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Abstract: A simple steady-state model for a 3-species mixture (ions, electrons, and neutrals) in a
screw-pinch plasma configuration is developed. The model is applied to the central plasma column of
the PROTO-SPHERA experiment. Degree of ionization, azimuthal current density, and azimuthal ion
velocity are calculated. Full ionization is found at plasma temperatures above 1.5 eV, with neutrals
confined in an outer shell where radial plasma flow develops and drives both azimuthal current and
azimuthal flow.
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1. Introduction

Magnetically confined plasmas are commonly formed inside a toroidal vacuum vessel surrounded
by a toroidal magnet. Plasma-facing components and conductors are subject to severe thermal, nuclear,
and electromechanical loads at the inboard side of the torus. To give a proof of principle of a magnetic
confinement configuration which can overcome this problem, the PROTO-SPHERA project [1,2] is
aimed at producing hot toroidal plasma in a simply connected machine topology, i.e., without solid
elements between the plasma and the symmetry axis. The toroidal magnetic field is generated by
current flowing in an axial plasma pinch (called the centerpost plasma discharge). The main project
task is to form and sustain a very low aspect ratio (i.e., nearly spherical) toroidal plasma encircling the
centerpost discharge (Figure 1). Current in the centerpost discharge has been driven so far up to 10
kA, both in Argon and in Hydrogen. The target current, which will be driven after an upgrade of the
power supply, is 60 kA. The centerpost discharge is shaped by an externally applied magnetic field to
wet large-area annular electrodes. The voltage difference between electrodes is regulated to drive the
preset plasma current, which heats the plasma and generates the toroidal (azimuthal) magnetic field.
The circuit is closed by return conductors placed outside the vacuum vessel.
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Figure 1. Schematic of PROTO-SPHERA target configuration, including annular electrodes, centerpost
discharge in red color and quasi-spherical toroidal plasma (ST) in brown color.

From fast-camera images, the plasma appears as a linear discharge with variable diameter for a
length of about 1 m and takes the shape of a mushroom in front of both annular electrodes (Figure 2),
in agreement with magnetic field lines geometry. The plasma region is surrounded by a larger volume
filled by neutral gas. The linear part of the discharge is essentially a screw pinch with variable
cross-section. The plasma diameter is about 0.5 m at the equatorial plane and decreases to about
0.13 m at the ends of the linear part, consistent with clearance left by two tight-fitting magnetic coils;
plasma luminosity sharply drops at field lines that intercept protections of such coils. The main
properties of the centerpost plasma are the capability of conducting the desired current within the
voltage limits of the power supply and the uniform spreading of current on the anode surface. Such
avoidance of anode arc-anchoring is likely due to spontaneous plasma rotation. The line-average
density has been measured at the equatorial plane by a second-harmonic laser interferometer [3].
Typical line-average number densities are 4× 1020 m−3 and 1.5× 1020 m−3 in Ar and H discharges,
respectively. Temperatures in the 2–8 eV range have been found in preliminary Langmuir probe
measurements in the mushroom-shaped region. Electric potential measurements are available at the
electrodes and at the magnetic coil casings. The voltage drop between the coils at the ends of the linear
section gives a rough estimate of the axial electric field, a typical value being 50 V/m. Plasma current
and electric potentials are in steady state for most of the plasma duration, which, depending on power
supply settings, ranges from 0.3 to 0.8 s.

A modeling activity is being carried on to help devising optimization strategies and to forecast
plasma properties at higher centerpost current. To keep the problem as simple as possible at this
preliminary stage, geometrical complexity is neglected and the centerpost plasma is modeled assuming
cylindrical symmetry. This approach allows capturing the essential features of plasma dynamics by
means of simple calculations and provides useful insights for setting up more realistic models. The
purpose of the analysis presented in this work is to evaluate qualitatively (i) the degree of ionization,
(ii) the plasma rotation and (iii) the self-generated azimuthal current. The latter could provide a seed
for torus formation.

Density measurements and preliminary temperature measurements indicate that mean free paths
of plasma particles are much smaller than the plasma size. A fluid description with three interacting
species (ions, electrons, and neutral gas) [4,5] has then be adopted. Neutral gas is referred-to as
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neutrals in the following. The 1-D analysis for ions and electrons is similar to the one developed for
magnetized gas discharge plasmas [6,7], but uniform neutral gas density was assumed in those works,
while neutral dynamics is kept into account in this work. The effects of decreasing neutral density
inside the plasma (neutrals depletion) were reviewed in [8], but without including the confining
force that arises from plasma current. On the other hand, screw-pinch analyses including the full
electromagnetic force, see for example [9], usually assume fully ionized plasma.

General governing equations are collected in the Appendix A. Simplifying assumptions on which
the pinch model is based and the ensuing simple transport equations are presented in Section 2.
Numerical results are presented and discussed in Section 3. Conclusions and perspectives are given in
Section 4.

Figure 2. Image of PROTO-SPHERA plasma in Argon as reconstructed from three cameras, one
for the anodic region (top), one for the nearly cylindrical region (middle) and one for the cathode
(bottom). View at transitions from linear to mushroom-shaped regions is impeded by coils. The
mushroom-shaped plasma is clearly visible in the anodic region at the top. The cathode region appears
obscure since sensitivity has been adapted to hot electron emitters (visible as an array of brilliant spots).

2. The Cylindrical Pinch Model

The model for the centerpost plasma is based on some simplifying assumptions which lead to a
description in terms of ordinary differential equations. First, the plasma configuration is represented
as a cylindrical screw pinch, with negligible flows (excepting axial current) in the axial direction and
with constant quantities in both axial and azimuthal directions. This description seems reasonable
in the region between the main constrictions shown in Figure 1; no attempt is done to extend the
analysis to the mushroom-shaped regions. Second, steady-state condition is assumed, consistent with
the experimental observation of flat-top conditions for most of the plasma duration (0.3–0.8 s, with
5 ms initial transient). Third, charge separation is neglected; charged plasma sheaths at plasma-solid
interfaces are out of the scope of this work. The model cylindrical plasma is assumed to carry a uniform
current density within a radius (R), which mimics the outer radius of the bright region in Figure 2,
which comprises field lines that do not intersect coil protections. The present analysis does not apply
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beyond such radius, where the plasma flow becomes of the scrape-off type, with substantial axial
losses towards solid surfaces. Equations for mass continuity and momentum balance in a mixture of
electron, ion and neutral fluids [4,5] are employed. The Argon case is considered, assuming singly
charged ions. Energy balance is left out of the present analysis: uniform temperature is assumed and
its effect is studied parametrically; modeling energy balance in Ar is a formidable task as it requires
accounting for radiation losses from many excited states.

General equations are collected in the Appendix A, while relevant components in cylindrical
coordinates (r, φ, z) are considered in the following subsections. The mixture is described by ion
velocity Vi, plasma density n, electric current density j, plasma temperature T (assumed common
to electrons and ions), neutrals velocity VN , neutrals density N and neutrals temperature TN . The
z components of velocities are eliminated by the assumption of negligible axial flows. The radial
component of current density is eliminated by assumed steady state and 1-D geometry. The other
two components are eliminated using Ohm’s law. Plasma temperature is regarded as a parameter
and neutrals are assumed to remain at room temperature. Azimuthal components of velocities are
eliminated using the respective momentum balances. The radial velocity of neutrals is eliminated by
the continuity equation. Three non-linear differential equations for radial ion velocity, plasma density,
and neutrals density remain, as detailed in the following subsections. Equations are expressed in SI
units for all quantities excepting temperature, which is measured in electronvolts. Final equations are
also given in dimensionless form.

The main limitation of this 1-D model is the implication of zero radial current density. The presence
of this component, which is possible in 2-D provided that z-dependence and axial return currents
preserve charge neutrality, could modify the momentum balance and then it could affect results on
azimuthal components of both current density and velocity. On the other hand, 1-D results on the
degree of ionization should be exportable to more realistic configurations.

2.1. Mass Continuity

Continuity Equations (A1) and (A2) in steady-state and cylindrical symmetry reduce to

1
r

d
dr

(rnVir) = nNkion , (1)

1
r

d
dr

(rNVNr) = −nNkion , (2)

where the plasma number density n = ne ≈ ni has been introduced and recombination has been
neglected. The ionization rate coefficient in m3/s as a function of electron temperature in eV units
is [10]

kion = π

(
e

4πε0εi

)2
VTe

(
1 +

2Te

εi

)
exp

(
− εi

Te

)
, (3)

where εi is the first ionization energy (εi =15.76 eV for Ar) and VTe is the electron thermal speed

VTe =

√
8eTe

πme
= 6.69 × 105√Te .

Equations (1) and (2) imply that regular solutions fulfill

nVir + NVNr = 0 . (4)

2.2. Azimuthal Momentum Balance

Model assumptions on cylindrical symmetry and steady state imply radial magnetic field Br = 0,
radial current density jr = 0, azimuthal electric field Eφ = 0 and dp/dφ = 0. Retaining only dominant
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rate coefficients, i.e., neglecting kion when summed with keN or kiN collision coefficients and neglecting
mekeN when summed with mikiN , the azimuthal component of Ohm’s law takes the form:

(NkeN + nkei)jφ = −eωcenVir + enN keN(Viφ −VNφ) , (5)

where ωce = eBz/me is the electron gyrofrequency and the electron-ion collision rate coefficient
kei = 3× 10−11T−3/2

e is related to e-i collision frequency νe = nkei and to Spitzer resistivity ηS = mekei/e2.
Constant values of keN and kiN coefficients are assumed, as listed in Table 1. The azimuthal plasma
momentum balance reads

nVir
1
r

d
dr

(rViφ) = −nNkiN(Viφ −VNφ) +
me

emi
NkeN jφ . (6)

Substituting (6) into (5) and neglecting mekeN when summed with mikiN one obtains

(NkeN + nkei)jφ = −
(

ωce +
keN

kiN
1
r

d
dr

(rViφ)

)
enVir .

If the electron cyclotron frequency is dominant, i.e.,

ωce >>
keN

kiN
1
r

d
dr

(rViφ) , (7)

then the azimuthal current density takes the simple form

jφ = − eωce

NkeN + nkei nVir . (8)

The azimuthal ion velocity is estimated assuming zero net azimuthal momentum

NVNφ + nViφ = me jφ/(emi)

and neglecting convective inertia in (6):

Viφ ≈
nkiN + NkeN

n(n + N)kiN
me

mi

jφ
e

. (9)

A posteriori numerical checks based on this expression show that (7) is widely verified, while
neglect of convective inertia in passing from (6) to (9) is only marginally justified.

2.3. Radial Momentum Balance

The radial component of plasma momentum balance reads

mi n
(

Vir
d
dr

Vir −
1
r

V2
iφ

)
= jφBz − jzBφ −

d
dr

p−minNkiN(Vir −VNr) , (10)

where the total plasma pressure p = pi + pe = ne(Ti + Te) (temperatures being in eV units) has been
introduced and small coefficients have been neglected as in the previous subsection. The jzBφ term
is mainly due to pinch force from the externally imposed plasma current; the plasma pressure it can
balance is given by the Bennett relation or its kinetic generalization [11]. The jφBz term arises from the
self-generated azimuthal current.

The radial component of neutral gas momentum balance reads

mi N
(

VNr
d
dr

VNr −
1
r

V2
Nφ

)
= − d

dr
pN + minN kiN(Vir −VNr) . (11)
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2.4. Transport Equations

Equations presented in previous subsections could be closed with energy balance equations [5]
accounting for heat transport and radiation. A simpler approach is followed in this work: equations
are closed assuming a common constant temperature Te = Ti as a parameter and the character of
solutions is studied for different values of the parameter. Neutrals are assumed to remain at room
temperature TN .

From the axial component of Ohm’s law,

Ez = ηS jz + ηS
NkeN

nkei jz −VirBφ , (12)

uniform electron temperature implies uniform Spitzer resistivity and then nearly uniform jz, in fact
the the last two terms in (12) are negligible, as verified in numerical calculations. The pinch term is
then easily calculated:

jzBφ =
µ0 I2

p

2π2R4 r , (13)

where Ip is total axial current and R is the pinch outer radius. Centrifugal terms and radial variations
of Bz are neglected, as justified a posteriori. Combining (1), (4), (8), (10), (11) and (13) a system of three
ordinary differential equations results for plasma density, ions radial velocity, and neutrals density.

(c2
s −V2

ir)
d
dr

Vir =
fpr
n

Vir +

(
ωceωci

n kei + N keN + (n + N)kiN
)

V2
ir + c2

s

(
N kion − Vir

r

)
, (14)

(c2
s −V2

ir)
d
dr

n = − fpr−
(

ωceωci

n kei + N keN + (n + N)kiN + N kion − Vir
r

)
n Vir , (15)

(
c2

N −
( n

N
Vir

)2
)

d
dr

N =

(
(n + N) kiN +

nVir
Nr
− n kion

)
nVir , (16)

where fp = µ0 I2
p/(2π2R4mi) and plasma and neutral gas squared sound speeds have been introduced,

c2
s = e(Te + Ti)/mi and c2

N = eTN/mi respectively.
A convenient dimensionless form can be obtained introducing the normalized radius x = r/R,

the Mach number M = Vir/cs and normalized densities g = n/nB and G = N/nB, where nB =

µ0 I2
p/(4π2R2mic2

s ) is the radial excursion of density in the absence of radial flow (alike to a Bennett
pinch).

(1−M2)
dM
dx

=
2xM

g
+ p1

M2

g + p2G
+ p3(g + G)gM2 + p4G− M

x
, (17)

(1−M2)
dg
dx

= −2x− p1
gM

g + p2G
− p3(g + G)gM− p4gGM +

gM2

x
, (18)

(
p5 −

(
gM
G

)2
)

dG
dx

= (p3 − p4)g2M + p3GgM +
g2M2

Gx
, (19)

where p1 = ωceωciR/(csnBkei) is related to slowing of perpendicular diffusion by magnetization,
p2 = keN/kei, p3 = nBkiN R/cs is related to ion-neutral drag, p4 = nBkionR/cs is a normalized
ionization rate, and p5 = c2

N/c2
s .

Zeros at the left-hand sides of (17) and (18) correspond to the well-known sonic singularity, which
is usually met at plasma-solid interfaces, where it is resolved keeping into account substantial charge
separation.
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Another important characteristic of the system is introduced by neutrals dynamics. In fact,
plasma velocity has a source term proportional to neutrals density, namely the 4th at the RHS of (17).
On the other hand, neutrals density can steeply increase with radius since, according to (1), the radial
plasma flux nVir (or gM) is an increasing function of radius, and then the second term on the RHS
of (19) can give rise to super-exponential radial growth. If this happens, the source term in (17) can
bring radial velocity to hit the sonic limit.

In practice, since physically acceptable solutions must have no singularities inside the simulation
domain , this effect sets an upper limit to the central density of neutrals. The limit changes dramatically
with plasma temperature, as discussed in Section 3, the main reason being the strong temperature
dependence of the ionization rate coefficient, see Equation (3).

The system is solved in the r ≤ R domain, with boundary conditions at the plasma center
Vir(0) = 0, n(0) = n0 and N(0) = N0. The central plasma density n0 is adjusted to fit the measured
line-average density (excepting particular cases as detailed in Section 3.1). The central neutrals density
N0 is adjusted to have N(R) values close to the surrounding gas density, as discussed in next section.

Table 1. Coefficients for Argon gas (A=40) at room temperature (TN = 0.026 eV) from [10] with
Te = Ti = 2 eV, n = 2× 1020 m−3, Bz = 0.17 T.

Quantity Symbol Value Units

Electron mean free path λm f p 4.5× 10−4 m
Debye length λD 7.4× 10−7 m
i-N collision rate coefficient kiN 10−15 m3/s
e-N collision rate coefficient keN 10−13 m3/s
Ionization rate coefficient kion 6.2× 10−18 m3/s
e-i collision rate coefficient kei 1.1× 10−11 m3/s
Plasma sound speed cs 3.1× 103 m/s
Gas sound speed cN 2.5×102 m/s
Electron gyrofrequency ωce 3.0× 1010 rad/s
Ion gyrofrequency ωci 4.1× 105 rad/s

3. Numerical Results

Equations (14)–(16) are solved numerically employing a standard python ode solver. To avoid
the geometric singularity at r = 0, solutions are advanced starting from a slightly off-axis boundary
r0 = 10−3, with boundary conditions Vir(r0) = 0, n(r0) = n0 and N(r0) = N0. The number density
of the surrounding gas is Nout ≈ 1021 m−3; the boundary condition on central gas density N0 is
adjusted to obtain N(R) slightly below Nout. The boundary condition on central plasma density n0

is chosen to reproduce the measured line-average density whenever possible (see next subsection).
System parameters are temperature (through kion, kei and cs dependencies), plasma radius (being
the pinch force coefficient fp ∝ R−4), plasma current (being fp ∝ I2

p) and axial magnetic field (being
ωceωci ∝ B2

z ). Plasma current is fixed at Ip = 10 kA. Different values of temperature, plasma radius,
and plasma density are considered in the following. Values of the parameters for each case, including
the dimensionless ones used in Equations (17)–(19) are listed in Table 2.

3.1. Dependence on Temperature

The plasma radius varies along the pinch axis from 0.27 m to 0.065 and the external magnetic
field varies from 0.02 T to 0.6 T; intermediate values of R = 0.12 m and Bz = 0.17 T are assumed in this
subsection. The character of solutions changes dramatically with temperature; temperature values are
chosen in the range 1.0–2.5 eV, which is adequate to capture the different possible regimes.

For Te = 1.0 eV, the minimum possible n0, corresponding to g(0) ≈ 1 has been assumed.
The resulting neutrals density varies by less than 20 % across the plasma radius, while the radial
profile of plasma density has nearly parabolic shape (Figure 3). The ion radial velocity tends to diverge
towards the edge while its value is only 4× 10−3 times the sonic limit. The reason is the small n at
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denominator in the first term at the RHS of Equation (14), which arises from finite ion radial flux
nVir required in steady state to drain fresh ions produced by ionization. The line-average density
is 4.7 × 1020 m−3, i.e., about 20% above the measured value. Lower densities give rise to physically
unacceptable solutions as, at this low temperature, plasma pressure becomes insufficient to balance
the pinch force and then density decreases to zero inside the simulation domain. The estimated axial
electric field Ez = η jz is 235 V/m in this case, much higher than the experimental value of about
50 V/m.

For Te = 1.5 eV, there is sufficient room to decrease n0 and match the experimental line-average
density; the chosen value n0 = 5.5× 1020 m−3 corresponds to g(0) = 1.2. At this temperature, neutrals
density varies by almost two orders of magnitude from the plasma center to the edge, while the plasma
density profile remains parabolic with low edge value (Figure 4). The line-average density fulfills the
experimental constraint in this case. Radial velocity tends to diverge towards the edge; the reason is
the same as in the 1.0 eV case. The axial electric field is 128 V/m, still substantially higher than the
experimental estimate.

For Te = 2.0 eV the experimental density is matched with n0 = 5× 1020 m−3, which corresponds
to g(0) = 1.5. The neutrals density is very small across most of the plasma, and steeply increases
in an outer shell (Figure 5). The plasma density profile is flatter than a parabola and the edge value
becomes significant. The axial electric field is 83 V/m. Radial velocity steeply increases towards the
edge; the reason in this case is not a small denominator but it is the cumulative effect of the source
term proportional to neutrals density, as discussed at the end of Section 2.4. Very low N0 is required in
this case because the radial growth of neutrals density is steep at this temperature, and with larger N0

the sonic singularity would occur in the simulation domain. The slope of N(r) keeps increasing with
radius, so the profile cannot smoothly match the outer gas density Nout; this matching must occur in the
scrape-off layer, where field lines intercept coils protections and the radial plasma flow nVir decreases
because plasma escapes in the axial direction and recombines at solid surfaces. The scrape-off layer
is outside the scope of the present analysis, as discussed above. Profiles at higher temperature are
qualitatively similar to the 2.0 eV case, but with flatter plasma density and steeper increase of neutrals
density in the outer shell. Results at Te = 2.5 eV are shown in Figure 6. The estimated axial electric
field is 60 V/m in this case, in reasonable agreement with the experimental estimate.
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Figure 3. Te = 1.0 eV. Upper frame: plasma (solid line) and neutrals (dashed line) number density
profiles in 1020 m−3 units. Lower frame: ion velocity in percent of the sound speed.
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Figure 4. Te = 1.5 eV. Upper frame: plasma (solid line) and neutrals (dashed line) number density
profiles in 1020 m−3 units. Lower frame: ion velocity in percent of the sound speed.



Fluids 2019, 4, 42 10 of 16

0

2

4

6

8
Te=2 eV,  n0=5,  N0=7e-08,  Bz=0.17 T,  gas=Ar

n (1020 m 3)
N (1020 m 3)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
r (m)

0

1

2

3

4 Vi/cs (%)

Figure 5. Te = 2.0 eV. Upper frame: plasma (solid line) and neutrals (dashed line) number density
profiles in 1020 m−3 units. Lower frame: ion velocity in percent of the sound speed.
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Figure 6. Te = 2.5 eV. Upper frame: plasma (solid line) and neutrals (dashed line) number density
profiles in 1020 m−3 units. Lower frame: ion velocity in percent of the sound speed.

The dramatic change of profiles at Te > 1.5 eV (far below the 15.76 eV first ionization energy
of Ar) is due to reduced neutrals penetration depth. Neutrals penetration is pushed by external gas
pressure and contrasted by collisions with outgoing ion flux, which in turn depends on ionization.
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The normalized neutrals penetration depth δ can be estimated from (1) and (19). In dimensionless
variables the former reads

1
x

d
dx

(xgM) = p4gG .

Keeping only terms that according to numerical results, are dominant at the plasma edge, in
particular the second term at the RHS of (19), one obtains

1
δ2 =

d2

dx2 ln G
∣∣∣∣
x=1

=
p3 p4

p5
g(1)G(1) ,

or
δR = cN/

√
n(R)N(R)kionkiN .

The depth decreases with temperature as kion strongly increases. At Te = 1 eV, δ = 15, i.e., there is
substantial neutrals density throughout the plasma radius, in agreement with simulations. At Te = 1.5,
2.0 and 2.5 eV one finds δ = 0.51, 0.01 and 0.004, respectively. The last two values are in fair agreement
with the relative width across which neutrals density increases from 20 % to 100 % of the edge value.
Uniform neutrals temperature has been assumed for simplicity in the model; if neutrals temperature
increases inside the plasma, then δ is to be interpreted as a scale of pressure variation and the scale of
density variation becomes even shorter than δ.

Results on degree of ionization, azimuthal current density from (8) and azimuthal ion velocity
from (9) are shown in Figure 7 for the lowest temperature case and in Figure 8 for the highest
temperature case. The degree of ionization in the plasma core is 40 % at Te = 1 eV and 100 % at
Te = 2.5 eV, while absolute values of self-generated azimuthal current density and velocity increase
substantially at higher temperature.

0.0

0.5

1.0

n/
(n

+
N

)

Te=1.0 eV,  n0=7,  N0=9,  Bz=0.17 T,  gas=Ar

10
1

10
3

10
5

j

0.00 0.02 0.04 0.06 0.08 0.10 0.12
r (m)

10
2

10
1

10
0

10
1

V i

Figure 7. Te = 1.0 eV. Upper frame: n/(n + N) ionization degree. Intermediate frame: self-generated
azimuthal current in A/m2. Lower frame: azimuthal ion velocity in m/s.
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r (m)

10
2

10
1

10
0

10
1

V i

Figure 8. Te = 2.5 eV. Upper frame: n/(n + N) ionization degree. Intermediate frame: self-generated
azimuthal current in A/m2. Lower frame: azimuthal ion velocity in m/s.

3.2. Dependence on Plasma Radius and Density

Substantially different profiles are found when changing the plasma radius. Profiles obtained
with R = 0.14 m (and Bz scaled to preserve magnetic flux) are shown in Figure 9. The ratio between
edge and central plasma density (or pressure) is 0.5 in this case, whereas a lower value of 0.14 has been
found in the simulation with R = 0.12 m (Figure 6). Broadening of density profiles with increasing R
is due to lower current density and then to weaker pinch force, total current being fixed. Lower edge
density is recovered in simulations at lower central density (3.3× 1020 instead of 4.5× 1020), as shown
in Figure 10. The edge density depends non-linearly on central density, and no acceptable solutions
are found (at the chosen radius and temperature) for n0 < 3.2× 1020 m−3.

Consideration of different plasma radii reveals an issue for any future 2D analysis. Envisaging
simulations shown in Figures 6 and 9 as representative of different cross sections at different z of the
actual pinch, it follows that pressure cannot be constant along field lines, in fact, if it is constant along
the field line at the plasma center, then it changes along the field line running at the plasma edge.
The reason is that from (13), the pinch force decreases with increasing plasma cross-section. Constant
edge density at constant axial density can be restored in the presence of significant azimuthal current
density throughout the plasma and not only in the outer region. Driving such current against resistive
drag requires radial current jr 6= 0, which would be acceptable in 2-D since zero divergence can be
preserved by variations of the axial current along z.

However, pressure variations along magnetic field lines remain a relevant issue, in fact the core
plasma pressure has to build-up somewhere between the electrodes and the core region. Collisions
with neutrals can give at most the pressure of the surrounding gas, which is smaller than the core
plasma pressure. Other possible reasons of pressure variation along field lines are pressure anisotropy,
inertial forces, and electrostatic forces. The second reason has been invoked in [12] for plasmas with
similar local parameters but far from steady state. Electrostatic forces are likely dominant in axial
pressure variation close to electrodes. The role of convective inertia and of charge separation will be
investigated in future work.
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Figure 9. Te = 2.5 eV and R = 0.14 m. Upper frame: plasma (solid line) and neutrals (dashed line)
numer density profiles in 1020 m−3 units. Lower frame: ion velocity in percent of the sound speed.
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Figure 10. Te = 2.5 eV, R = 0.14 m and lower density. Upper frame: plasma (solid line) and neutrals
(dashed line) numer density profiles in 1020 m−3 units. Lower frame: ion velocity in percent of the
sound speed.
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Table 2. Dimensional and dimensionless parameters used in numerical simulations.

T (eV) R (m) B (T) nB (1020 m−3) p1 p2 p3 p4 p5

1.0 0.12 0.17 6.9 32.3 3.3× 10−3 37.8 1.1× 10−4 1.3× 10−2

1.5 0.12 0.17 4.6 72.6 6.1× 10−3 20.6 1.4× 10−2 8.7× 10−3

2.0 0.12 0.17 3.4 129 9.4× 10−3 13.4 0.16 6.5× 10−3

2.5 0.12 0.17 3.8 202 1.3× 10−2 9.6 0.64 5.2× 10−3

2.5 0.14 0.12 2.0 320 1.3× 10−2 8.2 0.55 5.2× 10−3

4. Discussion

The model developed in Section 2 allows accounting for three species dynamics with simple and
easily controllable calculations. The main result is that owing to the high PROTO-SPHERA densities,
the plasma is fully ionized already at Te = 2 eV, well below the Ar first ionization energy. Neutrals
penetration is limited to an external layer, in which a substantial radial plasma velocity develops
to drain fresh charges produced by ionization. This radial flow across the applied magnetic field
drives both azimuthal current and azimuthal ion flow. The latter is a likely cause of the good plasma
spreading on the anode surface. The self-generated azimuthal current could be a seed for the formation
of a torus encircling the pinch, but this subject requires further work, in particular the uniform Bz

assumption should be removed and different applied magnetic fields should be considered, including
the presence of x-points, where magnetic reconnection can occur and magnetic flux can be transferred
from the pinch to the torus. Another issue that calls for further work is force balance along magnetic
field lines, in the presence of the radial pinch force which varies by an order of magnitude in the z
direction. Sorting out this item requires consideration of electrostatic and inertial forces, as well as
axially resolved diagnostic information on plasma density, temperature, and electrostatic potential.
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Appendix A. Mass and Momentum Balance in a Three-Component Plasma

Continuity and momentum balance equations have been adapted from [4,5]. Forms including
both time-dependence and charge separation, which could then be used to extend the study to plasma
formation phase and to plasma-solid interfaces are presented in this Appendix A, while simplified
forms are used in Section 2. Viscosity, pressure anisotropy, and resistivity anisotropy are neglected for
simplicity.

Continuity equations for ion number density n, ion velocity Vi, neutral gas number density N
and neutral gas velocity VN read

∂ni
∂t

+∇ · (niVi) = ne N k ion − neni k rec, (A1)

∂N
∂t

+∇ · (NVN) = −ne N k ion + neni k rec, (A2)

where kion and krec are ionization and recombination rate coefficients, respectively.
Ions, neutral gas, and electrons momentum balance equations read

mi

(
∂

∂t
(niVi) +∇ · (niViVi)

)
= eni(E + Vi × B)−∇pi

−mini N kiN(Vi −VN)−menine kei(Vi −Ve) + mine(NkionVN − nikrecVi), (A3)
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mi

(
∂

∂t
(NVN) +∇ · (NVNVN)

)
= −∇pN + mini N kiN(Vi −VN)

+ meneN keN(Ve −VN)−mineNkionVN + ninekrec(miVi + meVe), (A4)

me

(
∂

∂t
(neVe) +∇ · (neVeVe)

)
= −ene(E + Ve × B)−∇pe

−meneN keN(Ve −VN) + menine kei(Vi −Ve) + mene(NkionVN − nikrecVe), (A5)

where kiN , keN and kei are ion-neutral, electron-neutral and electron-ion collision rate coefficients
respectively; Ve is electron velocity, E and B are electric and magnetic field respectively, and p denote
pressures. Isotropic pressures are assumed. Using∇ · (nVV) = V∇ · (nV) + n(V · ∇)V more familiar
forms result

mi ni

(
∂

∂t
Vi + (Vi · ∇)Vi

)
= eni(E + Vi × B)−∇pi

−mi N (nikiN + nekion)(Vi −VN)−menine kei(Vi −Ve), (A6)

mi N
(

∂

∂t
VN + (VN · ∇)VN

)
= −∇pN + mini N kiN(Vi −VN)

+ meneN keN(Ve −VN) + nine krec(mi(Vi −VN) + meVe), (A7)

me ne

(
∂

∂t
Ve + (Ve · ∇)Ve

)
= −ene(E + Ve × B)−∇pe

−meneN (keN + kion)(Ve −VN) + menine kei(Vi −Ve). (A8)

Introducing charge density ρe = e(ni − ne) and current density j = e(niVi − neVe), (A8) can be
cast as a generalized Ohm’s law

eneE = (j− eniVi)× B−∇pe

−meneN (keN + kion)(Vi −VN) +
me

e
(N(keN + kion) + nikei)(j− ρeVi), (A9)

where electron inertia has been neglected. Please note that Spitzer resistivity ηS = mekei/e2.
Substituting the resistive term from (A9), the ion fluid momentum balance can be cast as

mi ni

(
∂

∂t
Vi + (Vi · ∇)Vi

)
= ρeE + j× B−∇(pi + pe)

− N (minikiN + menekeN + (mi + me)nekion)(Vi −VN) +
me

e
N(keN + kion)(j− ρeVi). (A10)

The combination of plasma-neutrals collision coefficients in the second line corresponds to
the ambipolar diffusion coefficient of gas discharges with uniform temperature and uniform
neutrals density

Da =
e(Te + Ti)

N(mikiN + mekeN)
.
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