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Abstract: The influence of a strong and gusty wind field on ocean waves is investigated. How the
random wind affects solitary waves is analyzed in order to obtain insights about wave generation
by randomly time varying wind forcing. Using the Euler equations of fluid dynamics and the
method of multiple scales, a random nonlinear Schrödinger equation and a random modified
nonlinear Schrödinger equation are obtained for randomly wind forced nonlinear deep water waves.
Miles theory is used for modeling the pressure variation at the wave surface resulting from the wind
velocity field. The nonlinear Schrödinger equation and the modified nonlinear Schrödinger equation
are computed using a relaxation pseudo spectral scheme. The results show that the influence of
gusty wind on solitary waves leads to a randomly increasing ocean wave envelope. However, in a
laboratory setup with much smaller wave amplitudes and higher wave frequencies, the influence of
water viscosity is much higher. This leads to fluctuating solutions, which are sensitive to wind forcing.

Keywords: surface gravity waves; random wind-wave interactions; rogue waves; modified nonlinear
Schrödinger equation; stochastic partial diferential equations

1. Introduction

The formation of water waves under the influence of wind is an important physical process,
which can result in the emergence of rogue waves. Such waves have been measured in the oceans [1]
and can endanger the life of offshore workers, crews, passengers of ships, and can cause major damage
to offshore structures and vessels. The accurate modeling of sea states is based on random fields
known as random seas, since influences such as wind, swell and currents can in general be quantified
only statistically. The nonlinear modeling of random seas allows for the analysis of waves with a
significantly greater wave slope than is possible with linear wave theory. In this work, the role of
randomness in the forcing of nonlinear waves was studied. In this case it was of interest whether gusty
wind leads to the development of large waves or whether it prevents the occurence of such waves. It is
sufficient for solving many problems in offshore engineering to use the Euler equations, instead of
considering the Navier-Stokes equations. Then, it can be further shown that weakly nonlinear solutions
of the Euler equations can be reduced to solutions described by a complex envelope, which satisfies
the nonlinear Schrödinger equation (NLS) in the case of one spatial dimension or in general to the
Benny-Roskes equations in the case of two spatial dimensions and arbitrary depth, see Reference [2].
Later, the Davey-Stewartson equations were derived in Reference [3], which are a specific case of
the Benny-Roskes equations. Such reductions can be achieved by the method of multiple scales,
cf. Reference [4]. Higher order approximation of the nonlinear water wave envelope leads to Dysthe
equations [5], for which fluid viscosity has been included in Reference [6]. The Dysthe equation is also
known as the modified nonlinear Schrödinger equation (MNLS) in one spatial dimension. For the
deterministic NLS, a variety of solutions have been presented in References [7–9]. In an experimental
study, Peregrine breathers were recently observed in random sea states [10]. Thus, it makes sense to
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study the NLS, as well as the MNLS under perturbations due to random wind, in order to obtain basic
results about the behavior of nonlinear random waves and nonlinear stochastic sea states.

The main source of energy for the growth of gravity waves is wind. In a series of papers,
Miles described the growth of surface waves by wind quantitatively, For example, References [11,12].
Although Miles used a quasi-laminar approximation leading to a stream function which satisfies the
Rayleigh equation, the practical relevance of this theory has been confirmed in field experiments for
long waves [13]. Using the method of multiple scales, Leblanc [14] derived a forced NLS for the case
of deterministic wind forcing for weakly nonlinear surface gravity waves. The evolution of solutions
of the NLS under the influence of deterministic forcing is described in the book by Fabrikant and
Stepanyants [15]. Later, deterministic wind forcing and viscous dissipation for weakly nonlinear
surface gravity waves by means of a forced and damped NLS was considered by Kharif et al. [16]. For
the Dysthe equations [5] fluid viscosity has been included in Reference [6]. Experimental studies on the
effect of wind forcing on water waves have also been conducted. For example, Chabchoub et al. [17]
presented results on the modulation instability and the Peregrine breather in the presence of wind
forcing. Theoretical results concerning the effect of strong wind on modulation instability were
obtained in References [18,19]. Moreover, the spectral up- and downshifting of Akhmediev breathers
under wind forcing has been shown recently numerically and experimentally [20] using the MNLS
and Miles mechanism [11].

Combining the NLS and MNLS with a random wind forcing leads to a stochastic partial
differential equation (SPDE). For the stochastic NLS in optics and Bose-Einstein condensation, finite
difference schemes were derived by Debussche, de Bouard and Di Menza in References [21–24] in
order to obtain numerical solutions.

This work is organized as follows: after the introduction, a forced modified nonlinear Schrödinger
equation for time and space variant wind-induced pressure is stated in Section 2; then the numerical
solution method for the evolution equations from Section 2 is presented in Section 3, followed by a
description of the modeling and generation of a random wind velocity field in Section 4; in Section 5,
the obtained results are presented and discussed; followed by the conclusions in the last Section.

2. Formulation

An essential part of the presented research is the consideration of a time variant wind field. It can
be shown that the unforced Euler equations can be reduced to the MNLS in the case of deep water, see
Reference [25]. Such a reduction can be achieved by the method of multiple scales up to order O(ε4) in
wave steepness ε, cf. Reference [4]. Considering expansions up to the fourth order O(ε4) and a time
variant forcing term Γ(τ), the multiple scales expansion leads to the following evolution equation of
the wave envelope for the case of deep water (h→ ∞)

iψτ =
ω

8k2 ψξξ +
1
2

k2ωψ|ψ|2 + i
Γ(τ)ωk

2gρw
ψ− 2ik2νψ

+ ε

[
3Γ(τ)ω

4gρw
ψξ − 4kνψξ −

5
4

ikω|ψ|2ψξ −
1
4

ikωψ
(
|ψ|2

)
ξ

+
ω

16k3 iψξξξ −
1
2

kωψH
((
|ψ|2

)
ξ

) ]
.

(1)

Thereby, ψ(ξ, τ) ∈ C is the wave envelope, τ = ε2 t is the scaled time, ξ = ε(x − cgt) is a spatial
coordinate moving with the deep water group velocity cg = ω

2k , amd ε = k a� 1 is the wave steepness,
ν is the viscosity of water, k is the wave number and ω is the frequency of a carrier wave. Moreover,
H( f ) is the Hilbert transform of the function f , which is connected with the Fourier transform F by

F (H ( f )) (ω) = −i sign(ω)F ( f ) (ω). (2)
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The forcing term Γ(τ) is obtained from the well-known Miles mechanism [11], which has proven
to be a simple and versatile model for wind-induced wave growth [13]. Following Reference [16],
Γ can be stated as

Γ = ρa β
(u∗

κ

)2
, (3)

where η(x, t) is the wave surface elevation, u∗ is the friction velocity, κ is the von Karman constant,
ρa is the density of air, and β was obtained by Miles in Reference [12,26]. In this study, the friction
velocity u∗(t) is time-variant in expression (3), leading to a time-variant Γ(t). The relation between
wind velocity U(z, t) at height z and friction velocity u∗(t) for a logarithmic wind profile is given by

U(z, t) =
u∗(t)

κ
ln

(
z
z0

)
, (4)

where the roughness length is given by z0 = αchu2
∗/g, with the Charnock constant αch ≈ 0.01875.

For the values of β, which are a function of κc0/u∗, the results of Conte and Miles [27] for the
logarithmic wind profile (4) are used. Thereby, the dimensionless roughness length κ2gz0/u2

∗ = 0.003
is chosen for numerical calculations. In order to compute the time and space dependent friction
velocity u∗(t) from the velocity field U(z, t) at height z from (4), a fix point iteration has to be used.

The corresponding MNLS for constant Γ was obtained previously in Reference [20]. Neglecting
terms, which are multiplied by ε in the MNLS (1), the nonlinear Schrödinger equation (NLS) is obtained

iψτ −
ω

8k2 ψξξ −
1
2

k2ωψ|ψ|2 =i
Γωk
2gρw

ψ− 2ik2νψ, (5)

which has been previously derived for constant Γ in References [14,16,28]. Results on deterministic
soliton solutions of the unforced NLS (5) with Γ = ν = 0 are well known and a closed-form expression
is available for the undisturbed case. For the unperturbed NLS a soliton solution is given by

ψ = a0δ sech(
√

2 a0k2 ξ) exp(−i
1
4
|a0 k|2 ω τ), (6)

with the free background amplitude parameter a0, and δ = ω
2k . The corresponding soliton solution is

shown in Figure 1.

Figure 1. Temporal evolution of a soliton solution of the unforced nonlinear Schrödinger equation
(NLS) (5) with Γ = ν = 0.



Fluids 2019, 4, 121 4 of 15

In the case of constant forcing Γ = const. in the NLS (5), a closed-form expression of a slowly
varying solitary wave is determined by Grimshaw [28] based on the theory in Reference [29]. Such a
slowly varying solitary wave is shown in Figure 2 and is given by

ψ = ψ̃ exp(ζ̃τ), s =
1

2ζ̃
(exp(2ζ̃τ)− 1), F =

1
1 + 2ζ̃τs

, ζ̃ =
Γωk
2gρw

− 2k2ν,

ψ̃ = A sech(B(ξ −Vτ)) exp(i(Kξ −Ωτε−1)), V =
ω2

8
FK, Ω +

ω

8k2 FK2 =
ω

8k2 FB2 =
1
4

k2ωA2.

(7)

Figure 2. Temporal evolution of a solitary wave solution of the constantly forced NLS (5).

3. Numerical Solution Method for the NLS

For the calculation of solutions of nonlinear water wave surface elevation excited by a random
wind process, stochastic partial differential equations have to be solved numerically.

In order to obtain numerical solutions for the NLS (5) and the MNLS (1) in the deterministic,
as well as in the stochastic case, a relaxation finite difference scheme is used. The relaxation scheme
has been introduced by Besse [30] for the NLS as an extension to schemes of Crank-Nicolson type.
In contrast to Crank-Nicolson type schemes, the used pseudo spectral relaxation scheme does not
need to fulfill a Courant-Friedrichs-Lewy (CFL) condition, which links the discretization in time to the
discretization in space and can make the numerical computation infeasible. Details of the relaxation
scheme are shown in Appendix A. For the numerical solution of the NLS (5) and MNLS (1), periodic
boundary conditions on a large enough domain (ξ, τ) ∈ D ⊂ R×R+ are considered, as well as an
initial condition ψ(ξ, 0) = ψ0(ξ) at time τ = 0.

In the following, the soliton solution of the NLS as given in Equation (6) is used as the initial
condition ψ0(ξ).

3.1. Random Excitation by White Noise

Before analyzing a random excitation of the NLS (5) resulting from a random wind velocity
process, a Gaussian white noise process Γ = χ(τ) in time τ ∈ R is considered. This process has the
properties E{χ(τ)} = 0 and E{χ(τ)χ(τ + s)} = σ2δ(s), s, σ ∈ R, where δ(·) is the Dirac function.

With this, sample results for the stochastic NLS (5) under white noise excitation are calculated.
The random excitation due to such a white noise process reveals fundamental random dynamics of the
stochastic NLS (5). A sample solution to Equation (5) under excitation by white noise in time starting
at a soliton solution from Equation (6) as initial condition with a0 = 1 m and ω = 1 rad/s is shown
in Figure 3. Thereby, the variance of the white noise excitation has been set to σ2 = 0.2 1/s2. In this
case the random forcing is very severe, which means that it is of more then one order of magnitude
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stronger then typical random forcing due to extreme wind conditions. This leads to a large deviation
of the solution compared to the initial solitary wave.

Figure 3. Temporal evolution of a solution of the stochastic NLS with white noise excitation in time
and a soliton solution as initial condition. Strong random forcing χ(τ) with a variance σ2 = 0.2 1/s2.

4. Random Excitation by Wind

An important question is how the characteristic behavior of special solutions of the NLS, such as
the soliton solution (6), is changed in an environment with random forcing due to wind.

In the following, the necessary theory for the generation of a stochastic process for the wind
velocity is presented. Real gusty wind has been measured by Van der Hoven in [31]. Such wind
velocity processes can be described by the von Karman model, which is characterized by the power
spectral density [32]

S(ω) =
Kv

(1 + ω2T2
v )

5/6 (8)

For the von Karman spectrum the coefficients Kv and Tv are given by

Kv = 0.475 σ2
v Tv,

Tv =
Lv

Vm

(9)

and depend on the mean wind speed Vm, the correlation length Lv, and the standard deviation σv of
the wind speed fluctuation.

A CARMA process as given in Reference [33] is used in order to generate a non white wind velocity
process, which takes random wind gusts into account. A second-order rational transfer function
approximation for the von Karman spectrum is chosen, which has been obtained in Reference [34]

HF(s) = Kv
0.4 Tv s + 1

(Tv s + 1)(0.25s Tv + 1)
. (10)

From this, a CARMA(2,1) process is generated, which is given by the following stochastic
differential equation

y = u1,

du1 = (u2 − a1u1) dτ + b1dWτ ,

du2 = −a2u1dτ + b0dWτ ,

(11)
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where dWτ is the increment of a standard Wiener process and

b0 = 4
√

Kv/T2
v , b1 = 1.6

√
Kv/Tv, a1 = 5/Tv, a2 = 4/T2

v . (12)

This CARMA(2,1) process has the spectral density

SF(ω) = HF(s)HF(−s), (13)

which is an accurate approximation of the von Karman spectrum in Equation (8), as can be seen in
Figure 4. A continuous time wind velocity process in the surface boundary layer can now be generated
using the CARMA(2,1) process from Equation (11). An example of such a process is shown in Figure 5.

Figure 4. Von Karman spectrum and its CARMA(2,1) approximation for mean wind speed
Vm = 14 m/s, correlation length Lv = 170 m/s, and σv = 1.

(a)

(b)

Figure 5. Wind velocity process and corresponding time dependent random forcing process
ζ = Γωk/(2gρw)− 2k2ν for Vm = 14 m/s and σv = 1 m/s.

5. Results for Water Waves Forced by Random Wind

In this section, results for the randomly forced MNLS and NLS are presented. Thereby, the
effect of physically realistic turbulent wind on solutions initialized by soliton solutions (6) of the NLS
is analyzed.
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The NLS (5) and the MNLS (1) are forced by a time varying random wind velocity process
U(ξ, z, τ) at height z. The wind velocity field U(ξ, z, τ) := u1 is generated by a CARMA(2,1) process
from Equation (11), with the von Karman spectrum given by Equation (8) at height z = 50 m.
A logarithmic wind profile U(ξ, z, τ) according to Equation (4) is assumed. From the randomly time
varying wind velocity process U(ξ, z, τ) the friction velocity u∗ is calculated by means of a fix point
iteration using Equation (4). The resulting random friction velocity u∗(ξ, τ) defines the process Γ(ξ, τ)

according to Equation (3), which is a stochastic process. Then this process is used as the excitation in
the NLS (5) and the MNLS (1).

In the following numerical calculations, the coordinate ξ moving with the deep water group
velocity cg is considered. First, results for the NLS are shown, followed by results for the MNLS.
A randomly time dependent wind forced soliton is calculated using the soliton solution from
Equation (6) as initial condition and parameter values from Equations (12) and Table 1, as well
as wave parameters a0 = 1 m and ω = 0.8 rad/s, which correspond to real ocean waves. In Figures 6–8
the evolution of the wave envelope of the NLS (5) forced by a wind process with mean velocity Vm = 14
m/s at the height z = 50 m and different standard deviations σv = 1 m/s, σv = 5 m/s, and σv = 10
m/s is shown. The results in Figures 6 and 7 could also be accurately approximated using a constant
forcing as described for example in References [28,35]. As can be seen in the comparative plots in
Figure 9 the analytical solution using the theory in Reference [28] as given in Equation (7) leads to
accurate approximations of the stochastic NLS solutions for the cases with σv = 1 and σv = 5.

Table 1. Parameter specifications.

κ Air Density ρa Water Density ρ Fluid Viscosity ν Lv

0.4 1.225 kg/m3 1026.0 kg/m3 10−5 m2/s 170 m/s

Increasing the wind velocity standard deviation leads to increasing fluctuations of the wind
velocity. The corresponding wind velocity processes, as well as the resulting random forcing

ζ(τ) =
Γ(τ)ωk

2gρw
− 2k2ν (14)

are shown in Figures 5, 10 and 11. As can be observed in Figures 6–8, the zero water level gets disturbed
as well during the evolution of the randomly wind forced soliton. In contrast to the soliton solution
in Figure 1, a time varying growth in the envelope amplitude and a symmetric behavior in space ξ

of the resulting random solution is observed in these figures. Corresponding results of the MNLS
were also computed using the same random forcing from Figures 5, 10 and 11. These results can be
seen in Figures 12–14. The randomly increasing behavior of the wave envelope is the same, as in the
case of the corresponding solutions of the NLS; however, the solutions are not symmetric anymore
and a slight drift to the right can be observed. This drift can be attributed to the terms with first and
third order of derivatives which appear in the MNLS additional terms, cf. (1). In order to show this
behavior more clearly, the long-term evolution of the wave envelope is shown in Figure 15 for the
wind velocity standard deviation σv = 5 m/s. The drift and the non-symmetric behavior can be clearly
seen in Figure 16. This figure shows a comparison between solutions of the NLS and the MNLS at the
initial time, as well as at the final time of the computations.

An important observation from these results is that random fluctuations in the wind excitation do
not destroy the solitary wave appearance of the solutions.

As a next case, solutions with the laboratory scale parameter values a0 = 0.75 cm, ω = 10.68 rad/s,
k = 11.64 1/m, Vm = 4 m/s and σv = 2 m/s are calculated. These parameter values correspond to the
experimental setup from Reference [17], where Peregrine breather solutions were studied under the
influence of wind in a wind-wave flume. With the wind velocity process from Figure 17, the wave
envelope evolves according to Figure 18 for the NLS and Figure 19 for the MNLS in the laboratory
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scale setup. The difference between the solution of the NLS and the MNLS is shown in Figure 20,
where the non-symmetricity of the MNLS solution, as well as the right shift can be seen.

By comparing the random processes ζ(τ) in Figure 17 with ζ(τ) for the real scale case in Figures 5,
10 and 11, it can be seen that the viscosity ν has a much greater influence at the experimental scale,
since there is a significantly greater amount of time at which the process ζ(τ) is negative. Moreover,
in comparison to the case in Figures 5, 10 and 11, the random forcing process is stronger. Hence, the
resulting forced solution deviates more from the soliton solution (6) than in the real scale case.

In this laboratory parameter setup, solutions with higher amplitude peaks appeared as well,
as can be seen in Figure 21. In this figure, a different realization of the wind velocity process was
used, having the same statistical parameters as the process in Figure 17. This shows that larger waves
can also emerge from an initial soliton solution under the action of wind. However, such solutions
were not observed in the real ocean parameter setup. Further investigations will be carried out in the
future in order to find out whether larger waves emerging from soliton solutions, as in the laboratory
parameter case, can also occur in real ocean waves.

Figure 6. Temporal evolution of a soliton solution of the stochastic NLS with non-white noise excitation
in time, mean wind velocity Vm = 14 m/s and σv = 1 m/s.

Figure 7. Temporal evolution of a soliton solution of the stochastic NLS with non-white noise excitation
in time, mean wind velocity Vm = 14 m/s and σv = 5 m/s.
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Figure 8. Temporal evolution of a soliton solution of the stochastic NLS with non-white noise excitation
in time, mean wind velocity Vm = 14 m/s and σv = 10 m/s.

Figure 9. Comparison of the solitary wave solutions from Equation (7) of the NLS (5) with constant
forcing and the solutions of the stochastic NLS with σv = 1 m/s and σv = 5 m/s. Solutions at initial
and final time in space (left) and solutions with respect to time at ξ = 0 (right).

(a)

(b)

Figure 10. Wind velocity process and corresponding time dependent random forcing process ζ(τ) for
Vm = 14 m/s and σv = 5 m/s.
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Figure 11. Wind velocity process and corresponding time dependent random forcing process ζ(τ) for
Vm = 14 m/s and σv = 10 m/s.

Figure 12. Temporal evolution of a soliton solution of the stochastic modified Schrödinger equation
(MNLS) with non-white noise excitation in time, mean wind velocity Vm = 14 m/s and σv = 1 m/s.

Figure 13. Temporal evolution of a soliton solution of the stochastic MNLS with non-white noise
excitation in time, mean wind velocity Vm = 14 m/s and σv = 5 m/s.
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Figure 14. Temporal evolution of a soliton solution of the stochastic MNLS with non-white noise
excitation in time, mean wind velocity Vm = 14 m/s and σv = 10 m/s.

Figure 15. Long-term evolution of a solitary wave solution of the stochastic MNLS with random wind
forcing in time. Mean wind velocity Vm = 14 m/s and σv = 5 m/s.

Figure 16. Temporal evolution of a soliton solution of the stochastic MNLS with non-white noise
excitation in time, mean wind velocity Vm = 14 m/s and σv = 10 m/s.



Fluids 2019, 4, 121 12 of 15

Figure 17. (a) Wind velocity process and (b) corresponding time dependent random forcing process
ζ(τ) for the lab parameters Vm = 4 m/s, σv = 2 m/s, carrier wave frequency ω = 10.68 rad/s and
wave number k = 11.63.

Figure 18. Temporal evolution of a soliton solution of the stochastic NLS with non-white noise
excitation in time using laboratory scale parameters a0 = 0.75 cm, ω = 10.68 rad/s, k = 11.64 1/m,
mean wind velocity Vm = 4 m/s and σv = 2 m/s.

Figure 19. Temporal evolution of a soliton solution of the stochastic MNLS with non-white noise
excitation in time using laboratory scale parameters a0 = 0.75 cm, ω = 10.68 rad/s, k = 11.64 1/m,
mean wind velocity Vm = 4 m/s and σv = 2 m/s.
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Figure 20. Comparison between the soliton solutions of the stochastic MNLS and the stochastic NLS
with non-white noise excitation in time using the lab parameters and mean wind velocity Vm = 4 m/s
and σv = 2 m/s.

Figure 21. Different realization of the temporal evolution of a soliton solution of the stochastic MNLS
with non-white noise excitation in time using the same parameters as in Figure 19. This solution shows
the appearance of higher amplitude waves.

6. Conclusions

Solutions of the randomly wind excited nonlinear Schrödinger equation (NLS) and the modified
nonlinear Schrödinger equation (MNLS) have been calculated starting at the soliton solutions of the
unperturbed NLS. Thereby, the deviation from the soliton solution of the wave envelope is analyzed.
The influence of different wind forcing cases in these solutions was shown. It was found that no rogue
waves coming out of nowhere appeared during the computations for parameter values related to ocean
waves and moderate wind with mean velocity of 14 m/s and peak velocity up to 28 m/s. However,
using laboratory scale parameter sets, the solutions of the wind forced NLS amd MNLS showed a
higher sensitivity to the water viscosity and wind forcing with a mean velocity of 3 m/s and a peak
velocity of about 6 m/s. During the laboratory scale simulations, higher solution peaks also appeared.
The obtained results indicate that solitary waves are not considerably disturbed in the oceans under
moderate random wind forcing.
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Appendix A. Numerical Schemes for the MNLS

A numerical scheme based on the relaxation scheme of Antoine and Duboscq [36] is introduced
for the modified nonlinear Schrödinger equation of the form

iψτ =a1ψξξ + a2ψ|ψ|2 + iV0ψ

+ ε

[
V1ψξ + ia3|ψ|2ψξ + ia4ψ

(
|ψ|2

)
ξ
+ ia5ψξξξ − a6ψH

((
|ψ|2

)
ξ

) ]
.

(A1)

Thereby, ξ ∈ (−L, L), τ ∈ (0, T], and L, T ∈ R, ai, i = 1, .., 6, are constant coefficients and V0, V1 are
time dependent real functions. The resulting relaxation scheme for the MNLS (A1) is obtained as

φn+ 1
2 + φn− 1

2

2
=a2|ψn|2 + ε

[
ia3

(
ψn

J

)∗
(ψn)ξ + ia4

(
|ψn|2

)
ξ
− a6H

((
|ψn|2

)
ξ

)]
,

i
ψn+1 − ψn

∆τ
=a1

(
ψn+1 + ψn

2

)
ξξ

+ i
Vn+1

0 ψn+1 + Vn
0 ψn

2

+ ε

[Vn+1
1

(
ψn+1)

ξ
+ Vn

1 (ψn)ξ

2
+ ia5

(
ψn+1 + ψn

2

)
ξξξ

]
+ φn+ 1

2
ψn+1 + ψn

2
.

(A2)

In this numerical scheme, the space can be discretized by a pseudo-spectral approximation. The Hilbert
transform can be computed by (2) using the Fourier transform. Neglecting the terms multiplied by ε

in (A1), a numerical scheme for the NLS is obtained.
In these schemes, the stochastic processes V0 and V1 are generated using the CARMA process (11)

with the same step size ∆τ.
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