over commonly employed techniques and discussing the limitations and
drawbacks. A five-step explanation of the technique is presented with suggestions of when the steps
can be missed and the process streamlined, notably when there is more flow information known a
priori. Two-point statistics, specifically the spatial velocity correlation function is utilised to identify a
suitable region size for selection of the sensor network.

To demonstrate and test LSEVR, an experimental PIV data set is used of a commonly studied
flow case of a single, stationary cylinder in cross-flow. From the complete dataset, a point is identified
in the most turbulent region, the free-sheer layer. Analysis presented about this point, VP1 shows
there is vortex shedding and some oscillatory behaviour of the flow velocities. Vector replacement
at 100 randomly selected time steps is carried out alongside bilinear and bicubic interpolation
for comparison.

In the majority of conditions, the LSEVR methodology performed better than both interpolation
approaches but with increased computational cost. Typically, the LSEVR was shown to have a reduced
error of 3–6%. The performance of all techniques may be acceptable and interpolation methods are
widely used for this purpose. This is particularly the case if the spatial resolution of the experiment
allows multiple vectors to represent flow structures.

To further demonstrate the robustness of the technique, two further points in the flow fields with
significantly different characteristics were chosen to evaluate the relative performance. Points in the
free stream were reasonably well estimated by both interpolation techniques and slightly better by
LSEVR. In these conditions, where interpolation typically performs well, it may be more efficient to
interpolate, applying LSEVR in areas where interpolation would suffer accuracy loss.

However, the strength of the technique lies in the cases with multiple sparse or removed spurious
vectors in close proximity or clumps. In this condition, interpolation methods performed poorly with
errors in the region of 40%+ while LSVR exhibited significantly reduced errors of approximately 10%
with no detrimental impact identified when the sensor network requires reconfiguration. Further, due to
the LSE equations being applied independently for each required vector replacement, the technique
can readily be parallelised as was the case here. The result was no discernible increase in wall time
calculation for the five replacements in comparison to a single replacement. This will depend on the
configuration of the processing machine.

Finally, it was considered throughout this work that an adapted LSEVR routine could be
implemented to detect spurious vectors as well as estimating a replacement. However, the increase in
computational requirements would be too great if LSEVR were applied at every spatial and temporal
data point in the flow. Therefore, it could be incorporated once a median test has identified a potential
spurious vector, LSEVR could provide a comparative vector to use rather than a vector based on the
standard deviation of neighbours as is often the case.
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