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Abstract: The effects of Lewis number on the physical mechanisms pertinent to the curvature
evolution have been investigated using three-dimensional Direct Numerical Simulation (DNS) of
spherically expanding turbulent premixed flames with characteristic Lewis number of Le = 0.8,
1.0 and 1.2. It has been found that the overall burning rate and the extent of flame wrinkling increase
with decreasing Lewis number Le, and this tendency is particularly prevalent for the sub-unity Lewis
number (e.g., Le = 0.8) case due to the occurrence of the thermo-diffusive instability. Accordingly,
the Le = 0.8 case has been found to exhibit higher probability of finding saddle topologies with large
magnitude negative curvatures in comparison to the corresponding Le = 1.0 and 1.2 cases. It has
been found that the terms in the curvature transport equation due to normal strain rate gradients and
curl of vorticity arising from both fluid flow and flame normal propagation play pivotal roles in the
curvature evolution in all cases considered here. The net contribution of the source/sink terms of
the curvature transport equation tends to increase the concavity and convexity of the flame surface
in the negatively and positively curved locations, respectively for the Le = 0.8 case. This along
with the occurrence of high and low temperature (and burning rate) values at the positively and
negatively curved zones, respectively acts to augment positive and negative curved wrinkles induced
by turbulence in the Le = 0.8 case, which is indicative of thermo-diffusive instability. By contrast,
flame propagation effects tend to weakly promote the concavity of the negatively curved cusps,
and act to decrease the convexity of the highly positively curved bulges in the Le = 1.0 and 1.2
cases, which are eventually smoothed out due to high and low values of displacement speed Sd at
negatively and positively curved locations, respectively. Thus, flame propagation tends to smoothen
the flame surface in the Le = 1.0 and 1.2 cases.

Keywords: Lewis number; flame curvature; iso-scalar non-material surfaces; turbulent premixed
spherical flame

1. Introduction

Spherically expanding turbulent premixed flames are of fundamental importance in Spark Ignition
(SI) engines and for understanding accidental explosions. Hence, they are often used as a canonical
configuration for laboratory-scale experiments [1–9] and numerical investigations [10–31]. The role
of mean flame curvature [20–22,26] on Flame Surface Density (FSD) [20,25] and Scalar Dissipation
Rate (SDR) [25,27], which are central to determine the fuel burning rate, has been demonstrated in
several previous DNS studies on ignition kernels [11,22] and spherically expanding flames [15,17–27].
Moreover, LES of spherical flames using the flame wrinkling factor [14,16], FSD [27,29] and
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combined FSD-probability density function (PDF) [28] sub-grid closures, and Reynolds Averaged
Navier–Stokes (RANS) simulations using various combustion modelling approaches [10,13,30] showed
good agreement with experimental measurements. However, several analyses [20–22,24,27,30,31]
demonstrated that there are significant differences between statistically planar and spherical flames,
specifically in terms of flame propagation and fuel burning rate. Although these past studies provided
important physical insights on spherical flames, they seldom considered thermo-diffusive effects
arising from differential diffusion of heat and mass, characterised by Lewis number Le (i.e., ratio of
thermal and mass diffusivities). The presence of thermo-diffusive instabilities augments the burning
rate as demonstrated in experiments [4,5] and thus spherical flames in lean hydrogen–air mixture
grow quicker compared to those in hydrocarbon–air mixture under statistically similar turbulent flow
conditions. The necessity to include these effects was demonstrated by computing stoichiometric and
fuel-lean hydrogen–air and methane–air spherical flames [30,31].

The flame wrinkling is often characterised in terms of flame front curvature distribution,
which plays a key role in determining the local flame propagation behaviour. This is reflected in the
correlation between displacement speed Sd and curvature κm [21,22,24,32–41]. Moreover, in non-unity
Lewis number flames the consumption speed Sc also demonstrates correlation with local flame
curvature κm [42]. Furthermore, tangential strain rate and curvature have been found to be negatively
correlated for small turbulence intensities and the strengths of the correlations of tangential strain rate
and flame speed with curvature weaken with increasing turbulence intensity. The flame curvature
κm is also known to affect the curvature and propagation terms in the Surface Density Function
(SDF = |∇c| with c being the reaction progress variable) transport equation [43–50], which in turn
influence the evolutions of FSD and SDR [27,29–31,50]. It has been demonstrated in several previous
analyses [27,39,44,47] that the curvature dependences of displacement speed, temperature and SDF are
influenced by the characteristic Lewis number Le, and thus it is expected that the curvature evolution
is also likely to be affected by Le.

Pope [51] derived a transport equation for a parameterised surface and recently, Dopazo et al. [52]
derived a transport equation of flame front curvature κm and analysed the statistical behaviours of the
different terms of this transport equation for passive scalar mixing without the effects of heat release.
This analysis has been extended by Cifuentes et al. [53] to analyse the statistical behaviours of the
terms in the curvature transport equation in a bluff-body stabilised turbulent premixed flame burner
configuration using a flame-resolved high-fidelity simulation. However, the effects of characteristic
Lewis number on the flame curvature evolution in a configuration with a non-zero mean curvature,
as in the case of spherically expanding turbulent premixed flames, are yet to be analysed in detail.
For example, the reasons for the differences in flame topology in terms of curvature distribution in
response to the variation of Le, and the predominance of positively curved bulges and the presence
of intermediate sharply negatively curved cusps between positively curved bulges for the Le < 1
flames have not been sufficiently explained in the existing literature. This distribution has strong
implications on the augmentation of flame wrinkling and overall burning rate with decreasing
Lewis number [39,42,44,54–58]. Thus, it is important to gain a better understanding of the curvature
evolution in the presence of thermo-diffusive instabilities and their interrelation with flame shape
and propagation in order to be able to derive high fidelity models, which can predict the non-unity
Lewis number effects on premixed turbulent combustion. The flame curvature transport equation in
Cartesian coordinates is a relatively new concept and the effects of thermo-diffusive instabilities on
curvature transport are yet to be understood in detail. In order to address the aforementioned deficits
in the existing literature, the statistical behaviours of the curvature transport have been analysed in
this paper for statistically spherical flames with characteristic Lewis numbers Le = 0.8, 1.0 and 1.2.
In this respect, the main objectives of this paper are:

1. To demonstrate the effects of Lewis number on the terms of the transport equation of flame
curvature κm in spherically expanding turbulent premixed flames.
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2. To identify the mechanisms, which lead to the effects of thermo-diffusive instability
(i.e., augmentation of burning rate and flame wrinkling and a positive correlation between
local burning rate and flame curvature) in the flames with Le < 1.

The mathematical and numerical background pertaining to this analysis are presented in the next
two sections of this paper. Following that, the results will be presented and subsequently discussed.
The main findings will be summarised and conclusions are drawn in the final section of this paper.

2. Mathematical Background

In the current analysis, the chemical mechanism has been simplified by a single-step irreversible
reaction so that the effects of characteristic Lewis number Le can be investigated in isolation, as done
in several previous analyses [39–42,44,54–58]. The present analysis considers three characteristic Lewis
numbers Le = 0.8, 1.0 and 1.2 following previous analyses [39–42,44,54–58]. Furthermore, the current
analysis only focuses on Lewis number effects (i.e., differential diffusion of heat and mass) and not the
differential diffusion between species.

In the case of non-unity Lewis number flames, the scalar field can be characterised by the reaction
progress variable c and non-dimensional temperature θ, which are defined as:

c =
YR0 −YR

YR0 −YR∞
(1)

θ =
(T − T0)

(Tad − T0)
(2)

where YR is the mass fraction of a suitable reactant which is used for defining the reaction progress
variable. The subscripts 0 and ∞ are used to refer to values in the unburned gas and fully
burned products, respectively. In Equation (2), T, T0 and Tad denote the dimensional temperature,
unburned gas temperature and adiabatic flame temperature, respectively.

The transport equation of the reaction progress variable c(x, t) is given by:

∂c
∂t

+ uj
∂c
∂xj

=
1
ρ

∂

∂xj

(
ρDc

∂c
∂xj

)
+

.
wc =

1
ρ

∂

∂xN

(
ρDc

∂c
∂xN

)
+ Dc

∂c
∂xN

ni,i +
.

wc (3)

where uj is the jth component of the flow velocity, ρ is the fluid density, Dc is the diffusivity of c and
.

wc is chemical reaction rate. The reaction rate
.

wc variation with c for the present thermo-chemistry
is shown in Figure 1 of ref. [59] and thus will not be repeated in this paper. The flame normal vector,
n, of a c iso-surface is defined as:ni = −(∂c/∂xi)/|∇c| = −c,i/|∇c| = c,i/(∂c/∂xN), where xN is the
coordinate in the normal direction to the iso-surface. The quantity, ni,i/2 = 0.5∂ni/∂xi = κm is the
mean value of two principal curvatures of the iso-surface and will henceforth be referred to as the
flame curvature in this paper. According to the convention used here, the flame normal points towards
the reactants and the flame surface has a positive (negative) curvature where it is convex (concave) to
the reactants. The transport equation of c(x, t) can alternatively be presented in the kinematic form
as [21,22,24,32–41]:

∂c
∂t

+ uj
∂c
∂xj

= Sd|∇c| (4)

where Sd is the displacement speed, which is expressed as [21,22,24,32–41]:

Sd(x, t) =
1

ρ|∇c|
∂

∂xN

(
ρDc

∂c
∂xN

)
− 2Dcκm +

.
wc

|∇c| (5)
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Figure 1. Instantaneous isosurfaces of reaction progress variable 𝑐 = 0.8  colored by non-dimensional 
temperature 𝜃 (a), local values of normalised curvature 𝜅 × 𝛿  (b) and normalised Gauss curvature 𝜅 ×𝛿  (c) for cases with Le=0.8, 1.0 and 1.2 (1st–3rd row). 

Table 1 presents the nomenclature associated with Equation (8), where the total strain rate and 
rotation rate tensors are expressed as S =  𝑆 + S  and W =  𝑊 + W  respectively [52,53]. The 
strain rate 𝑆  and rotation rate 𝑊  tensors originate due to the fluid motion, and the additional 
strain rate S  and rotation W  rate tensors originate due to the gradients of spatially dependent 
S . 
  

Figure 1. Instantaneous isosurfaces of reaction progress variable c = 0.8 colored by non-dimensional
temperature θ (a), local values of normalised curvature κm × δth (b) and normalised Gauss curvature
κg × δ2

th (c) for cases with Le = 0.8, 1.0 and 1.2 (1st–3rd row).

Differentiating Equation (3) with respect to xi yields [52,53]:

1
|∇c|

(
∂|∇c|

∂t
+ vc

j
∂|∇c|

∂xj

)
= −nivc

j,inj (6)

∂ni
∂t

+ vc
j
∂ni
∂xj

= −
(
δij − ninj

)
Sc

jknk + Wc
ijnj; (7)

where vc
j = uj + Sdnj is the jth component of local propagation velocity of a given c isosurface.

The quantity nivc
j,inj = niSc

ijnj = ac
N = aN + ∂Sd/∂xN is often referred to as the total or effective

normal strain rate [46,48,49,53,56,57], whereas aN = niSijnj is the fluid-dynamic normal strain rate and
∂Sd/∂xN is an added normal strain rate induced by flame propagation [46,48,49,53,60,61]. The gradient
of the flame propagation velocity vc

j takes the following form [52,53]:

vc
j,i =

∂vc
j

∂xi
= 1

2

(
∂vc

j
∂xi

+
∂vc

i
∂xj

)
+ 1

2

(
∂vc

j
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∂xj

)
= 1

2
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)
+ 1

2

(
∂uj
∂xi
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∂xj

)
+ 1

2

(
∂Sd
∂xi

nj +
∂Sd
∂xj

ni

)
+ 1

2

(
∂Sd
∂xi

nj − ∂Sd
∂xj

ni

)
+ Sd

1
2

(
∂nj
∂xi

+ ∂ni
∂xj

)
+ Sd

1
2

(
∂nj
∂xi
− ∂ni

∂xj

)
= Sc

ij −Wc
ij

(8)

Table 1 presents the nomenclature associated with Equation (8), where the total strain rate and
rotation rate tensors are expressed as Sc

ij = Sij + Sa
ij and Wc

ij = Wij +Wa
ij respectively [52,53]. The strain

rate Sij and rotation rate Wij tensors originate due to the fluid motion, and the additional strain rate Sa
ij

and rotation Wa
ij rate tensors originate due to the gradients of spatially dependent Sd.
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Table 1. Nomenclature associated with the velocity gradient tensor vc
i,j of an iso-surface element.

Description Term

Total strain rate tensor Sc
ij = 0.5

(
∂vc

i /∂xj + ∂vc
j /∂xi

)
Total rotation rate tensor Wc

ij = 0.5
(

∂vc
i /∂xj − ∂vc

j /∂xi

)
Flow strain rate tensor Sij = 0.5

(
∂ui/∂xj + ∂uj/∂xi

)
Flow rotation rate tensor Wij = 0.5

(
∂ui/∂xj − ∂uj/∂xi

)
Added strain rate tensor

Sa
ij = 0.5[

(
∂Sd/∂xj

)
ni + (∂Sd/∂xi)nj

]
︸ ︷︷ ︸

Space dependence of Sd

+ Sd0.5
(

∂ni/∂xj + ∂nj/∂xi

)
︸ ︷︷ ︸

Propagating curved iso−c

Added rotation rate tensor
Wa

ij = 0.5[
(

∂Sd/∂xj

)
ni − (∂Sd/∂xi)nj]︸ ︷︷ ︸

Space dependence of Sd

+ Sd0.5
(

∂ni/∂xj − ∂nj/∂xi

)
︸ ︷︷ ︸

Propagating curved iso−c

Taking the derivative with respect to xi on both sides of Equation (7) yields a transport equation
of κm = 0.5(κ1 + κ2) = 0.5ni,i (with κ1 and κ2 being the two principal curvatures) [52,53]:

∂κm
∂t + vc

j
∂κm
∂xj

=
aN(ni,i)

2︸ ︷︷ ︸
T1

+
1
2

∂aN
∂xN︸ ︷︷ ︸
T2

−Sijnj,i︸ ︷︷ ︸
T3

−1
2

∂Sij

∂xi
nj︸ ︷︷ ︸

T4

+
1
2

∂Wij

∂xi
nj︸ ︷︷ ︸

T5︸ ︷︷ ︸
f low terms

+
1
2

∂Sd
∂xN

ni,i︸ ︷︷ ︸
T6

+
1
2

∂2Sd
∂xN2︸ ︷︷ ︸
T7

−Sa
ijnj,i︸ ︷︷ ︸
T8

−1
2

∂Sa
ij

∂xi
nj︸ ︷︷ ︸

T9

+
1
2

∂Wa
ij

∂xi
nj︸ ︷︷ ︸

T10︸ ︷︷ ︸
added terms

(9)

The terms T1−5 arise due to fluid motion, whereas T6−10 originate due to flame propagation.
The positive (negative) contributions of these terms tend to increase the convexity (concavity) of
iso-surfaces. The physical significances of the terms on the right side of Equation (9) are summarised
in Table 2.

Table 2. Description of the various terms in the curvature transport Equation (9).

Flow Terms Added Terms

Terms Description Terms Description

T1
Contribution due to curvature and flow
normal strain rate correlation T6

Term due to curvature and added normal
strain rate correlation

T2
Contribution due to flow normal strain rate
normal variation T7

Contribution due to added normal strain
rate normal variation

T3 Flow stretching term T8 Added stretching term
T4 Contribution of flow strain rate gradients T9 Contribution of added strain rate gradients
T5 Contribution of flow vorticity curl T10 Contribution of added vorticity curl

It can be appreciated from Equation (9) that curvature transport depends mainly on the statistics
of fluid velocity/vorticity, scalar gradient and displacement speed. It has been demonstrated in the
past that displacement speed statistics from simple chemistry [38–41,45] and detailed chemistry [32–37]
DNS are qualitatively similar. The same is true for the statistics of the reactive scalar gradient obtained
from simple chemistry [43–45,62] and detailed chemistry [47,62] DNS studies. Moreover, the vorticity
and sub-grid flux statistics obtained from simple chemistry [59,63,64] DNS are found to be qualitatively
consistent with those obtained from detailed chemistry [65,66] DNS. Furthermore, several models
developed based on simple chemistry data [64,67,68] have been found to perform equally well in the
context of detailed chemistry and transport [66,69,70].
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3. Numerical Implementation

In the present analysis, DNS simulations of spherically expanding turbulent premixed flames with
Le = 0.8, 1.0 and 1.2 have been carried out using a well-known compressible code SENGA [71] where
the conservation equations of mass, momentum, energy and reaction progress variable have been
solved in non-dimensional form. The Le = 0.8 case is representative of hydrogen-blended methane-air
mixtures (e.g., 10% by volume hydrogen blended methane-air flames with overall equivalence ratio
of 0.6) and the Lewis number 1.2 case is representative of a hydrocarbon-air mixture involving a
hydrocarbon fuel which is heavier than methane (e.g., ethylene-air mixture with equivalence ratio
of 0.7) [72,73]. The unity Lewis number flames are analogous to the stoichiometric methane-air
flame [72,73]. The spatial discretisation for internal grid points has been carried out using a 10th
order central difference scheme and the order of differentiation decreases gradually to a one-sided
2nd order scheme at the non-periodic boundaries [71]. The time-advancement has been carried
out using a 3rd order explicit Runge–Kutta scheme [74]. The computational domain is taken to
be a cube of 58.10δth × 58.10δth × 58.10δth (where δth = (Tad − T0)/max|∇T|L is the thermal flame
thickness and the subscript ‘L’ is used to refer to conditions in the unstrained laminar premixed flame),
which is discretised by a uniform Cartesian grid of 650× 650× 650. In all the cases considered here,
the boundaries of the computational domain are taken to be partially non-reflecting and are specified
using the Navier–Stokes Characteristic Boundary conditions (NSCBC) technique [75]. The reacting
scalar fields obtained from a steady state unstrained laminar flame have been utilised to create a
burned gas sphere with its centre initially at the centre of the domain. This reacting scalar field is
allowed to evolve in a quiescent environment at least for one chemical time scale (i.e., t = δth/SL).
For all simulations, standard values are taken for Prandtl number Pr and Zel’dovich number
β = Tac(Tad − T0)/T2

ad (i.e., Pr = 0.7 and β = 6.0 with Tac being the activation temperature) and the
heat release parameter τ = (Tad − T0)/T0 is taken to be 4.5 for all cases considered here. The spherical
laminar flame kernels for different Lewis numbers with a normalised radius of rSL/αT0 = 10.6 (where
αT0 is the thermal diffusivity of the unburned gas) based on the region corresponding to c ≥ 0.85
have been considered as the initial condition for turbulent simulations. A standard pseudo-spectral
method [76] has been adopted to initialise homogeneous isotropic turbulent velocity fluctuations
following the model spectrum by Pope [77]. For all cases the initial values of the normalised
root-mean-square velocity fluctuation and longitudinal integral length scale are given by: u′/SL = 7.5
and l/δth = 4.58, respectively. These values of u′/SL and l/δth are representative of the thin reaction
zones regime of combustion according to the regime diagram by Peters [78]. All the turbulent
simulations have been continued for 2 initial eddy turnover times (i.e., t = l/

√
k where k is the

turbulent kinetic energy based on the whole domain), which is equivalent to 1.0 chemical timescale
(i.e., tchem = δth/SL). By this time, the turbulent kinetic energy was not varying rapidly with time and
u′ decayed by 40% in comparison to its initial value.

4. Results and Discussion

4.1. Curvature Characterisation

The flame topology is often characterised by the mean of principal curvatures
(i.e., κm = 0.5(κ1 + κ2)) and Gauss curvature κg = κ1κ2 [79] where κ1 and κ2 are the principal
curvatures. The c = 0.8 isosurface coloured by local values of non-dimensional temperature θ,
normalised mean curvature κm × δth and normalised Gauss curvature κg × δ2

th for the Le = 0.8, 1.0 and
1.2 flames are shown in Figure 1. It is worth noting that the reaction rate

.
wc assumes maximum value

close to c = 0.8 for the present thermochemistry and this isosurface can be taken to be the flame
surface for the purpose of this analysis.

It is evident from Figure 1 that the extent of wrinkling and burned gas volume increase with
decreasing Le, and especially the occurrences of saddle point topologies (i.e., κg < 0) and sharply
negatively curved cusps (i.e., large magnitudes of negative κm) increase with decreasing Lewis number.
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The augmentation of flame wrinkling with decreasing Le has implications on the extent of burning and
flame surface area, which can be substantiated from Table 3 where the normalised volume-integrated
burning rate ΩT/ΩL and flame surface area AT/AL are listed. Here, Ω and A are evaluated by
volume-integrals Ω =

∫
V ρ

.
wcdV and A =

∫
V |∇c|dV, respectively and the subscripts T and L refer

to the values in turbulent flame and initial laminar flame kernels, respectively. The fresh reactants
diffuse faster into the reaction zone than the rate at which heat diffuses out in the Le = 0.8 flame.
This gives rise to higher burning rate in the Le = 0.8 flame than in the corresponding unity Lewis
number case. The diffusion of reactants is slower into the reaction zone than the rate at which heat
diffuses out in the Le = 1.2 flame, which in turn reduces the burning rate in the Le = 1.2 case than
in the corresponding unity Lewis number case. This is qualitatively consistent with several previous
findings [1,39,41,42,44,54–58].

Table 3. Lewis number dependence of the normalised volume-integrated burning rate ΩT/ΩL and
flame surface area AT/AL when the statistics were extracted.

Le ΩT/ΩL AT/AL

0.8 13.75 13.22
1.0 6.86 7.30
1.2 3.86 4.66

It can be seen from Figure 1 that high temperature zones are associated with positive κm values in
the Le = 0.8 case, whereas the high temperature zones are associated with negatively curved zones
(i.e., κm < 0) in the Le = 1.2 case. The non-dimensional temperature θ remains uniform and equal
to 0.8 (i.e., θ = c = 0.8) on the c = 0.8 isosurface in the unity Lewis number case. The statistically
spherical flames have predominantly positive curvatures where the combination of strong focussing
of reactants and weak defocussing of heat gives rise to high reaction rate in the positively curved
regions in the Le = 0.8 flame. Just the opposite mechanisms lead to low reaction rate at the negatively
curved regions in the Le = 0.8 flame. This also gives rise to θ > c at the positively curved locations
in the Le = 0.8 flame. As a result of this, the Le = 0.8 case exhibits stable positively curved bulges
with large radius of curvature separated by sharply negatively curved cusps. In the Le = 1.2 case,
the focussing of heat is faster than the defocussing of reactants at the negatively curved locations,
which increases the reaction rate magnitude in these locations and may give rise to local occurrences
of θ > c. Thus, the sharply negatively curved pockets burn faster in the Le = 1.2 case and as a result
sharp negatively curved cusps with small radius of curvature are unlikely to survive in this case.
The unity Lewis number case is thermo-diffusively neutral and thus, for low-Mach number adiabatic
conditions, the non-dimensional temperature θ remains equal to the reaction progress variable.

The high temperature values at the positively curved zones significantly increase the fuel
consumption rate per unit area in the turbulent Le = 0.8 case in comparison to the corresponding
unstrained laminar flame value and this gives rise to a ΩT/ΩL value, which is greater than AT/AL.
The consumption rate per unit area in the turbulent Le = 1.0 case remains comparable to the
corresponding unstrained laminar flame value and thus ΩT/ΩL and AT/AL remain close to each other.
The combination of strong thermal diffusion and weak diffusion of reactants into the reaction zone
reduces the consumption rate per unit area in the positively stretched zones in turbulent Le = 1.2 case in
comparison to the corresponding unstrained laminar flame value, which results in ΩT/ΩL < AT/AL
in this case.

The probability density functions (PDFs) of normalised curvature κm × δth for different
c-isosurfaces across the flame front are shown in Figure 2. It is evident from Figure 2 that the width of
the curvature PDFs tends to increase with decreasing Lewis number due to increased flame wrinkling
with decreasing Lewis number Le. The most probable value of κm has been found to be close to zero
for all flame kernels considered here but the mean value of κm remains positive due to the statistically
spherical configuration. In the Le ≥ 1 flames, the PDFs of normalised curvature κm × δth remain
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almost symmetric around κm × δth = 0 towards the unburned gas side of the flame front (e.g., c = 0.1)
due to the strong deformation of the flame surface as a result of the interaction between energetic
eddies with the preheat zone. However, the PDFs of normalised curvature κm × δth exhibit higher
propensity to obtain positive values for the major part of flame front. It can be seen from Figure 2 that
the high magnitudes of negative κm are more frequent for the c = 0.5, 0.7 and 0.9 isosurfaces in the
Le = 0.8 case than in the corresponding Le = 1.0 and 1.2 cases. This tendency for the Le = 0.8 flame
could be a consequence of thermo-diffusive instability associated with Le < 1, where sharply negative
curved cusps with small radii of curvature are found in between positively curved bulges with large
or moderate radii of curvature.
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The Joint Probability Density Functions (JPDFs) of normalised mean curvature κm × δth and
normalised Gauss curvature κg × δ2

th for different c iso-surfaces across the flame are shown in Figure 3.
The region corresponding to κg > κ2

m on the κm − κg plane corresponds to complex principal curvature
values and thus cannot be realised in practice. The combination of κm > 0 (κm < 0) and κg > 0
corresponds to cup convex (concave) shapes. By contrast, the combination of κm > 0 (κm < 0) and
κg < 0 corresponds to saddle convex (concave) shapes. Finally, the combination of κm > 0 (κm < 0)
and κg = 0 corresponds to tile convex (concave) flame topologies. For a schematic diagram of these
topologies interested readers are referred to Figure 1 of ref. [53]. The spread of κm × δth values on both
positive and negative sides for the Le = 0.8 case is greater than that in the corresponding Le = 1.0
and 1.2 cases, which is indicative of larger extent of flame wrinkling in the Le = 0.8 case (see Figure 1
and Table 3). The highest values of joint PDFs are obtained for a positive value of κm close to κm ≈ 0,
which is consistent with the observations made from Figure 2. Figure 3 demonstrates that the joint
PDFs in the Le = 0.8 case show skewness for the negative values of κm × δth on the unburned gas side
of the flame, but the joint PDFs eventually become skewed towards the positive values of κm as the
burned gas side is approached. The distribution depicted by the joint PDF also shows a propensity to
obtain predominantly positive κm towards the burned gas side of the flame front for both Le = 1.0
and 1.2 cases but this tendency is more prevalent for the Le = 1.2 case. The high probability of finding
negatively curved cusps (κm < 0) for the Le = 0.8 case is a reflection of the thermo-diffusive instability
in this flame. Both cup and saddle topologies appear considerably for convex and concave curvatures
throughout the flame front in all cases. However, the cup like topology, whether for concave or
convex structure, is more probable than the saddle and tile topologies for all cases considered here.
The probability of finding saddle topologies decreases from the unburned to the burned gas side for
all flames considered here. Moreover, the probability of finding saddle topologies decreases with
increasing Le, which is consistent with the observations made from Figure 1.
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Le = 0.8,1.0 and 1.2 (1st–3rd row).

The budgets of the various terms in the curvature transport equation conditional on c will be
discussed in the next section. Based on this analysis it will be possible to judge the magnitude of the
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different terms and which terms possibly balance each other. Beside this, another focus of this paper is
to establish a relation between the terms of the curvature transport equation and flame instabilities that
might occur under certain conditions. It will therefore be instructive to analyse the terms T1, . . . , T10

conditional on mean curvature in the next but one section. Only by this additional representation,
it will be possible to understand if positive or negative flame curvature elements are damped or
possibly amplified in the presence of flame instabilities.

4.2. Mean Profiles of Source/Sink Terms of the Curvature Transport Equation

The profiles of mean values of Ti× δ2
th/SL conditional on c for Le = 0.8, 1.0 and 1.2 cases are shown

in Figure 4a–c respectively. The objective of Figure 4 is to provide insights into the mean behaviour of
the terms on the right-hand side of the curvature transport equation (i.e., Equation (9)) across the flame.
It can be seen from Figure 4 that the term T1 × (δ2

th/SL), originating from the correlation between
curvature and normal strain rate, assumes weakly negative values for the major part of the flame front
for the for Le = 1.0 and 1.2 cases. In these cases, the mean value of T1 × (δ2

th/SL) remains weakly
positive towards the burned gas side of the flame front. However, the mean values of T1 × (δ2

th/SL)

remain positive throughout the flame front for the Le = 0.8 case. Therefore, the term T1 tends to
increase the convexity of iso-surface in the Le = 0.8 case, while the opposite behaviour is obtained
in the Le = 1.0 and 1.2 cases. In the Le = 1.0 and 1.2 flames the reaction progress variable gradient
∇c aligns predominantly with the most compressive principal strain rate due to stronger turbulent
straining than the strain rate arising from flame normal acceleration induced by chemical heat release.
This leads to predominantly negative normal strain rate aN = (eα cos2 θα + eβ cos2 θβ + eγ cos2 θγ)

(where eα, eβ and eγ are the most extensive, intermediate and the most compressive eigenvalues of the
strain rate tensor Sij = 0.5(∂ui/∂xj + ∂uj/∂xi) and θα, θβ and θγ are the angles of their eigenvectors
with ∇c, respectively) in the Le = 1.0 and 1.2 flames considered here. In these cases, ∇c exhibits some
tendency for local preferential collinear alignment with eα only in the heat release zone. However,
the alignment of ∇c with the most extensive principal strain rate weakens especially in the positively
curved locations due to defocussing of heat [27,39,40,43,80–82], which gives rise to a situation where
the highly negative aN values are associated with highly positively curved locations. This gives rise
to negative mean value of T1 × (δ2

th/SL) in the Le = 1.0 and 1.2 cases considered here. In the case of
Le = 0.8, the alignment of∇c with the eigenvector associated with eα (eγ) is stronger (weaker) than the
Le = 1.0 and 1.2 cases owing to stronger heat release effects. Furthermore, the alignment of ∇c with
the eigenvector associated with eα increases in the positively curved regions due to high reaction rate
and heat release associated with these locations. As a result, high positive values of aN are obtained at
the positively curved locations in the Le = 0.8 case to yield positive mean values of T1 × (δ2

th/SL).
The mean contribution to the curvature transport due to normal gradients of the flow normal

strain rate, T2 × (δ2
th/SL) = [(∂aN/∂xN)/2]/(δ2

th/SL), assumes negative values on the reactant side
but becomes positive towards the burned gas side of the flame. The normal strain rate aN increases
gradually from the reactant side toward the product side due to the heat release and reaches its
maximum close to the reaction zone, and hence its normal gradient ∂aN/∂xN becomes zero, then it
decreases again near the product side [61]. Accordingly, the tendency of (∂aN/∂xN) < 0 is high on
the reactant side, while the opposite occurs on the product side of the flame front. Consequently,
T2 tends to act as a sink (source) term toward the reactant (product) side of the flame front. However,
the profile and the magnitude of aN change due to differential diffusion effects induced by non-unity
Lewis number [61]. This also alters the location at which the highest value of aN is obtained [61]. As a
result of this, the magnitude of T2 increases with decreasing Le and in all cases the magnitude of the
positive mean value of T2 × (δ2

th/SL) remains greater than the negative mean contribution towards the
unburned gas side.
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The mean value of the curvature flow stretching term T3 × (δ2
th/SL) = −(Sijnj,i)(δ

2
th/SL) is found

to be positive throughout the flame brush in all cases considered here. The magnitude of T3 becomes
comparable to T2 for the Le = 1.2 case but its magnitude in comparison to T2 remains small in the
Le = 0.8 case. Using (xT1, xT2) as the local principal axes along the tangential directions on a given c
isosurface, the curvature flow stretching term can be expressed as T3 = −(S11κ1 + S22κ2), where S11

and S22 are the tangential strain rates along axes xT1 and xT2, respectively. The mean tangential strain
rate aT = S11 + S22 assumes positive values throughout the flame front for all flames considered
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here [43–49]. A positive magnitude of T3 is obtained for a combination of cup and saddle concave
iso-scalar topologies. For S11 > 0 and S22 > 0, one can obtain T3 > 0 for a cup concave structure where
κ1 < 0 and κ2 < 0 or for a saddle topology where either κ1 < 0 and κ2 > 0 when S11 > S22 or κ1 > 0
and κ2 < 0 when S11 < S22.

The statistical behaviour of the mean value of the term T4 × (δ2
th/SL) =

−{[(∂Sij/∂xi)nj]/2}(δ2
th/SL) conditional on c shows an opposite trend in comparison to that

of T2, in other words it exhibits positive contribution toward the reactant side but becomes negative on
the burned gas side. This means that the two vectors with components ∂Sij/∂xi and nj, respectively are
in the same direction on the reactant side, while they point in the opposite direction on the burned
gas side. The magnitudes of T2 and T4 are mostly comparable and remain in balance for all cases
considered here.

The normalised contribution to the curvature transport due to vorticity
gradients, T5 × (δ2

th/SL) = {[(∂Wij/∂xi)nj]/2}(δ2
th/SL), can alternatively be written

as: T5 = {[niεijk(∂ωk/∂xj)]/4}(δ2
th/SL). The mean value of T5 can be expressed as

T5 = (∂ω2/∂x1 − ∂ω1/∂x2)/4, using the local principal axes (xT1, xT2, xN) and n = (0, 0, 1),
where ω1 and ω2 are the components of the flow vorticity tangent to the c iso-surface. Thus, co-rotating
parallel vortices of different intensity and counter-rotating parallel vortices of the same intensity can
potentially curve a planar local iso-surface structure, leading to positive or negative curvatures. For the
cases considered here, the mean value of T5 shows negligible contribution throughout the flame front.

In the Le = 1.2 case, the mean values of the term T6 × (δ2
th/SL) = {(∂Sd/∂xN)ni,i/2}(δ2

th/SL)

which arises due to the correlation between (∂Sd/∂xN) and κm, exhibit positive contributions
throughout the flame front, while a weakly positive trend is seen in the Le = 1.0 case for the major part
of the flame. However, this term shows negative contribution throughout the flame in the Le = 0.8
case. It has been demonstrated elsewhere that the contributions of (∂Sd/∂xN) and aN are of same
order of magnitude but opposite in behaviour [61], and hence an opposite behaviour for the mean
values of T1 and T6 is observed. It is also worth noting that (∂Sd/∂xN) is predominantly negative and
its magnitude decreases with increasing Le [61]. Furthermore, small values of the flame thickness are
associated with the positively curved locations in the Le = 0.8 case [60], which tends to increase the
magnitude of negative (∂Sd/∂xN) at positive κm values. This leads to predominantly negative mean
contribution of T6 in the Le = 0.8 flame. By contrast, small values of the flame thickness are associated
with the negatively curved locations in the Le = 1.2 case [61], and this increases the magnitude
of negative (∂Sd/∂xN) at negative κm values, leading to positive mean values of T6. The quantity
(∂Sd/∂xN) remains weakly correlated with κm in the Le = 1.0 case [61], which leads to weak positive
mean value of this term throughout the flame front.

The normalised mean value of the term T7 × (δ2
th/SL) = [(∂2Sd/∂xN

2)/2](δ2
th/SL), due to the

normal gradient of the added normal strain rate, assumes a positive mean value towards the unburned
gas side but becomes negative toward the burned gas side of the flame. The magnitude of T7 decreases
with increasing Le. As it has been shown elsewhere [61] that the contributions of (∂Sd/∂xN) and aN are
of the same order of magnitude but opposite in sign, their normal gradients (∂2Sd/∂xN

2 and ∂aN/∂xN)
are expected to exhibit the opposite behaviour, and thus, T7 exhibits an opposite trend to T2.

In the thin reaction zones regime flames considered here, the normalised added stretching term
T8 × (δ2

th/SL) = −(Sa
ijnj,i)(δ

2
th/SL) acts as a leading order contributor in all cases where it remains

negative throughout the flame. Using the local principal axes (xT1, xT2, xN) and for n = (0, 0, 1),
one can express the term as T8 = −Sd(κ

2
1 + κ2

2), which explains the predominant negative contribution
of T8 throughout the flame front. The magnitude of T8 increases with decreasing Le due to a larger
spread of displacement speed Sd and principal curvatures κ1 and κ2 as a result of greater extent of
flame wrinkling.
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The second derivatives of Sd and ni determine the normalised mean contributions due to the
added strain rate gradients T9 × (δ2

th/SL) = −{[(∂Sa
ij/∂xi)nj]/2}(δ2

th/SL), which exhibit negative
(positive) contribution towards reactant (product) side in all cases. The mean contribution of the
added vorticity contribution term T10 = [−0.25(δij − ninj)∂

2Sd/∂xi∂xj + 0.25(∂Sd/∂xN)ni,i] remains
negligible in all cases considered here.

It can be inferred from Figure 4 that the terms T2, T4, T7, T8 and T9 are the leading order terms
of the mean curvature transport for all cases. In addition, the term T3 plays a leading order role for
the Le = 1.2 case. However, in all cases considered here, the mean contributions of T2 and T4 assume
comparable magnitudes with opposite signs and remain mostly in balance.

4.3. Mean Profiles of the Terms of the Curvature Transport Equation Conditioned Upon Curvature

The normalised mean values of flow-induced terms (i.e., T1−5) and added flame propagation
terms (i.e., T6−10) in the mean curvature transport equation conditional upon the normalised curvature
κmδth for the c = 0.8 isosurface are shown in Figure 5. It can be seen from Figure 5 that the magnitudes
of the mean values of T1−10 increase with decreasing Le. In Figure 5, the positive contributions
of the terms in the positively curved locations tend to increase the convexity of the flame surface,
whereas the negative contributions of the terms act to reduce the convexity at κm > 0. By the same
token, the positive contributions of the terms in the negatively curved locations tend to decrease the
concavity of the flame surface, whereas the negative contributions of the terms act to increase the
concavity at κm < 0.

It is evident from Figure 5 that the mean contribution of T1 = [(aNni,i)/2] assumes negative
values for κm < 0 and positive values for κm > 0 for all cases on the c = 0.8 isosurface. In the
reactive region aN assumes predominantly positive values due to predominant preferential alignment
between ∇c with the eigenvector associated with eα, and this leads to negative (positive) values of
T1 = [(aNni,i)/2] at the negatively (positively) curved zones on the flame surface.

In all cases, the term T2 exhibits negative mean values associated with κm > 0 and positive mean
values are obtained for κm < 0. The flow divergence ahead of the positively curved zones and flow
convergence ahead of the negative curved regions lead to positive mean values of T2 for κm < 0 and
negative values of T2 for κm > 0. The mean contribution of the flow stretching term T3 = −(Sijnj,i)

shows large positive values for convex topologies and weakly positive mean values for topologies with
concave curvatures in the Le = 1.0 and 1.2 cases, whereas large positive mean values of T3 are obtained
at both highly positive and negative curved locations for the Le = 0.8 case. This is in agreement
with Figure 4, which shows that the mean value of T3 conditional on c remains positive throughout
the flame. The probability of finding both cup concave and saddle concave topologies is greater in
the Le = 0.8 case than in the Le = 1.0 and 1.2 cases, where T3 can assume positive values, and thus
the mean value of T3 conditional on κm assumes large positive values in the negative curved zones.
The mean value of T4 conditional on κm shows an opposite behaviour in comparison to T2, and thus it
exhibits positive (negative) mean values for κm > 0 (κm < 0). The mean value of T5 conditioned on
curvature shows almost similar behavior to T4 but the conditional mean value of T5 remains negligible
for κm < 0.
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transport equation conditional upon normalised curvature κm × δth on the c = 0.8 isosurface for cases
(a–c) Le = 0.8, 1.0 and 1.2.

The mean contributions of the additional normal strain term T6 = {(∂Sd/∂xN)ni,i/2} and the
term due to the normal gradient of the added normal strain rate T7 conditional upon curvature remain
negligible in comparison to the conditional mean values of T8, T9 and T10. The mean contribution
to the added stretching term, T8 = −(Sa

ijnj,i) conditioned on curvature plays a leading order role.
It has already been mentioned that in the coordinate aligned with principal axes of curvature, T8 can
be expressed as: T8 = −Sd(κ

2
1 + κ2

2), which implies a non-linear (e.g., cubic) curvature dependence
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of T8 due to the curvature dependence of displacement speed Sd [32–41]. Consequently in all cases
considered here, T8 exhibits an asymmetric trend with respect to κm = 0, where its negative (positive)
mean values correlating to κm < 0 (κm > 0), with κm = 0 being the inflection point for the Le = 0.8,
1.0 and 1.2 cases. However, in the Le = 0.8 case, the negative mean contribution of T8 conditioned
on κm for negatively curved regions remains much greater than the positive mean contribution in
the positively curved zones. By contrast, the positive mean contribution of T8 conditioned on κm for
positively curved regions remains much greater than the negative mean contribution in the negatively
curved zones in the Le = 1.0 and 1.2 cases. The mean contribution of the term T9 due to the added
strain rate gradients conditional upon curvature κm exhibits large positive values for topologies with
highly negative curvatures but its mean value assumes small negative values in the positively curved
zones for the Le = 1.0 and 1.2 cases. In the Le = 0.8 case, the negative mean contribution of T9

remains negligible at highly positively curved locations. The mean values of the added vorticity curl
contribution T10 conditional upon κm exhibit similar qualitative trend as that of T9.

4.4. Overall Behaviour of the Terms in the Curvature Transport Equation

Figure 6 (left column) shows the normalised mean values of net fluid flow contributions
(T1 + · · ·+ T5)× (δ2

th/SL), flame propagation induced added contributions (T6 + · · ·+ T10)× (δ2
th/SL)

and the total contribution (T1 + · · ·+ T10)× (δ2
th/SL) conditional upon the reaction progress variable c.

As T1 and T5 have negligible contributions and T4 nullifies T2, the net mean values of fluid
motion terms (T1 + · · ·+ T5)× (δ2

th/SL) follow the statistical trend of the curvature flow stretching
term T3 × (δ2

th/SL) in all cases considered here. It is evident from Figure 6 (left column) that
the net contribution of the added terms due to flame propagation (T6 + · · ·+ T10) × (δ2

th/SL)

dominates over the net contribution of the terms (T1 + · · ·+ T5)× (δ2
th/SL) arising from fluid flow.

The mean contributions of (T6 + · · ·+ T10)× (δ2
th/SL) and (T1 + · · ·+ T10)× (δ2

th/SL) remain negative
throughout the flame front for all cases. This behaviour originates because the negative contributions
of T8 and T9 dominate over the positive contribution arising from T7 on the unburned gas side,
whereas the combined negative contributions of T7 and T8 dominate over the positive contribution of
T9 on the product side of the flame front.

The statistical behaviours of the normalised mean values of flow contributions (T1 + · · ·+ T5)×
(δ2

th/SL), flame propagation induced contributions (T6 + · · ·+ T10) × (δ2
th/SL) and the total

contribution (T1 + · · ·+ T10) × (δ2
th/SL) to the curvature transport, conditioned on curvature κm

are shown in Figure 6 (right column) for the c = 0.8 isosurface. It is clear from Figure 6 (right column)
that the mean values of the flow contributions (T1 + · · ·+ T5) are negligible in comparison to the mean
values of the overall added flame propagation terms (T6 + · · ·+ T10) in the negative curved locations,
whereas the flow terms (T1 + · · ·+ T5) dominate over (T6 + · · ·+ T10) for positive curvatures in the
Le = 0.8 case. However, in the Le = 1.0 and 1.2 cases, the net mean flame propagation contribution
(T6 + · · ·+ T10) dominates over the mean contribution of the flow terms (T1 + · · ·+ T5) especially for
the highly positive and negative curvatures. It can clearly be seen that the net contribution of the
added terms induced by flame propagation conditional upon mean curvature κm shows the same trend
of the added strain rate and vorticity gradients terms T9 and T10 in the positively curved locations,
whereas the added curvature stretching term T8 determines the net mean behaviour of the added
flame propagation contribution in the negatively curved zones. Thus, the net mean contribution
of (T6 + · · ·+ T10) remains negative for both highly negative and positive curvatures. However,
the magnitudes of mean negative (T6 + · · ·+ T10) in the positively curved zones are much greater
than that in the negative curvatures in the Le = 1.0 and 1.2 cases. Just the opposite behaviour can be
seen for the Le = 0.8 case, and the magnitude of the negative mean contribution of (T6 + · · ·+ T10) at
the negatively curved locations is especially large in this case due to large negative values of T8. It is
recalled that positivity (negativity) of (T1 + · · ·+ T10) leads to increasing positivity (negativity) of mean
curvature. As a result of such an amplification of positive (negative) curvature values, the position
of flame elements in the diagrams shown in the right column of Figure 6 moves towards the right
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(left) and the opposite happens for a damping of curvature values. In other words, Figure 6 implies a
characteristic motion of the location of flame elements in this diagram until they either behave in a
neutral manner or small-scale wrinkles with characteristic length scales considerably smaller than the
inner cut-off scale are smoothed out by molecular diffusion effects.
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Figure 6 (right column) shows that the mean contribution of (T1 + · · ·+ T10) remains strongly
negative at negative values of κm and mildly positive at positive values of κm in the Le = 0.8 case.
However, in the Le = 1.0 and 1.2 cases, the mean contribution of (T1 + · · ·+ T10) assumes negative
values at highly positive and negative curved locations and positive values are obtained at moderately
positive curved locations. The above findings indicate that the concavity of the negatively curved
cusps, and the convexity of the positively curved bulges are promoted by the curvature transport in the
Le = 0.8 case, which is further aided by the presence of high and low temperature (and thus burning
rate) regions at positively and negatively curved regions, respectively. As a result, positively curved
bulges with large radii of curvature and intermediate negatively curved cusps with small radii of
curvature are likely to be observed in the Le = 0.8 case, which is consistent with the observations
made from Figure 1 and the expected picture of the flame surface associated with Le < 1. In the
Le = 1.0 and 1.2 cases, the negative mean contribution of (T1 + · · ·+ T10) acts to reduce the convexity
of the positively curved bulges. By contrast, the negative mean (T1 + · · ·+ T10) values at negatively
curved locations in the Le = 1.0 and 1.2 cases act to increase the concavity of the negatively curved
cusps. However, these structures are unstable and are eventually smoothed out due to increased Sd
at negatively curved locations. This effect is particularly strong in the Le = 1.2 case because of large
temperature (and thus also burning rate) at the negatively curved regions.

4.5. Relations of the Terms of the Curvature Transport Equation with Local Curvature

The mean values of T1−5 × (δ2
th/SL) conditional on κm × δth and κg × δ2

th for the Le = 0.8,
1.0 and 1.2 cases are shown in Figure 7 for the c = 0.8 isosurface. The corresponding variations
of T6−10 × (δ2

th/SL) conditional on κm × δth and κg × δ2
th on the c = 0.8 isosurface are shown in Figure 8

for these cases. Figure 7 indicates high magnitudes of T1 and T3 are mostly obtained for concave
topologies on the flame surface for the Le = 0.8 case. The same trend is seen for T1, T2 and T4 in
the Le = 1.0 and 1.2 flames. The large magnitudes of T5 are associated with the cup convex flame
topologies in all cases, and the magnitudes of these terms increase with decreasing Lewis number.

It is evident from Figure 8 that the terms T6−10 in the Le = 0.8 case show high magnitudes
for cup concave (i.e., κm < 0 and κg > 0) and saddle concave (i.e., κm < 0 and κg < 0) topologies.
However, large magnitudes of these terms are mostly obtained for cup convex and saddle convex
flame topologies in the Le = 1.0 and 1.2 cases. Moreover, large negative magnitudes of T8 and large
positive magnitudes of T9 and T10 can be discerned for small (both positive and negative) values of κg

for weakly negatively curved zones (i.e., κm < 0) in the Le = 1.0 case.

4.6. Modelling Implications

It can be seen from Figures 4–8 that the net flame propagation contribution to the curvature
κm transport plays significant roles for all flames considered here. This suggests that displacement
speed Sd is not only interlinked with curvature (i.e., a negative correlation exists between Sd and
κm [32–41]) but it also affects flame wrikling through the curvature evolution. Moreover, it was
demonstrated elsewhere [67,69,83–86] that the curvature κm and its interrelation with displacement
speed Sd plays a key role in the Flame Surface Density (FSD) and scalar dissipation rate (SDR)
transports. Furthermore, the analysis of curvature evolution also reveals that the displacement speed
induced terms are principally responsible for the generation of negatively curved cusps in the flames
with Le < 1.
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5. Conclusions

The effects of characteristic Lewis number on the statistical behaviours of the different terms of
the curvature transport equation have been analysed based on three-dimensional compressible DNS
data of spherically expanding turbulent premixed flames with Le = 0.8, 1.0 and 1.2. The statistically
spherical flames with Le = 0.8, 1.0 and 1.2 had the same initial radius before they were allowed to
interact with initially homogeneous isotropic decaying turbulence. It has been found that the flame
surface area and volume-integrated burning rate increase with decreasing Le, which is consistent with
several previous findings. The greater extent of flame wrinkling in the Le = 0.8 case is reflected in
the wider range of both positive and negative curvatures than in the corresponding Le = 1.0 and 1.2



Fluids 2019, 4, 12 20 of 24

cases where the joint PDF remains almost symmetrical about κm = 0 on the reactant side, but skews
gradually toward positive values of κm in the reaction and hot product zones. The PDFs of curvature
for the Le = 0.8 case show higher probabilities of finding sharply negatively curved cusps than in the
corresponding Le = 1.0 and 1.2 cases. Moreover, the saddle topologies have been found to be more
frequent in the Le = 0.8 case than in the other cases considered in this analysis.

It has been found that the mean contributions of flame normal gradient of normal strain
rate and the added strain rate due to flame displacement speed (i.e., T2 and T9) assume negative
values (i.e., promote concavity of the flame surface) towards the unburned gas and positive values
(i.e., promote convexity of the flame surface) on the burned gas side of the flame. By contrast, the mean
contributions arising from flow strain rate gradient and the flame normal gradient of the added strain
rate (i.e., T4 and T7) tend to promote positive and negative curvatures on reactant and product sides of
the flame. The mean added curvature stretch term T8 exhibits negative mean values throughout the
flame, while the curvature flow stretching term T3 remains positive throughout the flame front.

The mean added curvature stretch term T8 conditional on curvature shows different behaviour
in response to the changes in Le. The added curvature stretch term T8 shows negative mean values
for κm < 0 and negligible mean value of T8 is obtained for κm > 0 in the Le = 0.8 case but positive
(negative) mean values of T8 are obtained for positive (negative) κm values in the Le = 1.0 and 1.2 cases.
The mean value of curvature flow stretching term T3 remains positive for both κm > 0 and κm < 0
but the magnitude of T3 associated with κm < 0 increases significantly with decreasing Le. The terms
due to normal gradient of added strain rate T9 and the curl of added vorticity T10 assume positive
(negative) values for negative (positive) κm values. The net mean contribution of the terms arising
from flame propagation (i.e., (T6 + · · ·+ T10)) dominates over the net mean contribution of the terms
due to background fluid motion (i.e., (T1 + · · ·+ T5)) for the negatively curved locations but the
opposite behaviour has been observed for the positively curved zones in the Le = 0.8 case. However,
in the Le = 1.0 and 1.2 cases the net mean flame propagation contribution (T6 + · · ·+ T10) dominates
over the mean contribution of the flow terms (T1 + · · ·+ T5) especially for high magnitudes of κm.
For the Le = 1.0 and 1.2 cases, the net mean contribution of (T1 + · · ·+ T10) remains negative for
high positive curvatures but this contribution assumes weak negative values for negatively curved
regions. By contrast, in the Le = 0.8 case, the net mean contribution of (T1 + · · ·+ T10) assumes
negative values for κm < 0 and mild positive values are obtained for κm > 0, which is indicative of
promoting sharply negatively curved cusps and positively curved bulges with large radii of curvature.
This tendency is further augmented by high temperatures (also burning rates) in the positively curved
and low temperatures (also burning rates) in the negatively curved regions in the Le = 0.8 case,
which is expected in the presence of thermo-diffusive instability. By contrast, highly positively curved
bulges are not promoted in the Le = 1.0 and 1.2 cases, and weak negative mean contributions of
(T1 + · · ·+ T10) at the negatively curved zones tend to produce negatively curved cusps which are
eventually smoothed by large values of Sd in these regions. Thus, flame propagation tends to smoothen
the flame wrinkles induced by turbulence in the Le = 1.0 and 1.2 cases and this effect is stronger in the
Le = 1.2 case due to high temperature (and thus high reaction rate) at the negatively curved regions.
Furthermore, it has been found that flame propagation plays a pivotal role in the curvature evolution
irrespective of the characteristic Lewis number and thus the interrelation between displacement speed
and curvature needs to be explicitly accounted for in the context of FSD and SDR closures, especially in
order to predict thermo-diffusive instability effects for Le < 1 flames. This model development along
with further analysis of curvature evolution using detailed chemistry and transport-based DNS data
will form the basis of further investigations.
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