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Abstract: The presence of a moving interface in two-phase flows challenges the accurate
computational fluid dynamics (CFD) modeling, especially when the flow is turbulent. For such flows,
single-phase-based turbulence models are usually used for the turbulence modeling together with
certain modifications including the turbulence damping around the interface. Due to the insufficient
understanding of the damping mechanism, the phenomenological modeling approach is always used.
Egorov’s model is the most widely-used turbulence damping model due to its simple formulation
and implementation. However, the original Egorov model suffers from the mesh size dependency
issue and uses a questionable symmetric treatment for both liquid and gas phases. By introducing
more physics, this paper introduces a new length scale for Egorov’s model, making it independent of
mesh sizes in the tangential direction of the interface. An asymmetric treatment is also developed,
which leads to more physical predictions for both the turbulent kinetic energy and the velocity field.

Keywords: two-phase flow; CFD; phenomenological modeling; turbulence damping; Egorov’s model;
asymmetric treatment

1. Introduction

Two-phase flows are widely encountered in nuclear, chemical, and petroleum engineering.
Due to the insufficient understanding of the basic mechanisms that govern the two-phase flow,
the computational fluid dynamics (CFD) modeling of two-phase systems, where moving interfaces
exist, is still challenging, even though many approaches, e.g., the volume of fluid (VOF) method [1],
the two-fluid model [2], and the level-set method [3], have been proposed. Since a large portion
of the two-phase flows in industrial applications are turbulent, turbulence models should be
combined with the proposed two-phase models to simulate such turbulent two-phase flows. However,
turbulence modeling for two-phase flows is not as mature as that for single-phase flows. As a result,
turbulence models that are developed for single-phase flows are usually employed in two-phase flow
simulations with few or no modifications.

The immaturity in both interface modeling and turbulence modeling leads to unphysical
predictions, for which one well-known issue is that the turbulence behavior near the interface
is mispredicted. For instance, according to both experimental studies [4,5] and direct numerical
simulations (DNS) [6,7], the gas–liquid interface in stratified flows behaves similarly to a solid wall in
single-phase flows. In order to reproduce this wall-like behavior in CFD simulations where turbulence
models are used, researchers have made various attempts trying to damp the turbulence around
the interface such that the interface could behave more like a wall [8–12]. Even though all these
methods are essentially phenomenological models, they are being used and will still be used in the
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foreseen future. The reason is that, in the absence of mechanistic models for turbulence damping,
these phenomenological models are a useful tool that advances two-phase turbulent CFD simulations.
Among all these approaches, the method proposed by Egorov [8] is the most used one for the VOF and
two-fluid modeling due to its simple formulation and easy implementation, which will be discussed
in detail in Section 2.

Egorov’s model was originally developed for gas–liquid stratified flows so that the near-interface
velocity profile could be correctly predicted, and it is still being used for this purpose [13]. In addition,
the model has been found to be crucial for the accurate prediction of oil film distribution in an
aero-engine bearing chamber [14], of wave propagation [15], and of the entrained fraction in annular
flows [16]. This not only shows the popularity of Egorov’s model in a broad range of flow conditions,
but also justifies the necessity and usefulness of developing such phenomenological models.

Aside from the popularity, Egorov’s model has its own disadvantages due to its phenomenological
modeling nature. On the one hand, a proper value should be selected for the model parameter, B,
to match the numerical results with the experimental data. However, B is mesh size sensitive, and no
universal guideline exits for the selection of B [8,12,16,17]. On the other hand, Egorov’s model employs
the same treatment for both gas and liquid phases, which is referred to as the symmetric treatment
by Frederix et al. [12]. It has been pointed out by many researchers [10,12,18] that an asymmetric
treatment should be introduced to model the different turbulence behaviors on the different sides of
the interface.

This paper aims at modifying Egorov’s model by introducing more physics. A new length scale for
the interface is firstly introduced to make Egorov’s model less dependent on the value of B. After some
in-depth discussions, an asymmetric treatment is proposed for the turbulence damping such that the
turbulence behaviors in individual phases could be modeled separately.

2. Egorov’s Model

The model proposed by Egorov [8] is based on the ω equation in the framework of RANS
modeling of turbulence. There are various forms of ω equations for different turbulence models,
but they can be generalized as:

Dρω

Dt
= Pω + Desω + Disω + Tω, (1)

where ρ denotes density, Pω is the production term, Disω is the dissipation term, and Tω is a
transformation term that arises due to the blending of the k-ω model and the k-ε model. All three terms
are quite complicated since they all include additional unknown variables other than ω. The remaining
is the destruction term Desω = −βρω2, which is much simpler in form in comparison with others.
The boundary condition for ω is determined by the asymptotic solution for ω in the viscous sublayer,
which is known as:

ωvis = B
6µ

βρy2 , (2)

where β in Equation (2) is a constant in the k-ω model, µ is the dynamic viscosity, and y is the wall
distance of the cell. B is a factor that makes sure this term is large enough so that the selection of B will
not affect the result for the interface between the fluid and a solid wall. In Menter [19], B = 10, and in
Menter and Esch [20], B = 1.

According to νt =
k
ω , where νt is the turbulent viscosity and k is the turbulent kinetic energy,

a high ω leads to a lower νt; therefore, a larger ω can be used to damp the turbulence. This idea is the
central pillar of the model proposed by Egorov [8]. In order to introduce turbulence damping for the
fluid–fluid interface, a source term is added to the ω equation so that a larger ω will be calculated for



Fluids 2019, 4, 136 3 of 20

the interfacial region. In analogy with the destruction term in Equation (1) and ω treatment for the
fluid–solid interface in Equation (2), the following form of source term is proposed:

Sω,i = Ai∆yβρi

(
B

6µi
βρi∆n2

)2
, (3)

where subscript i denotes the phase, which means that each phase has a source term based on its
property. Ai is the interfacial area density, which is zero for the single-phase region and satisfies the
following property for the interfacial region:∫ ∞

−∞
Ai dn = 1, (4)

where n is the coordinate in the direction normal to the interface. The role of Ai is to guarantee that the
source term is only activated in the interfacial region, and the most widely-used form is:

Ai = 2αi|∇αi|. (5)

∆n is the typical cell size across the interface, and in most cases, ∆y = ∆n is assumed for the
purpose of simplification [13,16,17,21]. Therefore, the source term could be simplified as:

Sω,i =
36Aiµ

2
i

βρi

B2

∆n3 . (6)

It is quite obvious that grid information appears in this source term explicitly, and it should be
noted that Ai is also dependent on mesh size [10]. Therefore, B has to be tuned according to the grid
size. If the mesh effect on Ai is neglected, a smaller B should be used for a finer mesh such that the
same source term could be used.

In the present study, Egorov’s model is used together with the VOF method due to the simple
formulation of VOF.

3. Calculation of ∆n

According to Egorov [8], ∆n is the typical grid cell size across the interface. However,
this statement is somehow ambiguous and leaves room for various interpretations of it.

3.1. Existing Methods

The simplest and most straightforward way is using ∆n = 3
√

V, where V is the volume of an
interfacial cell. This treatment could provide a localized length scale with V, which is always available
for a given mesh. This method is adopted in the commercial code STAR-CCM+ [17]. Even though
Egorov’s model is not officially provided in open-source software like OpenFOAM, it can be easily
implemented by the user. In most cases, users use ∆n = 3

√
V as the length scale [13,16].

An alternative approach is based on another interpretation of ∆n that it is regarded as the cell
height normal to the interface. This is adopted by commercial code ANSYS FLUENT [21]. According to
this interpretation, both the mesh information and phase distribution are necessary for the calculation
of ∆n. However, the implementation details of this approach are not provided in the documentation.

3.2. A New Length Scale

According to the authors’ knowledge, since Equation (3) is proposed based on Equation (2), ∆n
should be defined in a way that is similar to the definition of y in Equation (2). Then, straightforwardly,
∆n could be interpreted as the normal distance between the cell centroid and the interface. This could
be done by firstly reconstructing the interface and then measuring the interfacial normal distance for
each cell as described by Liovic and Lakehal [9]. However, this is only feasible for VOF methods where
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the geometric interface reconstruction is applied during the simulation. In addition, ∆n could be very
tiny or even zero, making the term shown in Equation (6) unbounded. Therefore, this interpretation
of ∆n is not adopted. In the present study, ∆n is calculated based on an approach that does not
require the reconstruction of the interface so that it can be applied to more generalized VOF methods.
The proposed method was deduced from a simple case as shown in Figure 1.

Figure 1. A cuboid is cut by an interface (red dotted surface), and their common surface has an area of
S. The interface, with~n being its unit normal vector, is perpendicular to four inter-parallel edges.

Assume the interface is perpendicular to four inter-parallel edges of a cuboidal cell. Then,
the length of these edges, b, is a good representation for ∆n, since it reflects the cell size in the normal
direction of the interface. This could also be explained from a mathematical point of view by:

∆n =
V
S

=
abc
ac

= b, (7)

where the numerator is the volume of the cell and the denominator is a characteristic area scale for
the interaction between the interface and the cell. It might be interpreted as the area of the interface
trimmed by the cell, which is quite intuitive. This common surface of the interface and the cell is
denoted by Sc. In Figure 1, we could easily get:

Sc = ac = S. (8)

However, Equation (8) only holds for the special case like Figure 1. For a general case where
an arbitrary polyhedron is cut by an interface with an arbitrary orientation, as shown in Figure 2,
the area of Sc is not easy to calculate due to the fact that interfaces are tracked implicitly in the
VOF method. Therefore, a geometric VOF method must be used to reconstruct the interface and
to calculate the corresponding area. As mentioned above, this article aims at developing a method
suitable for general VOF solvers where the reconstructed interface is not always available. In addition,
this interpretation may cause the unboundedness issue of ∆n. For instance, when a very tiny Sc is
reconstructed, a nonphysically large ∆n will be calculated. Therefore, this interpretation was not
adopted in this study.

Alternatively, S could also be interpreted as half of the projected area of all the faces on the
interface, and this interpretation is denoted by Sp. In Figure 1, only the top and bottom faces have
a non-zero projected area on the interface. If we denote these two projected area by Stop and Sbottom,
respectively, we have the following equation:

Sp =
1
2
(Stop + Sbottom) = ac = S. (9)

Using this concept, this is no need to reconstruct the interface geometrically. In addition,
this projected area can be easily calculated for any given polyhedral cell, as shown in Figure 2.
For any polyhedral cell with volume V, each face has a vector ~S f i whose direction is the face normal
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and whose magnitude is the face area. If the cell is in the interfacial region, then the unit normal vector
of the interface could be calculated using~n = ∇α

|∇α| , and Sp is calculated by:

Sp =
1
2 ∑

i
|~n · ~S f i|. (10)

Figure 2. A polyhedron with volume V is cut by an interface with ~n being its unit normal vector.
Each face of the polyhedron has a surface area vector ~S f i whose direction is the face normal and whose
magnitude is the face area. Sc is the common surface of the polyhedron and the interface. Sp is half of
the projected area.

Then, the length scale for the turbulence damping could be calculated as:

∆n =
V
Sp

= yp. (11)

It should be noted that Equation (11) is the definition of yp. For a general cell shown in Figure 2,
yp does not have an explicit geometric representation as the one used in ANSYS FLUENT [21], i.e.,
the cell height normal to the interface. Therefore, instead of regarding yp as a typical cell size or a
cell height in a certain direction, it is more proper to refer to yp as a length scale for the turbulence
damping around the interface.

4. Numerical Setup

The experiment conducted by Fabre et al. [4], where air–water stratified flows in a rectangular
channel with a 0.001 downward slope were investigated, is often used as the test case for the
development of interface damping models. In this study, three flow conditions from the experiment,
as shown in Table 1, were investigated.

Table 1. Flow conditions and experimental data [4].

Run Reference Air Average Velocity (m/s) Water Average Velocity (m/s) Pressure Gradient (Pa/m)

250 3.66 0.395 2.10
400 5.50 0.476 6.70
600 7.56 0.698 14.80

4.1. Computational Domain

A 2D computational domain was constructed as shown in Figure 3. Similarly to the experiment,
air and water were supplied via corresponding inlets. These two inlets were assumed to be separated
by a zero-thickness 600 mm-long baffle. One reason for making such an assumption is that the details
of the baffle were not provided in Fabre et al. [4]. Another reason is that the measuring zone was quite
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far away from the inlets, indicating that the detailed inlet configurations of the inlet region should
only have minor effects on the results of the measuring zone.

Figure 3. Sketch of the computational domain (units in mm, not to scale).

4.2. Boundary Conditions

Egorov’s model was implemented in OpenFOAM v1706 with both ∆n = 3
√

V and ∆n = yp.
The two-phase system was solved by the VOF solver vInterFoam [22]. The k-ω SST model was used
for turbulence modeling together with the boundary conditions given in Table 2. All the simulations
were run in transient mode, and the data were processed by taking the average value of 50 s after the
flow stabilized.

Table 2. Boundary conditions.

airInlet waterInlet outlet upperWall lowerWall baffleAir baffleWater

α α = 0 α = 1 ∇α = 0 α = 0 α = 1 α = 0 α = 1

U mappedC a mappedC advective no slip no slip no slip no slip

prgh fixed flux fixed flux
fixed total
pressure fixed flux fixed flux fixed flux fixed flux

k mappedN b mappedN ∇k = 0 k = 0 k = 0 wall function wall function

ω mappedN mappedN ∇ω = 0 wall function c wall function wall function wall function
a mapped condition with the constraint on the average value; b mapped condition without constraints; c there is a
bug in omegaWallFunctionin the official release of OpenFOAM v1706, and it was fixed in the present study.

4.3. Mesh

Grid points were divided into three regions in the y direction, i.e., a uniform region in the middle
and two non-uniformly-distributed regions near the upperWall and the lowerWall, as shown in
Figure 4. These two near-wall regions were designed to minimize the boundary condition effect on
the results. This is because if the computational domain is uniformly discretized in the y direction,
the thicknesses of the first-layer cells off the walls and other cells in the momentum boundary layers
will change with the mesh refinement. This indicates that the wall function approach should be used
for a coarse mesh, while a direct-solving approach must be used for a refined mesh. This switching in
boundary conditions may introduce additional uncertainties and was not adopted in the present study.
Instead, both near-wall regions were always discretized with a very fine mesh to make sure that the
same boundary condition was used for all the cases.

A typical cell in the uniform core mesh is depicted in Figure 5, where the height of the cell is
denoted by δy. By introducing the aspect ratio of the cell, AR, the length of the cell is calculated as
ARδy. In OpenFOAM, the 2D mesh should be extruded for one layer of cells in the normal direction
of the computational domain. The thickness of this extruded layer, δe, is usually irrelevant.
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Figure 4. Two non-uniform boundary layer mesh regions are created for the upperWall and lowerWall
to ensure that these regions are always resolved by a high-quality mesh. The uniform core mesh
guarantees that cells in the interfacial region are always of the same size.

Figure 5. A typical cell in the uniform core mesh.

5. Advantages of ∆n = yp over ∆n = 3√V

Run-250 is used in this section to compare the performance of 3
√

V and yp. The reason for this
selection is that the interface was the least wavy among all the three conditions listed in Table 1.
For the sake of clarification, we use Byp and B 3√V to denote B values that were used for ∆n = yp and

∆n = 3
√

V, respectively.

5.1. Problems with 2D Simulations

As mentioned above, the one-layer 3D mesh is used in OpenFOAM for 2D simulations. Actually,
this strategy is also employed in commercial CFD software like STAR-CCM+ and ANSYS-CFX.
The underlying reason is that almost all the codes written for 3D simulations could be easily reused
in 2D by simply ignoring the unsolved direction. Therefore, the size of the unsolved dimension, δe,
should not affect the final results. However, if ∆n = 3

√
V = 3

√
ARδyδyδe is used in Egorov’s model,

the third direction explicitly appears in the governing equation for a 2D flow, which makes the value
of B 3√V dependent on the selection of δe. In order to prove this statement, a uniform core mesh layout
with δy = 2 mm and AR = 20 was created on the xoy plane. Two meshes with δe = 1 mm and δe = 8
mm were generated, respectively. Two reference values, i.e., B0 = 30 and 50, were selected to make
sure that the following discussion is not based on a special case. If B 3√V = B0 was applied to both
meshes, the mesh with δe = 8 mm predicted a higher pressure gradient than the δe = 1 mm mesh did,
as shown by Curves 1 and 2 in Figure 6. In the following, we will discuss how to avoid this discrepancy
based on the B0 = 30 case, and all the discussions hold for the B0 = 50 case, as illustrated Figure 6b.

One way to avoid the results being affected by the selection of δe is to explicitly take the value
of δe into consideration when adding the source term. For instance, in order to match the result of
δe = 8 mm with that of δe = 1 mm, two corresponding source terms should be equal, that is:

36Aiµ
2
i

βρi

B2
3√V

∆n3

∣∣∣∣
δe=8

=
36Aiµ

2
i

βρi

B2
3√V

∆n3

∣∣∣∣
δe=1

. (12)



Fluids 2019, 4, 136 8 of 20

(a)

(b)

Figure 6. Axial pressure profile comparisons for meshes with δe = 1 mm and δe = 8 mm. When B 3√V =

B0 is used, the meshes with δe = 8 mm (Curve 2) predict a higher pressure gradient than that of
δe = 1 mm (Curve 1). By setting B 3√V = 2

√
2B0 for the mesh with δe = 8 mm (Curve 3) or using

Byp = B0√
10

for both meshes (Curves 4 and 5), the predicted pressure gradients are close to Curve 1.
(a) B0 = 30; (b) B0 = 50.

It is obvious that fluid properties were unchanged in the two cases. Plus, since both meshes had
the same 2D layout and solved exactly the same flow, the results should be identical indicating that Ai
should be equal in the two cases as well. Therefore, Equation (12) could be rewritten into:

B2
3√V

δe

∣∣∣∣
δe=8

=
B2

3√V
δe

∣∣∣∣
δe=1

, (13)

and subsequently, we get:

B 3√V

∣∣∣∣
δe=8

= 2
√

2B 3√V

∣∣∣∣
δe=1

. (14)
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This implies that by applying B 3√V = 60
√

2 to the mesh with δe = 8 mm, the result should match
the mesh with δe = 1 mm and B 3√V = 30. This statement is proven by inspecting Curves 2 and 3 in
Figure 6a.

The newly-proposed length scale does not need any information of the value of δe since its
contribution to V is canceled out by its contribution to Sp, as illustrated in Equation (11). For the
selected cell with δy = 2 mm, AR = 20, and δe = 1 mm, we obtained 3

√
V = 4

√
5 mm. Since the

interface was almost flat in the selected case, we could make a rough estimation that yp = δy = 2 mm.
It should be noted that all the yp values were calculated using Equation (11); such an estimation was
made to determine the value of Byp , with which the simulation using ∆n = yp could give predictions

similar to Curve 2 in Figure 6a. According to the calculation, we could get Byp =
B 3√V√

10
. This means

Byp = 3
√

10 should be used when yp is used as the length scale, and corresponding results are given
by Curves 4 and 5 in Figure 6a. They are close to each other, confirming that yp is independent of δe.
They are both almost overlapping with Curve 2, meaning that yp = 2 mm and Byp = 3

√
10 were both

good estimations.

5.2. Aspect Ratio Effect

Three meshes with AR = 10, 20, and 20-10-20 were generated to illustrate the limitation of 3
√

V in
terms of the aspect ratio of the cell. In all three meshes, δy = 2 mm was used to make the simulation
less demanding. AR = 20-10-20 means AR = 10 was used for the middle region, i.e., 4–8 m, of the
computational domain, and AR = 20 was used for the other parts of the domain.

The results are shown in Figure 7a. All three curves reach a pressure close to zero at the outlet
because the total pressure was set to zero at that location. The large gap between the results obtained
by AR = 10 (Curve 1) and AR = 20 (Curve 2) indicates that when using ∆n = 3

√
V, the value of B is

highly dependent on the aspect ratio in the flow direction. This makes the mesh size sensitivity study
difficult to conduct.

The AR = 20-10-20 case was designed to show the problem of using ∆n = 3
√

V when a
non-uniform mesh is used for the interfacial region. As illustrated by Curve 3 in Figure 7a, in the
8–12.6 m region, quite close profiles were predicted for the mesh with AR = 20 and the mesh with
AR = 20-10-20 because they had the same mesh distribution in this region. Furthermore, such two
profiles are almost parallel at the first 4 m due to the same reason. As for the 4.5–7.5 m region, the mesh
with AR = 20-10-20 had a pressure gradient similar to that of the mesh with AR = 10. A non-uniform
mesh is not uncommon for CFD simulations, e.g., a relatively fine mesh is usually used in the inlet
region or a relatively coarse mesh might be used in the outlet region. Using ∆n = 3

√
V suffers from

this non-uniformity of the mesh distribution.
Figure 7a implies that 3

√
V is a poor estimation for ∆n since it is so sensitive to the aspect ratio of

the interfacial cells. Then, we used the same meshes to test how ∆n = yp performed at various aspect
ratios. In this part, we will use the same damping factor Byp for all the meshes and try to get pressure
profiles close to Curve 1 in Figure 7a. Therefore, we could assume that the cases with ∆n = yp and
∆n = 3

√
V had the same source term:

36Aiµ
2
i

βρi

B2
3√V
V

∣∣∣∣
AR=10

=
36Aiµ

2
i

βρi

B2
yp

y3
p

. (15)

By assuming that Ai did not change for different meshes, we could get Byp = 10
√

5 for simulations
where ∆n = yp was used. The resulting pressure profiles are shown in Figure 7b. It is clear that all
three curves are almost overlapping, proving that ∆n = yp is insensitive to the aspect ratio of the cells.
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(a)

(b)

Figure 7. Axial pressure profiles for meshes with AR = 10, 20, and 20-10-20. Top: B 3√V is sensitive to
the aspect ratio of the cells; it performs worse for non-uniformly-distributed cells. Bottom: Byp shows
much less dependency on the aspect ratio of the cells. (a) B 3√V = 50; (b) Byp = 10

√
5.

5.3. Notes on yp

We note that the issue of using ∆n = 3
√

V in 2D simulations could also be categorized into the
group of the aspect ratio effect of using ∆n = 3

√
V. The rationale for discussing it separately in

Section 5.1 is that there is an explicit relation like Equation (14) such that we could still use ∆n = 3
√

V
without being affected by the selection of δe, as illustrated by Curves 2 and 3 in Figure 6. However,
in practical simulations, it is not unusual to have non-uniformly-discretized grids; using ∆n = 3

√
V

will suffer from the phenomenon illustrated by Figure 7a, and no obvious correction like Equation (14)
exists. In this case, ∆n = yp is definitely a much better length scale.

Even though quite regular meshes were used for the above comparisons, once 3
√

V was used as
the length scale, the damping factor B still varied dramatically with the grid size. Therefore, selecting
3
√

V as the length scale is one reason causing B to be mesh dependent. By using the newly-proposed
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length scale yp, B is much less sensitive to the grid layout in terms of δe in 2D simulations and the
aspect ratio of the interfacial cells.

Similarly to near-wall regions in single-phase flows, the physics near the interface is more
dominated by the flow in the normal direction of the interface. From this point of view, it is
inappropriate to make Egorov’s model dependent on the mesh size in the direction tangential to
the interface. In fact, both δe in 2D simulations and the aspect ratio of the interfacial cells describe the
mesh size effect in the direction tangential to the interface. Therefore, the superiority of yp over 3

√
V

has a solid physical basis. The discussion in Sections 5.1 and 5.2 is actually motivated by this physical
interpretation and eventually justifies this interpretation.

Even though the k-ω SST model was used for the turbulence modeling in the present study,
the proposed length scale could be used for all other ω-based turbulence models as well. In addition,
Frederix et al. [12] developed a methodology to implement Egorov’s model into ε-based turbulence
models, which makes it straightforward to implement Egorov’s model together with ∆n = yp in all
the ε-based models.

6. Further Discussions on Egorov’s Model

With the newly-introduced length scale yp, more in-depth discussions on Egorov’s model could
be carried out based on numerical experiments.

6.1. There Is No Large Enough Value for B

One known issue of Egorov’s model is that the value of B is mesh size dependent. As a result,
many values, e.g., 10 [21], 20 [16], 100 [8], 500 [17], and 2500 [10], are used or recommended.
Few attempts [12,23] have been made with the hope of finding a large enough value for B that is
mesh size independent. The following discussion aims at showing that there is no large enough value
for B.

For each flow condition listed in Table 1, there seems to be a region where the value for Byp was
large enough, and the pressure drop profiles became rather stable, as shown in Figure 8. Therefore,
it seems reasonable to claim that a large enough value, e.g., 1000, could be used for Byp irrespective of
the mesh size.

However, this insensitivity is purely numerical and actually does not reflect the physics correctly.
In fact, as shown in Figure 8, in the regions where Byp was large enough, the pressure gradients did
not converge to the experimental data. On the other hand, when inspecting the profiles of the axial
velocity, as shown in Figure 9, the maximum velocities appeared near the interface instead of the upper
solid wall. As for the turbulent kinetic energy, extremely small k values could be found around the
interface when large values were used for Byp . This indicates that the turbulence damping (described
by Equation (6)) was so strong that the turbulence almost died out around the interface. This obviously
deviates from the experimental observations shown in Figure 9. In addition, in Figure 9d,f, the profiles
are irregular for lager Byp values. The reason is that a large Byp introduces a large source term in the ω

equation. Numerical instability arises when this localized source term is too large. It should be noted
that Figure 9 is based on the finest mesh, i.e., δy = 0.5 mm, and the results for the other two meshes
are given in Appendix A.

Lorencez et al. [24] have stressed that k should have a non-zero value around the interface since
the velocity fluctuations do not vanish. Plus, the non-zero behavior of k was also observed in the
DNS [7]. Therefore, the mesh size-insensitive region does exist for Byp . Unfortunately, such large
enough values do not give physical predictions due to the underestimation of the turbulent kinetic
energy around the interface.
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(a) (b)

(c)

Figure 8. Pressure gradient dependency on Byp . (a) Run 250; (b) Run 400; (c) Run 600.

(a) (b)

Figure 9. Cont.
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(c) (d)

(e) (f)

Figure 9. Axial velocity and turbulent kinetic energy dependency on Byp , δy = 0.5 mm. (a) Run 250, U;
(b) Run 250, k; (c) Run 400, U; (d) Run 400, k; (e) Run 600, U; (f) Run 600, k.

6.2. Symmetric Treatment for Damping Terms

Another issue with Egorov’s model is that a similar treatment is used for both phases, as shown
in Equation (3). This is referred to as the symmetric treatment for damping terms in the sense that
turbulence is symmetrically damped for both phases. Therefore, the total source term could be
written as:

Sω,total =
36Alµ

2
l

βρl

B2
yp

y3
p
+

36Agµ2
g

βρg

B2
yp

y3
p

, (16)

where subscripts l and g denote the liquid phase and the gas phase, respectively.
It is quite obvious that Sω,total is always positive, indicating that the turbulence is always damped

for the interfacial region. One consequence of this treatment is that k was underestimated for the liquid
phase even though an “optimal” value, e.g., 5–10 for δy = 0.5 mm in terms of the pressure gradient
prediction, was used for Byp , as shown in Figure 9b,d,f. Such mispredictions for k in turn affected the
results for the velocity field in the liquid phase, as depicted in Figure 9a,c,e.

7. Asymmetric Treatment for Damping Terms

Actually, the symmetric treatment is asymptotically incorrect. In the extreme case where both
phases have the same properties, the two-phase flow becomes single-phase. Therefore, the turbulence
damping terms should be zero. However, when the symmetric treatment is used, the turbulence
damping terms are always positive. In addition, the symmetric treatment is not consistent with the
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computational observations in the DNS performed by Fulgosi et al. [7], where turbulence on the gas
side of the interface was always damped, while on a large portion of the liquid side of the interface,
the turbulence was enhanced [25]. Therefore, the interface plays different roles for the liquid and
the gas side of the interface, and an asymmetric treatment should be introduced for the turbulence
damping terms. We propose the following form of turbulence damping around the interface:

Sω,total = δ
36Alµ

2
l

βρl

B2
yp

y3
p
+

36Agµ2
g

βρg

B2
yp

y3
p

, (17)

where δ is a factor to consider the asymmetric damping effect caused by the interface. Obviously,
δ should be negative to model the turbulence enhancement in the liquid phase [7,25]. As Byp is
assumed to be constant for the entire interfacial region, we could make the same assumption for δ.
However, if δ were as mesh size dependent as Byp , the problem would just become more complicated
since there is one more free parameter to tune. Therefore, the value of δ is determined by the following
discussion. Recall the property of the interfacial area density shown in Equation (4); we could get the
following equation by integrating Equation (17) in the normal direction of the interface:

∫ ∞

−∞
Sω,total dn =

36B2
yp

βy3
p

(
δ

µ2
l

ρl
+

µ2
g

ρg

)
. (18)

During the derivation, yp is assumed to be constant, which is a fairly good assumption when a
structured grid is used for a flat interface. However, for meshes with a complex interface structure,
this assumption might be poor. As the first trial to show the significance of introducing turbulence
enhancement to the liquid side of the interface, we make the following assumption:∫ ∞

−∞
Sω,total dn = 0. (19)

The rationale is that, on the one hand, this could guarantee a negative value for δ such that
the turbulence in the liquid phase is enhanced. On the other hand, this treatment actually proposes
that, unlike a solid wall, which generates turbulence, the interface acts as a distributor of turbulence.
Based on Equations (18) and (19), it is straightforward to get:

δ = − ρl
ρg

µ2
g

µ2
l

. (20)

This asymmetric treatment was tested against various mesh sizes, flow conditions, and Byp values.
The pressure gradient results are shown in Figure 10. The shapes of these curves are very similar to
those in Figure 8 especially in the sense that there is always a narrow region where an optimal Byp

existed. Similar to the symmetric treatment results, the location of this narrow region is mesh size
dependent.

The merits of the proposed asymmetric treatment could be revealed by inspecting the U and k
profiles shown in Figure 11. The most eye-catching feature of the asymmetric treatment is the obvious
improvement in k profiles around the interface. For instance, when Byp = 10 was used for all three
flow conditions with δy = 0.5 mm, k near the interface was no longer underestimated, as shown
in Figure 11b,d,f. Consequently, in comparison with Figure 9a,c,e, Figure 11a,c,e have way better
agreement with the experimental data for the liquid phase.
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(a) (b)

(c)

Figure 10. Pressure gradient dependency on Byp with δ = − ρl
ρg

µ2
g

µ2
l
. (a) Run 250; (b) Run 400; (c) Run 600.

(a) (b)

(c) (d)

Figure 11. Cont.



Fluids 2019, 4, 136 16 of 20

(e) (f)

Figure 11. Axial velocity and turbulent kinetic energy dependency on Byp with δ = − ρl
ρg

µ2
g

µ2
l
,

δy = 0.5 mm. (a) Run 250, U; (b) Run 250, k; (c) Run 400, U; (d) Run 400, k; (e) Run 600, U; (f) Run 600, k.

8. Conclusions and Outlooks

In this paper, the widely-used Egorov model was further developed by introducing more physics.
According to the fact that the near-interface physics is dominated by the flow in the direction normal
to the interface, a new length scale, yp, was proposed to substitute the commonly-used one, 3

√
V.

In comparison with 3
√

V, yp made B independent of the extrusion thickness in 2D simulations and
the aspect ratio effect of the mesh. In addition, the calculation of yp did not require the geometric
reconstruction of the interface, making it available to all the VOF methods, as well as the two-fluid
approach. An asymmetric treatment was further developed such that turbulence in the liquid phase
could be enhanced while turbulence in the gas phase was still damped. With this modification, k
profiles around the interface could be physically predicted. Consequently, a better result was calculated
for the corresponding velocity profile. Simulations towards other experiments will be carried out to
further evaluate the proposed modifications.

Even though yp made the damping factor B independent of mesh sizes in the direction tangential
to the interface, B was still sensitive to the mesh size in the normal direction of the interface. This also
directs the future study of the present topic that, in addition to the asymmetric treatment that was
already developed in the present work, more physics should be added to the normal direction of the
interface. Therefore, it is beneficial to conduct relevant experiments and direct numerical simulations.
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Appendix A. U and k Profiles for Meshes with δy = 2 mm and δy = 1 mm

U and k profiles for δy = 2 mm and δy = 1 mm are shown in Figures A1 and A2, respectively.
In general, these figures are quite similar to those shown in Figure 9. However, k profiles in these
figures are actually of the same pattern and more regular than those in Figure 9. This indicates that
the numerical instability was absent for the tested cases with large mesh sizes. One reason is that the
magnitude of the source term added to the ω was inversely proportional to y3

p. When a same value
was used for Byp , fine meshes were more vulnerable to numerical instabilities. On the other hand,
large cells inherently tended to suppress oscillations and avoid instabilities.
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(a) (b)

(c) (d)

(e) (f)

Figure A1. Axial velocity and turbulent kinetic energy dependency on Byp , δy = 2 mm. (a) Run 250,
axial velocity; (b) Run 250, k; (c) Run 400, axial velocity; (d) Run 400, k; (e) Run 600, axial velocity;
(f) Run 600, k.



Fluids 2019, 4, 136 18 of 20

(a) (b)

(c) (d)

(e) (f)

Figure A2. Axial velocity and turbulent kinetic energy dependency on Byp , δy = 1 mm. (a) Run 250,
axial velocity; (b) Run 250, k; (c) Run 400, axial velocity; (d) Run 400, k; (e) Run 600, axial velocity;
(f) Run 600, k.
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