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Abstract: The linear stability theory of wind-wave generation is revisited with an emphasis on the
generation of wave groups. The outcome is the fundamental requirement that the group move with a
real-valued group velocity. This implies that both the wave frequency and the wavenumber should be
complex-valued, and in turn this then leads to a growth rate in the reference frame moving with the
group velocity which is in general different from the temporal growth rate. In the weakly nonlinear
regime, the amplitude envelope of the wave group is governed by a forced nonlinear Schrödinger
equation. The effect of the wind forcing term is to enhance modulation instability both in terms of the
wave growth and in terms of the domain of instability in the modulation wavenumber space. Also,
the soliton solution for the wave envelope grows in amplitude at twice the linear growth rate.
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1. Introduction

The generation of water waves by wind is a fundamental problem of both scientific and
operational concern. However, despite much theoretical research, observations and numerical
simulations, the theoretical mechanism remains controversial, see the comprehensive reviews by [1,2],
and the recent comments by [3–6]. Two main mechanisms are currently invoked. One is a shear
flow instability mechanism initially developed by [7] and subsequently adapted for routine use
in wave forecasting models, see the review by [2]. In this theory, turbulence in the wind is used
only to determine a logarithmic profile for the mean wind profile u0(z). Then, a monochromatic
sinusoidal wave field is assumed, with a real-valued wavenumber k and a complex-valued phase
speed, c = cr + ici so that the waves may have a growth rate kci. It is found that there is a significant
transfer of energy from the wind to the waves at the critical level zc where u0(zc) = cr. Pertinent to
the context of this paper, we note that that this was extended to allow for spatial growth instead of
temporal growth by [8]. The other is essentially a steady-state theory, developed originally by [9] for
separated flow over large amplitude waves, and importantly later adapted for non-separated flow
over low-amplitude waves, see [1,4] for instance. Here the wind turbulence is taken into account
through an eddy viscosity term in an inner region near the wave surface, and asymmetry in this inner
region then allows for an energy flux to the waves.

Neither theory alone has been found completely satisfactory, and in particular, both fail to take
account of wave transience and the tendency of waves to develop into wave groups, see [5,6]. This issue
was addressed in our preliminary study [10], and is developed further here in the context of a general
theory of wave groups for unstable waves. The methodology is based on linear shear flow instability
theory, but incorporates from the outset that the waves will have a wave-group structure with both
temporal and spatial dependence. In fluid flows this was initiated by [11,12] in the context of shear
flows, see the summary by [13] and the reviews by [14,15]. The essential feature that we exploit is that
the wave group moves with a real-valued group velocity cg = dω/dk even when for unstable flows
the frequency ω = kc and the wavenumber k are complex-valued.
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In Section 2 we develop the general linearized theory for a stratified shear flow, showing that the
group velocity is real-valued and presenting some implications. In Section 3 we make a reduction to
an air-water system, with constant density in both the air and the water, and no background shear
flow in the water. Two special cases are investigated in detail, Kelvin-Helmholtz instability and and a
smooth monotonic wind profile. While both these have been heavily studied, the wave-group analysis
presented here provides a new perspective. In Section 4 we extend the analysis to the weakly nonlinear
regime, and present a forced nonlinear Schrödinger model, which is used to examine modulation
instability under wind forcing. We conclude in Section 5.

2. Formulation

We begin with the linear stability theory for a general stratified shear flow, and then develop the
theory for the air-water system as a special case. The basic state is the density profile ρ0(z) and the
horizontal shear flow u0(z) in the x-direction. Then the linearized equations are

ρ0(Du + wu0z) + px = 0 , (1)

ρ0Dv + py = 0 , (2)

ρ0Dw + pz + gρ = 0 , (3)

Dρ + ρ0zw = 0 , (4)

ux + vy + wz = 0 , (5)

where D =
∂

∂t
+ u0

∂

∂x
. (6)

Here, the terms (u, v, w) are the perturbation velocity components in the (x, y, z) directions, ρ is the
perturbation density, and p is the perturbation pressure. Equations (1)–(3) represent conservation of
momentum, Equation (4) represents conservation of mass, and Equation (5) is the incompressibility
condition. The vertical particle displacement ζ is defined in this linearized formulation by

Dζ = w . (7)

Then the density field is given by integrating Equation (4) to get

ρ = −ρ0zζ . (8)

Substituting Equations (7) and (8) into the remaining equations and eliminating u, v, p yields a
single equation for ζ,

{ρ0D2ζz}z + {ρ0D2ζ}xx + {ρ0D2ζ}yy − gρ0z{ζxx + ζyy} = 0 . (9)

This equation, together with the boundary conditions that ζ = 0 at z = −H (the bottom of
the ocean) and as z→ ∞ (the top of the atmosphere) is the basic equation to examine wave groups and
linear stability.

Next we seek a solution describing a wave group,

ζ = {A(X, Y, T)φ(z) + εφ(2)(X, Y, T; z) + · · · } exp (ikx + ily− iωt)) + c.c. ,

where X = εx , Y = εy , T = εt .
(10)
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Here c.c. denotes the complex conjugate, and ε � 1 is a small parameter describing the slow
variation of the amplitude A(X, Y, T) relative to the carrier wave. The frequency ω = kc, where c is the
phase speed in the x-direction. Both ω and the wavenumbers k, l may be complex-valued, and then
the imaginary part of the frequency is the temporal growth rate of an unstable wave. Importantly later
we shall set l = 0 so the transverse dependence is only in the amplitude envelope. At leading order,
we obtain the modal equation, well-known as the Taylor-Goldstein equation,

(ρ0k2W2φz)z − (k2 + l2)(gρ0z + k2W2)φ = 0 , W = c− u0 . (11)

This defines the modal functions and the dispersion relation specifying ω = ω(k, l). At the next
order in ε we obtain the equation determining the wave envelope amplitude A(X, Y, T). However,
first we note the integral identity

P(ω, k, l) ≡
∫ ∞

−H
ρ0k2W2(φ2

z + (k2 + l2)φ2) + (k2 + l2)gρ0zφ2 dz = 0 . (12)

This can be regarded as an expression of the dispersion relation, ω = ω(k, l). In the sequel we
will be mainly concerned with the case when l = 0, when the modal Equation (11) reduces to

(ρ0W2φz)z − (gρ0z + k2W2)φ = 0 , W = c− u0 , (13)

which can be regarded as determining the dispersion relation in the form c = c(k) where ω = kc,
and c is the complex-valued phase velocity. Differentiation of P(ω(k, l), k, l) = 0 with respect to k, l,
and evaluating at l = 0, yields

Pωcg + Pk = 0 , Pl = 0 , (14)

where cg is the group velocity in the x-direction, and can be expressed in the form,

cg =
dω

dk
= c + k

dc
dk

, k
dc
dk

=
J
I

, J = −
∫ ∞

−H
ρ0k2W2φ2 dz , I =

∫ ∞

−H
ρ0W(φ2

z + k2φ2) dz . (15)

It is useful to note that the dependence of P(ω, k, l), and hence of ω(k, l). on l is through l2.
At the next order in the asymptotic expansion we obtain a forced Taylor-Goldstein equation for

φ(2) in the independent variable z. A compatibility condition is needed and this yields when l = 0,

AT + cg AX = 0 . (16)

The details are described in [10] and are omitted here. Instead we note that in this linearized
theory, the equation for the envelope amplitude can be obtained more directly from the dispersion
relation evaluated at l = 0,

P(ω + ε
i∂
∂T

, k− ε
i∂
∂X

,−ε
i∂
∂Y

)A(X, Y, T) = 0 . (17)

Expansion in powers of ε yields, at the leading order in ε,

iPω AT − iPk AX − iPl AY = 0 . (18)

The amplitude Equation (16) follows on using Equation (14). It implies that the amplitude
envelope propagates with the group velocity, since the solution states that A is constant on the
characteristics dx/dt = cg, and so cg must be real-valued. This is well-known for stable waves, but that
it also holds for unstable waves when ω, k may be complex-valued is not so well-known in the fluid
dynamics literature. However, see the seminal work on shear flows by [11,12], and the several papers
which followed in the reviews by [14,15]. These works mainly solved the linear initial-value problem
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with Fourier transforms, and then when the long-time asymptotic solution was sought, the method of
steepest descent revealed the critical condition that x/t = cg, thus enforcing the group velocity to be
real-valued. For unstable waves when the frequency ω is complex-valued this leads to the necessity
that the wavenumber k must also be complex-valued, and vice-versa . The imaginary parts of ω(k) and
k are linked by the requirement that the group velocity is real-valued.

At the next order in the expansion we get that

i(AT + cg AX) + ε(λAXX + σAYY) = 0 , λ =
ωkk

2
, σ =

ωll
2

. (19)

Here we note that ωkk = cgk while

ωll = −
Pll
Pω

=

∫ ∞
−H ρ0W2φ2

z dz∫ ∞
−H ρ0kW(φ2

z + k2φ2) dz
, (20)

If there is no shear flow u0(z) this is just ωll = cg/k. see Equation (15). Since cg is real-valued, we
can make a transformation to put Equation (19) into the canonical form,

ξ = X− cgT , τ = εT , (21)

iAτ + λAξξ + σAYY = 0 . (22)

This is the well-known linear Schödinger equation for the evolution of weakly dispersive stable
wave packets, but it is not widely known that it also holds for unstable wave packets.

Next we put k = kr + iki, ω = ωr + ωi, and assume that |ki| � kr and |ωi| � ωr, where without
loss of generality we assume that kr > 0, ωr > 0. For consistency with the modulation scaling in the
wave packet expansion Equation (10) we anticipate that the spatial and temporal growth rates |ki|, |ωi|
are at least O(ε). Then we extract the imaginary part of the phase in Equation (10), so that

exp (ikx + ily− iωt) = E exp (iθ) , E = exp (−ki(x− cgt) + δt) ,

δ = ωi − cgki , θ = krx−ωrt .
(23)

In the reference frame moving withe group velocity, δ is the growth rate, and taking account that
cg is real-valued, can be written as

δ = Im[ω− cgk] = −Im[k2 dc
dk

] . (24)

Importantly this must be evaluated on those complex-valued wavenumbers k such that cg is
real-valued. Since θ is a real-valued phase, we write B = EA so that Equation (10) becomes,

ζ = {B(X, Y, T)φ(z) + · · · } exp (iθ) + c.c. , (25)

and the wave packet Equation (16) becomes, to leading order.

BT + cgBX − δ̃B = 0 , δ̃ =
δ

ε
. (26)

Note that the growth rate δ̃ is at least O(1). The same substitution converts the linear Schrödinger
Equation (22) into

i(Bτ − ∆B) + λBξξ + σBYY = 0 , ∆ =
δ̃

ε
=

δ

ε2 . (27)

For consistency we must now assume that |ki|, |ωi| are at least O(ε2), so that the growth rate ∆ is
at least O(1). The coefficients λ, σ are real-valued to leading order in ε,
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As already noted the dispersion relation ω = ω(k) must be examined in the complex k-plane,
and even for relatively simple expressions, this can be a complex task in general. However, if, as here,
we assume that the the imaginary parts of ω(k) and k are small, then simple approximate expressions
can be derived. This, putting k = kr + iki and expanding,

ωi(k) ≈ γ + cg(k)ki + Im[σ(kr)]k2
i + · · · , γ = Im[ω(kr)] , (28)

where γ is the temporal growth rate, and is often written as krIm[c(kr)]. It follows that δ ≈ γ, and since
σ(kr) is real-valued to leading order, the error term is O(k3

i ). This differs from the corresponding
growth rate in [10] due to a different interpretation of the temporal growth rate; [10] defined this as
krIm[c(k)] which includes a contribution from ki. The interpretation here agrees with that in [3,16–19],
who also studied water wave groups under wind forcing. The derivation here is quite general and
applies to all physical systems which support wave groups. The condition that the group velocity be
real-valued implies that

kiRe[cgk(kr)] ≈ −Im[cg(kr)] = −Im[c(kr) +
J(kr)

I(kr)
] (29)

where we note that cg(k) ≈ cg(kr) to the same level of approximation, and the right-hand side has
used the expression Equation (15).

3. Air-Water System

For an air-water system, we follow the formulation of [10] and write,

ρ0(z) = ρaH(z) + ρwH(−z) , ρ0z = (ρa − ρw)δ(z) . (30)

Here ρa, ρw are the constant air and water density respectively, the undisturbed air-water interface
is at z = 0,H(z) is the Heaviside function and δ(z) is the Dirac delta function. The water is bounded
below at z = −H, and the air is unbounded above. Continuity of ζ at the interface z = 0 implies that φ

is continuous across z = 0. Since the modal Equation (11) is homogeneous, without loss of generality
we can set φ(z = 0) = 1. Then in the air (z > 0) and water (z < 0) the modal Equation (11) collapses to
the Rayleigh equation

(W2φz)z − k2W2φ = 0 , W = c− u0 . (31)

The dynamical boundary condition at z = 0 is found by integrating Equation (31) across z = 0,
with the outcome

[ρ0W2φz]
+
− = g(ρa − ρw)φ(0) . (32)

The system Equation (31), Equation (32) is supplemented by the boundary conditions that φ = 0
at z = −H and that φ→ 0 as z→ ∞. It remains to specify the shear flow u0(z). In the water, there is
no background current, so that u0(z) = 0, −H ≤ z ≤ 0, so that the solution of Equation (31) which
satisfies the boundary condition φ(−H) = 0 is

φ =
sinh (k(z + H))

sinh (kH)
, −H < z < 0 . (33)

Here we recall that we have set φ(0) = 1 without loss of generality. The boundary condition
Equation (32) then reduces to

s(c− u0(0+))2φz(0+) = g{ c2

c2
0
− (1− s)} , c2

0 =
g
k

tanh (kH) . (34)
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If there is no air (s = 0), then this reduces to the usual water wave dispersion relation c2 = c2
0 and

in that limit the waves are stable and k is real-valued. Since s� 1 it follows that for unstable waves
ωi = Im[ω] and ki = Im[k] are O(s), and so s is a convenient small parameter, which we will later link
to the modulation parameter ε. The integral identity Equation (12) at l = 0 reduces to

P̃ ≡ s
∫ ∞

0
W2(φ2

z + k2φ2) dz + g{ c2

c2
0
− (1− s)} = 0 . (35)

Similarly, the expression Equation (15) for the group velocity reduces to

cg = c +
J
I

,

J = −s
∫ ∞

0
k2W2φ2 dz +

gkc2

c3
0

dc0

dk
,

I = s
∫ ∞

0
W(φ2

z + k2φ2) dz) +
gc
c2

0
.

(36)

Note that in the limit s → 0 this becomes c0g = c0 + kdc0/dk. the group velocity for unforced
water waves. It remains to specify the wind profile u0(z) in z > 0, and we will reconsider two
well-known cases.

3.1. Kelvin-Helmholtz Instability

First, assume that u0 = U > 0 where U is a constant. This Helmholtz profile is not usually
regarded as a relevant model for water waves, see [7], but with the inclusion of interfacial surface
tension it is may become of some practical interest, see [13,15,20,21]. It is useful here as it leads to an
explicit expression for the dispersion relation, which can then be analyzed for complex-valued ω and
k. For this choice of u0 the modal Equation (31) in z > 0 has the solution

φ = exp (−kz) , 0 < z < ∞ , (37)

valid for kr > 0. Application of the boundary condition Equation (34) leads to the dispersion relation

sk(c−U)2 + k coth (kH)c2 = g(1− s) + Σk2 , (38)

Here we have included the effects of interfacial surface tension with a coefficient Σ, see [13,15,20,21].
This is a quadratic equation for c(k) with solution

(s + coth (kH))c = sU ± {(s + coth (kH))(
g(1− s)

k
+ Σk)− s coth (kH)U2}1/2 . (39)

There is now temporal instability when the argument of the term in the brackets {· · · }, evaluated
at k = kr, is negative, this being the well-known Kelvin-Helmholtz instability. The subsequent analysis
is simplified if we take the deep-water limit H → ∞, that is coth (kH) ≈ 1 since kr > 0. Then
Equation (39) reduces to

(1 + s)c = sU ± {(1 + s)(
g(1− s)

k
+ Σk)− sU2}1/2 . (40)

It is useful to define a dimensionless wavenumber

K = k
sU2

g(1− s2)
, (41)



Fluids 2019, 4, 39 7 of 13

so that Equation (40) becomes

(1 + s)c = sU ± is1/2U{1− 1
K
− BK}1/2 , B =

Σg(1− s2)(1 + s)
s2U4 . (42)

Here B is a dimensionless Bond number. Temporal instability occurs when the term in brackets
{· · · } > 0, which requires that B < 1/4 and then defines a wavenumber band,

K− < Kr < K+ , BK± =
1
2
± {1

4
− B}1/2 . (43)

Within this band the temporal growth rate is

γ = krci , (1 + s)ci = ±s1/2U{1− 1
Kr
− BKr}1/2 . (44)

The expression Equation (15) for the group velocity becomes

(1 + s)cg = sU ± i
s1/2U

2
2− K−1 − 3BK
{1− K−1 − BK}1/2 . (45)

The requirement that cg be real-valued implies that

Re[
2− K−1 − 3BK
{1− K−1 − BK}1/2 ] = 0 , (46)

which determines a relationship between Kr and Ki. The growth rate Equation (24) becomes

δ = −Im[k2 dc
dk

] = ∓ g(1− s)
s1/2U

Re[
(1− BK2)

{1− K−1 − BK}1/2 ] . (47)

Importantly, we note that since for these unstable waves 0 < B < 1/4, and from Equation (43)
BK is O(1), we infer that the growth rate δ scales with g(1− s)/s1/2U for large surface tension (B is
O(1/4)), but for small surface tension as B→ 0 scales with s3/2U3/(1 + s)2Σ.

Although Equation (46) is a relatively simple expression, an analytical solution appears still to be
beyond reach. Hence instead we follow the example of [15] and examine the dispersion relation in
the vicinity of the onset of instability, that is, we set B = 1/4− ∆, K = 2 + κ and 0 < ∆ ≤ 1, κ << 1.
The expression Equation (42) for the phase speed becomes

(1 + s)c ≈ sU ± is1/2U
{32∆− κ2}1/2

4
, (48)

and there is instability when ∆ > 0 in the wavenumber band κ2
r < 32∆. The expression Equation (64)

for the group velocity reduces to

(1 + s)cg ≈ sU ∓ is1/2U
κ

{32∆− κ2}1/2 . (49)

For this to be real-valued, we require that either κ = κr is real-valued and κ2
r > 32∆, or that κ = iκi

is pure imaginary. The former leads to stable waves and is excluded here, and so the latter is adopted
when Equation (49) becomes

(1 + s)cg ≈ sU + s1/2U
κi

{32∆ + κ2
i }1/2

. (50)
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The growth rate Equation (47) becomes

δ ≈ ∓4g(1− s)
s1/2U

[
(4∆ + κ2

i )

{32∆ + κ2
i }1/2

] . (51)

The corresponding temporal instability growth rate is Equation (44), and in this
approximation becomes

γ ≈ ± g(1− s)
s1/2U

{2∆}1/2 , (52)

These differ in magnitude even when κi = 0, and curiously the branches (±) which are
unstable/stable for the temporal growth rate γ interchange for the growth rate δ in the group velocity
reference frame.

3.2. Monotonic Wind Profile

The usual theories such as those in [2,7,22] assume that the wind profile u0(z) is continuous,
monotonically increasing with height z and vanishes at z = 0, u0(0) = 0. However, there are then no
simple explicit analytic expressions available for the modal function φ(z) and hence for the dispersion
relation. Instead it is customary to take the limit s → 0 when ci → 0. Then various approximations
have been used, most of which require evaluation of the modal function near a critical level zc where
u0(zc) = cr ≈ c0(kr) and there is a singularity. Here we attempt to avoid this limit, and use an
approximation similar to those used by [2,10].

We make a further assumption that u0(z) = U0 > 0, a constant, for z > z0, where U0 > c0(kr).
In the zone 0 < z < z0 the term W2k2φ in Equation (31) is neglected, and then an approximate solution is,

φ ≈ 1 + D
∫ z

0

dy
W2(y)

, 0 < z < z0 , (53)

where the constant D is determined by matching at z = z0 . Formally, this is valid when krz� 1, and
in particular, krzc � 1. In the limit ci → 0 the second term in Equation (53) is singular at z = zc and is
evaluated by assuming that ci > 0 (evaluated at k = kr), and then taking the limit ci → 0+. This yields
the Frobenius expansion

φ ∼ Dc{
1

z− zc
+

u0zz(zc)

u0z(zc)
log (z− zc) + · · · } , z→ zc , D = −Dcu2

0z(zc) (54)

Here the branch of the logarithm when z − zc < 0 must be chosen corresponding to the
requirement that the growth rate γ = krci > 0, that is

log (z− zc) = log |z− zc| − iπsign[u0z(zc)] , when z < zc . (55)

Then for z > zc,

φ = 1 + {P
∫ z

0

dy
(cr − u0(y))2 −

iπu0zz(zc)

|u0z(zc)|3
} , zc < z < z0 . (56)

where P
∫

denotes the principal value integral, and we recall that u0(zc) = cr. In z > z0,

φ = D1 exp (−k(z− z0)) , z > z0 . (57)

Across z = z0 both φ and φz are continuous and so

D1 = 1 + D
∫ z0

0

dz
W2(z)

, −kD1 =
D

(c−U0)2 . (58)
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Elimination of D1 yields the expression for D,

D{ 1
k(c−U0)2 +

∫ z0

0

dz
W2(z)

} = −1 . (59)

Finally, since c2φz(0+) = D. substitution into Equation (34) yields the dispersion relation

D(c, k) ≡ g{ c2

c2
0
− (1− s)}{ 1

k(c−U0)2 +
∫ z0

0

dz
W2(z)

}+ s = 0 . (60)

This is equivalent to Equation (35) under the approximations used here. It simplifies considerably
in the limits z0 → ∞, U0 → ∞ where we assume that in this joint limit the integral term converges.
Then Equation (60) becomes

D(c, k) ≡ g{ c2

c2
0
− (1− s)}{

∫ ∞

0

dz
W2(z)

}+ s = 0 . (61)

Following the analysis in [10] it is useful to put

c2

c2
0
= 1− s + sµ , gµ{

∫ ∞

0

dz
W2(z)

} = −1 , (62)

where we note that µ is independent of s. In the limit ci → 0 with k = kr real-valued, after using
Equation (56) and that s� 1, we get that the temporal growth rate

γ = krci ,
ci
c0

= − sπu0zz(zc)

2g|u0z(zc)|3
{P

∫ ∞

0

dz
W2(z)

}−2 . (63)

This quite simple expression for γ agrees with that in [10] after appropriate simplifications in [10]
are made. In general, it offers a potentially quite useful explicit expression for the temporal growth
rate, although it cannot be used for the commonly invoked logarithmic profile as then the integral
term does not converge.

Our interest here is in the group velocity cg = c + kdc/dk and then using Equation (62)

cg ≈ c0g +
sc0

2
(µ− 1) , (64)

where we note that here dµ/dk = 0 Equation (62) , and cg0 = c0 + kdc0/dk is the water wave-group
velocity, but evaluated here for a complex-valued k. We now require that this be real-valued, and
putting k = kr + iki and expanding for |ki| � kr we get that

ki
dc0g

dkr
(kr) + ci = 0 , (65)

where krci = γ is the temporal growth rate defined by Equation (63). Please note that ki > 0 here. In
this same limit |ki| � kr, the growth rate δ ≈ γ, see Equation (28) and the following discussion.

4. Nonlinear Schrödinger Equation

When this linearized analysis is extended to the weakly nonlinear regime, we expect that the
linear Schrödinger equation (Equation (27)) will be replaced by the wind-forced nonlinear Schrödinger
equation, see [3,10,16–19] for related studies in the one-dimensional context,

i(Bτ − ∆B) + λBξξ + σBYY + ν|B|2B = 0 (66)
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Here the nonlinear coefficient ν is the Stokes amplitude-dependent frequency correction, which in
the present context to leading order will just be that for water waves. In the deep-water limit as H → ∞,
λ = −c0/8kr, σ = c0/4kr and ν = −c0k3

r /2 where c2
0 = g/kr. Formally, the derivation of Equation (66)

requires a re-scaling in which τ = ε2t, ξ = ε(x − cgt) as in Equation (21), and the amplitude B is
scaled with ε. This suggests that for the monotonic wind profiles of Section 3.2 we put s = O(ε2).
Since s ≈ 1.275× 10−3 this implies a restriction to waves with amplitudes of non-dimensional order
0.036. However, the analysis of the Kelvin-Helmholtz profiles in Section 3.1 does not require this link
between s and ε.

The nonlinear and dispersive terms in Equation (66) are not sufficient to control the exponential
growth of a localized wave packet, since

d
dT

∫ ∞

−∞

∫ ∞

−∞
|B|2 dξdY = 2∆

∫ ∞

−∞

∫ ∞

−∞
|B|2 dξdY . (67)

Further the modulation instability, present when νλ > 0 (as for deep-water waves) in the absence
of wind, is enhanced in the presence of wind, see [16] for the one-dimensional case. To see this, first
transform Equation (66) into

B = B̃ exp (∆τ) , s =
exp (2∆τ)− 1

2∆
,

iB̃s + λFB̃ξξ + σFB̃YY + ν|B̃|2B̃ = 0 , where F =
1

1 + 2∆s
.

(68)

In this transformed system, the energy expression Equation (67) becomes a conservation law

d
dT

∫ ∞

−∞

∫ ∞

−∞
|B̃|2 dξdY = 0, . (69)

This has the “plane wave” solution B̃ = B0 exp (−iν|B0|2s). Modulation instability is then found
by putting B̃ = B0(1 + b) exp (−iν|B0|2s) into Equation (68) and linearizing in b, so that

ibs + λFbξξ + σFbYY + ν|B0|2(b + b∗) = 0 . (70)

Then we seek solutions of the form b = (p(τ) + iq(τ)) cos (Kξ + LY) where p, q are real-valued,
and find that

{ ps

F
}s + M(MF− 2ν|B0|2)p = 0 , q =

ps

MF
, M = λK2 + σL2 . (71)

When ∆ = 0, F = 1, and this yields the usual criterion for modulation instability, namely that
M(M− ν|B0|2) < 0. That is, since here ν < 0, λ < 0, σ > 0, there is instability for M < 0 and then
|M| < |ν||B0|2, which defines the well-known instability band in the K − L plane. When ∆ > 0,
F varies from 1 to 0 as s increases from 0 to ∞. Since as τ → ∞, s→ ∞, there is modulation instability
provided only that Mν > 0, that is M < 0, and so independent of |B0|. Further the band in the K− L
plane opens to the half-space |λ|K2 > σL2. Using the deep-water values for λ, σ this is the region
K2 > 2L2. Although the general solution of Equation (71) can be expressed in terms of modified Bessel
functions of imaginary order, see [16], we shall not pursue this here as the main outcome is already
clear. However, we note that as F → 0, p ∼ F1/2 exp (ΣF−1/2), Σ = |2Mν|1/2/δ. Even taking account
of the cancellation of the factor τ−1/2 with the pre-factor exp (∆T) in Equation (68), we see that the
modulation growth rate is now super-exponential.

This linearized analysis of modulation instability does not indicate the outcome of the wave
growth. However, in the absence of wind forcing, and in the context of the one-dimensional (that is, the
Y-variation is omitted) nonlinear Schrödinger equation, it is known that modulation instability leads to
formation of envelope solitary waves or even rogue waves, modelled by Peregrine breathers, see [23,24]
for instance. This has been confirmed in several numerical and laboratory experiments, see [25–27].
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We might expect a similar outcome under wind forcing, but a detailed analysis is beyond the scope of
this present article. Instead we note that the transformed nonlinear Schrödinger Equation (68) in the
one-dimensional context has the slowly varying solitary wave solution

B̃ = Bsolsech(Θ) exp (iΦ) , Θ = Γ(ξ −Vτ) , Φ = Kξ −ΩT

V = 2λFνK , −Ω + λFK2 = λFΓ2 =
1
2

νB2
sol .

(72)

The solitary wave parameters are slowly varying functions of s, and are determined by an
asymptotic multi-scale analysis, see [28]. The outcome is that

B2
sol ∝

ν

λF
, Γ ∝

ν

λF
. (73)

This can also be established by substituting Equation (72) into the energy expression Equation (69).
As s→ ∞, F → 0, and so the amplitude Bsol → ∞, and the growth rate is exponential as Bsol ∼ s−1/2 ∼
exp (∆τ). Interestingly, this is superposed onto the growth term exp (∆τ) in the transformation
in Equation (68) and so doubles the linear growth rate. This agrees with the super-exponential growth
rate of the modulational instability.

5. Discussion

In this paper, we have presented a theory for the description of wave groups for unstable waves,
Although this is in the context of a stratified shear flow, the methodology is based on the linear
dispersion relation, and so is applicable to many other physical systems. At leading order for plane
waves, the system is governed by the Taylor-Goldstein equation determining a dispersion relation
for the wave frequency and wavenumber. At the next order in an asymptotic expansion, the main
outcome is that, as is well-known for stable waves, the wave envelope propagates with the group
velocity, which must then be real-valued. This has the consequence that for unstable waves, both the
wave frequency and the wavenumber are complex-valued. The outcome is that the waves are unstable
in the reference frame moving with the group velocity, with a growth rate which in general is different
from the temporal growth rate where only the wave frequency is complex-valued.

The theory is then explored in the context of an air-water system, with the aim of examining
the consequences of this wave-group approach for wind waves. Two specific cases are examined in
detail, chosen for their analytical simplicity rather than direct applicability. One is Kelvin-Helmholtz
instability where we find that the growth rate for wave groups is quite different from the well-known
temporal instability. The other is for a monotonic wind profile, where to achieve analytical tractability,
we make some approximations in the calculation of the modal function to lead to an explicit dispersion
relation. Even so, here we must exploit the approximation that the ratio of the air density to the water
density is a small parameter, and then we find that the growth rate in the reference frame moving with
the group velocity and the temporal growth rate are in approximate agreement.

At the next order in the asymptotic expansion, and incorporating weakly nonlinear terms,
we obtain a nonlinear Schrödinger equation, the usual equation for stable waves but now incorporating
a linear growth term. Although this is not integrable, the plane wave solution is tested for modulation
instability. We find that there is an an enhanced growth rate on top of the linear growth rate, and so
the overall growth rate is super-exponential. Also, the band width of modulation wavenumbers is
considerable widened under the wind forcing. For stable waves governed by the nonlinear Schrödinger
equation, wave groups can be described by the soliton solution. In the presence of wind forcing, we find
that the soliton amplitude grows at twice the linear growth rate. Overall, although there is still much to
be explored in this forced nonlinear Schrödinger equation, we conclude that wind forcing considerably
enhances modulation instability and the growth of the wave-group envelope.
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