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Abstract: The properties of chaotic advection arising from defect turbulence, that is, weak turbulence
in the electroconvection of nematic liquid crystals, were experimentally investigated. Defect
turbulence is a phenomenon in which fluctuations of convective rolls arise and are globally disturbed
while maintaining convective rolls locally. The time-dependent diffusion coefficient, as measured
from the motion of a tagged particle driven by the turbulence, was used to clarify the dependence
of the type of diffusion on coarse-graining time. The results showed that, as coarse-graining time
increases, the type of diffusion changes from superdiffusion — subdiffusion — normal diffusion.
The change in diffusive properties over the observed timescale reflects the coexistence of local order
and global disorder in the defect turbulence.

Keywords: weak turbulence; chaotic advection; Lagrangian chaos; time-dependent diffusion
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1. Introduction

Turbulence occurs by the cascade mechanism (Richardson cascade) because of strong
nonlinearities; in ideal cases, the Kolmogorov law (K41) holds [1]. Nevertheless, disorder in fluids
arises even in a weakly nonlinear regime through the interaction of a few modes with long timescales
based on the slaving principle [2]. For example, in a convective system in which mean flow is hardly
relaxed, the convective structure is destabilized or weakly disturbed by the interaction between the
convective flow and the mean flow even in the vicinity of the convective threshold [3,4]. A similar
phenomenon is observed in an electroconvective system of nematic liquid crystals under an ac electric
field [5,6]. For electroconvection in nematics, even in a system in which the mean flow relaxes
immediately, the orientation of the rod-shaped molecules of the nematics plays a role corresponding
to the mean flow. Because the disturbance in such cases is weak, the convective structure is globally
disordered while maintaining local convective rolls. In other words, the correlation length of the
disorder is sufficiently longer than the size of the convection roll [7,8]. A disordered state with this
property is called weak turbulence (To make a distinction, the K41-type turbulence is called developed
turbulence). Weak turbulence that occurs in a weakly nonlinear regime near a convection threshold
has been investigated as one of the experimental subjects of spatiotemporal chaos in spatially extended
nonlinear systems [8,9]. However, weak turbulence has seldom been investigated from the viewpoint
of turbulent transport. Because order and disorder of different scales coexist, clarifying the differences
in properties with coarse-graining scales is required in characterizing it.
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Turbulent diffusion that is the transport of mass arising from turbulence is one of the most important
phenomena in turbulent transport. Much research on turbulent diffusion caused by developed
turbulence have been conducted. Nonetheless, we remark that in time-varying flow, diffusion through
mixing occurs even if there is no strong irregularity in the flow. Such phenomenon is called chaotic
advection or chaotic mixing. In the context of chaos, it is also called Lagrangian chaos as the chaotic
behavior appears within the Lagrangian viewpoint. Chaotic advection arising from weak turbulence is
also expected to exhibit properties different from typical turbulent diffusion because of the developed
turbulence. Much of the research on weak turbulence as spatiotemporal chaos has been pursued from
the Eulerian viewpoint [7,9,10]. In contrast, the chaotic motion of particles driven by weak turbulence is
related to the Lagrangian viewpoint and provides other information concerning spatiotemporal chaos.

Electroconvection in nematic liquid crystals under AC electric fields is suitable for investigation
of weak turbulence because several advantages exist compared with other systems such as thermal
(Rayleigh—Bénard) convection of normal fluids. The timescale of weak turbulence is much shorter
than that in Rayleigh-Bénard convection. The refractive index is spatially modulated with the
distortion of the nematic director due to convective shear flow. Therefore, the patterns can be optically
observed by using the shadowgraph method [11]. An applied voltage used as the control parameter is
easily adjustable.

In the electroconvection of nematics, the orientation of the convective roll is determined by the
nematic director in the observation plane [12], and the convective flow exerts viscous torque on the
director because a nematic substance exhibits viscous anisotropy [13]. These effects act to frustrate
the orientation of the convective roll and the nematic director, making the convective roll structure
continuously unstable. Thus, weak turbulence occurs. In the electroconvection of nematics, there are
two system types of differing symmetry. One is the homeotropic system in which the director can freely
rotate as a Nambu-Goldstone mode, and the other is the planar system in which the rotation of the
director is limited near the initial orientation of the director. Typical weak turbulence in the homeotropic
system is soft-mode turbulence in which the convective roll can also rotate freely [6]. Research aimed
at elucidating the transport phenomena arising from soft-mode turbulence has been performed from
both the Euler [14] and Lagrange viewpoints. In particular, for the Lagrangian viewpoint, a method
called nonthermal Brownian motion has been used that measures the motion of isolated particles and
analyses the motion from the analogy with Brownian motion [15-21]. In the planar system, defect
turbulence (see Figure 1) occurs in which defects embedded in the convective stripe pattern nucleate by
fluctuations of the convective rolls [22]. Early studies of the defect turbulence focused on the dynamics
of defects embedded in the rolls pattern [22]. However, for transport phenomena arising from defect
turbulence, fluctuations of the direction of convective rolls (i.e., torsion of the rolls [9]) because of
the above-mentioned nonlinear interaction with the director is essential [20,23]. Defect turbulence is
similar to the oscillating Rayleigh-Bénard convection by which Lagrangian chaos was studied for the
first time [24,25], because it can be regarded as a chaotic oscillation of the convective rolls in a plane
normal to the roll axis.

The most important property of weak turbulence is the coexistence of local order and global
disorder. Here, this coexistence means there is a hierarchy in the system. This hierarchy was
predicted to cause the dependence on observation scale also in the diffusion by chaotic advection.
The time-dependent diffusion coefficient is suitable for extracting properties of the diffusion in systems
containing such a hierarchy. The time-dependent diffusion coefficient had been already applied to
nonthermal Brownian motion in soft-mode turbulence [16,18]. Aside from weak turbulence, biological
systems are examples of systems with a hierarchy. The time-dependent diffusion coefficient was
also used in extracting properties of biological systems [26,27]. In one study [26], thermal Brownian
motion in a system consisting of compartments was simulated to reveal properties of diffusion of
a protein molecule in cell membranes. Over very short time scales, a constant time-dependent
diffusion coefficient means that the motion within one compartment corresponding to a cell is
conventional Brownian motion (normal diffusion). A decreasing time-dependent diffusion coefficient
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over intermediate time scales means that confinement effect in the compartment by the boundary
causes subdiffusion. Over long time scales, the time-dependent diffusion coefficient becomes constant
again indicating that hopping diffusion between compartments becomes dominant and consequently
normal diffusion occurs. Thus, by increasing the timescale, the type of diffusion in this system changes
from normal diffusion — subdiffusion — normal diffusion.

Figure 1. Snapshot of defect turbulence. White lines correspond to convective rolls.

Research on transport phenomena arising from defect turbulence also has been performed from
both the Euler [23] and Lagrange [20] viewpoints. The study of chaotic advection in defect turbulence
from the Lagrangian viewpoint revealed that hopping is important [20]. That is, a tagged particle is
trapped in one convection roll and occasionally hops to an adjacent roll because of fluctuations of the
rolls. The activation energy for this hopping was obtained by measuring hopping rates under changes
in value of the control parameter. However, detailed analyses using a time-dependent diffusion
coefficient have not been conducted. The objective of this paper is to clarify the properties of chaotic
advection in the defect turbulence using the time-dependent diffusion coefficients.

2. Results

For applied voltages V beyond a threshold V, electroconvection occurs and a convective stripe
pattern, referred to as normal rolls, appears in the planar nematic system. The wavevector of the stripe
pattern is parallel to the x-direction because the initial nematic director is parallel to the x-direction [12].
Hereafter, we use the normalized voltage ¢ = (V2 — V%) / V% as the control parameter corresponding
to the energy injected into the system. To see the difference resulting from changes in ¢, measurements
were taken for e = 0.5 and 1.0.

Positions R(t) = (X(t), Y(t)) of a particle that was driven by defect turbulence were measured.
Because the motion in the x-direction characterizes the fluctuations of defect turbulence, only X(t)
was analyzed [20]. Temporal changes in the particle position X(t) are shown in Figure 2. For ¢ = 0.5,
the particle was trapped in a convective roll, and sometimes hopped to an adjacent roll. As fluctuations
of convective rolls became intense with increases in the energy injected, the range of motion under
e = 1.0 becomes much larger than that under e = 0.5. Furthermore, for ¢ = 1.0, the trapping time
becomes much shorter, and hopping across several rolls is observed.
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Figure 2. Particle position X(t) for (a) e = 0.5 and (b) ¢ = 1.0. The vertical axes are normalized using
the averaged width ¢ of a convective roll, specifically, £ = 32.4 m for e = 0.5, and 31.5 pm for ¢ = 1.0.

To clarify the properties of the random motion of the particle, the type of diffusion should be
determined. Therefore, the time-dependent diffusion coefficients, defined by

(IX(t+1) = X))

b(7) = 27 !

)

where (---);, denoting the average over f, were obtained from the time series of X(f).
The coarse-graining time T indicates how much time interval the observation is made. D(t) in
short T reflects the diffusion in fine structures, and D(7) in long 7 reflects the diffusion in global
structures. The types of diffusion are classified by the index y of D(7) « 7. In the conventional
Brownian motion, also called normal diffusion, y = 0; thatis, D(7) is constant. In contrast, in systems
with some complexity, the diffusion behavior becomes anomalous (anomalous diffusion), in which
v # 0. Furthermore, the anomalous diffusion is subclassified as v > 0 or y < 0. For v > 0, D(7) is an
increasing function and corresponds to superdiffusion. In this instance, ballistic motion is present [28-30].
For v < 0, D(7) is a decreasing function and corresponds to subdiffusion. In this instance, confinement
effects play an important role [31-33].

Figure 3 shows the experimental results for D(7). Since order and disorder with different scales
coexist in the weak turbulence as mentioned in Introduction, D(7) is not monotonous for 7. The first
increase in D(7) means that superdiffusion occurs at short 7 (The conventional (thermal) Brownian
motion also exhibits “superdiffusion” at timescales shorter than the viscous relaxation time of the fluid
system. However, the behaviors over these timescales are unobservable because the viscous relaxation
time corresponding to the mean free time is very short. In contrast, the present superdiffusion occurs
over an observable timescale). The following decrease in D(7) means that subdiffusion occurs over
intermediate 7. Finally, D(7) becomes almost constant implying that normal diffusion occurs over
longer 7. These behaviors are seen in the two instances ¢ = 0.5 and 1.0.
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Figure 3. D(7) obtained from the data shown in Figure 2. Blue and red lines distinguish D(tau) for
varepsilon = 0.5 and 1.0, respectively. The vertical axis is normalized using the values Dmax at the peak
of the curves. Dmax = 3.3 umz/s fore = 0.5, and 18.8 umz/s fore =1.0.

3. Discussion

The result shown in Figure 3 regarding the changes in diffusive properties of the chaotic advection
in defect turbulence with the observed timescales may be interpreted as follows. Superdiffusion over
short T indicates that the particle is moving on the convective flow in a roll (see Figure 4a). Subdiffusion
over intermediate 7 is caused by the confinement effect for the particle by being trapped in a convective
roll (see Figure 4b) [32]. Normal diffusion over longer T arises because the hopping diffusion becomes
dominant. Therefore, it is argued that diffusion arising from defect turbulence changes the properties
depending on coarse-graining time, reflecting that the local order still exists.

@ (b) (©) ° /
Q \j\ ,‘
=

Figure 4. Schematic illustration of the motion of a tagged particle for different coarse-graining times 7.

(a) Shorter 7. (b) Intermediate 7. (c) Longer .

The behavior of D(7) for € = 1.0 is qualitatively the same as that for ¢ = 0.5. However, the range
of subdiffusion for ¢ = 1.0 becomes smaller than that for ¢ = 0.5. The conjecture is that the confinement
effect by the rolls weakens as the hopping rate increases with € [20]. Furthermore, D(7) for e = 1.0
increases slightly in the final range of normal diffusion. This behavior is thought to result from the
ballistic motion caused by unidirectional hopping across several convective rolls through intense
fluctuations of those rolls with larger amplitudes.

Although this dependence of the diffusive properties on the observation time scale appears
also in soft-mode turbulence [16], no subdiffusion was seen. The difference in the homeotropic
system in which the soft-mode turbulence appears from the present planar system in which the
defect turbulence appears is that the director in the observation plane behaves as a Nambu-Goldstone
mode, as mentioned in Introduction [6]. To clarify the reason subdiffusion does not occur in the
soft-mode turbulence despite the existence of local convective rolls may lead to elucidating the role of
the Nambu-Goldstone mode for chaotic advection.
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In conclusion, the properties of chaotic advection arising from defect turbulence were investigated
using the time-dependent diffusion coefficients. We found a hierarchy in the diffusive properties that
depended on the observation time scale. Specifically, the type of diffusion changes from superdiffusion
— subdiffusion — normal diffusion as the coarse-graining time increases. This result reflects the
coexistence of the local order and the global disorder in the defect turbulence.

4. Materials and Methods

The sample cell used in the present study was prepared employing the standard method for the
planar alignment of the nematic liquid crystal p-methoxybenzylidene-p’-n-butylaniline (MBBA) [20].
The area of the square electrodes was 1.0 x 1.0 cm?, and polymer films of 50 um thickness were
used to maintain the cell gap. To obtain uniformly planar alignment of the MBBA molecules in the
x-y plane parallel to the electrodes, the surfaces of the glass plates with the electrodes were rubbed
by a velvet cloth in one direction (defined as the x-direction) after the spin-coating of a surfactant
(polyvinyl alcohol). The initial planar director thus obtained was parallel to the x-direction. An ac
voltage Vac(t) = v/2V cos(27tft) was applied to the sample in the z-direction. The present study was
performed for f = 1000 Hz to achieve normal defect turbulence, and specifically to avoid oblique rolls
or defect turbulence with abnormal rolls instability [34]. In all measurements, the temperature was
kept at 30.00 &+ 0.05 °C.

To observe the nonthermal Brownian motion in the x-y plane, small particles (Micropearl
KBS-5065, Sekisui Chemical, Osaka, Japan) were introduced to the sample cell. The particles had a
diameter spread of 6.48 & 0.17 um and their density of particles was 1.22 x 10% kg/m®, which was
a little higher than that of the MBBA (1.02 x 108 kg/ m?’). A CMOS camera (NY-X7i Super System,
Canon, Tokyo, Japan) mounted on a stereomicroscope (SMZ1000, Nikon, Tokyo, Japan) was used to
capture images including the particles in a period of 1800 s at time intervals of 0.033 s. The image
size was 640 pixels x 480 pixels, and the resolution was 2.83 pm/pixel. A time series of a particle’s
position R(t) = (X(t), Y(t)) was obtained from the images using motion analysis software (VW-HIMA,
Keyence, Osaka, Japan). Since the measuring period (1800 s) was considerably longer than the timescale
of the phenomena of interest, the statistical accuracy in the analysis was sufficient. To reduce noise
due to thermal Brownian motion and motion blur, coarse-graining by taking averages for every ten
intervals of R(t) was performed. As a result, the time interval of the time series of R(t) is 0.33 s.
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