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Abstract: A monolithic semi-implicit method is presented for three-dimensional simulation of
fluid–structure interaction problems. The updated Lagrangian framework is used for the structure
modeled by linear elasticity equation and, for the fluid governed by the Navier–Stokes equations,
we employ the Arbitrary Lagrangian Eulerian method. We use a global mesh for the fluid–structure
domain where the fluid–structure interface is an interior boundary. The continuity of velocity at the
interface is automatically satisfied by using globally continuous finite element for the velocity in the
fluid–structure mesh. The method is fast because we solve only a linear system at each time step.
Three-dimensional numerical tests are presented.

Keywords: fluid–structure interaction; monolithic method; Updated Lagrangian; Arbitrary
Lagrangian Eulerian

1. Introduction

There exists a rich literature on solving numerically fluid–structure interaction problems.
Some methods are based on partitioned procedures, the fluid and structure sub-problems are
solved separately using iterative process: fixed point iterations [1–3], Newton-like methods [4–6]
or optimization techniques [7–9]. Monolithic methods solve the fluid–structure interaction problem as
a single system of equations, [10–13], or more recently [14–17].

In some methods such as the Arbitrary Lagrangian Eulerian (ALE) framework, the fluid
equations are written over a moving mesh which follows the structure displacement (see [18,19]).
Other methods use a fixed mesh for fluid domain: immersed boundary method [20], distributed
Lagrange multiplier [21,22], penalization [23,24], extended finite element method (XFEM) [25,26],
and Nitsche-XFEM [27]. Distributed Lagrange multiplier strategy with remeshing is used in [28] and
a monolithic fictitious domain without Lagrange multiplier is employed in [29,30].

Most of these methods are implicit. For a long time, the explicit methods were considered not
suitable because of the lack of stability, but these methods are successfully applied in [31,32]. A third
class of methods are so-called semi-implicit methods, where the domain is computed explicitly while
the fluid velocity and pressure as well as the structure displacement are computed implicitly, [33,34].
In [35], it is proved that a schema of this kind is unconditionally stable.

In this paper, a monolithic semi-implicit method is employed for three-dimensional simulation.
For the structure modeled by the linear elasticity equations, we use the updated Lagrangian
framework and, for the fluid governed by the Navier–Stokes equations, we employ the ALE method.
A similar strategy is used in [36] for a bi-dimensional compressible neo-Hookean model or in [37] for
a bi-dimensional linear elasticity model for the structure. As in [38], we employ a global mesh for the
fluid–structure domain where the fluid–structure interface is an interior boundary. Using globally
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continuous finite element for the velocity in the fluid–structure mesh, the continuity of velocity at the
interface is automatically satisfied. The method is fast because we solve only a linear system at each
time step. Three-dimensional numerical tests are presented.

In [14–17], a global mesh obtained from the deformed structure mesh and a fluid mesh generated
at each time step, compatible at the interface with the structure mesh are used. Remeshing the fluid
domain improves the quality of the mesh in the case of large deformation. The non-linear structure
equation written in the Eulerian coordinates is obtained by using Cayley–Hamilton theorem. The fluid
equations are solved by the characteristics method. The weak formulation of the fluid–structure
interaction problem is written in the Eulerian domain, which is unknown, and a fixed-point algorithm
solves the global non-linear problem at each time step.

In [30], it is assumed that the structure is viscoelastic with the same viscosity as the fluid. Based on
fictitious domain without Lagrange multiplier, the fluid is solved in a fixed mesh of the fluid–structure
domain. The weak formulation contains integrals over the unknown Eulerian domain of the structure.
At each time step, a fixed-point algorithm is employed.

In [36], by using the Updated Lagrangian framework for a compressible Neo-Hookean structure,
the weak formulation is written in the known configuration obtained at the precedent time step.
By linearization around this configuration, at each time step, only a linear system is solved for the
fluid–structure coupled equations and consequently the computing time is reduced. In the present
paper, we follow this approach for three-dimensional simulations using linear elastic model for
the structure.

If at each time step of the monolithic implicit methods, the fixed-point algorithm does not converge
quickly or the computational time by fixed-point iteration is very expensive, thus the monolithic
semi-implicit methods, which have similar stability properties and a reduced computational time,
could be a good alternative.

2. Problem Statement

The initial fluid domain ΩF
0 is a right circular cylinder of bases Σ1, Σ3 and lateral surface Γ0.

We denote by ΩS
0 the initial structure domain and we assume that it is a right annular cylinder of bases

Σ5, Σ7, interior lateral surface Γ0 and exterior lateral surface ΓN
0 (see Figure 1). We suppose that the

initial structure domain is undeformed (stress-free). The boundary Γ0 is common of both domains and
it represents the initial position of the fluid–structure interface.
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Figure 1. Initial geometrical configuration.

At the time instant t, the fluid occupies the domain ΩF
t bounded by the moving interface Γt and

by the fixed boundaries Σ1, Σ3, while the structure occupies the domain ΩS
t bounded by the moving

lateral surfaces Γt, ΓN
t and by the fixed boundaries Σ5, Σ7.

We denote by US : ΩS
0 × [0, T]→ R3 the displacement of the structure. A particle of the structure

whose initial position was the point X will occupy the position x = X + US (X, t) in the deformed
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domain ΩS
t . At the time instant t, the interface Γt is the image of Γ0 via the map X → X + US (X, t).

The same relationship exists between ΓN
t and ΓN

0 . On ΓD
0 = Σ5 ∪ Σ7, we impose zero displacements.

We set∇XUS the gradient of the displacement US =
(
US

1 , US
2 , US

3
)T with respect to the Lagrangian

coordinates X = (X1, X2, X3)
T . We denote by F (X, t) = I + ∇XUS (X, t) the gradient of the

deformation, where I is the unity matrix and we set J (X, t) = det F (X, t). The second Piola–Kirchhoff
stress tensor is denoted by Σ.

We assume that the fluid is governed by the Navier–Stokes equations. For each time instant
t ∈ [0, T], we denote the fluid velocity by vF(t) =

(
vF

1 (t), vF
2 (t), vF

3 (t)
)T : ΩF

t → R3 and the fluid

pressure by pF(t) : ΩF
t → R. Let ε

(
vF) = 1

2

(
∇vF +

(
∇vF)T

)
be the fluid rate of strain tensor and let

σF = −pFI + 2µSε
(
vF) be the fluid stress tensor. To simplify the notation, we write ∇vF in place of

∇xvF, when the gradients are computed with respect to the Eulerian coordinates x.
The problem is to find the structure displacement US, the fluid velocity vF and the fluid pressure

pF such that:

ρS
0 (X)

∂2US

∂t2 (X, t)−∇X · (FΣ) (X, t) = ρS
0 (X) g, in ΩS

0 × (0, T) (1)

US (X, t) = 0, on ΓD
0 × (0, T) (2)

(FΣ) (X, t)NS (X) = 0, on ΓN
0 × (0, T) (3)

ρF
(

∂vF

∂t
+ (vF · ∇)vF

)
− 2µF∇ · ε

(
vF
)
+∇ pF = ρFg, ∀t ∈ (0, T), ∀x ∈ ΩF

t (4)

∇ · vF = 0, ∀t ∈ (0, T), ∀x ∈ ΩF
t (5)

σFnF = hin, on Σ1 × (0, T) (6)

σFnF = hout, on Σ3 × (0, T) (7)

vF
(

X + US (X, t) , t
)

=
∂US

∂t
(X, t) , on Γ0 × (0, T) (8)(

σFnF
)
(X+US(X,t),t)

= − (FΣ) (X, t)NS (X) , on Γ0 × (0, T) (9)

US (X, 0) = US,0 (X) , in ΩS
0 (10)

∂US

∂t
(X, 0) = VS,0 (X) , in ΩS

0 (11)

vF (X, 0) = vF,0 (X) , in ΩF
0 (12)

where ρS
0 : ΩS

0 → R is the initial mass density of the structure, g is the acceleration of gravity vector
and it is assumed to be constant, NS is the unit outer normal vector along the boundary ∂ΩS

0 , US,0

and VS,0 are the initial displacement and velocity of the structure, ρF > 0 and µF > 0 are constants
representing the mass density and the viscosity of the fluid, hin and hout are prescribed boundary
stress, nF is the unit outer normal vector along the boundary ∂ΩF

t , and vF,0 is the initial velocity of
the fluid.

3. Updated Lagrangian Framework for the Structure Approximation

Introducing VS, the velocity of the structure in the Lagrangian coordinates, Equation (1) can be
rewritten as
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ρS
0 (X)

∂VS

∂t
(X, t)−∇X · (FΣ) (X, t) = ρS

0 (X) g, in ΩS
0 × (0, T) (13)

∂US

∂t
(X, t) = VS (X, t) , in ΩS

0 × (0, T). (14)

Let N ∈ N∗ be the number of time steps and ∆t = T/N the time step. We set tn = n∆t for
n = 0, 1, . . . , N. Let VS,n (X) and US,n (X) be approximations of VS (X, tn) and US (X, tn). In the sequel,

Fn = I +∇XUS,n, Σn = Σ(Fn), n ≥ 0.

Using the implicit Euler scheme, we approach the system in Equations (13) and (14) by

ρS
0 (X)

VS,n+1 (X)−VS,n (X)
∆t

−∇X ·
(

Fn+1Σn+1
)
(X) = ρS

0 (X) g, in ΩS
0 (15)

US,n+1 (X)−US,n (X)
∆t

= VS,n+1 (X) , in ΩS
0 (16)

Using Equation (16), we get Fn+1 = Fn + ∆t∇XVS,n+1 and, consequently, Fn+1 and Σn+1 depend
on the velocity VS,n+1. We have eliminated the unknown displacement and we have now an equation
of unknown VS,n+1.

We can put Equation (15) in a weak form: find VS,n+1 : ΩS
0 → R3, VS,n+1 = 0 on ΓD

0 , such that

∫
ΩS

0

ρS
0

VS,n+1 −VS,n

∆t
·WS dX +

∫
ΩS

0

Fn+1Σn+1 : ∇XWS dX

=
∫

ΩS
0

ρS
0 g ·WS dX +

∫
Γ0

Fn+1Σn+1NS ·WS dS (17)

for all WS : ΩS
0 → R3, WS = 0 on ΓD

0 . For instance, we have assumed that the forces Fn+1Σn+1NS on
the interface Γ0 are known.

The above formulation is also called the total Lagrangian framework, since the equations are
written in the undeformed domain ΩS

0 . Now, we present the updated Lagrangian framework,
where the equations are written in the domain ΩS

n. We follow a similar method as in [36], where the
structure is a bi-dimensional compressible neo-Hookean material, or in [37], where the bi-dimensional
linear elasticity model is used.

We set ΩS
n the image of ΩS

0 via the map X → X + US,n (X) and we denote by Ω̂S = ΩS
n the

computational domain for the structure. The map from ΩS
0 to ΩS

n+1 defined by X→ x = X+US,n+1 (X)
is the composition of the map from ΩS

0 to Ω̂S given by X→ x̂ = X + US,n (X) with the map from Ω̂S

to ΩS
n+1 given by

x̂→ x = x̂ + US,n+1 (X)−US,n (X) = x̂ + û (x̂) .

Using the notations F̂ = I +∇x̂û and Ĵ = det F̂, Jn = det Fn, we get

Fn+1 (X) = F̂ (x̂) Fn (X) , Jn+1 (X) = Ĵ (x̂) Jn (X) . (18)

We have the relation between the Cauchy stress tensor of the structure σS and the second
Piola–Kirchhoff stress tensor Σ,

σS (x, t) =
(

1
J

FΣFT
)
(X, t) , x = X + US (X, t) .

The mass conservation assumption gives ρS (x, t) = ρS
0 (X)

J(X,t) , where ρS (x, t) is the mass density of
the structure in the Eulerian framework.
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For the semi-discrete scheme, we use the notations

σS,n+1 (x) =
(

1
Jn+1 Fn+1Σn+1

(
Fn+1

)T
)
(X) , x = X + US,n+1 (X)

and ρS,n (x̂) = ρS
0 (X)

Jn(X) , x̂ = X + US,n (X) .

Let us introduce v̂S,n+1 : Ω̂S → R3 and vS,n : Ω̂S → R3 defined by v̂S,n+1 (x̂) = VS,n+1 (X) and
vS,n (x̂) = VS,n (X) . In addition, for WS : ΩS

0 → R3, we define ŵS : Ω̂S → R3 and wS : ΩS
n+1 → R3 by

ŵS (x̂) = wS (x) = WS (X) .
Now, we rewrite Equation (17) over the domain Ω̂S. For the first term of Equation (17), we get

∫
ΩS

0

ρS
0

VS,n+1 −VS,n

∆t
·WS dX =

∫
Ω̂S

ρS,n v̂S,n+1 − vS,n

∆t
· ŵS dx̂

and similarly ∫
ΩS

0

ρS
0 g ·WS dX =

∫
Ω̂S

ρS,ng · ŵS dx̂.

Using the identity
(
∇wS (x)

)
Fn+1 (X) = ∇XWS (X) and the definition of σS,n+1, we get∫

ΩS
0

Fn+1Σn+1 : ∇XWS dX =
∫

ΩS
n+1

σS,n+1 : ∇wS dx.

Details about this kind of transformation can be found in [39], Chapter 1.2.
To write the above integral over the domain Ω̂S, let us introduce the tensor

Σ̂ (x̂) = Ĵ (x̂) F̂−1 (x̂) σS,n+1 (x) F̂−T (x̂) . (19)

Since
(
∇wS (x)

)
F̂ (x̂) = ∇x̂ŵS (x̂) (see [39], Chapter 1.2) and taking into account Equation (19),

we get ∫
ΩS

n+1

σS,n+1 : ∇wS dx =
∫

Ω̂S
F̂Σ̂ : ∇x̂ŵS dx̂.

Now, it is possible to present the updated Lagrangian version of Equation (17). Knowing US,n :
ΩS

0 → R3, Ω̂S = ΩS
n and vS,n : Ω̂S → R3, we try to find v̂S,n+1 : Ω̂S → R3, v̂S,n+1 = 0 on ΓD

0 such that

∫
Ω̂S

ρS,n v̂S,n+1 − vS,n

∆t
· ŵS dx̂ +

∫
Ω̂S

F̂Σ̂ : ∇x̂ŵS dx̂

=
∫

Ω̂S
ρS,ng · ŵS dx̂ +

∫
Γ0

Fn+1Σn+1NS ·WS dS (20)

for all ŵS : Ω̂S → R3, ŵS = 0 on ΓD
0 . We recall that the forces Fn+1Σn+1NS on the interface Γ0 are

assumed known.
Using the identity û (x̂) = US,n+1 (X)−US,n (X) = ∆t VS,n+1 (X) = ∆t v̂S,n+1 (x̂), we obtain

F̂ = I + ∆t∇x̂v̂S,n+1. (21)

Using Equations (18) and (19), it follows that

Σ̂ = ĴF̂−1σS,n+1F̂−T = ĴF̂−1 1
Jn+1 Fn+1Σn+1

(
Fn+1

)T
F̂−T

=
1
Jn FnΣn+1 (Fn)T . (22)
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For the linear elastic material, we have

Σ(U) = λS(∇X ·U) + µS
(
∇XU + (∇XU)T

)
where λS and µS are the Lamé coefficients. We have

Σn+1 = Σ(US,n+1) = Σ(US,n) + (∆t)Σ(VS,n+1) = Σn + (∆t)Σ(VS,n+1).

From Equations (21) and (22) and the above equality, we get

F̂Σ̂ =
1
Jn FnΣn (Fn)T + ∆t∇x̂v̂S,n+1 1

Jn FnΣn (Fn)T

+
∆t
Jn FnΣ(VS,n+1) (Fn)T +

(∆t)2

Jn ∇x̂v̂S,n+1FnΣ(VS,n+1) (Fn)T

= σS,n + ∆t∇x̂v̂S,n+1σS,n

+
∆t
Jn FnΣ(VS,n+1) (Fn)T +

(∆t)2

Jn ∇x̂v̂S,n+1FnΣ(VS,n+1) (Fn)T .

We introduce Σx̂(û) = λS(∇x̂ · û) + µS (∇x̂û + (∇x̂û)T) and ûS,n(x̂) = US,n(X). For small
deformations, we have Fn ≈ I, Jn ≈ 1, then Σ(VS,n+1) could be approached by Σx̂(v̂S,n+1) and σS,n

by Σx̂(ûS,n).
Finally, we can approach the map v̂S,n+1 → F̂Σ̂, by the simplified linear application

L̂
(

v̂S,n+1
)

= Σx̂(û
S,n) + (∆t)Σx̂(v̂

S,n+1). (23)

The linearized updated Lagrangian weak formulation of the structure is: knowing US,n : ΩS
0 → R3,

Ω̂S = ΩS
n and vS,n : Ω̂S → R3, find v̂S,n+1 : Ω̂S → R3, v̂S,n+1 = 0 on ΓD

0 such that

∫
Ω̂S

ρS,n v̂S,n+1 − vS,n

∆t
· ŵS dx̂ +

∫
Ω̂S

L̂
(

v̂S,n+1
)

: ∇x̂ŵS dx̂

=
∫

Ω̂S
ρS,ng · ŵS dx̂ +

∫
Γ0

Fn+1Σn+1NS ·WS dS (24)

for all ŵS : Ω̂S → R3, ŵS = 0 on ΓD
0 .

Remark 1. We can use a non-linear model for the structure such as St. Venant Kirchhoff, neo-Hookean,
etc. By linearization of F̂Σ̂ (around the deformed state at the precedent time instant), we obtain in place of
Equation (23)

L̂
(

v̂S,n+1
)
= n`(ûS,n) + (∆t)`(v̂S,n+1)

where n` is a non-linear operator and ` a linear one. Since n`(ûS,n) is a known term, we can transfer it to the
right-hand side, then the problem to solve is linear, similar to Equation (24).

4. Arbitrary Lagrangian Eulerian (ALE) Framework for Approximation of Fluid Equations

The Arbitrary Eulerian Lagrangian (ALE) framework is a successful method to solve fluid
equations in moving domain (see [19]). Let Ω̂F be a reference fluid domain and let At, t ∈ [0, T]
be a family of transformations such that: At(x̂) = x̂ for all x̂ ∈ Σ1 ∪ Σ3 and At(Ω̂F) = ΩF

t ,
where x̂ = (x̂1, x̂2, x̂3)

T ∈ Ω̂F are the ALE coordinates and x = (x1, x2, x3)
T = At(x̂) the

Eulerian coordinates.
Let vF be the fluid velocity in the Eulerian coordinates. We denote by v̂F : Ω̂F → R3 the

corresponding function in the ALE coordinates, which is defined by v̂F(x̂, t) = vF(At(x̂), t) = vF(x, t).
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We denote the mesh velocity by ϑ(x, t) = ∂At
∂t (x̂) = ∂At

∂t (A−1
t (x)) and the ALE time derivative of the

fluid velocity by ∂vF

∂t

∣∣∣
x̂
(x, t) = ∂v̂F

∂t (x̂, t).
The Navier–Stokes equations in the ALE framework give:

ρF
(

∂vF

∂t

∣∣∣∣
x̂
+
((

vF − ϑ
)
· ∇
)

vF
)
− 2µF∇ · ε

(
vF
)
+∇pF = ρFg, in ΩF

t × (0, T)

∇ · vF = 0, in ΩF
t × (0, T).

We denote by vF,n, pF,n, and ϑn the approximations of vF(·, tn), pF(·, tn), and ϑ(·, tn), respectively,
all defined in ΩF

n . Here, we set Ω̂F = ΩF
n . The time advancing scheme for fluid equations is: find

v̂F,n+1 : ΩF
n → R3 and p̂F,n+1 : ΩF

n → R such that

ρF
(

v̂F,n+1 − vF,n

∆t
+
((

vF,n − ϑn
)
· ∇x̂

)
v̂F,n+1

)
−2µF∇x̂ · ε

(
v̂F,n+1

)
+∇x̂ p̂F,n+1 = ρFg, in ΩF

n (25)

∇x̂ · v̂F,n+1 = 0, in ΩF
n (26)

σF(v̂F,n+1, p̂F,n+1)nF = hn+1
in , on Σ1 (27)

σF(v̂F,n+1, p̂F,n+1)nF = hn+1
out , on Σ3 (28)

The above time discretization scheme is based on the backward Euler scheme and a linearization
of the convective term.

We multiply Equation (25) by a test function ŵF : ΩF
n → R3 and Equation (26) by a test function

q̂ : ΩF
n → R. After integrating them over the domain ΩF

n and using the Green’s formula and the
corresponding boundary conditions, we get the below discrete weak form. Find v̂F,n+1 : ΩF

n → R3

and p̂F,n+1 : ΩF
n → R such that:

∫
ΩF

n

ρF v̂F,n+1

∆t
· ŵFdx̂ +

∫
ΩF

n

ρF
(((

vF,n − ϑn
)
· ∇x̂

)
v̂F,n+1

)
· ŵFdx̂

−
∫

ΩF
n

(
∇x̂ · ŵF

)
p̂F,n+1dx̂ +

∫
ΩF

n

2µFε
(

v̂F,n+1
)

: ε
(

ŵF
)

dx̂

= LF(ŵF) +
∫

Γn

(
σF(v̂F,n+1, p̂F,n+1)nF

)
· ŵFds, (29)∫

ΩF
n

(∇x̂ · v̂F,n+1)q̂ dx̂ = 0, (30)

for all ŵF : ΩF
n → R3 and for all q̂ : ΩF

n → R, where

LF(ŵF) =
∫

ΩF
n

ρF v̂F,n

∆t
· ŵFdx̂ +

∫
ΩF

n

ρFg · ŵF +
∫

Σ1

hn+1
in · ŵF +

∫
Σ3

hn+1
out · ŵ

F.

We have assumed, for instance, that the forces σF(v̂F,n+1, p̂F,n+1)nF on the interface Γn are known.

The mesh velocity ϑ̂
n+1

: ΩF
n → R3 can be computed from

∆x̂ϑ̂
n+1

= 0, in ΩF
n

ϑ̂
n+1

= 0, on Σ1 ∪ Σ3

ϑ̂
n+1

= v̂F,n+1, on Γn.

For all n = 0, · · · , N− 1, we denote byAtn+1 the map from ΩF
n to R3 defined byAtn+1(x̂1, x̂2, x̂3) =

(x̂1 + ∆tϑn+1
1 , x̂2 + ∆tϑn+1

2 , x̂3 + ∆tϑn+1
3 ). We set ΩF

n+1 = Atn+1(Ω
F
n), Γn+1 = Atn+1(Γn) and we remark

that x̂ = Atn+1(x̂), for all x̂ ∈ Σ1 ∪ Σ3.
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We define the fluid velocity vF,n+1 : ΩF
n+1 → R3, the fluid pressure pF,n+1 : ΩF

n+1 → R and the
mesh velocity ϑn+1 : ΩF

n+1 → R3 by:

vF,n+1(x) = v̂F,n+1(x̂), pF,n+1(x) = p̂F,n+1(x̂), ϑn+1(x) = ϑ̂
n+1

(x̂),

for all x̂ ∈ ΩF
n , x = Atn+1(x̂) ∈ ΩF

n+1.

5. Monolithic Formulation for the Fluid–Structure Equations

Let Ωn = ΩF
n ∪ Γn ∪ΩS

n be the global fluid–structure domain at time instant n and let us introduce
the global velocity and test function

v̂n+1 : Ωn → R3, ŵ : Ωn → R3

v̂n+1 =

{
v̂F,n+1 in ΩF

n
v̂S,n+1 in ΩS

n
ŵ =

{
ŵF in ΩF

n
ŵS in ΩS

n.

At each time step, we solve the linear coupled problem: find v̂n+1 ∈
(

H1 (Ωn)
)2, v̂n+1 = 0 on ΓD

0
and p̂F,n+1 ∈ L2 (ΩF

n
)
, such that:

∫
ΩF

n

ρF v̂n+1

∆t
· ŵdx̂ +

∫
ΩF

n

ρF
(
((vn − ϑn) · ∇x̂) v̂n+1

)
· ŵdx̂

−
∫

ΩF
n
(∇x̂ · ŵ) p̂F,n+1dx̂ +

∫
ΩF

n

2µFε
(

v̂n+1
)

: ε (ŵ) dx̂

+
∫

ΩS
n

ρS,n v̂n+1

∆t
· ŵ dx̂ +

∫
ΩS

n

L̂
(

v̂n+1
)

: ∇x̂ŵ dx̂

= LF(ŵ) +
∫

ΩS
n

ρS,n vn

∆t
· ŵ dx̂ +

∫
ΩS

n

ρS,ng · ŵ dx̂, (31)∫
ΩF

n

(∇x̂ · v̂n+1)q̂ dx̂ = 0, (32)

for all ŵ ∈
(

H1 (Ωn)
)3, ŵ = 0 on ΓD

0 and for all q̂ ∈ L2 (ΩF
n
)
.

From the regularity v̂n+1 ∈
(

H1 (Ωn)
)2, the traces of v̂F,n+1 and v̂S,n+1 on Γn are well defined and

v̂F,n+1
|Γn

= v̂S,n+1
|Γn

which is a discrete form of the continuity of the velocity at the interface (8). Similarly,

we get ŵF,n+1
|Γn

= ŵS,n+1
|Γn

.
Equation (31) is obtained by adding Equations (24) and (29). By enforcement of the hypothesis of

continuity of stress (Equation (9)) at the discrete level, the expression∫
Γ0

Fn+1Σn+1NS ·WS dS +
∫

Γn

(
σF(v̂F,n+1, p̂F,n+1)nF

)
· ŵFds

does not appear anymore in Equation (31).

Algorithm for fluid–structure interaction
Time advancing scheme from n to n + 1

We assume that we know Ωn = ΩF
n ∪ Γn ∪ΩS

n, vn : Ωn → R3, ϑn : ΩF
n → R3.

Step 1: Solve the linear system in Equations (31) and (32) and get the velocity v̂n+1 and the
pressure p̂F,n+1.
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Step 2: Compute the fluid mesh velocity ϑ̂
n+1

: ΩF
n → R3


∆x̂ϑ̂

n+1
= 0, in ΩF

n

ϑ̂
n+1

= 0, on Σ1 ∪ Σ3

ϑ̂
n+1

= v̂n+1, on Γn.

(33)

To improve the quality of the mesh, we can replace in Equation (33) the Laplacian by a linear
elasticity operator.

Step 3: Define the map Tn : Ωn → R3 by:

Tn(x̂) = x̂ + (∆t)ϑ̂
n+1

(x̂)χΩF
n
(x̂) + (∆t)v̂n+1(x̂)χΩS

n
(x̂)

where χΩF
n

and χΩS
n

are the characteristic functions of fluid and structure domains.
Step 4: Set ΩF

n+1 = Tn(ΩF
n), ΩS

n+1 = Tn(ΩS
n), and Γn+1 = Tn(Γn); consequently, Ωn+1 = Tn(Ωn).

Define vn+1 : Ωn+1 → R3 by

vn+1(x) = v̂n+1(x̂), ∀x̂ ∈ Ωn, x = Tn(x̂)

and pF,n+1 : ΩF
n+1 → R, ϑn+1 : ΩF

n+1 → R3 by:

pF,n+1(x) = p̂F,n+1(x̂), ϑn+1(x) = ϑ̂
n+1

(x̂), ∀x̂ ∈ ΩF
n , x = Tn(x̂).

Remark 2. (i) The domain is computed explicitly while the velocity and the pressure are computed implicitly.
This kind of schema is also called semi-implicit. The monolithic system in Equations (31) and (32) is linear.

(ii) Using globally continuous finite element for the velocity v̂n+1 ∈
(

H1 (Ωn)
)2 defined all over the

fluid–structure global mesh, the continuity of the velocity at the interface holds, automatically.
(iii) The vertices in the structure mesh are moved using the structure velocity, thus the structure mesh is of

updated Lagrangian type.

Remark 3. In [35], for linear elastic model for the structure and Navier–Stokes equations for the fluid,
a semi-implicit monolithic algorithm is introduced. The unconditional stability in time is established.
In a forthcoming paper, a proof of the unconditional stability of an algorithm will be presented for a non-linear
model of the structure. This stable algorithm is similar to the one presented in this paper, only a stabilization
term has been added, as in [35].

Remark 4. In this paper, the derivative of fluid velocity as well as the derivative of structure velocity are
approached by the implicit Euler scheme. It is possible to use different time discretization schemes, for example
Newmark for the structure and implicit Euler for the fluid. We have to pay attention to the time advancing
algorithm for the interface. One solution is to solve the fluid–structure coupled equations written in the domain
at the precedent time instant to find the fluid–structure velocity and the fluid pressure. Then, the structure
including the interface is advanced by the Newmark scheme, and finally the fluid mesh velocity is computed
using the new position and velocity of the interface.

6. Numerical Experiments

The numerical tests were produced using FreeFem++ (see [40]).

6.1. Straight Cylinder

We tested the benchmark studied in [3,4] concerning blood flow in artery. The geometrical
configuration is represented in Figure 1. The fluid occupies initially the straight cylinder of length
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L = 5 cm and radius R = 0.5 cm. The disk Σ1 is in the plane x1Ox2 and the axis of the cylinder is Ox3.
The viscosity of the fluid is µF = 0.03 g

cm·s and its density is ρF = 1 g
cm3 .

The fluid is surrounded by a structure of constant thickness hS = 0.1 cm. The others physical
parameters of the structure are: the Young’s modulus is E = 3× 106 g

cm·s2 , the Poisson ratio is νS = 0.3,

and the density is ρS
0 = 1.2 g

cm3 . The Lamé parameters are computed by the formulas λS = νSE
(1−2νS)(1+νS)

and µS = E
2(1+νS)

.

For the volume force in fluid and structure, we put g = (0, 0, 0)T . The prescribed boundary
stress at the inlet Σ1 is hin =

(
0, 0, 1.3332× 104) g

cm·s2 for t ≤ 0.005 s and hout = (0, 0, 0) g
cm·s2 at the

outlet Σ3. The structure is clamped at both ends, Σ5 and Σ7. The remaining boundary conditions are
Equations (3), (8) and (9). Initially, the fluid and the structure are at rest.

Using FreeFem++, it is possible to construct a global fluid–structure mesh with an “interior
boundary” that is the fluid–structure interface. For the finite element approximation of the
fluid–structure velocity, we used the finite element P1 + bubble and we employed for the pressure the
finite element P1. The parameters of meshes used for the numerical tests are presented in Table 1.

Table 1. The number of vertices, tetrahedra and degrees of freedom (DOF) of fluid–structure linear
system for each mesh.

Vertices Tetrahedra DOF

Mesh 1 768 3510 13,602
Mesh 2 2314 11,400 43,456
Mesh 3 8976 47,100 177,204
Mesh 4 63,731 356,400 1,324,124

The time step was set to ∆t = 0.0005 s and the number of time steps to N = 40.
The radial displacement of the interface was measured at three points A(R, 0, L/4), B(R, 0, L/2),
and C(R, 0, 3L/4). We observed that the displacements were small, less than 0.012 cm (see Figure 2,
left). Similar results are observed in [41] using non-conforming meshes. In addition, we measured the
radial displacement along the line (R, 0, x3), x3 ∈ [0, L] on the interface (see Figure 2, right.)

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016  0.018  0.02

R
A

D
IA

L
 D

IS
P

L
A

C
E

M
E

N
T

S
 (

C
M

)

TIME (S)

A
B
C

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0  1  2  3  4  5

R
A

D
IA

L
 D

IS
P

L
A

C
E

M
E

N
T

S
 (

C
M

)

X3 (CM)

t=0.0060
t=0.0080
t=0.0100

Figure 2. Constant stress at the inlet: the time history of the displacement of three points on the
interface (left); and the radial displacement at time instants t = 0.0060, t = 0.0080, t = 0.0100 (right).

To obtain visible displacement, we also tested with the sin-like stress at the inlet:

hin(x, t) =

{ (
0, 0, 5× 1.3332× 104 × (1−cos(2πt/0.001))

2

)
, x ∈ Σ1, 0 ≤ t ≤ 0.001

(0, 0, 0) , x ∈ Σ1, 0.001 ≤ t ≤ T

where T = 0.02 s. The other parameters were the same. The displacements at three points are plotted
in Figure 3 and the pressure at three time instants is plotted in Figure 4.
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Figure 3. The time history of the displacement of three points on the interface using sin-like stress at
the inlet.

At each time step, we had to solve a sparse non-symmetric linear system for the fluid–structure
velocity and pressure and a sparse symmetric positive definite linear system for the mesh displacement.
The linear systems were solved using MUMPS (MUltifrontal Massively Parallel sparse direct Solver),
implemented in FreeFem++. This method was very efficient; the total CPU time for the first three meshes
were: 44 s (1.1 s/iteration) for Mesh 1, 173 s (4.3 s/iteration) for Mesh 2 and 1083 s (27 s/iteration)
for Mesh 3, on a computer with a processor of 4 × 3.30 GHz frequency and 16 Go RAM. For Mesh 4,
the CPU time was about 10 min/iteration on a noed Intel Sandy-Bridge 16× 3.30 GHz and 64 Go RAM.

Figure 4. The pressure obtained with Mesh 4 using sin-like stress at the inlet.

In [4], the mean number of iterations per time step is: 33.9 for the fixed-point with Aitken
acceleration and 8.9 iterations for a quasi-Newton algorithm. At each iteration of quasi-Newton
algorithm, a linear system is solved. In [41,42], the average number of Newton iterations per time step
is 3.
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6.2. Cane Cylinder

We considered the fluid–structure interaction in a cane-like geometry inspired from [4,43].
The parameters of the fluid domain were: R = 0.5 cm, R1 = 1 cm, L1 = 1 cm, L2 = 5 cm (see Figure 5,
left). The fluid was surrounded by a structure of constant thickness hS = 0.1 cm.

L
1

L
2

R

2R

1

Figure 5. The parameters of the fluid domain (left); and a global mesh for fluid–structure
domain (right).

The time step was ∆t = 0.0005 s, but the final time was T = 0.04 s. The other parameters were
the same as in the case of the straight cylinder. The details of meshes used for the numerical tests are
presented in Table 2.

Table 2. The number of vertices, tetrahedra and degrees of freedom (DOF) of fluid–structure linear
system for each mesh.

Vertices Tetrahedra DOF

Mesh 1 2079 9828 37,800
Mesh 2 3632 17,784 67,880
Mesh 3 5802 29,106 110,526

We measured the displacement of the interface ar three points: US
1 at A(R1 + 2R, 0, 0), US

3 at
B(0, 0, R1 + 2R) and US

1 at C(−R1 − 2R, 0, 0) (see Figure 6). The pressure at three time instants is
plotted in Figure 7. We observed that, for the sin-like stress at the inlet, the structure displacements
were greater than 0.23 (cm) and a non-linear model for the structure could be more appropriate.
We chose a sin-like stress at the inlet with maximal value five times greater than the constant case to
obtain visible deformations. Even though we used the same sin-like stress at the inlet, the structure
displacements were larger than in the straight cylinder case because of the shape as well as because
the cane was longer. Recall that the structure was fixed at both ends.

The total CPU time for the three meshes were: 255 s (3.18 s/iteration) for Mesh 1, 502 s
(6.2 s/iteration) for Mesh 2 and 915 s (11.2 s/iteration) for Mesh 3, on a computer with a processor of
4 × 3.30 GHz frequency and 16 Go RAM.

In [4], the mean number of iterations per time step is 8.9 for quasi-Newton algorithm.
The fixed-point algorithm with Aitken acceleration failed.
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Figure 6. The time history of the displacement of three points on the interface using constant (left) and
sin-like (right) stress at the inlet.

Figure 7. The computed pressure obtained with sin-like stress at the inlet (Mesh 2).

6.3. Artery Stenosis

Now, we considered a fluid–structure interaction in artery stenosis inspired from the paper [42].
The inlet and outlet surfaces Σ1, Σ3 were disks of radius R, normal to the axis Ox1 of centers (xmin, 0, 0)
and (xmax, 0, 0), respectively. The lateral surface Γ0 of the initial fluid domain was composed by the
bottom half straight cylinder surface{

(x1, x2, x3) ∈ R3; xmin < x1 < xmax,
√

x2
2 + x2

3 = R, x3 < 0
}

and the stenosis surface (see Figure 8), obtained from the top half straight cylinder surface{
(x1, x2, x3) ∈ R3; xmin < x1 < xmax,

√
x2

2 + x2
3 = R, x3 ≥ 0

}



Fluids 2019, 4, 94 14 of 18

via the map

(x1, x2, x3)→
(

x1, x2, x3 − (hS
max − hS

min)
(`2 − x2

1)

`2
(R2 − x2

2)

R2

)
, |x1| ≤ `, |x2| ≤ R.

The initial boundary of the structure domain was composed by: the interior lateral surface Γ0,
which is the fluid–structure interface; the exterior lateral surface

ΓN
0 =

{
(x1, x2, x3) ∈ R3; xmin < x1 < xmax,

√
x2

2 + x2
3 = R + hS

min

}
;

and two annular surfaces Σ5, Σ7, of radii R and R + hS
min, normal to the axis Ox1, of centers (xmin, 0, 0)

and (xmax, 0, 0), respectively.

Figure 8. The stenosis interface.

The numerical values were: R = 0.5 cm, xmin = −3, xmax = 3, ` = 1.5 cm, hS
min = 0.1 cm,

and hS
max = 0.5 cm. The details of meshes used for the numerical tests are presented in Table 3.

Table 3. The number of vertices, tetrahedra and degrees of freedom (DOF) of fluid–structure linear
system for each mesh.

Vertices Tetrahedra DOF

Mesh 1 5756 28,395 108,209
Mesh 2 20,970 95,202 369,486
Mesh 3 48,245 220,266 805,533
Mesh 4 92,228 425,872 1,554,300

We used the same sin-like stress at the inlet similar to the precedent experiments

hin(x, t) =

{ (
0, 0, mag× 1.3332× 104 × (1−cos(2πt/0.001))

2

)
, x ∈ Σ1, 0 ≤ t ≤ 0.001

(0, 0, 0) , x ∈ Σ1, 0.001 ≤ t ≤ T

where T = 0.02 s and mag > 0 is a parameter.
For Mesh 1, the time step was set to ∆t = 5 × 10−4 s, the number of time steps to N = 40

and mag = 5. The total CPU time was 323 s (8.07 s/iteration), on a computer with a processor of
4 × 3.30 GHz frequency and 16 Go RAM. The radial displacement of the interface was measured at
three points: A(−`, 0, R), B(0, 0, R− (hS

max − hS
min)), and C(`, 0, R) (see Figure 9). We observed that the

maximal displacement of point A was more than 0.08 cm, which was more important than in the case
of straight cylinder (see Figure 3). The artery deformation was more important in the uphill zone of
the stenosis than in the case of healthy artery.
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Figure 9. The time history of the displacement of three points on the interface using sin-like stress at
the inlet (Mesh 1).

For Mesh 2, the time step was set to ∆t = 10−4 s, the number of time steps to N = 200 and mag = 2.
The total CPU time was 15,123 s (75.6 s/iteration), on a noed Intel Sandy-Bridge 16 × 3.30 GHz and
64 Go RAM.

For Mesh 3, the time step was set to ∆t = 10−4 s, the number of time steps to N = 200 and
mag = 1. The average CPU time was 4 min 55 s by iteration, on a noed Intel Sandy-Bridge 16 ×
3.30 GHz and 64 Go RAM. The pressure at three time instants is plotted in Figure 10.

Figure 10. The computed pressure obtained with Mesh 3.

For Mesh 4, the time step was set to ∆t = 5× 10−5 s, the number of time steps to N = 400 and
mag = 1. The average CPU time was 18 min 8 s by iteration, on a noed Intel Sandy-Bridge 16 ×
3.30 GHz and 64 Go RAM.

For finer mesh, we were forced to use smaller time steps. This phenomenon was observed for
neither the three-dimensional tests presented above nor for the two-dimensional benchmark flow
around a flexible thin structure attached to a fixed cylinder (see [37]). The semi-implicit algorithms had
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good stability properties (see Remark 3). We suppose that the source of the problem is this particular
surface mesh of the stenosis zone obtained from the mesh of the top half straight cylinder surface by
vertical projection on the stenosis surface.

7. Conclusions

We have presented a monolithic semi-implicit method for three-dimensional fluid–structure
interaction problems. At each time step, we solve only a linear system to find the fluid–structure
velocity and the fluid pressure, thus the method is fast. We use a global mesh for the fluid–structure
domain where the fluid–structure interface is an interior boundary. Using globally continuous finite
element for the velocity in the fluid–structure mesh, the continuity of velocity at the interface is
automatically satisfied.
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