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Abstract: The random density fluctuations observed in the solar wind plasma crucially influence on
the Langmuir wave turbulence generated by energetic electron beams ejected during solar bursts.
Those are powerful phenomena consisting of a chain of successive processes leading ultimately to
strong electromagnetic emissions. The small-scale processes governing the interactions between the
waves, the beams and the inhomogeneous plasmas need to be studied to explain such macroscopic
phenomena. Moreover, the complexity induced by the plasma irregularities requires to find new
approaches and modelling. Therefore theoretical and numerical tools were built to describe the
Langmuir wave turbulence and the beam’s dynamics in inhomogeneous plasmas, in the form of
a self-consistent Hamiltonian model including a fluid description for the plasma and a kinetic
approach for the beam. On this basis, numerical simulations were performed in order to shed light
on the impact of the density fluctuations on the beam dynamics, the electromagnetic wave radiation,
the generation of Langmuir wave turbulence, the waves’ coupling and decay phenomena involving
Langmuir and low frequency waves, the acceleration of beam electrons, their diffusion mechanisms,
the modulation of the Langmuir waveforms and the statistical properties of the radiated fields’
distributions. The paper presents the main results obtained in the form of a review.

Keywords: electron beam; electromagnetic wave radiation; Langmuir wave turbulence; inhomogeneous
plasmas; solar wind; wave-particle interaction; resonant wave decay; particle acceleration; wave diffusion;
Hamiltonian system

1. Introduction

The solar corona and wind are turbulent and inhomogeneous plasmas involving random
fluctuations of various levels and scales of their density, velocity and ambient magnetic field. Indeed,
analyses of electromagnetic wave emissions from Type III solar bursts [1–4] as well as in situ spacecraft
observations show the presence of density fluctuations in the heliosphere. For example, satellites’
measurements [5] revealed that average levels of density fluctuations above 1% of the background
plasma density exist in the solar wind with length scales around 100 km. Besides, the electron density’s
power spectrum was shown to follow two power laws [5,6], the first one in the higher frequency
range above 0.1 Hz and the second one below; the corresponding power index for high frequencies is
variable, while for low frequencies it is approximately constant, and the absolute value of the density
fluctuations is proportional to the mean plasma density. Moreover the high frequencies provide the
main contribution to the fluctuations’ level, the mean relative fluctuation reaching up to 4% of the
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background plasma density in the range 4–16 Hz. Besides, the Cluster mission measured in the
solar wind fast density fluctuations’ spectra using probe potential variations [7]. Recently, direct
observations in the solar wind revealed unusually large density fluctuations’ levels [8,9].

These fluctuations, even if very weak, can crucially impact [10] the dynamics of the electron
beams at the origin of the solar bursts and thus the Langmuir wave turbulence [11–15] they generate.
Indeed, due mainly to their random character and to the phenomena of wave transformations as
reflection, refraction, tunnelling or scattering that they induce, these fluctuations are able to strongly
modify the development of the wave–particle, the wave–wave and the wave-plasma interactions [16]
at work and to change the nature of the physical processes that would occur in homogeneous plasmas,
or to delay their occurrence, decrease their efficiency and even prevent their appearance. As shown
in this paper, background plasma density inhomogeneities can play a more determinant role than
nonlinear processes in the dynamics of the Langmuir wave turbulence. Even if the average level of the
turbulence is above the thresholds of nonlinear effects in homogeneous plasmas, it can be significantly
reduced by the presence of plasma inhomogeneities and fall below these thresholds, avoiding the
appearance of the nonlinear effects.

Solar radio bursts of Type III, which are among the strongest electromagnetic wave emissions in the
Solar System, were observed by ground facilities as well as by many space experiments [17–29]. During
solar flares that occur in active regions of the Sun, bursts of electromagnetic radiation are produced
which can be classified into several Types (I to V). They are related to the existence of accelerated
particle beams generated in the solar atmosphere and emitting wave turbulence, which in turn
produces electromagnetic emissions through a chain of successive mechanisms where the interactions
between waves, free particles and magnetized plasmas play a major role. For example, Type III solar
radio bursts are produced by energetic electron beams accelerated in the low corona during flares, due
to the reconfiguration of unstable coronal magnetic fields leading to the conversion of free magnetic
energy into kinetic energy. These beams propagate into the coronal and interplanetary plasmas where
they emit Langmuir wave turbulence [21,30–36] and eventually electromagnetic radiations, at the
fundamental of the electron plasma frequency ωp and its harmonic 2ωp [37], that were commonly
observed by spacecraft in the solar wind [29]. In this frame, the impact of density fluctuations on the
ultimate results of a chain of successive processes can be huge [38].

Due to the complexity of the magnetized, turbulent and randomly inhomogeneous
plasmas, observations of Langmuir waves by spacecraft in the solar wind or planetary electron
foreshocks [39–46] and, in particular, in the source regions of Type III bursts, cannot be adequately
described by the so-called quasilinear theory of weak turbulence [47] developed for homogeneous
plasmas, even if some works take into account plasma inhomogeneities in the form of large scale
density gradients [48–52]. Moreover, the descriptions of the turbulent and nonlinear microprocesses
occurring in solar plasmas are mostly based on theories developed for uniform plasmas and are thus
unable to give adequate interpretations of the observed phenomena. The mechanisms governing
the chain of interconnected processes that constitute the solar bursts remain to date partly unsolved,
despite considerable advances during the last decades [38]. The complexity induced by the presence
of randomly fluctuating plasma irregularities is a more recent challenge which requires to find
novel approaches and theories able to describe realistic solar plasmas. Moreover, in order to
understand the macroscopic phenomena occurring in the heliosphere, it is necessary to study the
microphysics of interactions between waves, particle beams and plasmas. Macroscopic theories as
the Magnetohydrodynamics cannot determine, for example, the ratio of the electromagnetic power
radiated at ωp and 2ωp, which results from a series of microprocesses.

Only a few analytical works exist that deal with wave radiation by beams in randomly
inhomogeneous plasmas. First studies were performed in the frame of the quasilinear theory [47,53]
(see also below). Moreover, some authors [54] developed a one-dimensional model to investigate
the effects of wave refraction by random density inhomogeneities on the beam-plasma system, as
reduction of the waves’ amplitudes and slowing down of the beam relaxation. Other works [55]
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showed that the effects of waves’ scattering on density inhomogeneities can be modelled by angular
diffusion in the wavevector space, and predicted a strongly reduced beam energy relaxation rate and
lower levels of emitted waves. Jointly several types of numerical simulations were carried out. Most
of them were performed in the frame of the quasilinear theory, considering mainly homogeneous
plasmas and more rarely plasmas with inhomogeneities, but in the form of monotonic gradients and
not of random fluctuations [56,57]. In such approaches, the interactions between the waves and the
beam were modeled by a diffusion equation with (diffusion) coefficients averaged on space. Only a
few nonlinear effects and wave transformation processes were taken into account in such descriptions.
Therefore attempts were done to go beyond this quasilinear approximation and to use the weak
turbulence theory [58]; by solving a self-consistent system of equations including both wave decay
and scattering processes, as well as inhomogeneities in the form of density gradients, some results
were obtained concerning the three-wave resonant decay [51]. Other types of simulations involving
inhomogeneous plasmas were also focused on the problem of wave decay, using so-called Vlasov
codes [59,60] based on the quasilinear theory or Particle-In-Cell (PIC) codes [61,62]. Moreover, some
authors built a numerical modelling based on probabilistic models [63]. However, no detailed and
systematic study of the density fluctuations’ effects on the system formed by a beam, turbulent wave
packets and a plasma was performed, even if some qualitative results could be obtained for the case of
inhomogeneities in the form of large scale gradients.

Therefore the authors performed a series of exhaustive studies on turbulent Langmuir waves
generated by energetic electron beams in weakly magnetized solar wind plasmas with random density
fluctuations [10,38,56,64–77]. They proposed a new approach to study microphysical phenomena
occurring in the solar wind and coronal plasmas and built theoretical and numerical tools describing
the dynamics of wave turbulence and beams in such inhomogeneous plasmas. Those include the
following key points: (i) preexisting realistic random fluctuations of the plasma density, velocity
and ambient magnetic field, (ii) coupling effects between the slow and the fast waves’ dynamics,
(iii) nonlinear effects describing the interactions between the plasma fluctuations, the turbulent waves
and the beam particles, and (iv) various types of beams’ modeling (kinetic, quasilinear, etc.). The results
showed the crucial influence of the fluctuating density inhomogeneities inherent to solar plasmas on
various aspects of the dynamics of the turbulent system. Finally, thorough and successful comparisons
of the simulations’ results with space data of the Wind and Stereo satellites confirmed the relevance
of the modeling [64]. The present review paper is aimed at summarizing these results in a compact
and short way and attempts to present a state of art of the subject on the theoretical and numerical
points of view.

The paper is organized as follows. After a section presenting the theoretical approach and the
numerical modeling, different microprocesses involving wave-particle, wave-wave and wave-plasma
interaction mechanisms at work in the development of Langmuir wave turbulence generated by
beams in inhomogeneous solar wind plasmas are successively presented: electron beam dynamics,
Langmuir wave turbulence, wave transformation effects on the inhomogeneities, wave coupling and
resonant decay, beam acceleration and energy absorption, electron velocity diffusion through wave
packets, comparison of Langmuir waveforms with space observations, electric wavefield statistical
distributions. For each topic, the results provided by the numerical simulations based on the modeling
are discussed after a presentation of the previous works. Finally, the last section states some conclusions
and further perspectives.

2. Theoretical Approach and Modelling

In order to study Langmuir turbulence generated by electron beams in inhomogeneous solar
wind plasmas, it is necessary to develop an adequate modeling able to describe microprocesses
of wave-particle, wave-wave and wave-plasma interactions. Such description has to involve
simultaneously (i) electron beams of sufficiently small density described by individual particles’
distributions, (ii) external random density fluctuations of various scales and average levels,
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(iii) Langmuir wave packets with turbulence parameters extending over several order of magnitudes
(10−5 to 10−2), as well as (iv) various linear and nonlinear processes as wave decay or transformation
on the inhomogeneities (scattering, reflection, refraction, tunneling, etc.), ponderomotive effects and
coupling with low frequency oscillations.

In this view, the self-consistent mathematical model developed by the authors consists of modified
Zakharov equations [78] describing the electron and ion fluid dynamics of the background plasma
and involving a source term that describes, in the kinetic approach, the beam current and the
resonant interactions between waves and particles [10,65]. The key elements of the model include the
low-frequency response of the plasma (with ponderomotive force effects) and a description of the beam
by means of a Particle-in-Cell (PIC) method [79]. However, contrary to the classical PIC approach where
huge numbers of particles have to be used to reduce the numerical noise, the total particle distribution is
split into two populations: (i) the non resonant electrons of density n0 forming the plasma bulk, which
are represented in the model equations by the corresponding dielectric constant (motionless electron
background neutralized by ambient ions), and (ii) the resonant beam electrons, of much smaller density
nb (nb/n0 ∼ 10−6 − 10−4), which interact with the waves through wave-particle resonant conditions,
and whose individual trajectories under the self-consistent action of the Langmuir wavefields are
calculated using the Newton equations [64,80–82]. Such approach was used to study various physical
problems, concerning nonlinear and turbulent stages of different instabilities of electron or ion
distributions, wave-particle interactions at multiple resonances, quasilinear diffusion processes of
particles in wave packets, wave turbulence in randomly inhomogeneous plasmas, etc. [77,82–86].
It allows reducing drastically the number of particles used in the simulations and thus following their
dynamics during long time periods [77].

The interaction of Langmuir waves with electron beams in solar wind plasmas can be studied in
the frame of one-dimensional geometry as the ambient magnetic field is very weak and most of the
observed Langmuir wavefields are polarized along the magnetic field lines [8]. Such plasmas include
random density fluctuations of noticeable average levels

∆n =

√√√√〈( δn
n0

)2
〉

. 0.06 , (1)

that present non regular profiles with characteristic scales λn ∼ 300–2000λD, where λD is the electron
Debye length; δn is the slowly varying density perturbation, as defined below. The density fluctuations
considered in the model are existing in the backgound plasma at the initial state and are not the result of
strong turbulence effects, which are considered to be weak due to the physical (solar wind) parameters
considered. As mentioned in the Introduction, such density fluctuations have been observed in the solar
wind. However, no consensus exists to date about the nature and the origin of the density fluctuations
at the scales considered here, but they could be due to magnetohydrodynamic turbulence and related
effects [87]. Please also note that in studying beam-plasma interaction in 3D PIC simulations, some
authors [88] demonstrated that starting from a homogeneous plasma, density fluctuations can be
generated and affect the Langmuir wave evolution.

The full Hamiltonian of the waves-particles’ system in the inhomogeneous plasma can be written
as [10]
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∫

L
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ρ
|E|2

16π
+

3λ2
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[
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dz

+
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(
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p

2me
− e Re ∑

k

iEk
k

e−iωkt+ikzp

)
, (2)

where the integral corresponds to the Hamiltonian of the Zakharov equations [78] without any source
term, whereas the discrete sum includes the contributions of the kinetic energy of the N resonant
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particles p and their energy of interaction with the waves. In particular, the first term under the integral
describes the interaction between the inhomogeneous plasma and the Langmuir turbulence whereas
the two last terms represent the low frequency energy density. The electric field is Re(E (z, t) e−iωpt),
where E (z, t) = ∑k Ek(t)eikz is the slowly varying field envelope, |∂E/∂t| � ωp |E|; Ek is the Fourier
component of E; z is the space coordinate and k is the wave vector; ωp is the electron plasma frequency;
ωk = ωp(1+ 3k2λ2

D/2) ' ωp is the Langmuir wave frequency; ρ = δn/n0 is the normalized ion density
perturbation; u is the velocity of the ionic population and Φ is the corresponding hydrodynamic flux
potential, u = ∂Φ/∂z; cs is the ion acoustic velocity; Te and Ti are the electron and ion temperatures,
with Te/Ti & 3; vp, zp and Pp = mevp are the velocity, the position and the generalized momentum of
the electron p, respectively; L is the size of the system and N = Lnb is the number of beam particles;
−e < 0 is the electron charge; me and mi are the electron and ion masses.

The total number of quanta of the high-frequency field is conserved

I =
∫

L

|E|2

8π
dz = Cst, (3)

as well as the total momentum of the system

P =
∫

L
mi

δn
n0

udz + L ∑
k

k
ωp

|Ek|2

8π
+

N

∑
p=1

mevp = Cst. (4)

In the limiting case of a homogeneous plasma, one can easily recover the corresponding
expressions of the Hamiltonian and invariants presented in previous works (e.g., [80–82]) where
similar methods were used to derive the equations governing the time evolution of waves in uniform
plasmas, leading to new results in the frame of nonlinear resonant wave-particle interactions [77,83–86].

The three couples (E/
√

8πωp, E∗/
√

8πωp), (ρ,−n0miΦ) and (zp, Pp) are the canonical variables
of the HamiltonianH, so that the following Hamilton equations are

1
8πωp

∂E
∂t

= −i
δH
δE∗

, n0mi
∂Φ
∂t

= − δH
δρ

, (5)

vp =
dzp

dt
=

∂H
∂Pp

,
dPp

dt
= − ∂H

∂zp
, (6)

where δ is the functional derivative. They provide the complete set of the model’s equations, that is,
the Newton equation for each particle p

me
dvp

dt
= −e Re ∑

k
Ekeikzp−iωkt, (7)

the dynamics of the slowly varying enevelope E of the high-frequency field Re(E (z, t) e−iωpt)

i
∂E
∂t

+
3λ2

D
2

ωp
∂2E
∂z2 −

ωpρ

2
E = 4πienb ∑

k

ωp

k
Jkeikz (8)

with

Jk =
1
N

N

∑
p=1

eiωkt−ikzp , (9)

the low-frequency equation involving in the ponderomotive force (right hand side term)(
∂2

∂t2 − c2
s

∂2

∂z2

)
ρ =

∂2

∂z2
|E|2

16πmin0
, (10)
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and the plasma fluid conservation equation

∂u
∂z

= −∂ρ

∂t
. (11)

In the Fourier space, the Equations (8), (10) and (11) can be written as

i
(

∂

∂t
− γ

(e)
k

)
Ek =

3
2

ωpk2λ2
DEk +

ωp

2
(ρE)k + i

4πeωpnb

k
Jk, (12)

∂uk
∂t
− 2γ

(i)
k uk = −ikcs

ρk +

(
|E|2

)
k

16πmin0c2
s

 , (13)

and
∂ρk
∂t

= −ikcsuk, (14)

where uk and ρk are the Fourier components of u and ρ; Ek is the Fourier component of E

Ek(t) =
1
L

∫ L

0
E(z, t)e−ikz dz. (15)

The damping factors γ
(e)
k and γ

(i)
k in (12) and (13) have been added afterwards in order to take

into account damping effects on the electrons and the ions, respectively. Indeed, even if in the present
description the background (bulk) plasma is not modeled using individual particles as the electron
beam, non thermal tails of its velocity distribution can play a role as they lie in the velocity range
where wave-particle interaction processes take place.

A numerical code has been built on the basis of the theoretical model. It considers waves and
particles distributed initially within a periodic simulation box of size L = 10,000–30,000λD. The beam
consists of N resonant electrons distributed uniformly in space (100,000 < N < 500,000); its velocity
distribution is modeled by a Maxwellian function drifting with the velocity vb. Even if the resonant
electrons travel several times along the periodic box of size L during simulations performed over
long time periods, one can consider that at each of their passage they interact with Langmuir waves
with new spectra and phases, as the time scale for a significant variation of the Langmuir turbulence
is shorter than the time of travel of electrons through the box. Initially, 1024–4096 plasma waves
of random phases and small amplitudes are distributed in the Fourier space, with wavevectors
−kmax < k < kmax, where kmaxλD ' 0.2–0.3. The space and time resolutions are, depending on the
simulations, around 2–10λD and 0.01–0.02ω−1

p , respectively.
The code uses a classical Boris leapfrog scheme to integrate the electron motion [79] as well

as pseudospectral discretization methods [10] and Fast Fourier Transforms’ algorithms to solve the
differential equations. The accuracy of the simulations can be monitored owing to the conservation of
the quanta (3), energy (2) and momentum (4) invariants, when γ

(e)
k and γ

(i)
k are set to zero.

Numerical simulations presented below are performed for parameters typical of solar Type III
electron beams and plasmas at 1 AU [32]. The background plasma density and temperature are around
n0 ' 5× 106 m−3 and Te ' 10 eV; the Debye length is about λD ∼ 15 m. The ratio of the beam density
to the background plasma density is very small, i.e., 5× 10−6 . nb/n0 . 5× 10−5. The average
beam velocity vb ranges between c/20 and c/3 (i.e., 3 . vb/vT . 50), with beam temperatures ∆vb
satisfying ∆vb/vb ' 0.02–0.1; vT is the electron thermal velocity. The initial average level of density
inhomogeneities satisfies ∆n . 0.06 and the fluctuations’ profiles δn/n0 present characteristic spatial
scales λn ∼ 300–2000λD much larger than the Langmuir wavelengths, that are of the order of 10λD.
Simulations are performed with turbulence parameters satisfying |E|2 /4πn0Te � k2λ2

D, i.e., below the
thresholds of modulational instability, ponderomotive and collapse effects as well as soliton formation.
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Please note that dimensionless variables are used along the text. In the numerical simulations
as well as in the presentation of the computation results, the variables are normalized according to
ωpt, z/λD, v/vT and Ek/

√
4πn0Te, so that the normalized wave energy density is |E|2 /4πn0Te. In

some places, the dimensionless variables will be presented with the same names as the corresponding
non-normalized (physical) ones.

3. Microprocesses in Inhomogeneous Plasmas

3.1. Electron Beam Dynamics and Langmuir Wave Turbulence

In the solar wind, Langmuir wave turbulence is generated via the bump-on-tail instability
by energetic electron beams originating from the solar corona and emitted during solar flares.
Observations by spacecraft show that such beams are not thermalized when propagating in the
solar wind but can persist up to distances around 1 AU from the Sun and beyond [25], as shown
also by large scale simulations of beam propagation in the solar wind [48,89]. This statement cannot
be explained by the predictions of the quasilinear theory of the weak turbulence developed for
homogeneous plasmas [90–92]. Even if the beam energy loss can be reduced due to the fact that the
beam can reabsorb the Langmuir wave energy it radiates [93], the question arises of how and why
the slowing down of the beam relaxation is impacted by the random density fluctuations during its
propagation in the solar wind plasma.

It was shown that the presence of plasma density fluctuations can impact the development and the
saturation stage of the electron beam instability. In a plasma with weak random density fluctuations,
the beam relaxation rate can be significantly reduced as a result of the angular diffusion of waves
on the density fluctuations [55]. In the frame of quasilinear one-dimensional theory, the analytical
study of the beam evolution in a plasma with a significant level of inhomogeneities [53,94] led to the
following conclusions : (i) the beam broadens to both smaller and larger velocities, forming a tail of
accelerated electrons and (ii) the beam relaxation is less effective than in homogeneous plasmas, and
the instability can be suppressed even in the presence of a positive slope on the beam electron velocity
distribution. Such statements are in accordance with experiments conducted in the laboratory [95].

On the other hand, spacecraft observations reveal that Langmuir waveforms exhibit clumps
with typical peak amplitudes reaching up to 3 orders of magnitude above the mean [8,25,26,42,96–98].
As some authors [1] did not find any evidence of strong nonlinear phenomena during their analysis of
plasma waves’ satellite measurements, they proposed that the impact of background plasma density
fluctuations of characteristic lengths comparable with the spatial growth rates of the Langmuir waves
could be the cause of this clumping phenomenon. Further this idea was also developed in other
papers [99–102]. Moreover, as the amplitude of Langmuir waves excited by electron beams in the solar
wind during Type III bursts is rather low, the problem was considered in the framework of the weak
turbulence theory. In this view, some authors [9,48,57,103,104] took into account in their modeling
various effects such as scattering off small density fluctuations, refraction and reflection of waves
on large density gradients, stream reabsorption, wave decay processes, electromagnetic emissions,
collisional and Landau damping, ion sound waves, magnetic field expansion from the solar corona
into the interplanetary space, etc. These studies showed the influence of plasma inhomogeneities on
the beam relaxation and the waves’ excitation. The most significant effects were observed for density
inhomogeneities with small wavelengths or large amplitudes, and even for weak density gradients.
On the other hand, it was claimed by some authors that not only weak turbulence processes should be
able to remove the Langmuir waves from their resonances with the beam, but also strong turbulence
phenomena as modulational instabilities and collapse, for example [105,106]. Therefore numerical
simulations were performed using the Zakharov equations [78] in various dimensions and modeling
both weak and strong turbulence effects [100,107,108].

Nevertheless, up to now many topics remain unsolved concerning the interactions between the
Langmuir wave turbulence generated by beams and the random density fluctuations existing in solar
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wind plasmas typical of Type III solar bursts. Therefore the understanding of the dynamics of the
microprocesses at the origin of the observed phenomena should allow getting a more deep, complete
and detailed picture of the mechanisms at work, i.e., the slowing down of the beam relaxation, the beam
radiation and its interactions with the generated wave turbulence, the modulation of the Langmuir
waveforms, etc. Recently, such questions were investigated in the frame of the approach and the
modelling described in the previous section, in order to demonstrate, characterize and quantify the
impact of density fluctuations on the dynamics of the electron beam and the radiated waves in solar
wind plasmas and, in particular, in the conditions typical of Type III solar bursts. It was shown that a
threshold depending on the beam speed vb and the plasma thermal velocity vT

∆ns ' α
v2

T
v2

b
(16)

exists for the average level of density fluctuations ∆n (1), above which the beam and waves’ dynamics
are significantly influenced by the random fluctuating density inhomogeneities; the parameter α ' 2–3
was determined phenomenologically owing to numerical simulations. Then, for ∆n < ∆ns, the beam
relaxation and the Langmuir wave turbulence evolve as in a homogeneous plasma and their dynamics
can be described by the quasilinear equations of the weak turbulence theory. On the contrary, when
∆n & ∆ns, the density inhomogeneities significantly influence on the dynamics of the beam, on its
interactions with the waves and on the Langmuir wave turbulence.

The impact of the inhomogeneities on a Langmuir wave packet can be understood in the simplest
case when no electron beam is present, considering an initially narrow Langmuir wave spectrum.
For an average level of density inhomogeneities above the threshold (∆n = 0.01 > ∆ns), Figure 1
shows at a given time the space profiles of the normalized field envelope Re(E), the Langmuir energy
density |E|2 and the density fluctuations δn/n0, as well as the corresponding electric field spectrum
|Ek|. One can see that the wave packet energy is focused, forming isolated propagating peaks as a
result of nonlinear kinematic effects. Correspondingly, the field envelope’s profile exhibits clumps, as
the Langmuir waveforms observed by spacecraft in the solar wind. Please note that the maxima of the
wave energy density |E|2 are not localized at the bottoms of the density dips but near the maxima of the
positive gradients of the wells, i.e., near the so-called reflection points. Meanwhile the field spectrum
|Ek| is broadened due to the coupling between the density fluctuations δn and the electric field E
(see the nonlinear term ρE in Equqtion (8), leading to the spatial focusing of |E|2). With vanishingly
small density fluctuations these focusing effects are suppressed.
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Figure 1. Langmuir wave packet at time ωpt = 3000 in a inhomogeneous plasma with ∆n ' 0.01.
(Left panel): Spatial profiles along the coordinate z/λD of the electric field envelope Re(E) (blue),
the density fluctuations δn/n0 (black) and the turbulence level |E|2 × 10 (red). (Right panel):
Corresponding electric field spectrum |Ek| in logarithmic scales, as a function of the normalized
wave number kλD. No beam is present. All variables are normalized. (Reproduced by permission of
the AAS [10]).
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When the Langmuir wave packet is generated by an electron beam, the same spatial focusing
phenomena occur. Figures 2–4 show, for three different values of ∆n below and above the threshold
(∆n = 0.001� ∆ns and ∆n =0.01–0.03 > ∆ns, respectively) and three time moments, the spatial profiles
of the Langmuir field envelope Re(E), the energy density |E|2 and the density fluctuations δn/n0, as
well as the corresponding beam velocity distributions f (v) and wave energy density spectra |Ek|2.
To complete the physical picture, Figure 5 shows the time variation of the total wave energy density
WL = ∑k |Ek|2 for different values ∆n = 0.001–0.04 together with the evolution of the beam dynamics
for a quasi-homogeneous (∆n = 0.001) and a strongly inhomogeneous plasma (∆n = 0.04). When
the plasma is quasi-homogeneous, the turbulent wave energy |E|2, as well as the field envelope, are
distributed over the whole space and do not exhibit localized peaks (Figure 2, left column). The wave
energy spectrum (Figure 2, middle column), which is peaked around the most unstable mode near
k ' ωp/vb at early times (ωpt ' 2000), broadens toward larger wavenumbers k (i.e., smaller phase
velocities ωp/k) due to the interactions of waves with the unstable beam (ωpt ' 15,000), whereas the
radiated Langmuir wave energy density WL grows up to saturation around a mean level (Figure 5a).
The beam is decelerating (Figure 2, right column, and Figure 5c) according to the well known relaxation
process described in the frame of the quasilinear theory [92], leading asymptotically to a velocity
distribution in the form of a flattened plateau (ωpt ' 35,000, see also Figure 6). It is worth mentioning
here that another phenomenon appears starting from ωpt ' 35,000, which can occur independently of
the presence of the inhomogeneities, i.e., the resonant decay of the Langmuir wave packet; indeed,
the corresponding energy spectrum shows the appearance of backscattered waves with negative
wavenumbers, whereas short-wavelength oscillations (i.e., ion acoustic waves generated during the
decay process) manifest in the profile of the long-wavelength fluctuations δn/n0 (Figure 2, left). Note
also that a small amount of accelerated particles is visible in the beam velocity distribution f (v),
beginning from ωpt ' 35,000 (see Figures 2 and 6b); we will show in detail in the next sections that
such effect is not due to the waves’ transformation processes on the inhomogeneities (which are here
too weak) but to the second cascade of Langmuir waves’ decay producing daughter Langmuir waves
able to accelerate beam particles.
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Figure 2. Beam dynamics’ and wave packet’s evolution at three moments of time, ωpt = 2000, 15,000
and 35,000 (from upper to lower rows). (Left panels): Spatial profiles of the electric field envelope
Re |E| (blue) and of the energy density 2 |E|2 (red), superposed to the density fluctuations δn/n0

(black). (Middle panels): Corresponding electric field spectra |Ek|2 in logarithmic scales. (Right panels):
Corresponding electron velocity distributions f (v) (grey surfaces), superposed to the initial distribution
(red curves). Main parameters are the following: vb/vT = 14, ∆vb/vb = 0.08, nb/n0 ' 2.5× 10−5,
∆n ' 0.001. All variables are normalized. (Reproduced by permission of the AAS [10]).

When ∆n exceeds the threshold ∆ns, the presence of density fluctuations impacts the beam
relaxation and the wave turbulence it generates (Figures 3 and 4, for ∆n = 0.01 and ∆n = 0.03,
respectively). Indeed, the wave energy density profile |E|2 shows focused peaks resulting from a
balance between the process of waves’ excitation by the beam, including their mutual interactions, and
the transformation of the waves on the density fluctuations (Figures 3 and 4, left columns, see at times
ωpt ' 23,000 and ωpt ' 35,000, respectively). Moreover, these energy peaks are localized in some
specific regions only, and not distributed over the full space as for the case of a quasi-homogeneous
plasma (see the previous paragraph). As already mentioned above, such behavior results from the
kinematic properties of the Langmuir waves’ propagation in a inhomogeneous plasma and is connected
with the random character of the wave-particle resonance conditions ωk ' ωp = kv. As the existence
of density fluctuations modifies randomly the local plasma frequency ωp and thus leads to shift
randomly waves of wavenumber k and frequency ωk out of the resonance with the beam electrons of
velocity v, the transfer of energy from the beam to the waves is strongly reduced and its relaxation
is significantly slowed down (see Figures 3 and 4, right columns, and Figure 5d, which shows the
whole beam dynamics for a strongly inhomogeneous plasma with ∆n = 0.04). At the same time,
the beam distribution f (v) is broadening not only toward lower but also higher velocities, and a tail of
accelerated electrons is formed with velocities exceeding the beam velocity vb up to two times its value
(see the right bottom panels of Figures 3 and 4). This acceleration process, which will be discussed in
detail below in a devoted section, partly results from a transfer of energy from the slower to the faster
beam electrons during the transformation of the beam-driven waves on the density fluctuations. In the
asymptotic stage of the relaxation, when the saturation stage of the instability is reached, the electron
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velocity distribution f (v) exhibits a quasi-plateau with a weak positive monotonic slope (see the right
bottom panels of Figures 3 and 4 and Figure 5c,d). On the other hand, the wave energy spectra
|Ek|2 are shown to be significantly affected by the presence of density inhomogeneities (compare the
middle columns of Figure 2–4). Indeed, they are strongly broadened toward smaller as well as larger
wavenumbers k, illustrating the simultaneous presence of waves excited by the beam instability (with
larger k) and transformed by reflection, refraction and scattering on the density irregularities (smaller
positive k and negative k). Please note that wave decay processes are also present, as will be discussed
in the next section; decayed Langmuir waves are however not appearing in the spectra so clearly as in
Figure 2, due to the simultaneous presence of scattered waves in the same ranges of wavenumbers.

Figure 3. Beam dynamics’ and wave packet’s evolution at three moments of time, ωpt = 2000, 7000 and
23,000 (from upper to lower rows). (Left panels): Spatial profiles of the electric field envelope Re E (blue)
and of the energy density |E|2× 10 (red), superposed to the density fluctuations δn/n0 (black). (Middle
panels): Corresponding electric field spectra |Ek|2 in logarithmic scales. (Right panels): Corresponding
electron velocity distributions f (v) (grey surfaces), superposed to the initial distribution (red curves).
Main parameters are the following : vb/vT = 14, ∆vb/vb = 0.08, nb/n0 ' 2.5× 10−5, ∆n ' 0.01.
All variables are normalized.
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Figure 4. Beam dynamics’ and wave packet’s evolution at three moments of times, ωpt = 1000, 35,000
and 90,000 (from upper to lower rows). (Left panels): Spatial profiles of the electric field envelope
Re E (blue) and of the energy density |E|2 × 20 (red), superposed to the density fluctuations δn/n0

(black). (Middle panels): Corresponding electric field spectra |Ek|2 in logarithmic scales. (Right panels):
Corresponding electron velocity distributions f (v) (grey surfaces), superposed to the initial distribution
(red curves). Main parameters are the following : vb = 14/vT , ∆vb/vb = 0.08, nb/n0 ' 2.5× 10−5,
∆n ' 0.03. All variables are normalized. (Reproduced by permission of the AAS [10]).

Moreover, Figure 5b shows that for ∆n & ∆ns, the rate of growth ΩW of the wave packet’s energy
density WL decreases when ∆n increases, with a scaling law ΩW ∝ ∆n−2. In this case, the saturation
levels of WL, which depend weakly on ∆n, are significantly smaller than the saturation level reached in
the case of homogeneous plasmas (i.e., for ∆n� ∆ns, see the upper curve of Figure 5a), in accordance
with the reduction of wave radiation by the beam due to the density fluctuations. Please note that we
also will quantify in a next section the influence of ∆n on the kinetic energy density carried by the
accelerated particles.
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Figure 5. (a) Variation with time of the wave energy density WL = ∑k |Ek|2 , for different average levels
of density fluctuations ∆n = 0.001, 0.005, 0.02 and 0.04. (b) Corresponding variations with ∆n > ∆ns

of the normalized rate of growth ΩW of the wave packets. (c,d) Variations with time of the beam
velocity distributions f (v) for a quasi-homogeneous (∆n = 0.001) and a strongly inhomogeneous
(∆n = 0.04) plasma, respectively; the initial distributions are labeled in red; in (c), the part presented in
blue corresponds to a process of beam acceleration due to wave decay and not to density homogeneities.
Main parameters are the following: vb/vT = 14, ∆vb/vb = 0.08, nb/n0 ' 2.5× 10−5. All variables
are normalized.

Let us now examine the asymptotic stage of the evolution. Figure 6 presents, for both cases
∆n � ∆ns and ∆n ≥ ∆ns, the wave energy spectra |Ek|2 at asymptotic times, as a function of the
resonant velocities v = ωk/k ' ωp/k > 3vT above the thermal range. First, one can see that for a
negligibly small average level of density fluctuations (∆n� ∆ns), the spectrum is broadened around
the resonance condition ωp ' kvb, as a result of waves’ interactions with the beam electrons (Figure 6a,
green points); only a small amount of beam energy is released to waves with large phase velocities
above vb + ∆vb ' vb, so that only a very weak flux of accelerated particles appears. Second, in
the velocity region between the beam velocity vb and the decelerating front velocity u f , i.e., for
waves with phase velocities satisfying u f � ωk/k < vb (here 8 . ωk/k . 14), the spectrum scales
as |Ek|2 ∝ (ωk/k)4. This result is predicted by the quasilinear theory of the weak turbulence for
homogeneous plasmas ([92]; see also [77]). On the contrary, when the density irregularities are
sufficiently large (∆n ≥ ∆ns), the spectrum is flattened asymptotically in the range ωk/k & 3vT , due
to the transformations of the waves on the density inhomogeneities and to the random deviations
from the resonance conditions (Figure 6a, blue points), as energy can be transported to larger phase
velocities. Indeed waves with large phase velocities present amplitudes of about the same order of
magnitude as those with phase velocities lying in the initial resonant velocity range 3vT . ωk/k . vb.
Therefore such waves with ωk/k & vb can transfer energy to electrons with v & vb through Landau
damping and thus accelerate them. Moreover, the asymptotic velocity distribution f (v) superposed to
the initial one (Figure 6b, blue and red curves, respectively) exhibits clearly the acceleration of electrons
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up to velocities v ' 2vb. The decelerated part of the distribution f (v) exhibits a quasi-plateau in the
region v < vb which is not flattened as in the case of a quasi-homogeneous plasma (Figure 6b, green
curve); a weak and persistent gradient remains although the beam instability as well as the total wave
energy density are saturated.
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Figure 6. (a) Wave energy spectra |Ek|2 (in logarithmic scales) at asymptotic times, as a function of
the phase velocities v = ωk/k & 3vT above the thermal range, for ∆n ' 0.001 � ∆ns (green, at
ωpt = 35,000) and ∆n ' 0.04 > ∆ns (blue, at ωpt = 70,000). (b) Corresponding electron velocity
distributions f (v) (in logarithmic scales), superposed to the initial distribution (red), for ∆n ' 0.001
at ωpt = 35,000 (green) and ∆n ' 0.04 at ωpt = 70,000 (blue). Main parameters are the following:
vb/vT = 14, ∆vb/vb = 0.08, nb/n0 ' 2.5× 10−5. All variables are normalized.

3.2. Wave Coupling and Decay Processes

In the solar wind, simultaneous observations of large amplitude Langmuir waves excited by
electron beams associated with Type III bursts together with ion acoustic waves were performed [26].
Such phenomena were likely due to nonlinear processes of wave-wave interactions and, more precisely,
to Langmuir wave decay. Besides, many examples of evidence or suspicion for resonant three-waves’
interactions were reported in front of planetary bow shocks as well as in the source regions of solar
bursts. For example, the waveforms observed in front of the Jovian bow shock were interpreted in terms
of beatings of Langmuir waves interacting with ion acoustic waves or density fluctuations [109,110].
More recently, evidence for three-waves’ interactions involving Langmuir waves was reported by
several authors, concerning the Earth electron foreshock region and the source regions of Type III solar
bursts [26,30,42,46,111–117]. At the same time, other works reported observations of electron beams or
fluxes in the solar wind near the orbit of the Earth [30,32].

Recent measurements of the wave activity on board spacecraft such as Polar, Ulysses, Wind and
Stereo revealed new features and details concerning the Langmuir wave turbulence. As an example,
using several events observed by Stereo [118] that registered wave packets within a duration of 130 ms,
some authors [116] argued that the threshold of the decay instability of a Langmuir wave into a
daughter Langmuir wave and an ion acoustic wave was exceeded and presented Langmuir wave
decays occurring during Type III solar bursts. Besides, Graham & Cairns [117] showed that about
40% of the Langmuir waveforms measured by Stereo during Type III bursts can be consistent with
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the occurrence of such decay processes, involving in some cases several cascades. It is worth noting
here that the Langmuir spectra and the wave profiles recorded by the Interball-2 satellite [119] in the
inner regions of the terrestrial magnetosphere are very similar to those observed in the Earth foreshock
as well as in the Type III solar bursts’ regions of the solar wind; the authors’ interpretation is based
on the weak turbulence theory of scattering of beam-driven Langmuir waves on the external ion
acoustic turbulence.

Large amplitude Langmuir waves L can decay into backscattered Langmuir waves L′ and ion
sound waves S ′ according to the channel L → L′ + S ′. If the waves L′ transport enough energy,
they can in turn decay as L′ → L′′ + S ′′, producing Langmuir waves L′′ (ion sound waves S ′′)
propagating in the same direction as (in the inverse direction with respect to) the beam-driven waves
L. Several such cascades can occur until the decay process becomes prohibited by kinematic effects.
The decay L → L′ + S ′ allows to transfer wave energy from larger to smaller wavevectors k and,
in particular, from k-regions where beam-driven mother waves are produced to regions (i) where
resonant wave-particle phenomena can not occur (as non resonant domains where k < 0) or (ii) where
the waves can damp and by the way release energy to beam electrons and accelerate them (when
k < ωp/vb). Above the instability threshold, the dynamics of the decay processes depends on the
energy carried by the mother Langmuir waves as well as on the efficiency of its transfer to the daughter
waves, effects which are both impacted by the wavelengths and the average level of the random
density fluctuations. On the other hand, decay processes can significantly impact on the Langmuir
waveforms’ features by modulating them or intensifying their clumpyness. Besides, the excitation of
intense backscattered Langmuir waves can also lead to the emission of electromagnetic waves T near
the frequency 2ωp, via the fusion of two Langmuir waves according to the channel L+ L′ → T . Such
process is assumed to be a first step in the mechanism of generation of Type III radiation at 2ωp [120].

Numerical simulations were performed to study wave decay in weakly magnetized or non
magnetized plasmas, mostly in the frame of the weak turbulence kinetic theory [56,59,121],
for homogeneous plasmas and more seldom for plasmas with inhomogeneities, mainly in the form of
density gradients [57]. So-called Vlasov codes and Particle-In-Cell (PIC) codes [59–61] were used as well
as other ones developed in the frame of a fluid description based on the Zakharov equations [122]. Some
of these works were applied to study Langmuir wave decay in solar wind plasmas and, particularly,
in the source regions of Type III solar bursts or in the terrestrial foreshock.

Moreover, numerical simulations based on the theoretical modeling presented in Section 2 have
shown that several cascades of resonant three-wave decay processes can occur in inhomogeneous
plasmas typical of the solar wind where Langmuir turbulence is generated by energetic electron
beams [74]. Indeed, in such plasmas, Langmuir waves can decay into backscattered Langmuir and
ion acoustic waves if the average level of density fluctuations ∆n does not exceed a few percents
(i.e., ∆n . 0.04); otherwise the wave transformation processes on the density fluctuations usually
overcome the decay processes. Decay was revealed in the low- and high-frequency wave energy spectra
where peaks are excited at the wavenumbers of the mother and the daughter waves, in accordance with
the waves’ resonance conditions. Besides, the growth rate of the ion acoustic wave energy was shown
to fit the predictions of the theory of parametric decay for monochromatic waves and homogeneous
plasmas, at least below ∆n ' 0.02. A very good agreement was found concerning the wavenumbers of
the waves involved in the decay processes when comparing the simulations’ results and the analytical
predictions. This is related to the fact that the waves’ dispersion is not noticeably modified by the
density irregularities.

Below the threshold ∆ns, three-wave decay processes can occur in plasmas with developed
Langmuir turbulence; moreover they can be described within the frame of the weak turbulence theory
for homogeneous plasmas [74]. In this case, the energy density carried by low-frequency as well as
high-frequency waves is distributed quasi-uniformly in space and does not exhibit focused peaks
isolated in some specific regions; wave decay is not a spatially localized process and can develop until
its saturation stage. Figure 7a shows the corresponding space profiles of the Langmuir wave energy
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density |E|2 and of the background plasma density fluctuations δn/n0 at two different times. One
can see the appearance of short-wavelength density perturbations δns/n0 of significant amplitudes
(i.e., ion acoustic oscillations) which can be separated from the long-wavelength fluctuations δn/n0 by
an adequate filtering procedure [74]. At asymptotic times, the Langmuir wave turbulence and the ion
acoustic oscillations are extended over all space (see Figure 7a at ωpt = 35,000).
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Figure 7. (a) (Left panels): profiles along the coordinate z/λD of the normalized wave energy density
|E|2 at times ωpt = 22,000 and ωpt = 35,000. (Right panels): corresponding profiles of the density
fluctuations δn/n0; short-scale oscillations δns/n0 are growing with time. The main parameters are the
following: nb/n0 = 5× 10−5, vb/vT = 14, ∆n = 0.001. (b) (Left panels): profiles of the normalized
wave energy density |E|2 at times ωpt = 30,000 and ωpt = 52,000. (Right panels): corresponding
profiles of the density fluctuations δn/n0; the localized regions of growth of the short-scale oscillations
δns/n0 are colorized. The main parameters are the following: nb/n0= 2× 10−5, vb/vT= 18, ∆n = 0.01.
All variables are normalized.

On the other side, when ∆n ≥ ∆ns, wave transformation phenomena as wave scattering, diffusion,
refraction or reflection on the density irregularities compete with the decay processes which therefore
take place in specific space-time locations imposed by the physical conditions and the dynamics of the
system; indeed, one can see on Figure 7b that the wave energy density |E|2 and the short-wavelength
density perturbations δns/n0 are localized in specific space-time regions, contrary to the case when
∆n < ∆ns (Figure 7a). Please note that these regions do not only concern the surrounding of reflection
points on the density fluctuations’ humps where Langmuir wave energy can accumulate and focus
before the start of the decay processes. Figures 8 and 9 show for both cases ∆n < ∆ns and ∆n > ∆ns,
respectively, the space-time dynamics of the Langmuir wave turbulence and the ion acoustic waves.
Let us first discuss the case of a quasi-homogeneous plasma when ∆n is below the threshold ∆ns.
Figures 8a,b present the space-time variations of the Langmuir wave energy density |E|2 and of the
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short-wavelength density fluctuations |δns|/n0, respectively. The energy of the mother Langmuir
wavesL(ωL, kL) propagates with the group velocity vg, and one can observe the occurrence of multiple
decays L → L′ + S ′ along all their paths (Figure 8a). The backscattered Langmuir waves L′(ωL′ , kL′ )
propagate with a group velocity of inverse sign and kL′ < 0. Meanwhile ion acoustic waves S ′
(ωS ′ , kS ′ > 0) are produced which propagate with the velocity cs in the same direction as the mother
Langmuir waves L (Figure 8b).

| n
s
| / n

0

0 5 10

10
4

0

2000

4000

6000

8000

z
/

D

|E|2

0 5

10
4

0

2000

4000

6000

8000

z
/

D

|E
k
|2 

0 5 10

10
4

-0.15

-0.1

-0.05

0

0.05

0.1

k
D

p
t

10
-5

10
-4

10
-3

10
-2

W
L

1 2 3 4 5 6

10
4

10
-10

10
-8

10
-6

W
S

p
 t

p
 t

p
 t

(d)

(b)(a)

(c)

Figure 8. Quasi-homogeneous plasma. (a) Space-time variations of the Langmuir energy density |E|2.
(b) Space-time variations of the short-wavelength ion acoustic waves |δns|/n0. (c) Time variation
of the Langmuir energy spectrum |Ek|2. (d) Time variations of the energy densities WL and WS of
the Langmuir (blue) and ion acoustic (red) waves. Main parameters are the following: ∆n = 0.001,
vb/vT = 14, nb/n0 = 5× 10−5, cs/vT = 0.045, γe, γi = 0. Examples of Langmuir and ion acoustic wave
packets participating to decay processes are indicated by arrows in (a,b). All variables are normalized.

During the wave-wave interactions, the resonance conditions ωL = ωL′ + ωS ′ and kL = kL′ + kS ′
are shown to be verified. According to the theory developed for homogeneous plasmas [58,123],
those are satisfied if kL′ ' k0 − kL and kS ' 2kL − k0, with kL ' ωp/vb and k0λD = 2cs/3vT '
0.03; the Langmuir and ion acoustic wave dispersions are ωL ' ωp(1 + 3k2

Lλ2
D/2) and ωS ' cskS .

The energy spectrum |Ek|2 of the Langmuir waves as a function of time (Figure 8c) shows peaks
around kL and kL′ and, at sufficient large times, a peak around kL′′ ; indeed, second decay cascades
start to occur, according to the channel L′ → L′′ + S ′′, producing Langmuir and acoustic waves L′′
and S ′′ with kL′′ ' kL − 2k0 > 0 and kS ′′ ' −2kL + 3k0 < 0, i.e., with wavevectors of the same
and the opposite signs as those of the mother waves L, respectively. Finally, the growths with time
of the high- and low-frequency energy densities WL and WS are presented in Figure 8d, showing
that the ion acoustic waves start to grow at the stage when the Langmuir waves’ energy density has
reached a steady state. The linear growth rate of the decay instability, calculated using Figure 8d,
is shown to be smaller but rather close to the analytical predictions obtained for monochromatic waves
in homogeneous plasmas [74,124].

Let us now discuss the dynamics of wave decay for inhomogeneous plasmas with ∆n > ∆ns.
In this case, the random variations of the local background plasma frequency and thus of the
wave-wave resonance conditions explain why the influence of the density fluctuations on the nonlinear
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decay processes can be significant. In Figure 9a, we show the space-time variations of the Langmuir
wave energy density |E|2, and one can see that the decay processes only occur in some specific domains.
Indeed, as revealed by Figure 7b, the Langmuir wave energy is focused and localized (left panels),
becoming more irregular and chaotic in the space regions where the ion acoustic waves have appeared
(right panels), due to the processes of energy transfer and redistribution between the wavevectors’
scales occurring during wave decay. Moreover, the waves’ transformations on the density fluctuations
(scattering, reflection, refraction) modify the propagation of their energy locally, so that they can loose
part of it and thus have less possibility to encounter further decay processes. It is worth mentioning
that the interactions between Langmuir and ion acoustic waves occur during short time durations.
Indeed, as the group velocity vg of the Langmuir waves is typically much larger than that of the ion
acoustic waves (which is equal to cs), the decay processes stop due to kinematic effects and not to
nonlinear wave saturation. This occurs when the faster Langmuir waves leave the regions where they
locally interact with the slower ion acoustic waves.
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Figure 9. Inhomogeneous plasma. (a) Space-time variations of the Langmuir energy density |E|2.
(b) Langmuir wave energy spectrum at ωpt = 89,000. (c) Ion acoustic wave energy spectrum Sk at
ωpt = 89,000. (d) Time variations of the energy densities WL and WS of the Langmuir (blue) and ion
acoustic (red) waves. Main parameters are the following: ∆n = 0.01, vb/vT = 18, nb/n0 = 5× 10−5,
cs/vT = 0.045, γe, γi 6= 0 (wave damping is included). Langmuir and ion acoustic wave packets
participating to decay processes are indicated by arrows in (a). All variables are normalized.

The high- and low-frequency energy spectra are shown in Figure 9b,c at ωpt ' 89,000, when the
decay processes are saturated, exhibiting peaks corresponding to the first decay L → L′ + S ′ and to
the second cascade L′ → L′′ + S ′′. Each wave packet excited can be identified clearly by a broadened
peak centered with a good accuracy around the wave vectors kL, kL′ and kL′′ (Figure 9b) as well as
kS ′ and kS ′′ (Figure 9c), whose analytical expressions are given above. Figure 9d shows the growth
with time of the high- and low-frequency energy densities WL and WS, respectively; the significant
growth of WS within the time interval ωpt ' 45,000–55,000 indicates that the ion acoustic waves S ′ are
growing with a rate around a few 10−4ωp. Please note that moderate but significant ion and electron
damping effects (electron and ion temperatures satisfy typically Te/Ti & 3) with rates |γi| � ωS
and |γe| � ωp, which model the presence of nonthermal ion and electron tails, are present in the
simulations shown in Figure 9, what explains the decrease of WL and WS at large times (Figure 9d).
One can observe that such damping effects, even if significant, do not suppress the occurrence of the
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Langmuir wave decay processes. On the contrary, those can even be identified more clearly due to the
disappearance of some Fourier components in the spectra.

Decay processes can lead to several cascades of energy transfer to waves with longer
wavelengths [11]. Figure 10a–c present the space-time variations of the wave energy density |E|2

and the short-wavelength density perturbations |δns| /n0 when a third and last cascade occurs,
a fourth cascade being not possible here due to the resonance conditions. One can observe the
third decay cascade L′′ → L′′′ + S ′′′ around ωpt ' 73,000 in the first example (Figure 10a,b), and near
ωpt ' 80,000 in the second example including damping effects (Figure 10c). During the successive
cascades L → L′ + S ′, L′ → L′′ + S ′′ and L′′ → L′′′ + S ′′′, the absolute values of the Langmuir
wavenumbers kL′ , kL′′ and kL′′′ become smaller at each decay, starting from the wavenumber kL of
the beam-driven Langmuir waves; due to the resonance conditions, the Langmuir wave products
satisfy kL′ ' (k0 − kL) < 0, kL′′ ' (kL − 2k0) > 0 and kL′′′ ' (3k0 − kL) < 0, whereas the ion acoustic
daughter waves are characterized by the wavenumbers kS ′ ' (2kL − k0) > 0, kS ′′ ' (−2kL + 3k0) < 0
and kS ′′′ ' (2kL − 5k0) > 0.
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Figure 10. Cascades of wave decay. Space and time variations of |E|2 (a) and of the corresponding
short-scale density fluctuations |δns|/n0 (b), in the area [5000, 8000]λD of the simulation box. (c) Space
and time variations of |E|2 in the area [5000, 10,000]λD of the simulation box. The main parameters
are the following: (a,b) nb/n0 = 5× 10−5, vb/vT = 14, ∆n = 0.02 >∆ns; (c) nb/n0 = 5× 10−5,
vb/vT = 16, ∆n = 0.01 >∆ns. Langmuir and ion acoustic wave packets participating to decay
processes are indicated by arrows. All variables are normalized.

Whereas in quasi-homogeneous plasmas decay processes occur usually when the beam is almost
totally relaxed, they can start in inhomogeneous plasmas much before the beam relaxation is complete,
due to the wave energy focusing and reflection processes. In this case, when the presence of density
fluctuations enhances the possibility to generate counterpropagating Langmuir waves, interferences
between Langmuir waves become more frequent. In some cases reflection effects can favor the
appearance of decay processes, that is, increase their efficiency in the early stage, due to coupling
between Langmuir waves of amplitudes above the thermal level. However, in general, the larger
∆n is (and the smaller the density fluctuations’ wavelengths), the rarer the decay processes become,
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as they can be overcome by transformation effects of waves on the density inhomogeneities as well
as by reflection effects. For large ∆n significantly above ∆ns, wave decay occurs only rarely and
under specific local conditions; indeed, the scattering of the waves on the irregularities, which has a
much shorter characteristic time scale than the wave decay, destroys the coherency between the waves
required for decay. As an example, wave decay can be observed in the present simulations up to
∆n ' 0.03, although it is obscured by reflection phenomena, but can not be detected at ∆n & 0.03–0.04.

As discussed above, second decay cascades and more can be observed which redistribute
wave energy between the different k-scales of the Langmuir wave turbulence. This leads to the
appearance of modulation features in the Langmuir waveforms, which can be shaped in clumps
due to three-wave decay processes. The waveforms EL (t) = Re ∑k Ek (t) exp

(
ik (z− vSt)− iωpt

)
,

calculated numerically and registered as a function of time by a virtual satellite passing through a
space-time region where a three-waves decay process occurs, exhibit specific modulation features
revealing beatings between waves (Figure 11a); when the same satellite does not cross this region,
such modulation is no more visible (Figure 11b). Figure 11c presents a Langmuir waveform recorded
by another virtual spacecraft travelling in a strongly inhomogeneous plasma (∆n ' 0.03) through
an area where wave decay occurs, which exhibits characteristic modulation features. Such numerical
simulations’ results are in agreement with observations by the Stereo satellite showing the same kind
of modulated structures during the occurrence of wave decay processes [125].
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Figure 11. Langmuir waveforms (registered electric fields EL as a function of time) observed by a
virtual satellite moving at the velocity vS = 0.1vT and starting at time ωpt = 50,000 when (a) it crosses
a plasma region where wave decay occurs, (b) it crosses no region with decay. (c) Langmuir waveform
observed by a virtual satellite moving with vS = 0.15vT , starting at ωpt = 40,000 and crossing a plasma
region with wave decay. Main parameters are the following: (a,b) ∆n = 0.02, (c) ∆n = 0.03. Regions
showing specific modulations due to wave decay are colorized. All variables are normalized.

3.3. Particle Acceleration Processes

It is well known that an electron beam emitting Langmuir waves can reabsorb some part of
the energy it radiates. As a result, this beam is able to emit moderate levels of wave turbulence
and to transport energy over large distances far from its emission source before being thermalized.
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During such processes, the acceleration of particles plays a determinant role, which is different
depending on whether the plasma is inhomogeneous or not and on the nature of inhomogeneities.
Simulations involving large scale density inhomogeneities have demonstrated that beam electrons
can be accelerated when propagating into a plasma of increasing density [126,127]. Moreover
PIC simulations have shown that accelerated electrons appear during the nonlinear evolution of
a beam-plasma system [88] even if the background plasma is initially homogeneous.

On the other side, when the plasma involves random density fluctuations, the appearance of
accelerated particles results from two different phenomena: (i) the scattering of the waves on the
fluctuating density inhomogeneities [10,53,57] and (ii) the damping of Langmuir waves coming from
the second cascade of the electrostatic decay [67], which can transfer energy to some beam particles
through resonant wave-particle interactions. The first process is not efficient when the plasma is weakly
inhomogeneous (∆n� ∆ns); but, when ∆n exceeds the threshold ∆ns, it can lead to a population of
accelerated particles carrying significant density and energy. The second process can be effective even
if the plasma is quasi-homogeneous (∆n � ∆ns), but tends to be suppressed at high ∆n > ∆ns due
to the rare occurrence, at these conditions, of Langmuir wave decays and their second cascades [74].
Moreover, these two acceleration mechanisms occur on different time scales, the second one developing
typically after the first one has reached its saturation stage. In particular, it is important to understand
how the second wave decay cascade and the wave transformation (scattering) processes can work
together to accelerate beam electrons during two successive stages.

It was shown that the Langmuir waves coming from the second cascade of the electrostatic decay
L → L′ + S ′ can accelerate beam electrons up to kinetic energies and velocities exceeding half the
initial beam energy and two times the beam velocity vb, respectively [67,69]. Besides, this process can
be particularly effective (and sometimes can only occur) if there exists beforehand a sufficient amount
of particles with velocities extending over a few ∆vb above vb (∆vb is the beam thermal velocity). This
can be realized as a result of Langmuir waves’ transformations on the background plasma density
fluctuations, which allow energy to be transported to waves of higher phase velocities and then to
be released to electrons with velocities v > vb. If the phase velocities of the waves coming from the
second cascade of the decay are lying between vb and (2–3) vb, such waves can transfer resonantly
their energy to the firstly accelerated electrons which are thus again accelerated. Such conditions can
be met in typical solar wind plasmas if the beam velocity vb does not exceed about 35 times the plasma
thermal velocity vT [67]. Thus the processes of waves’ transformations on density fluctuations can
prepare the accelerated beam electrons to a second acceleration stage by waves produced through a
decay channel.

We remind readers here that the daughter Langmuir waves L′ (L′′) produced by the first (second)
decay cascade propagate in the inverse direction to (the same direction as) the mother wave L, i.e., as
the electron beam (see also the previous section). As a consequence, the waves L′ coming from the
first decay cascade L → L′ + S ′ can not be resonant with the beam electrons (as their phase velocities
are negative), contrary to the waves L′′ produced by the second cascade L′ → L′′ + S ′′. Besides,
in accordance with the weak turbulence theory, the succession of cascades allows the transport of
energy to larger phase velocities. In this view the important question arises under what conditions
the waves L′′, which have absorbed part of energy of the waves L via wave-wave interactions, can
be damped and loose part of their energy to beam electrons and thus accelerate them. Then, it is
essential to distinguish the different acceleration mechanisms one from the others, to estimate their
own contributions, to find the specific conditions under which they can compete to eventually favor or
reduce acceleration, and to determine whether those are consistent with the solar wind parameters
typical of the source regions of Type III solar bursts or of the Earth foreshock.

Figure 12a,b show the time variations, for different values of ∆n, of the Langmuir wave energy
density WL, the beam kinetic energy density Kt, as well as the energy density Kac and the density nac

carried by the population of accelerated particles, i.e., with velocities above the value vac ' vb + ∆vb;
Kt, Kac and nac are normalized by the initial beam kinetic energy density K0 and beam density nb,
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respectively. As expected, the growth of WL (Figure 12a) is accompanied by the decrease of Kt

(Figure 12b), the beam loosing energy when radiating Langmuir wave turbulence. The variations of
energy are different for small ∆n below the threshold ∆ns and above it. Indeed, for ∆n � ∆ns, the
beam kinetic energy experiences a large loss (around 30% of its initial energy at ∆n = 0.001, Figure 12b),
producing a high level of Langmuir wave turbulence (see the corresponding saturation level of WL in
Figure 12a). When ∆n > ∆ns, the Langmuir waves’ emission efficiency is significantly reduced as a
result of the random violation of the wave-particle resonance conditions and of the reabsorption of the
wave energy by the beam; at large ∆n = 0.04, the beam loss is eventually around 5%, in agreement with
its ability to propagate over long distances in the solar wind (see Figure 12b at asymptotic time). Wave
energy growth and resulting loss of beam energy occur mostly at ωpt . 50,000 before the saturation
stage that starts near ωpt ∼ 50,000. For ∆n > ∆ns, wave energy is transferred from the Langmuir
waves L excited by the beam to modes of smaller wavevectors, as a result of waves’ transformation
effects on the density fluctuations; therefore nac and Kac strongly increase (Figure 12c,d). Then, during
the saturation stage, they continue to increase but at a much slower rate, as the waves’ transformation
effects are not fully achieved. On the other hand, for ∆n� ∆ns, the growth of nac and Kac is mostly
due to the occurrence of the second decay cascade process, that begins to be effective around ωpt '
50,000, when Langmuir waves L′′ with phase velocities vϕ & vac are produced by the second decay
cascade (see Figure 12c,d for ∆n = 0.001).

Figure 12. Time variations of different characteristics of the population of accelerated particles, for
∆n = 0.001 (green), 0.005 (red), 0.02 (yellow), and 0.04 (blue). (a): Langmuir wave energy density WL as
a function of time. (b): Beam kinetic energy Kt as a function of time. (c): Kinetic energy Kac carried by
the accelerated electrons, as a function of time. (d): Density nac of the accelerated electrons, as a function
of time. (e): Fraction WL,ac of the energy density WL carried by the Langmuir waves with phase velocity
vϕ > vac, as a function of time. (f): Ratio WL,ac/WL as a function of time. Main parameters are the
following: vb/vT = 14, nb/n0 = 5× 10−5. All variables are normalized (see the text).
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Let us define WL,ac as the wave energy density carried by the Langmuir waves with phase
velocities vϕ > vac. For ∆n = 0.001 � ∆ns and at large times ωpt & 50,000, WL,ac and WL,ac/WL
are growing and saturating (Figure 12e,f); these growths are only due to acceleration by damping of
the decayed waves L′′; the saturation level of WL,ac/WL oscillates around 0.4. For ∆n = 0.02 > ∆ns,
the two phenomena leading to particle acceleration occur both at ωpt & 50,000, i.e., the transformation
of waves on the density fluctuations and the second decay cascade process (which takes place only
for ωpt & 50,000). For ∆n > ∆ns, the larger ∆n, the larger the fraction WL,ac/WL of wave energy
transferred during the waves’ transformation processes to waves with vϕ & vac; in the same conditions,
the smaller ∆n, the larger the fraction WL,ac/WL transferred by the second decay cascade process to
waves with vϕ & vac.

Figure 13 shows the variation with ∆n of the asymptotic values n∞, K∞, and Kt,∞ of nac, Kac, and
Kt. One can observe that K∞ and n∞ increase with ∆n up to stabilization. For ∆n . ∆ns ∼ 0.008, n∞

and K∞ depend linearly on ∆n; on the contrary, n∞, K∞ ' cst when ∆n & ∆ns. The kinetic energy and
the density of the accelerated electrons can reach up to 60% and 30% of the initial beam energy and
density, respectively, as the maxima reached are K∞ ' 0.6 and n∞ ' 0.3. According to the variation of
Kt,∞ with ∆n, one can see that for ∆n ' 0.001� ∆ns (∆n ' 0.04 & ∆ns), the beam has lost eventually
30% (5%) of its energy, as the waves’ transformations on the density fluctuations prevent the beam
from loosing energy at large ∆n (see also Figure 12b). Indeed, as the tail of accelerated electrons can
reabsorb part of the energy that the decelerating beam looses, the net energy lost due to radiation
into wave energy is very small when density fluctuations exist and, in particular, when they are large.
Such reabsorption allows the beam to conserve its kinetic energy during a significantly more long
time during its propagation in inhomogeneous plasmas than in homogeneous ones. Note that the
accelerated electron tail can extend asymptotically up to around 2–3 times the initial beam velocity vb,
whatever the value of ∆n is.
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Figure 13. Variation with ∆n, at asymptotic time, of the density n∞ (blue circles) and the kinetic energy
K∞ (green stars) of the accelerated electrons, as well as of the kinetic beam energy Kt,∞ (red crosses).
The density and the energy are normalized by the initial beam density and kinetic energy, respectively.

Figure 14a shows that when ∆n increases, the asymptotic values of the saturated energy density
W (Wac = W(vϕ > vac)) of all the Langmuir waves (of the Langmuir waves with phase velocities
satisfying vac . vϕ . (2–3)vb) decrease. For ∆n & ∆ns ∼ 0.008, W and Wac depend weakly on ∆n.
As expected, Wac is noticeably smaller than W; when ∆n < ∆ns, this results from the fact that as
waves’ transformation effects are weak, no noticeable amount of energy is transferred to the waves
with vϕ > vac; when ∆n > ∆ns, the reason is that the Langmuir waves with vϕ > vac have released
through damping, to the particles with velocities v & vac, a part of their energy gained during their
transformation processes on the density fluctuations. One can see that Wac and W decrease when the
normalized velocity width ∆V characterizing the distribution f (v) at v > vb increases (Figure 14c);
indeed, for very low saturation levels W at large ∆n, the energy transported by the waves has been
in part absorbed by the electrons, which are then accelerated. The variation of ∆V (calculated at the
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saturation stage) with ∆n is shown in Figure 14b, when the two acceleration mechanisms are taken into
account indistinctly. One can see that ∆V ' ∆vb ∼ 1.5vT for small ∆n < ∆ns, and that it increases with
∆n up to ∆V ' 4∆vb when ∆n = 0.04 > ∆ns. In the former case, the broadening of the distribution
f (v) mainly results from the second cascade of the Langmuir decay and, in the latter case, this process
contributes more weakly to the growth of ∆V, so that the wave transformation phenomena on the
density fluctuations are predominant.
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Figure 14. (a): Variation as a function of ∆n of the maximum Wm of the Langmuir wave energy density
WL (blue), as well as of the saturated energy densities of all the Langmuir waves, W (red), and of the
Langmuir waves with phase velocities vϕ > vac, Wac (green). (b): Thermal velocity ∆V gained by the
accelerated tail with respect to the initial beam velocity distribution, as a function of ∆n. (c): Variation
of W (red) and Wac (green) with ∆V. All variables are normalized (∆V is normalized by vT).

For a quasi-homogeneous plasma with ∆n � ∆ns, Figure 15 shows the electron distribution
f (v) at three different moments of the beam dynamics, i.e., at t = 0, at the time ωpt = 47,500 when
the transformation processes of the waves on the inhomogeneities are saturated (green), and at
ωpt ' 170,000 when the second decay process occurs (blue); the distributions are superposed to their
interpolations by Gaussians centered at v ' vb + ∆vb. One observes that as ∆n is small, particles
are weakly accelerated by the processes of waves’ transformations. However, another acceleration
mechanism takes place due to the damping of the waves L′′. One can see that at ωpt ' 170,000
and v & 22, the tail of f (v) is denser than that of the Gaussian distribution. Indeed, the second
decay cascade process is not totally saturated at this stage, as the spectrum of the Langmuir waves
L′′ significantly varies within the velocity domain considered, as a result of local resonant energy
exchanges between the tail electrons and the waves. In this case the accelerated electron tail deviates
locally from the Gaussian behavior. However, when wave saturation is established, the tail distribution
is Gaussian, due to the fact that in the velocity range above vb, the velocity diffusion coefficients D(v)
of electrons are quasi-constant at saturation [68,77] (see also the next section). Note that the quasilinear
theory predicts this kind of behavior in the velocity range where the waves’ energy exchanges with the
particles are not significant. Moreover, when the two processes responsible for electron acceleration are
fully saturated so that energy exchanges between particles and waves are very weak asymptotically,
the coefficients D(v) can become quasi-constant at v > vb even when the plasma is inhomogeneous.
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Figure 15. Velocity distribution f (v) of the beam for a quasi-homogeneous plasma with ∆n = 0.001,
at (i) ωpt = 0 (truncated, red), (ii) ωpt = 47,500 (green) and (iii) ωpt ' 170,000 (blue). Points (circles)
provided by the simulations are fitted by Gaussian distributions (solid lines) for the beam accelerated
tail, taking into account only velocities v larger than the initial beam velocity vb. The points excluded
from these fits and representing the decelerated plateau are labeled by crosses. Velocities are normalized
by the electron thermal velocity vT . (Reproduced with permission from [69]).

Let us now characterize the population of accelerated electrons. Figure 16a shows, for ∆n ' 0.01,
the variation with time of the normalized density nac and kinetic energy density Kac of a population
of electrons accelerated successively by the two acceleration processes. Indeed, one observes two
stages in the evolution of Kac: the first growth (up to Kac ' 0.2), occurring at times ωpt . 15,000, is
due to the scattering of the waves on the inhomogeneities; during a second period from ωpt ' 70,000
to ωpt ' 100,000, Kac grows up to Kac ' 0.4, due to the development of the second decay cascade,
and reaches eventually around 0.55. The density nac follows the same behavior, with smaller growths
however, reaching a maximum around nac ' 0.3. Then, in the asymptotic time, almost 60% of the
initial beam energy is carried by the accelerated electrons which constitute 30% of the beam density.
Without the second decay cascade, only 15–20% of the beam electrons’ density would carry 25% of the
initial beam energy. So, the waves L′′ are able to reaccelerate strongly the electron population firstly
accelerated due to the waves’ transformation effects.

Figure 16b shows the time variations of the normalized density n<ac and kinetic energy
density K<ac of the beam electrons with velocities v smaller than vac, together with the absolute
value Kl = 1− (Kac + K<ac) of the energy lost by the beam. One observes that n<ac decreases and
nac + n<ac ' 1 during all the evolution; Kl follows qualitatively the variation of WL, as the beam
instability generates Langmuir waves. The growth of Kl (energy mostly absorbed by the Langmuir
waves) at the early times corresponds roughly to the growth of the energy Kac of the electrons
accelerated as a result of transformation effects of the waves driven by the beam. A second growth of
Kac accompanies the further decrease of Kl ; indeed, Langmuir waves damp and electrons absorb their
energy. At the same time the beam electrons with v < vac continue to loose energy (K<ac decreases
within the same time range), and the evolution of f (v) confirms (as the decrease of n<ac) that electrons
with such velocities can be accelerated and enter the domain v > vac, whereas contributing to the
growth of Kac. Indeed, due to the fact that ∂ f /∂v < 0 for v > vb, the waves L′′ can damp and
accelerate electrons, which can leave the range v . vb, forming step by step a velocity distribution with
a negative slope in this region; this effect continues to work as time increases. This explains the loss of
beam energy K<ac as well as the appearance of the negative slope required for effective damping at
v . vb. At large times, Langmuir waves with phase velocities vϕ . vb can also experience damping;
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nevertheless, their ability to increase the energy of the accelerated electrons is weaker than that of the
waves L′′ produced by the second decay cascade process.
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Figure 16. (a): Time variation of the kinetic energy density Kac of the accelerated electrons (solid
line), of the kinetic energy density K<ac of the accelerated electrons with velocity v < vac =

15.7 (dashed-dotted line), and of the absolute value of the energy density lost by the beam,
Kl = 1− (Kac + K<ac) (dashed line). (b): Time variation of the corresponding electron densities nac

and n<ac. Main parameters are: nb/n0 = 5× 10−5, vb/vT = 14 and ∆n ' 0.01. The energies and
densities are normalized by the initial beam kinetic energy and density, respectively. (Reproduced by
permission of the AAS [67]).

In summary, for a quasi-homogeneous plasma, the beam can loose up to half its initial kinetic
energy, generating a high level of Langmuir wave turbulence. Beam electrons can be accelerated only
by the Langmuir waves coming from the second cascade of the Langmuir wave decay. This population
can absorb a large part of the initial beam energy, owing to the transfer of energy via wave-wave
resonant coupling; indeed, mother Langmuir waves excited directly by the beam can decay into
daughter Langmuir waves of phase velocities larger than the beam average velocity. Then the beam
can reabsorb a significant part of the energy that it lost, even if the plasma is quasi-homogeneous.
For a inhomogeneous plasma, the presence of density fluctuations as well as the reabsorption of wave
energy by the beam reduce significantly the efficiency of Langmuir wave emission. In this case, a small
part of its energy is lost by the beam at the asymptotic stage (less than 10%), so that it can propagate
over long distances in the plasma. The two acceleration mechanisms resulting (i) from the second
Langmuir decay cascade and (ii) from the waves’ transformations on the density fluctuations both
lead to the formation of a tail of accelerated particles that can reabsorb the radiated Langmuir wave
energy through resonant wave-particle interactions, limiting the energy loss of the beam.

3.4. Particle Diffusion Processes

Quasilinear theory [128,129] is one of the approaches used to study Type III solar bursts driven by
electron beams; in particular, it provides analytic expressions for the velocity diffusion coefficients D(v)
of particles moving in homogeneous plasmas. As the collision frequency is much smaller than the other
characteristic frequencies in the solar wind, the velocity perturbations of the beam electrons are mostly
due to the quasilinear diffusion. In the first attempt to extent this theory to inhomogeneous plasmas,
some authors [53] assumed that the characteristic wavelengths of the background density fluctuations
significantly exceeded those of the Langmuir waves and that most of these waves were trapped in
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density troughs. Such assumptions are however too strong as Langmuir turbulence involves waves
that propagate freely over the density holes. Indeed actual effects as scattering and wave reflection on
the density irregularities can not be neglected as they play a determinant role.

The diffusive properties of particles’ motion in wave packets were investigated in homogeneous
plasmas owing to numerical simulations [77,130,131]. Some authors studied particle diffusion in
given packets of waves with random phases and found discrepancies between the velocity diffusion
coefficients calculated numerically and those predicted by the quasilinear theory [132–137]. Besides,
the non classical nature of the diffusion at work was revealed [138,139] as, for example, the nonlinear
time dependence of the particles’ mean-square velocity variations

〈
(∆v)2〉. Another approach was

proposed by the authors [77] as an alternative to the quasilinear theory. It consists in performing
numerical simulations based on a self-consistent Hamiltonian model of resonant wave–particle
interactions. In this frame, many individual test particles’ trajectories were calculated and analyzed
owing to statistical algorithms and methods. Results obtained were close to the predictions of the
quasilinear theory; particularly, it was shown that the velocity diffusion coefficients D(v) resulting
from the analysis of a huge number of long-time trajectories in homogeneous plasmas agree on the
whole with those obtained by this theory, even if some essential differences could be revealed [77].

A similar approach was also developed by the authors for the case of plasmas with developed
Langmuir turbulence and random density fluctuations [68]. The presence of randomly fluctuating
inhomogeneities affects the character and the nature of the beam electrons’ motion in the Langmuir
wave packets, so that the diffusion processes are significantly modified; then the question arises to what
extent the quasilinear theory remains able to describe these phenomena. Moreover, the determination
of the velocity diffusion coefficients allows estimating the impact of such inhomogeneities on the
dynamics of the beam relaxation, i.e., of the populations of beam electrons accelerated as a result
of wave scattering on the density fluctuations or of nonlinear effects, or decelerated due to the
generation of Langmuir wave turbulence. Therefore the resonance broadening effects due to waves’
transformations on the density inhomogeneities were studied owing to numerical simulations [68].
Such problems were also considered in the frame of a statistical and analytical model [63] or by
using the quasilinear theory with wave diffusion coefficients, involving resonance broadening
phenomena [140].

The authors [68] performed a statistical analysis of several thousands of test particles’ trajectories
v (t) calculated for different parameters of beams and initial density fluctuations’ distributions. It was
shown to be an effective tool for describing the diffusion processes at work in a inhomogeneous plasma,
even if it required to analyze a huge amount of particles’ trajectories and to determine large series
of stochastic variables while choosing adequate time scale parameters ensuring its reliability. Such
study was aimed, first, at determining the probability distribution functions (PDFs) of the velocity
variations δvτ(t) = v (t)− v (t− τ) during the steady stage of the system’s evolution (τ is a short
time interval) and, second, using these distributions, at calculating the corresponding mean-square
velocity displacements as a function of τ in order to determine the velocity diffusion coefficients.
So, for each electron trajectory v (t), a random sequence of velocity increments δvτ(t) was built for
t ≥ t0, where t0 is the time when the fluctuations of the mean spectral energy density

〈
|Ek|2

〉
become

negligible. The autocorrelation sequence R(τ) = 〈δvτ(t)δvτ(t− τ)〉 of the random process δvτ showed
that correlations almost disappear on a time scale of a few plasma periods ω−1

p , so that the statistical
properties of the increments δvτ(t) were almost independent on the time t.

The trajectories v(t) of typical test particles are shown in Figure 17 within a time interval ∆T in
the saturation stage of the Langmuir wave energy density, together with their corresponding velocity
variations δvτ(t) = v (t)− v (t− τ), in the case of an inhomogeneous plasma (Figure 17a,b) and a
homogeneous plasma (Figure 17c,d). In the former case, one can observe sharp velocity jumps which
appear to be localized (as the wave spectral energy); indeed, the energy of a wave packet scattering on
a density hump focuses, whereas fast wave energy transfers occur through the wavevectors’ scales
and, consequently, the electron motion exhibits sharp velocity jumps. In a homogeneous plasma, such
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jumps are much more seldom and smaller (Figure 17c,d). Please note that the small time τ (τ � ∆T)
has to be chosen large enough to ensure a sufficient number of interactions between particles and
waves, leading to diffusion.
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Figure 17. (a,b) Inhomogeneous plasma with ∆n = 0.01: time variation of (a) the velocity v(t) and (b)
the velocity variations δvτ(t) = v (t)− v (t− τ) of a typical test particle. (c,d) Homogeneous plasma:
time variation of (c) the velocity v(t) and (d) the velocity variations δvτ(t) = v (t) − v (t− τ) of a
typical test particle. Main parameters are: vb/vT = 12, nb/n0 = 10−4, τ = 20. Particle velocities are
normalized by the plasma thermal velocity vT .

Figure 18a,b presents, for an inhomogeneous plasma with ∆n = 0.01, two PDFs P (δvτ) of the
velocity increments δvτ(t), for two intervals ∆T and several values of τ. For comparison, we present
in Figure 18c a typical PDF Ph (δvτ) obtained in the case of a homogeneous plasma. The function
P (δvτ) shows at large δvτ higher values than Ph (δvτ), i.e., larger probabilities for large velocity
increments when the plasma is inhomogeneous, what is in agreement with the sharp and large velocity
variations observed in the particle trajectories (see Figure 17a,d). At small and moderate values of
increments, Ph (δvτ) can be approximated by a Gaussian function and, at large δvτ , by an exponential
function (Figure 18c). For the inhomogeneous plasma, P (δvτ) is better fitted by a sum of two Gaussian
functions for moderate values of δvτ and by the sum of a Gaussian and a power functions for larger
δvτ , as illustrated in Figure 18b. So, in both cases, the PDFs show non Gaussian behaviors at large δvτ ,
that is, diversions from the normal diffusion process at large velocity increments. Such non-Gaussian
tails do not influence quantitatively on the velocity diffusion coefficients, due to their low probability,
but they play an important role on the qualitative point of view, as discussed hereafter. Finally, one
can see that the mean-square displacement

〈
(δvτ)

2
〉

obtained varies linearly with τ, for both the
homogeneous and the inhomogeneous plasma cases (see the inserts in Figure 18a,c).
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Figure 18. Inhomogeneous plasma with ∆n = 0.01. (a): Typical probability distribution functions
P(δvτ), in logarithmic scale, for different values of τ = 15 (black), 30 (red), 45 (green), and 60 (blue).
Insert: Variation of 〈(δvτ)2〉with τ. (b): Typical probability distribution function P(δvτ), in logarithmic
scale, for τ = 30 and another time interval ∆T than (a). The calculated probabilities are shown by
circles whereas the interpolation functions at moderate and large δvτ are the sum of two Gaussians
(blue curve) and the sum of a Gaussian and a power function (green curves). Homogeneous plasma
(∆n = 0). (c) Homogeneous plasma: Typical probability distribution function Ph(δvτ), in logarithmic
scale, for τ = 20. Insert: Variation of 〈(δvτ)2〉 with τ. The calculated probabilities are shown by
circles whereas the interpolation functions at moderate and large δvτ are Gaussian (blue curves)
and exponential functions (green curves). Main parameters are: vb/vT = 18, nb/n0 = 5× 10−5.
The velocity increments δvτ are normalized by the plasma thermal velocity vT .

In a homogeneous plasma, the amplitudes of the waves at saturation exhibit only slight variations
with time, and the study of the diffusion processes can be reduced to the problem of particles’
motion in a given wave packet. On the contrary, when the plasma is inhomogeneous, the Langmuir
spectra at saturation show significant fluctuations with time so that we have to choose ∆T within the
saturation stage when the total energy density is quasi-constant and use only time-averaged spectra,
i.e., time-averaged values of |Ek|2. Then, the mean square displacement used to determine the diffusion
coefficient D(v) = 〈(∆vτ)

2〉/2τ is obtained by averaging (δvτ)
2 using the PDF P (δvτ)

〈(∆vτ)
2〉 =

∫
P (δvτ) (δvτ)

2 d(δvτ) . (17)

Figure 19a,b show the linear variation of the maximum value of 〈(∆vτ)
2〉 as a function of τ

(note that the non maximum values present the same behavior) as well as the dependence of the
corresponding diffusion coefficient D(v) on the waves’ phase velocity ωk/k ' ωp/k, for different
values of τ, superposed to the analytical prediction Dth(v) of the quasilinear theory [92]

Dth(vi) =

∣∣Eki

∣∣2
2 |δki| vi

=
vi
∣∣Eki

∣∣2
2ωp |δvi|

, (18)
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where the square of the electric field Fourier component
∣∣Eki

∣∣2 at the wave-particle resonance condition

ki = ωp/vi is calculated using the time-averaged value of
∣∣∣Ek=ωp/v

∣∣∣2 computed over the interval ∆T;

|δvi| and |δki| =
∣∣δ (ωp/vi

)∣∣ = |δvi|ωp/v2
i are the distances between adjacent waves in the velocity’s

and the wavevector’s space, respectively. Figure 19c,d present two other typical examples obtained for
inhomogeneous plasmas with different average levels ∆n and time intervals ∆T.
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Figure 19. Diffusion in inhomogeneous plasmas. (a,b): Dependence of the maximum of 〈(∆vτ)2〉 on
τ, and calculated diffusion coefficients D(v) = 〈(∆vτ)2〉/2τ for ∆n = 0.01 and τ = 15, 30, 45, and
60 (red, green, blue and yellow circles, respectively), as a function of the wave phase velocity v =

ωk/k ' ωp/k, superposed to the diffusion coefficient Dth(v) derived from the quasilinear theory (grey
lines). (c,d): Diffusion coefficients D(v) = 〈(∆vτ)2〉/2τ and Dth(v) as a function of the wave phase
velocity ωp/k; (c) ∆T = [35,000, 43,000], τ = 15, 30, 45, 60 and ∆n = 0.01; (d) ∆T = [90,000, 145,000],
τ = 30, 45, 60 and ∆n = 0.04. Main parameters are: vb/vT = 14, nb/n0 = 5× 10−5. ∆T and τ are
normalized by ωp; the phase velocity ωp/k is normalized by vT .

Simulation results show that the diffusion coefficients D(v) = 〈(∆vτ)
2〉/2τ derived owing to

the statistical method mainly depend on the Langmuir wave spectra. Moreover they are shown
to be in good agreement with the analytical predictions Dth(v) of the quasilinear theory, except
of some quantitative differences observed in the range of phase velocities corresponding to short
wavelengths, where the wave energy is mostly concentrated and where the coefficients D(v) are
smaller than the coefficients Dth(v). Such discrepancies, which are vanishingly small when the plasma
is homogeneous [77], result from the transformation effects of the waves on the plasma density
inhomogeneities (scattering, reflection, refraction, tunneling, etc.). Indeed, simulations reveal that the
Langmuir waves’ phases oscillate faster in this velocity domain where most of energy is accumulated,
so that the resonance conditions between particles and waves are more strongly violated. Therefore,
the actual diffusion coefficients D(v) are smaller than the theoretical values Dth(v). So the fluctacting
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inhomogeneities, as they significantly impact the Langmuir turbulence level itself, influence also on
the diffusion coefficients. Indeed the saturation level and the rate of growth of the Langmuir energy
density WL decrease when ∆n increases; the average level

〈
|Ek|2

〉
of the spectral energy density shows

also such behavior, explaining why the diffusion coefficients are eventually depending on the presence
of inhomogeneities.

Moreover, other differences with the quasilinear theory can be observed. The tail of D(v) toward
larger velocities is much longer and denser when the plasma is inhomogeneous than when it is
homogeneous: indeed, due to the interactions between the beam driven Langmuir waves and
the density fluctuations, waves with phase velocities up to (2–3) vb appear. As a consequence, a
population of accelerated beam electrons is formed (see the previous section). In the velocity region
vb . v . (2–3)vb the coefficient D(v) is quasi-constant, in agreement with the fact that, asymptotically,
the tail of the electron velocity distribution exhibits a Gaussian shape. Indeed, the probability
of large jumps of velocity in the electrons’ trajectories, i.e., characterized by a velocity variation
larger than about (2–3) (Dτ)1/2, essentially exceeds the probability of a Gaussian distribution. Such
jumps are connected to the transformation phenomena of Langmuir waves on the plasma density
inhomogeneities; moreover, their role is determinant as they modify the nature of the diffusion
processes, which appear to be no more classical. These higher order effects are responsible for the
discrepancies observed between the simulation results and the quasilinear theory, which does not
involve them in its perturbative approach.

3.5. Langmuir Waveforms: Simulations and Space Observations

Satellites commonly measured in the solar wind modulated Langmuir waves associated with
Type III solar bursts (e.g., [21,30–35], and references therein). Observations revealed bursty wave
packets clumped into spikes. Moreover, intense Langmuir waveforms exhibiting electric field peaks
up to 102–103 times the mean were reported [8,26,42,96,97,141]. More recently, in situ observations
of high time resolution performed by the spacecraft Stereo [118] showed that Langmuir waveforms
often appear as clumpy packets with electric field amplitudes up to a few tens of mV/m and with
durations of a few milliseconds [35,97,142]. With registration times ten times larger than onboard
earlier missions (65 ms to 2 s), Stereo recorded Langmuir waveforms appearing mainly as multiple
bursts’ events, more than well shaped isolated structures with one or a few humps.

Several attempts to explain the physical processes at the origin of such modulations have been
proposed. Particularly, some authors [1] argued that the solar wind density fluctuations may be
responsible for such effects, in the frame of transformations of Langmuir waves on the irregularities
or stochastic growth effects [143]. They proposed that the appearance of the clumpy structures could
result from a significant decrease of the bump-on-tail instability due to density fluctuations with
length scales about the waves’ spatial growth rates. Then the waves’ amplitudes can only be amplified
along the paths where the irregularities are not perturbing the waves’ growth responsible for the
formation of spikes. Such assumption was later developed by other authors [98,101,102,143,144]. It was
also argued that Langmuir waveforms could be eigenmodes trapped in density wells resulting from
plasma turbulence [8,145,146]. Besides, different mechanisms were discussed, as electrostatic decay
in the frame of weak turbulence [26,113,115,116], kinetic localization [147,148], or strong turbulence
phenomena as collapse or modulational instabilities [115,149]. Nevertheless, no consensus was reached
to explain the formation of clumps and the modulated nature of the Langmuir waveforms.

Recent observations by the Low Frequency Array (LOFAR) [150] with high temporal and spectral
resolutions (around 10 ms and 12.5 kHz at 30–80 MHz, respectively) reveal fine frequency structures
in a solar radio Type IIIb–III pair burst ([3], see also [151]). These structures, observed in the form
of striae in the electromagnetic radio emissions, can be due to the modulations of Langmuir waves
discussed below, whose origin is likely the presence of random density fluctuations [50,64].

Recently, the authors [10,64,65] showed by numerical simulations that beam-driven Langmuir
waveforms propagating in plasmas with density fluctuations exhibit modulated features very
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close to those revealed by recent observations in solar wind regions typical of Type III solar
bursts [8,45,97,109,116,125,142,152,153]. Langmuir waveforms recorded by a virtual spacecraft moving
with a velocity vS in the solar wind flowing with a speed |VSW | ' 200–800 km/s (i.e., VSW ' 0.6 vT
for Te ∼ 20 eV) were calculated, at the stage when the beam instability is saturated, in order to
perform meaningful comparisons with the observed waveforms. The satellite velocity is vS ' −VSW
(vS = |vS| ' |VSW |) in the solar wind frame, so that vr ' vg + VSW is the relative velocity between
the Langmuir packet and the spacecraft. Let us define ∆t ' ∆z/ |vr| as the time during which a wave
packet of width ∆z crosses the satellite. For Langmuir wave packets of sizes around ∆z ∼ 2000–5000λD,
∆t ∼ (0.3–3) 104ω−1

p . The simulations show that during such time scale, the profiles of the packets can
be significantly modified if not totally destroyed.

Figure 20a,b present the spatial profiles of the electric field envelope Re(E) at two given
times t1 and t2, as calculated by the simulations in the solar wind frame, together with
the corresponding Langmuir waveforms EL (t) (Figure 20c,d). The electric field EL (t) =

Re ∑k Ek (t) exp
(
ik (z− vSt)− iωpt

)
is recorded by two satellites S1 and S2 starting at the position zS

and at times t1 and t2, respectively; they are moving relatively to the solar wind with the velocities
vS1 and vS2. Please note that we study here spatial profiles (Figure 20a,b) that are not influenced
by nonlinear effects as wave-wave coupling and decay or modulational instabilities. At time t1

(Figure 20a) one observes the presence of four wave packets that keep roughly their identity during
their propagation up to time t2 (Figure 20b), despite noticeable variations of their shapes. The
corresponding waveforms (Figure 20c,d) differ noticeably and show clumpy features with beatings
and spatial modulations of different scales. Please note that the waveform recorded by S1 is very
similar to the part of the waveform recorded by S2 between t1 and t ' 18,000ω−1

p (colorized region in
Figure 20d). One can conclude that the variation of the spacecraft velocity (that is, of the solar wind
speed and temperature) does not lead to a strong modification of the appearance of the clumps of
the waveforms and does not distort them (Figure 20c,d). This is not true for the initial observation
time (t1 or t2) and the initial satellite position zS, which influence significantly on the features of the
waveforms. Please note that this conclusion is true only in the case when the wave packets propagate
stably enough during the time of observation; if in this time interval nonlinear effects occur, it is no
more true and a variation of the satellite velocity can essentially modify the waveform.
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Figure 20. (a,b) Spatial profiles along the coordinate z/λD of the electric field envelope Re(E) at times
t1 = 13,000ω−1

p and t2 = 25,000ω−1
p . (c,d) Corresponding waveforms EL(t) observed by two virtual

satellites S1 and S2 starting at the position zS at times t1 and t2, and moving relatively to the solar
wind with the velocities vS1 and vS2, respectively; the position zS is indicated by an upward vertical
line in (a), whereas the final positions of the satellites are marked by downward vertical lines; EL

is normalized as the field E, and t is the time in units of ω−1
p . Main parameters are the following:

nb/n0 = 10−5, vb/vT = 18, ∆n ' 0.01.
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The numerical simulations performed for various plasma and satellite parameters show that the
calculated waveforms well agree with the space measurements, as they are able to account for most of
the qualitative features of the wave turbulence observed in the solar wind. As shown in Figure 21a–h,
they can reproduce all the salient characteristics and the variety of the measured Langmuir waveforms.
Indeed the calculated waveforms appear as highly modulated wave packets (Figure 21a), isolated
and localized packets (Figure 21b,c), trains of clumps of various lengths, amplitudes, shapes and
lower frequency modulations (Figure 21d–f), bursty packets (Figure 21g), specific modulation patterns
indicating wave-wave coupling effects (Figure 21h), etc. More precisely, the eight calculated waveforms
presented in Figure 21 summarize the main types of observed waveforms; each of them agrees well
with space observations [8,45,46,64,97,109,125,142,152].
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Figure 21. (a–h) Langmuir waveforms EL(t) (in arbitrary units) recorded by virtual satellites moving
in random fluctuating inhomogeneous solar wind plasmas, calculated owing to numerical simulations.
These exemples summarize all the main types of waveforms actually observed in the solar wind.
Main parameters are the following: (a) vS/vT = 0.6, ∆n = 0.001. (b) vS/vT = 0.1, ∆n = 0.01.
(c) vS/vT = 0.01, ∆n = 0.01. (d) vS/vT = 0.6, ∆n = 0.01. (e) vS/vT = 0.1, ∆n = 0.001. (f) vS/vT = 0.6,
∆n = 0.01. (g) vS/vT = 0.15, ∆n = 0.04. (h) vS/vT = 0.2, ∆n = 0.02.

Several additional statements can be listed on the basis of the above study. First, the presence of
random density fluctuations with ∆n ' 0.01–0.05 is likely the main cause of the modulation processes
shaping the wave packets into clumps. Indeed, random fluctuating inhomogeneities change the nature
of the wave packet’s modulation, inducing localization effects and loss of correlations between the
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waves. Besides, for large values of ∆n (typically exceeding 0.05), waves can be trapped in density
fluctuations [8].

Second, most of the calculated waveforms present more or less complex sequences of bursts.
Their characteristic features are not essentially impacted by the variations of the solar wind speed and
temperature. However, the initial position of the observing spacecraft and its starting time influence
on the modulations features. More rarely, the waveforms consist of single or double clumps. Those
presenting such localized and isolated packets are likely observed only if ∆n exceeds some threshold.
Therefore, the observation of such structures can be considered as a signature for non negligible
average levels of density fluctuations, i.e., ∆n ∼ 0.01.

Third, the focusing of the waveforms starts at early stages of the evolution, before the waves’
growth has reached saturation, showing that kinematic effects involving transformation of waves on the
inhomogeneities (scattering, reflection, refraction,...) play a significant role. Nonlinear phenomena such
as modulational instabilities or collapse are not observed for the parameters used, as ponderomotive
effects are weak. Many salient features of the waveforms’ modulation are visible even in the absence
of such effects or others as wave-wave coupling, so that these nonlinear processes, even if they are
able to modify the waveforms as a result of beating and focusing phenomena, are not the main cause
of the specific modulated shapes of the waveforms.

Moreover, the kinematic effects responsible for the clumping processes are influenced by the beam
instability during the linear stage of the waves’ growth. When the beam accelerates, looses energy and
reabsorbs it, the growth rates of the beam-driven waves are randomly modified. These effects control
also the modulation of the waveforms and influence on the shapes, the number and the distribution
of the clumps. In addition, the combination of such effects and other nonlinear ones (as wave decay,
for example) with those related to waves’ transformations on the inhomogeneities contributes to the
generation of specific modulations due to wave energy redistribution in space and time.

3.6. Statistics of Electric Fields’ Amplitudes

The statistical study of the electric fields’ amplitudes is an additional tool to investigate Langmuir
wave turbulence and, in particular, to understand the origin and the nature of the waveforms’
modulations. Such works were performed using experimental data or owing to numerical simulations,
for conditions typical of the solar wind [73,154,155], the Earth electron foreshock [45,156] or the cusp
regions [157]. For example, large scale simulations showed that the statistics of Langmuir wave fields
can be substantially modified by the presence of inhomogeneities. One of the questions to be solved
concerns the quantitative characterization of the role of linear (nonlinear) phenomena at work in the
Langmuir wave turbulence, which can be studied by analyzing the probability distribution functions
of the small (large)-amplitude waves’ statistics, respectively [46]. Besides, the influence of the random
density fluctuations on these field distributions has to be elucidated.

Works using experimental data recorded onboard spacecraft or in laboratory plasmas found
distributions of electric field amplitudes close to the log-normal ones [158–160]. Nevertheless, nonlinear
physical processes as Langmuir wave decay can be the cause of the deviations of the field distributions
from the log-normal behavior. For example, distributions appeared to be power laws P(|E|) ∝ |E|−2

at high fields’ amplitudes |E| in the vicinity of the foreshock boundary [159] or averaged over the
foreshock [161,162]. However, in these works, the limited number of fields’ samples analyzed as
well as the spatial variations of the waves’ parameters did not allow quantifying the deviations from
log-normal distributions. Moreover, some authors [9] showed, using a modeling involving Langmuir
wave scattering on density irregularities and beam instability suppression due to local modifications
of the wave-particle resonance conditions, that distributions of the logarithm of the wave intensity can
in some conditions belong to Pearson type IV [163] distributions rather than to normal ones.

Recently, the probability distribution functions of Langmuir waves’ electric fields excited by weak
electron beams in inhomogeneous plasmas were calculated owing to numerical simulations based on
a probabilistic model of beam-plasma interaction [164] as well as on a self-consistent dynamical model
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involving wave-particle and wave-wave interactions [10,73]. In the first case, a powerful method
proposed by Pearson [163] was used in order to classify the field distributions according to their first
four statistical moments, each class corresponding to well known distributions. Such analyses of
field waveforms involving clumpy structures showed that the cores of the probability distribution
functions of log10 |E| correspond to Pearson type IV distributions, and not to normal ones as predicted
by the Stochastic Growth Theory [101] and obtained using data observed by satellites [158,165,166].
Regardless of the presence of clumps in the waveforms, the PDFs of the reconstructed wave fields
correspond to Pearson types I, IV and VI distributions, in agreement with results obtained by analyzing
data of the Wind satellite [167]. Moreover, it was found that the large-amplitude parts of the field
distributions follow exponential decay or power-law behaviors, depending on the types of the cores of
the PDFs. Please note that power-law tail distributions of the form P(log10 |E|) ∼ |E|

−1 were obtained
for Langmuir waveforms observed within the Earth’s electron foreshock and near other planetary
shocks [102,158,161,165].

Whereas the PDFs calculated using the probabilistic model mentioned above [164] are consistent
with those provided by the numerical simulations based on the dynamical model presented in this
review [10,73], additional results have been obtained in the latter case. Figure 22 shows typical
non-normalized probability distribution functions P

(
log10 |E|2

)
and P (|E|) obtained as a function

of log10 |E|2 and |E|, respectively, during the time interval ∆T, in the case of a quasi-homogeneous
plasma with ∆n . 0.001. These PDFs are calculated as follows. The time interval ∆T selected for the
analysis is divided into several subintervals; for each of them one computes the number of cases when
the field amplitude |E(x, t)| at position x and time t falls within a small given range [|E|+ ∆|E|, |E|].
The PDFs presented in Figure 22 are obtained by averaging the calculated distributions on all the time
subintervals. Figure 22a shows that in the small (large) fields’ amplitudes’ region, P

(
log10 |E|2

)
can be

interpolated by a linear function α1 log10 |E|2 (α2 log10 |E|2) with α1 ' 2.3 (α2 ' −9.7). Besides the PDF
P (|E|) fits an exponential decay function of the form exp (β|E|/ |E|m) , with β ' −5.8 (Figure 22b);
|E|m, estimated using P (|E| < |E|m) ' 1, corresponds to the statistical maximum of |E|.
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Figure 22. PDFs of the electric fields’ amplitudes averaged over the time interval ∆T. (a) Distribution
of log10|E|2, with linear fits of slopes α1 '2.3 and α2 ' −9.7. (b) Distribution of |E|, with a linear fit at
large |E| of slope β ' −5.8. Main parameters are : ∆n . 0.001, nb/n0 = 5× 10−5, ∆T = [50,000, 60,000].
Field and time variables are normalized, but not the PDFs. (Reproduced with permission from [73]).

Similarly, Figure 23 shows typical PDFs P
(
log10 |E|2

)
and P (|E|) obtained for an inhomogeneous

plasma with ∆n ' 0.01. Due to the presence of localized energy peaks (the energy density |E|2 is
focused spatially), P

(
log10 |E|2

)
exhibits in Figure 23a two smooth maxima; a linear interpolation

α1 log10 |E|2 is found with α1 ' 2.1, value which is close to that obtained in the previous case with
∆n . 0.001 (see Figure 22a). Moreover, it was determined that the scaling parameter α1 does not



Fluids 2019, 4, 69 36 of 45

significantly depend on the average levels 〈WL〉 and ∆n of the Langmuir wave turbulence and the
density fluctuations, respectively, as illustrated in Figure 24a which presents the variation of α1 with
these two parameters, for various beam velocities and densities, density fluctuations’ profiles with
∆n . 0.03 and time intervals ∆T during which the PFDs are calculated; 〈WL〉 is averaged on ∆T. Please
note that the shapes of the calculated PDFs show a weak dependence on the time intervals ∆T if those
are chosen within the stage when Langmuir wave turbulence is well developed (not shown here).
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Figure 23. PDFs of the electric fields’ amplitudes averaged over the time interval ∆T. (a) Distribution
of log10|E|2 with linear fits of slopes α1 ' 2.1 and α2 ' −5.3. (b) Distribution of |E|, with a linear fit at
large |E| of slope β ' −3.8. Main parameters are: ∆n = 0.01, nb/n0 = 2× 10−5, ∆T = [35,000, 45,000].
Field and time variables are normalized, but not the PDFs. (Reproduced with permission from [73]).

Then, a universal scaling could be found for the part of the PDF P
(
log10 |E|2

)
corresponding to

the smaller field amplitudes, i.e., P
(
log10 |E|2

)
∼ α1 log10 |E|2, where 2 . α1 . 2.3, for any ∆n and

〈WL〉. This expression excludes the points of Figure 24a presenting a lack of statistics or with not
well-established PDFs (i.e., corresponding to transition states too close to the initial stage of the beam
instability). On the contrary, the values of α2 are scattered (−8 . α2 . −2) and depend significantly
on 〈WL〉 and ∆n, so that no scaling law could be found for P

(
log10 |E|2

)
at large |E|2.

When wave decay processes are weak or absent, the PDFs P(|E|) exhibit at large fields’ amplitudes
asymptotic exponential behaviors of the form exp (β|E|/ |E|m) within a wide range of fields |E| ≤ |E|m,
with an interpolation parameter β lying in the domain −6 . β . −3. During the further time
evolution, β decreases until a universal probability distribution is reached, what is realized when the
decay processes become strong enough to cause significant changes in the Langmuir wave spectra.
Figure 25a,b present the PDFs obtained for different ∆n and time intervals ∆T during which the
decay processes are starting or are fully developed. One can see in Figure 25a (∆n = 0.01) that the
linear interpolations at large |E| are very close for the two latest time intervals ∆T = [50,000–60,000]
and ∆T = [66,000–76,800], for which β ' −7 (at these times the wave decay processes are well
developed and have reached saturation). For a larger level of density fluctuations (∆n = 0.02), the
same conclusion can be stated (see Figure 25b). One observes that the probability P(|E|) to meet very
large field amplitudes decreases with ∆T, for the same level of Langmuir wave turbulence 〈WL〉, what
corresponds to the fact that the energy density is distributed between a larger number of peaks of
smaller amplitudes. Please note that P(|E|) has asymptotically a shape similar to that obtained in the
same conditions for a quasi-homogeneous plasma (see Figure 22b). Finally, Figure 24c exhibits the
dependence of |E|2m on 〈WL〉 and ∆n, showing that the maximum statistical energy density |E|2m grows
linearly with the average level of Langmuir turbulence, independently of the average level of density
fluctuations and of the occurrence of wave decay.
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∆n ' 0.01 (crosses), ∆n = 0.02 (circles) and ∆n = 0.03 (squares). The red (blue) markers indicate
that the decay instability does not play (plays) an essential role in the corresponding simulations.
All variables are normalized. (Reproduced with permission from [73]).
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4. Conclusions

Solar radio bursts are among the strongest electromagnetic emissions in the Solar System. They are
related to the existence of accelerated electron beams generated in the solar atmosphere and emitting
Langmuir wave turbulence, which in turn produces electromagnetic radiation through a chain of
successive mechanisms where the interactions between waves, free particles and solar wind plasmas
play major roles. The solar corona and wind are turbulent and inhomogeneous plasmas involving
random fluctuations of their density, velocity and ambient magnetic field.

The mechanisms governing the chain of interconnected processes forming the solar radio bursts
remain to date unsolved, despite considerable advances during the last 50 years. In particular, this
review presents the state of art, including some relevant results obtained by the authors, in what
concerns the impact of the background plasma density fluctuations on the small-scale processes at
work in the physics of solar bursts, as the dynamics of the beams, the generation of the Langmuir
wave turbulence, the electron acceleration and diffusion mechanisms, the wave-wave interactions and
wave decay phenomena involving Langmuir and low frequency waves, the wave transformations
on the inhomogeneities (scattering, diffusion, reflection, refraction, tunneling, etc.), the modulations
shaping the Langmuir waveforms, and the statistical properties of the wavefieds’ distributions.

The complexity induced by the presence of density irregularities in the solar plasmas requires
to find new theoretical and numerical approaches for studying microprocesses in actual physical
conditions and elucidating the key questions concerning solar bursts. Therefore, forthcoming work by
the authors will be focused on the thorough study of the small-scale mechanisms at work in coronal
and solar wind plasmas, in the frame of a new 2D modelling of wave turbulence in inhomogeneous
plasmas including various beams’ descriptions [38]. Such investigations will be aimed at explaining
additional processes, as finite magnetization effects, microinstabilities in the presence of moderate
magnetic fields, mechanisms of electromagnetic radio emissions, strong turbulence phenomena, etc.
These studies will be accompanied by comparisons of the simulations’ results with observations by
various satellites, among which the international missions Parker Solar Probe/NASA [168] and Solar
Orbiter/ESA [169].
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