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Abstract: A local flow topology analysis was conducted for laminar particle-affected flows. Based
on the invariants of the velocity gradient tensor, all possible flow structures can be categorized into
two focal and two nodal topologies for incompressible flows. The underlying field descriptions for
bubble- and droplet-affected flows in the creeping flow regime were determined analytically for two
different boundary conditions. A nodal-to-focal-to-nodal transition can be observed in both phases
and the focal topologies are predominant in the interior phase. It was also found that the topology
distribution in the interior phase is independent of the dynamic viscosity ratio and the boundary
conditions, which is not the case in the exterior phase. The focal region in the exterior phase extends
to infinity for the far-field boundary condition, whereas it is bounded to a tire-like zone attached to
the bubble or droplet for the near-field boundary condition. Furthermore, the existence of a narrow
band of intermediate nodal topologies was demonstrated analytically, which raises the question on
the origin of this behavior. To complement the findings about the flow topology classification, the
strengths of the underlying vorticity and invariant fields are discussed, including their dependency
on the considered phase and boundary condition.
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1. Introduction

Bubble- and droplet-laden flows play an essential role in many technical applications, e.g.,
for chemical reactors or safety installations in the process industry. To improve the fundamental
understanding of particle-affected flows, this paper contributes a local flow topology analysis based on
the analytical creeping flow solutions of Hadamard and Rybczynski [1] and Satapathy and Smith [2].

The topology classification follows the pioneering work of Chong et al. [3], Perry and Chong [4].
Using the invariants of the velocity gradient tensor, all possible small-scale flow structures can be
categorized into two nodal and two focal topologies for incompressible flows. To analyze the different
manifestation of coherent structures, the methodology has been applied to a variety of direct numerical
simulation databases on wall-bounded shear flows [5], homogeneous isotropic turbulence [6] and
compressible reactive flows [7]. Potential further analysis steps were demonstrated by Dopazo et al. [8],
who studied the connection between local flow topologies and local geometry of iso-surfaces of an
inert, dynamically passive scalar. Mixing characteristics were characterized in terms of principal
curvatures or mean and Gauss curvatures.

Recently, Hasslberger et al. [9,10] compared the topology behavior in laminar and turbulent
bubbly flows and revealed striking similarities—mainly the nodal-to-focal-to-nodal transition in
main flow direction and the dominance of focal topologies in the gaseous interior phase. The
briefly discussed laminar case in the work of Hasslberger et al. [9,10] was investigated in a
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semi-analytical manner, i.e., the velocity field was obtained from the analytical solution of Hadamard
and Rybczynski [1] but the invariants calculation and the topology classification were conducted by
means of a numerical tool. Elimination of numerical errors requires the fully analytical reinvestigation
of the problem.

In this respect, the main objectives of this study were:

• to demonstrate that the topology distribution in the interior phase is independent of the dynamic
viscosity ratio and the boundary conditions applied in the exterior phase;

• to check upon the existence of a narrow band of intermediate nodal topologies;
• to derive explicit mathematical expressions for all topology borders in both phases;
• to calculate the universal topology volume fractions in the interior phase; and
• to provide an analytical reference solution for the purpose of numerical topology code validation.

It turns out that several flow features of significantly more complex turbulent flows (according to
earlier investigations) can be readily explained by looking at the much simpler analytical creeping flow
solution. In this regard, the present paper represents an important reference for particles and particle
swarms in turbulent flows. This study might also inspire the modeling of particle-flow interaction when
this interaction is not explicitly resolved in numerical simulations, e.g., in the Euler–Lagrange context.

2. Mathematical Description

2.1. Invariants of the Velocity Gradient Tensor and Flow Topologies

According to the authors of [3,4], the invariants of the velocity gradient tensor give rise to a set
of local flow topologies, classifying arbitrary complex flows into canonical flow types. The velocity
gradient tensor is given by

A ≡ ∇⊗ u , (1)

where u = ur · êr + uθ · êθ denotes the velocity field, ⊗ the dyadic product and ∇ the Nabla operator
in spherical coordinates:

∇ ≡ êr
∂

∂r
+ êθ

1
r

∂

∂θ
+ êϕ

1
r sin θ

∂

∂ϕ
. (2)

Since the velocity fields are assumed to be axisymmetric here (∂/∂ϕ = 0 and uϕ = 0), only the
radial ur and circumferential component uθ have to be considered. Thus, the velocity gradient tensor
reduces to

A =
∂ur

∂r
(êr ⊗ êr) +

1
r

(
ur +

∂uθ

∂θ

)
(êθ ⊗ êθ) +

1
r

(
ur +

uθ cos θ

sin θ

) (
êϕ ⊗ êϕ

)
+

1
r

(
∂ur

∂θ
− uθ

)
(êr ⊗ êθ) +

∂uθ

∂r
(êθ ⊗ êr) .

(3)

The characteristic polynomial λ3 + Pλ2 + Qλ + R = 0 can be assigned to the tensor A, with λ

being its eigenvalues and P, Q, R being its first, second and third invariants:

P ≡ −tr(A)

= 0 ,

Q ≡ 1
2
(
tr(A)2 − tr(A2)

)
= − 1

2

[(
∂ur
∂r

)2
+ 1

r2

(
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uθ cos θ
sin θ

)2
+ 1

r2

(
ur +

∂uθ
∂θ

)2
+ 2

r
∂uθ
∂r

(
∂ur
∂θ − uθ

)]
,

R ≡ −det(A)

= 1
r2

(
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uθ cos θ
sin θ

) [
∂uθ
∂r

(
∂ur
∂θ − uθ

)
− ∂ur

∂r

(
∂uθ
∂θ + ur

)]
.

(4)
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Owing to the incompressibility of the fluid, i.e., P = −∇ · u = 0, the Q − R phase-space is
subdivided into two focal topologies (S1 and S4) and two nodal topologies (S2 and S3). The boundaries
separating the different regions are given by R2 = 0, R1a = −2/

√
27
√
−Q3 and R1b = 2/

√
27
√
−Q3,

corresponding to the states where the characteristic equation’s discriminant D = (27R2 + 4Q3)/108
is zero. Both the topology borders R1a, R1b and R2 in the Q − R phase-space, and a graphical
representation of topologies S1–S4, are shown in Figure 1. Splitting up the tensor A into its symmetric
and anti-symmetric part, it can further be demonstrated that Q < 0 is indicative of strain-dominated
regions and Q > 0 is indicative of vorticity-dominated regions (cf., e.g., [10]).

Q

R
S4 S1

S3 S2

r2

r1a r1b

(a)

S1: UF/C S2: UN/S/S(b)

S3: SN/S/S S4: SF/ST

Figure 1. (a) Classification of topologies S1–S4 and projection of topology borders R1a, R1b and R2

in the Q− R plane for P = 0. Dashed lines indicate Q = 0 and R = 0, respectively. (b) Graphical
representation corresponding to UF = unstable focus; UN = unstable node; SN = stable node; SF = stable
focus; C = compressing; S = saddle; ST = stretching. The blue circles indicate the origin of the
blue streamlines.
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2.2. Stream Function Ansatz

In the following, the flow inside and around rigid spherical bubbles or droplets is investigated.
Using the creeping flow assumption (Reynolds number Re � 1), it can be derived from the basic
equations of motion that the stream function ψ(r, θ), depending only on radius r and inclination θ,
must satisfy the bi-Laplacian

∇2∇2ψ =

[
∂2

∂r2 +
sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)]2

ψ = 0 . (5)

Testing of trial functions rn sin2 θ suggests that the general solution is of the form

ψ =

(
A
r
+ Br + Cr2 + Dr4

)
sin2 θ , (6)

with the a priori unknown constants A, B, C, D—separately for each phase. Index G represents the
interior phase, i.e., the gaseous phase for bubbles, and index L represents the exterior phase, i.e.,
the liquid phase for bubbles (and vice versa for droplets). To avoid singular behavior at the bubble or
droplet center (r = 0), AG = BG = 0 is required in any case (cf. Equation (13)). At the phase interface
(r = rB), the continuity of normal velocity

uGr = uLr , (7)

tangential velocity
uGθ = uLθ , (8)

normal stress
− pG + 2µG

∂uGr
∂r

= −pL + 2µL
∂uLr
∂r

, (9)

and shear stress

µG

(
r

∂uGθ

∂r
− uGθ +

∂uGr
∂θ

)
= µL

(
r

∂uLθ

∂r
− uLθ +

∂uLr
∂θ

)
(10)

are assumed.
Using the general relationships

ur =
1

r2 sin θ

∂ψ

∂θ
(11)

and
uθ = − 1

r sin θ

∂ψ

∂r
, (12)

the velocity components can be deduced as

uGr = 2 cos θ(CG + DGr2) ,
uGθ = −2 sin θ(CG + 2DGr2) ,

uLr = 2 cos θ
(

AL
r3 + BL

r + CL + DLr2
)

,

uLθ = sin θ
(

AL
r3 − BL

r − 2CL − 4DLr2
)

,

(13)

with the corresponding partial derivatives

∂uGr
∂r = 4DGr cos θ ,

∂uGr
∂θ = −2 sin θ(CG + DGr2) ,

∂uGθ
∂r = −8DGr sin θ ,

∂uGθ
∂θ = −2 cos(CG + 2DGr2)

(14)
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for the interior phase and

∂uLr
∂r = 2 cos θ

(
− 3AL

r4 − BL
r2 + 2DLr

)
,

∂uLr
∂θ = −2 sin θ

(
AL
r3 + BL

r + CL + DLr2
)

,
∂uLθ

∂r = sin θ
(
− 3AL

r4 + BL
r2 − 8DLr

)
,

∂uLθ
∂θ = cos θ

(
AL
r3 − BL

r − 2CL − 4DLr2
) (15)

for the exterior phase.
On that basis, the second and third invariants (Equation (4)) of both phases can be expressed as

QG = 4D2
Gr2 (4 sin2 θ − 3 cos2 θ

)
,

RG = 16D3
Gr3 cos θ

(
2 sin2 θ − cos2 θ

)
,

QL = −3 cos2 θ
(

3AL
r4 + BL

r2 − 2DLr
)2

+ sin2 θ
(
−3AL

r4 + BL
r2 − 8DLr

) (
3AL
r4 + BL

r2 − 2DLr
)

,

RL = 2 cos3 θ 1
r3

(
3AL
r3 + BL

r − 2DLr2
)3

− sin2 θ cos θ 1
r2

(
−3AL

r4 + BL
r2 − 8DLr

) (
3AL
r3 + BL

r − 2DLr2
)2

.

(16)

2.3. Vorticity Field

The vorticity, as defined by
ω ≡ ∇× u , (17)

is a fundamental quantity to describe vortex-affected flows. As such, it is closely related to the topology
classification, as indicated in Section 2.1. In spherical coordinates, the vorticity is given by

ω =
1

r sin θ

[
∂

∂θ
(uϕ sin θ)− ∂uθ

∂ϕ

]
êr +

1
r

[
1

sin θ

∂ur

∂ϕ
− ∂

∂r
(ruϕ)

]
êθ+

1
r

[
∂

∂r
(ruθ)−

∂ur

∂θ

]
êϕ .

(18)

In the axisymmetric case characterized by ∂/∂ϕ = 0 and uϕ = 0, the vorticity reduces to

ω =
1
r

[
∂

∂r
(ruθ)−

∂ur

∂θ

]
êϕ , (19)

specifically to
ωG = −10DGr sin θêϕ (20)

for the interior phase and

ωL = 2 sin θ

(
BL

r2 − 5DLr
)

êϕ (21)

for the exterior phase. The ratio of non-zero vorticity components at the interface (r = rB) can then be
calculated as

ωG
ωL

= −5
DGrB

BL
r2

B
− 5DLrB

, (22)

which does not depend on inclination θ. As shown in the following, the vorticity field is generally
discontinuous at the interface, except for identical dynamic viscosities in both phases, i.e., ξ = µG/µL = 1.
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2.4. Far-Field Boundary Conditions

The analytical solution of Hadamard and Rybczynski [1] is based on the far-field
boundary conditions

ur(r → ∞) = u0 cos θ , uθ(r → ∞) = −u0 sin θ , (23)

where u0 is the velocity of the bubble or droplet relative to the unperturbed surrounding flow. In this
case, the constants of the stream function, Equation (6), are specified as

AL = u0
4 r3

B
ξ

1+ξ ,

BL = − u0
4 rB

2+3ξ
1+ξ ,

CL = u0
2 ,

DL = 0 ,

CG = − u0
4

1
1+ξ ,

DG = u0
4

1
r2

B

1
1+ξ .

(24)

The dynamic viscosity ratio of both phases is denoted as ξ = µG/µL and the radius of the bubble
or droplet as rB. Corresponding to the fluid properties of gaseous air and liquid water, ξ-values of
0.0182, 1.0 and 54.9583 are referred to as the bubble, neutral and droplet cases, respectively. In the
bubble case with far-field boundary conditions, Figure 2 depicts the streamlines as well as radial and
circumferential velocity components in both phases.

Figure 2. (a) Streamlines; (b) radial velocity ur; and (c) circumferential velocity uθ in the bubble case
(ξ = 0.0182) with far-field boundary conditions.

2.5. Near-Field Boundary Conditions

The analytical solution of Satapathy and Smith [2] generally follows the same procedure. However,
instead of using far-field boundary conditions, the boundary conditions are imposed at a particular
distance from the origin:

ur(r = rW) = u0 cos θ , uθ(r = rW) = −u0 sin θ. (25)

These boundary conditions are supposed to enforce a constant-velocity parallel flow at r = rW
and can be interpreted as a symmetry condition between neighboring particles (in swarms) or a side
wall oriented in mean flow direction. Thus, they are more appropriate to reflect the bubble or droplet
behavior in confined flow domains than the usage of far-field boundary conditions. Note that the
given solution is meaningless for r > rW .
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It is worth mentioning that the constants in the original publication of Satapathy and Smith [2] are
incorrectly printed. Here, only the corrected set of constants (also explicitly including the dependency
on u0 and rB) is presented:

AL = u0
r3

W
α

[
1
ξ +

(
rW
rB

)3
− 1
]

,

BL = −u0
rW
α

[
−3 + 3

ξ + 3
(

rW
rB

)5
+ 2

ξ

(
rW
rB

)5
]

,

CL = u0
rW
rB

1
2α

[
−9 + 5

(
rW
rB

)2
+ 4

(
rW
rB

)5
+ 1

ξ

(
6 + 4

(
rW
rB

)5
)]

,

DL = u0
1
r2

B

1
2α

[
3 rW

rB
−
(

rW
rB

)3 (
3 + 2

ξ

)]
,

DG = 1
ξ

[
AL
r5

B
+ DL

]
,

CG = −DGr2
B ,

(26)

using the abbreviation

α =

(
rW
rB
− 1
)3
[
− 4− 3

rW
rB

+ 3
(

rW
rB

)2
+ 4

(
rW
rB

)3

+
1
ξ

(
4 + 6

rW
rB

+ 6
(

rW
rB

)2
+ 4

(
rW
rB

)3
)]

.

(27)

In the bubble case with near-field boundary conditions (rW = 3rB), Figure 3 depicts the streamlines
as well as radial and circumferential velocity components in both phases. The comparison with
far-field boundary conditions (Figure 2) reveals a qualitatively similar behavior, especially regarding
the torus-like recirculation in the interior phase. Slight differences can be observed regarding the
deflection of streamlines in the exterior phase. Furthermore, the near-field boundary conditions result
in a maximum of velocity magnitude above u0 (at θ = 90◦, in the region rB < r < rW), which is due
to continuity reasons. Velocity magnitudes exceeding u0 do not occur in the solution with far-field
boundary conditions.

Figure 3. (a) Streamlines; (b) radial velocity ur; and (c) circumferential velocity uθ in the bubble case
(ξ = 0.0182) with near-field boundary conditions (rW = 3rB).
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3. Results and Discussion

In all of the presented field plots, the green line indicates the phase interface. Owing to the
symmetry of the problem, only half of the fields is visualized each. Without any loss of generality,
u0 = 1 m/s is chosen. As depicted in the streamline plots in Figures 2 and 3, the mean flow direction
in the exterior phase is from bottom to top.

3.1. Vorticity Field

A comparison of the vorticity field ω (Equation (19)) based on both boundary conditions is
presented in Figure 4. Note that only the plane-normal component is unequal to zero. In the interior
phase, the general shape of the solution is the same in both cases. Quantitative differences are
determined by rW , i.e., the radius at which the near-field boundary condition is imposed. The vorticity
jump at the interface is given by Equation (22), and the phase in which the maximum vorticity
magnitude appears, is eventually determined by the dynamic viscosity ratio ξ. In the bubble case
shown here, the vorticity peak can be found in the gaseous phase.

In the exterior phase, the solution is not even qualitatively the same. In both cases and in both
phases, the vorticity is zero for θ = 0◦ as well as θ = 180◦ and it peaks at θ = 90◦. However,
the vorticity steadily decays to zero for r → ∞ with far-field boundary conditions. According to
Equation (21), the zero-vorticity iso-contour in the exterior phase (black line in Figure 4) is given by
r = 3

√
BL/(5DL), which is smaller than rW for near-field boundary conditions. Note that DL = 0

for far-field boundary conditions in contrast. It might be questioned whether the imposed near-field
boundary condition (Equation (25)) is an adequate choice. The idea of a constant parallel flow for
r ≥ rW implies vanishing velocity gradients, which is not satisfied at r = rW . The differences in the
vorticity field are also reflected in the topology classification discussed subsequently.

Figure 4. Plane-normal vorticity component in the bubble case (ξ = 0.0182) with (a) far-field and
(b) near-field boundary conditions (rW = 3rB). The black line indicates the zero-vorticity iso-contour.

3.2. Invariants and Flow Topologies

As introduced in Section 2.1, the result of the flow topology classification with far-field boundary
conditions is shown in Figures 5–7 for different dynamic viscosity ratios. In addition, the corresponding
invariant fields (Equation (4)) are plotted since these also contain information on the strength of the
underlying fields. First, it can be observed that the focal topologies (S1 and S4), according to their
vortical nature, prevail in the high vorticity regions where Q > 0. Secondly, the topology behavior at
the phase interface is continuous in the neutral case (ξ = 1), whereas a discontinuous behavior can be
observed for the bubble case (ξ = 0.0182) and the droplet case (ξ = 54.9583). Accordingly, the second
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invariant Q and the third invariant R exhibit a continuous or discontinuous behavior depending on
the case.

Figure 5. (a) Flow topologies; (b) second invariant Q; and (c) third invariant R in the bubble case
(ξ = 0.0182) with far-field boundary conditions.

Figure 6. (a) Flow topologies; (b) second invariant Q; and (c) third invariant R in the neutral case
(ξ = 1) with far-field boundary conditions.

Figure 7. (a) Flow topologies; (b) second invariant Q; and (c) third invariant R in the droplet case
(ξ = 54.9583) with far-field boundary conditions.
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Following the flow pathlines (which coincide with the streamlines for steady flows, as depicted in
Figure 2), the sequence of the adopted flow topologies (nodal-to-focal-to-nodal transition) is generally
the same in all cases. Regarding the distribution of nodal topologies, mainly S2 can be found in the
upstream and S3 in the downstream part of the domain, respectively. However, a close inspection of the
topology fields reveals a narrow band of intermediate nodal topologies (switching between S2 and S3)
in both phases. It may be questioned whether this behavior is a consequence of the particular stream
function ansatz (Equation (6)) or whether it is strictly necessary due to physical reasons. The existence
of theses intermediate topologies cannot be explained by numerical inaccuracies. In fact, it can be
shown analytically that the S2–S3 transition in the interior phase is specified by the constraint RG = 0:

cos θ2−3,G

(
cos2 θ2−3,G − 2 sin2 θ2−3,G

)
= 0 , (28)

which is satisfied at

θ2−3,G = arctan
(

1√
2

)
= arccos

(√
2
3

)
≈ 35.26◦ , (29)

and 180◦ − θ2−3,G, respectively. In contrast, the S1–S2 transition is specified by the constraint
RG = R1bG:

− 1
4

cos θ1−2,G

(
cos2 θ1−2,G − 2 sin2 θ1−2,G

)
=

2√
27

(
3
4

cos2 θ1−2,G − sin2 θ1−2,G

) 3
2

, (30)

which is satisfied at

θ1−2,G = arctan
(

3
4

)
= arccos

(
4
5

)
≈ 36.87◦ . (31)

For symmetry reasons, the S3–S4 transition occurs at θ3−4,G = 180◦ − θ1−2,G. Remarkably, the
topology borders in the interior phase are straight lines, which depend on neither the radial coordinate
r nor the dynamic viscosity ratio ξ. The constant topology volume fractions can thus be calculated
to be

VS2 + VS3

Vtotal
=

2 · 2/3πr2
B · rB(1− cos θ1−2,G)

4/3πr3
B

= 1− cos θ1−2,G = 20% (32)

for nodal topologies (S2 + S3), and consequently 80% for focal topologies (S1 + S4). Exactly the same
values were theoretically predicted by Hasslberger et al. [11], but with a very different approach.

In the exterior phase, the S2–S3 transition is specified by the constraint RL = 0:

2 cos3 θ2−3,L

(
3AL
r4 + BL

r2 − 2DLr
)3

= sin2 θ2−3,L cos θ2−3,L

(
− 3AL

r4 + BL
r2 − 8DLr

) (
3AL
r4 + BL

r2 − 2DLr
)2

,
(33)

which is satisfied at

θ2−3,L(r) = arctan

√4DLr5 − 2BLr2 − 6AL

8DLr5 − BLr2 + 3AL

 , (34)

and 180◦ − θ2−3,L, respectively. The S1–S2 transition is specified by the constraint RL = R1bL:

2 cos3 θ1−2,L

(
3AL
r4 + BL

r2 − 2DLr
)3

− sin2 θ1−2,L cos θ1−2,L

(
− 3AL

r4 + BL
r2 − 8DLr

) (
3AL
r4 + BL

r2 − 2DLr
)2

= 2√
27

[
3 cos2 θ1−2,L

(
3AL
r4 + BL

r2 − 2DLr
)2

− sin2 θ1−2,L

(
− 3AL

r4 + BL
r2 − 8DLr

) (
3AL
r4 + BL

r2 − 2DLr
) ] 3

2
,

(35)
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which is satisfied at

θ1−2,L(r) = arccos

2

√
8DLr5 − BLr2 + 3AL

50DLr5 − 13BLr2 − 15AL

 . (36)

Again, for symmetry reasons, the S3–S4 transition occurs at θ3−4,L = 180◦ − θ1−2,L. Equations (34)
and (36) reveal that the topology borders in the exterior phase are generally curved and furthermore
depend on the viscosity ratio. To determine the extent of the focal region in the exterior phase r∗ (a
finite value only for near-field boundary conditions), θ1−2,L(r∗) = π/2 , representing the horizontal
line through the origin, can be inserted in Equation (36), which yields a fifth-order equation that can be
solved numerically:

8DL (r∗)
5 − BL (r∗)

2 + 3AL = 0 . (37)

Independent of the phase, the transition between focal topologies S1 and S4 occurs at θ1−4 = 90◦.
The topology and invariant fields with near-field boundary conditions are shown in Figures 8–10

for rW = 3rB. To facilitate a direct comparison with far-field boundary conditions, the same range
of dynamic viscosity ratios is investigated as in Figures 5–7. In addition, in this case, the topology
and invariant fields are continuous at the phase interface only if ξ = 1. The topology distribution in
the interior phase is identical for both types of boundary condition. The main difference concerns
the shape of the focal region in the exterior phase. The focal region extends to the end of the domain
(and probably to infinity) with far-field boundary conditions, whereas it is bounded to a tire-like zone
around the bubble or droplet with near-field boundary conditions.

The functional relationships describing the topology borders are already given by
Equations (29)–(36). It is worth noting that the topology distribution in the interior phase is identical for
both boundary conditions since the stream function constants do not appear in Equations (29) and (31).

To check the universality of the findings, very small (ξ = 10−5) and very large (ξ = 105)
dynamic viscosity ratios were tested in addition to the water–air bubble (ξ = 0.0182) and droplet
case (ξ = 54.9583). The topology fields are depicted in Figure 11 for far-field boundary conditions
and in Figure 12 for near-field boundary conditions. It appears that the behavior for very small and
very large dynamic viscosity ratios is not significantly different to the bubble and droplet case. For
very small ratios and with far-field boundary conditions, the topology borders seem to approach
straight lines even in the exterior phase. For very large ratios, the focal region in the exterior phase
seems to completely enclose the interior phase for both boundary conditions. In general, differences in
the topology field due to the boundary conditions increase with increasing distance from the bubble
or droplet.

Figure 8. (a) Flow topologies; (b) second invariant Q; and (c) third invariant R in the bubble case
(ξ = 0.0182) with near-field boundary conditions (rW = 3rB).
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Figure 9. (a) Flow topologies; (b) second invariant Q; and (c) third invariant R in the neutral case
(ξ = 1) with near-field boundary conditions (rW = 3rB).

Figure 10. (a) Flow topologies; (b) second invariant Q; and (c) third invariant R in the droplet case
(ξ = 54.9583) with near-field boundary conditions (rW = 3rB).

Figure 11. Flow topologies for: (a) very small (ξ = 10−5); (b) identical (ξ = 1); and (c) very large
(ξ = 105) dynamic viscosity ratios with far-field boundary conditions.

Finally, the influence of rW , i.e., the radius where the near-field boundary condition is imposed,
on the topology field was investigated in Figure 13. The behavior corresponding to rW = 3rB of
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the previously discussed cases was compared to an even smaller value of rW = 1.5rB and a much
larger value of rW = 100rB. As can be expected, the general shape of the solution is the same for a
constant dynamic viscosity ratio (ξ = 1 here). It is clear that the solution based on near-field boundary
conditions approaches the solution based on far-field boundary conditions for very large values of rW ,
i.e., when rW → ∞.

Figure 12. Flow topologies for: (a) very small (ξ = 10−5); (b) identical (ξ = 1); and (c) very large
(ξ = 105) dynamic viscosity ratios with near-field boundary conditions (rW = 3rB).

Figure 13. Flow topologies in the neutral case (ξ = 1) with near-field boundary conditions:
(a) rW = 1.5rB; (b) rW = 3rB; and (c) rW = 100rB.

3.3. Phase-Space Projection

To obtain the scatter plots of the second invariant Q and the third invariant R, the solution was
discretized by steps of rB/2000 and π/2000 in r- and θ-direction, respectively. The full range of data
points is contained in Figure 14 and a magnified view close to the origin of the phase-space diagram
is presented in Figure 15. The topology borders R1a, R1b and R2, as introduced in Section 2.1, are
included as well. A high density of data points seems to occur near the origin of the phase-space
diagram. It is interesting to note that direct transitions between all four topologies are possible via
the origin. Furthermore, strong alignment of the points with the topology borders R1a and R1b can be
found in the region representing nodal topologies S2 and S3. Even for highly irregular turbulent bubble
flows, the same observation was made by Hasslberger et al. [10] by means of three-dimensional direct
numerical simulations. The distribution of points is generally similar for both phases and both boundary
conditions. It can be observed that the population in the phase-space diagram is also symmetric with
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respect to R = 0, i.e., the volume fractions of nodal topologies S2 and S3 as well as focal topologies S1
and S4 are identical. However, the disparity of extreme values of Q and R is clearly different. In the
bubble case shown here, the disparity of extreme values is larger in the interior, i.e., gaseous, phase.
The disparity of extreme values is generally larger with near-field boundary conditions.

Figure 14. Scatter plots of the second invariant Q and the third invariant R in the bubble case (ξ = 0.0182)
with: (a) far-field boundary conditions on the left; and (b) near-field boundary conditions (rW = 3rB) on the
right. The interior phase is shown on the top and the exterior phase on the bottom, respectively.

Figure 15. Magnified view of Figure 14.
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4. Concluding Remarks

A local flow topology analysis was conducted for laminar flows around a spherical bubble or
droplet. The flow field was described by two analytical solutions, which differ in the boundary
conditions. It was observed that the outer flow is essentially characterized by a diverging nodal flow
field in front of the sphere, which converges after the flow obstacle. In between, focal topologies occur
at the regions of simultaneous high streamline curvature and velocity magnitude, where the vorticity
is also highest. The coupled inner flow is characterized by a torus-like recirculation and the focal
topologies are predominant. It was demonstrated analytically that the topology distribution in the
interior phase is independent of the dynamic viscosity ratio and the boundary conditions, whereas the
topology distribution in the exterior phase depends on both these influencing factors. In particular,
the focal region in the exterior phase extends to infinity for far-field boundary conditions, but it is
bounded to a tire-like zone attached to the bubble or droplet for near-field boundary conditions.

The constant topology volume fractions in the interior phase can be calculated as 20% for nodal
topologies (S2 + S3), and consequently 80% for focal topologies (S1 + S4). It is remarkable that these
values match exactly the theoretical predictions reported earlier in the literature (using a very different
approach than here).

An unintuitive discovery is the distinct existence of a very narrow band of intermediate
nodal topologies such that the transition occurs between neighboring topologies in cyclic order,
i.e., S1-S2-S3-S4-S1. In principle, topology changes could also happen across the origin of the Q-R
phase-space in a different manner, and it is not clear whether the cyclic transition is a consequence of
the particular stream function ansatz or due to physical reasons.

Although this analysis is limited to a creeping flow solution, a qualitatively similar behavior was
observed in the literature for bubbles in a turbulent flow field. Hence, the results of this analysis might
stimulate the modeling of the two-way coupling in the Euler–Lagrange context, when this interaction
cannot be resolved explicitly.
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Nomenclature

A velocity gradient tensor
D discriminant
ê unit normal
p pressure
P first invariant of the velocity gradient tensor
Q second invariant of the velocity gradient tensor
r radial coordinate
rB bubble radius
rW wall or symmetry line distance
R third invariant of the velocity gradient tensor
Re Reynolds number
u velocity component
u velocity vector
V volume
α abbreviation
θ circumferential coordinate
λ eigenvalue
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µ dynamic viscosity
ξ dynamic viscosity ratio
ϕ azimuthal coordinate
ψ stream function
ω vorticity component
ω vorticity vector
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