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Abstract: Reconstruction of fine-scale information from sparse data is often needed in practical fluid
dynamics where the sensors are typically sparse and yet, one may need to learn the underlying flow
structures or inform predictions through assimilation into data-driven models. Given that sparse
reconstruction is inherently an ill-posed problem, the most successful approaches encode the physics
into an underlying sparse basis space that spans the manifold to generate well-posedness. To achieve
this, one commonly uses a generic orthogonal Fourier basis or a data specific proper orthogonal
decomposition (POD) basis to reconstruct from sparse sensor information at chosen locations. Such a
reconstruction problem is well-posed as long as the sensor locations are incoherent and can sample
the key physical mechanisms. The resulting inverse problem is easily solved using l2 minimization or
if necessary, sparsity promoting l1 minimization. Given the proliferation of machine learning and the
need for robust reconstruction frameworks in the face of dynamically evolving flows, we explore
in this study the suitability of non-orthogonal basis obtained from extreme learning machine (ELM)
auto-encoders for sparse reconstruction. In particular, we assess the interplay between sensor quantity
and sensor placement in a given system dimension for accurate reconstruction of canonical fluid
flows in comparison to POD-based reconstruction.

Keywords: sparse reconstruction; extreme learning machines; sensors; singular value decomposition;
proper orthogonal decomposition; compressive sensing

1. Introduction

Multiscale fluid flow phenomena are ubiquitous in engineering and geophysical settings.
Depending on the situation, one encounters either a data-sparse or a data-rich problem. In the
data-sparse cases, the goal is to recover more information about the dynamical system while in
the data-surplus case, the goal is to reduce the information into a simpler form for analysis or to build
evolutionary models for prediction and then recover the full state. Thus, both these situations require
reconstruction of the full state. To expand on this view, for many practical fluid flow applications,
accurate simulations may not be feasible for a multitude of reasons including, lack of accurate models,
unknown governing equations, and extremely complex boundary conditions. In such situations,
measurement data represents the absolute truth and is often acquired from very few probes, which
limits the potential for in-depth analysis. A common recourse is to combine such sparse measurements
with underlying knowledge of the flow system, either in the form of idealized simulations, or a
sparse basis from phenomenology or previous knowledge to recover detailed information. The former
approach is termed as data assimilation while we refer to the latter as sparse reconstruction (SR).
In the absence of such a mechanism, the only method to identify structural information of the flow
is to use phenomenology such as Taylor’s frozen eddy hypothesis. On the other hand, simulations
typically represent data surplus settings that offer the best avenue for analysis of realistic flows, as one
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can identify and visualize coherent structures, perform well converged statistical analysis including
quantification of spatio–temporal coherence, and scale content due to the high density of data probes
in the form of computational grid points. With growth in computing power, such simulations often
generate big data contributing to an ever growing demand for quick analytics and machine learning
tools [1] to both sparsify, i.e., dimensionality reduction [2–5] and reconstruct the data without loss of
information. Thus, tools for encoding information into a low-dimensional feature space (convolution)
complement sparse reconstruction tools that help decode compressed information (deconvolution).
This in essence is a key aspect of leveraging machine learning for fluid flow analysis [6,7]. The other
aspects of machine learning-driven studies of fluid flows include building data-driven predictive
models [5,8,9], pattern detection, and classification. This work broadly contributes to the decoding
problem of reconstructing high resolution fields data in both data-sparse and data-rich environments.

A primary target of this work is to address the practical problems of flow sensing and
control in the field or a laboratory where a few affordable probes are expected to sense effectively.
Advances in compressive sensing (CS) [10–13] have opened the possibility of direct compressive
sampling [6] of data in real-time without having to collect high resolution information and then
sample as necessary. Thus, sparse data-driven decoding and reconstruction ideas have been
gaining popularity in their various manifestations such as gappy proper orthogonal decomposition
(GPOD) [14,15], Fourier-based compressive sensing (CS) [10–13] and Gaussian kernel-based
Kriging [16–18]. The overwhelming corpus of literature on this topic focuses on theoretical expositions
of the framework and demonstrations of performance. The novelty of this work is two-fold. First,
we combine sparse reconstruction principles with machine learning ideas for learning data-driven
encoders/decoders using extreme learning machines (ELMs) [19–23], a close cousin of the single
hidden layer artificial neural network architecture. Second, we explore the performance characteristics
of such methods for nonlinear fluid flows within the parametric space of system dimensionality, sensor
quantity, and to a limited extent, their placement.

Sparse reconstruction is an inherently ill-posed and under-determined inverse problem where the
number of constraints (i.e., sensor quantity) are much less than the number of unknowns (i.e., high
resolution field). However, if the underlying system is sparse in a feature space then the probability of
recovering a unique solution increases by solving the reconstruction problem in a lower-dimensional
space. The core theoretical developments of such ideas and their first practical applications happened
in the realm of image compression and restoration [12,24]. Data reconstruction techniques based on
the Karhunen–Loeve (K–L) procedure with least squares error minimization (l2 minimization), known
as gappy proper orthogonal decomposition (POD) or GPOD [14,15,25], was originally developed in
the nineties to recover marred faces [25] in images. The fundamental idea is to utilize the POD basis
computed offline from the data ensemble to encode the reconstruction problem into a low-dimensional
feature space. This way, the sparse data can be used to recover the sparse unknowns in the feature
space (i.e., sparse POD coefficients) by minimizing the l2 errors. If the POD bases are not known a priori,
an iterative formulation [14,25] to successively approximate the POD basis and the coefficients was
proposed. While this approach has been shown to work in principle [14,16,26], it is prone to numerical
instabilities and inefficiency. Advancements in the form of a progressive iterative reconstruction
framework [16] are effective, but impractical for real-time application. A major issue with POD-basis
techniques is that they are data-driven and hence cannot be generalized, but are optimally sparse for
the given data. This requires that they be generated offline and be used for efficient online sparse
reconstruction using little sensor data. However, if training data are unavailable or if the prediction
regime is not spanned by the precomputed basis, then the reconstruction becomes untenable.

A way to overcome the above limitations is to use generic basis such as wavelets [27] or
Fourier-based kernels. Such choices are based on the assumption that most systems are sparse
in the feature space. This is particularly true for image processing applications but may not be
optimal for fluid flows, whose dynamics obey partial differential equations (PDEs). While avoiding
the cost of computing the basis offline, such approaches run into sparsity issues as the basis do not
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optimally encode the underlying dynamical system. In other words, the larger the basis, the more
the sensors needed for complete and accurate reconstruction. Thus, once again the reconstruction
problem is ill-posed even when solving in the feature space because the number of sensors could be
smaller than the system dimensionality in the basis space. l2 error minimization produces a solution
with sparsity matching the dimensionality of the feature space (without being aware of the system
rank), thus requiring sensor quantity exceeding the underlying system dimension. The magic of
compressive sensing (CS) [10–13] is in its ability to overcome this constraint by seeking a solution
that can be less sparse than the dimensionality of the chosen feature space using l1-norm regularized
least-squares reconstruction. Such methods have been successfully applied in image processing using
a Fourier or wavelet basis and also to fundamental fluid flows [6,7,9,28–30]. Compressive sensing
essentially looks for a regularized sparse solution using l1 norm minimization of the sparse coefficients
by solving a convex optimization problem that is computationally tractable and thereby, avoids the
tendency of unregularized or l2-regularized methods to overfit to the data. In recent years, compressive
sensing-type l1 regularized reconstruction using a POD basis has been successfully employed for
reconstruction of sparse particle image velocimetry (PIV) data [6] and pressure measurements around
a cylindrical surface [7]. Since the POD bases are data-driven and designed to minimize variance, they
represent an optimal basis for reconstruction and require the least quantity of sensor measurements
for a given reconstruction quality. However, the downside is requirement of highly sampled training
data as a one-time cost to build a library of POD bases. Such a framework has been attempted in
Reference [7] where POD modes from simulations over a range of Reynolds (Re) numbers in a cylinder
wake flow were used to populate a library of bases and then used to classify the flow regime based
on sparse measurements. In order to reduce this cost, one could also downsample the measurement
data and learn the POD or discrete cosine transform (DCT) bases as used in Reference [6]. Recent
efforts also combine CS with data-driven predictive machine learning tools such as dynamic mode
decomposition (DMD) [31,32] to identify flow characteristics and classify flow into different stability
regimes [30]. In the above, SR is embedded into the analysis framework for extracting relevant
dynamical information.

Both SR and CS can be viewed as generalizations of sparse regression in a higher-dimensional
basis space. This way, one can relate SR to other statistical estimation methods such as Kriging. Here,
the data is represented as a realization of a random process that is stationary in the first and second
moments. This allows one to interpolate information from the known to unknown data locations
by employing a kernel (commonly Gaussian) in the form of a variogram model and the weights are
learned under conditions of zero bias and minimal variance. The use of Kriging to recover flow-field
information from sparse PIV data has been reported [16–18] with encouraging results.

The underlying concept in all the above described techniques is that they solve the reconstruction
inverse problem in a feature or basis space where the number of unknowns are comparable to the
number of constraints (sparse sensors). This mapping is done through a convolution or projection
operator that can be constructed from data or kernel functions. Hence, we refer to this class of
methods as sparse basis reconstruction (SR) in the same vein as sparse convolution-based Markov
models [5,9,33,34]. This requires the existence of an optimal sparse basis space in which the physics can
be represented. For many common applications in image and signal processing, this optimal set exists
in the form of wavelets and Fourier functions, but these may not be optimally sparse for fluid flow
solutions to PDEs. Thus, the reason why data-driven bases such as POD/principal component analysis
(PCA) [3,4] are popular. Further, since they are optimally sparse, such methods can reconstruct with
a very little amount of data as compared to say, Kriging which employs generic Gaussian kernels.
In this article, we introduce for the first time, the use of ELM-based encoders as basis for sparse
reconstruction. As part of an earlier effort [35], we explored how sensor quantity and placement,
and the system dimensionality impact the accuracy of POD-based sparse reconstructed field. In this
effort, we extend this analysis for two different choices of data-driven sparse basis including POD and
ELM. In particular, we aim to accomplish the following: (i) explore whether the relationship between



Fluids 2018, 3, 88 4 of 35

system sparsity and sensor quantity for accurate reconstruction of the fluid flow is independent of the
basis employed and (ii) understand the relative influence of sensor placement on the different choice
of SR basis.

The rest of manuscript is organized as follows. In Section 2, we review the basics of sparse
reconstruction theory, the different choices of data-driven bases including POD and ELM, the role of
the measurement locations, and we summarize the algorithm employed for SR. In Section 3, we discuss
how the training data is generated. In Section 4, we discuss the results from our analysis on SR
of a cylinder wake flow using both POD and ELM bases. This is followed by a summary of major
conclusions from this study in Section 5.

2. The Sparse Reconstruction Problem

Let the high resolution data representing the state of the flow system at any given instant be
denoted by x ∈ RN , and its corresponding sparse representation be given by x̃ ∈ RP with P � N.
Then, the sparse reconstruction problem is to recover x, when given x̃ along with information of the
sensor locations in the form the measurement matrix C, as shown in Equation (1). The measurement
matrix C determines how the sparse data x̃ is collected from x. The variables P and N are the number
of sparse measurements and the dimension of the high resolution field, respectively.

x̃ = Cx. (1)

In this article, we focus on vectors x that have a sparse representation in a basis space Φ ∈ RN×Nb

such that Nb � N and yielding x = Φa. Here a ∈ RNb represents the appropriate basis coefficient
vector. Naturally, when one loses the information about the system, the recovery of said information is
not absolute as the reconstruction problem is ill-posed, i.e., there are more unknowns than equations
in Equation (1). Even if one were to estimate x by computing the Moore-Penrose pseudoinverse of C
as C+ using a least-squares error minimization procedure (Equation (2)), it does lead to stable solutions
as the system is ill-posed (under-determined).

C+x̃ = x. (2)

2.1. Sparse Reconstruction Theory

The theory of sparse reconstruction has strong foundations in the field of inverse problems [36]
with applications in diverse fields of study such as a geophysics [37,38] and image processing [39,40].
In this section, we formulate the reconstruction problem which has been presented in CS
literature [10,12,41–43]. Many signals tend to be “compressible”, i.e., they are sparse in some K-sparse
basis Φ as shown below:

x =
Nb

∑
i=1

φiai or x = Φa, (3)

where Φ ∈ RN×Nb and a ∈ RNb with K non-zero elements. In the sparse reconstruction formulation
above, Φ ∈ RN×Nb is used instead of Φ ∈ RN×K as the sparsity of the system K is not known
a priori. Consequently, a more exhaustive basis set of dimension Nb ≈ P > K is typically employed.
To represent N-dimensional data, one can at most use N basis vectors, i.e., Nb ≤ N. In practice,
the number of possible basis need not be N and can be represented by Nb � N as only K of them are
needed to represent the acquired signal up to a desired quality. This is typically the case when Φ is
composed of optimal data-driven basis vectors such as POD modes. The reconstruction problem is
then recast as the identification of these K coefficients. In many practical situations, the knowledge
of Φ and K is not known a priori and Nb, N are typically user input. Standard transform coding [27]
practice in image compression involves collecting a high resolution sample, transforming it to a Fourier
or wavelet basis space where the data is sparse, and retaining the K-sparse structure while discarding
the rest of the information. This is the basis of JPEG and JPEG-2000 compression standards [27]
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where the acronym JPEG stands for Joint Photographic Experts Group. This sample and then compress
mechanism still requires acquisition of high resolution samples and processing them before reducing
the dimensionality. This is highly challenging as handling large amounts of data is difficult in practice
due to demands on processing power, storage, and time.

Compressive sensing [10,12,41–43] focuses on direct sparse sensing based inference of the K-sparse
coefficients by essentially combining the steps in Equations (1) and (3) as below:

x̃ = CΦa = Θa, (4)

where Θ ∈ RP×Nb is the map between the basis coefficients a that represent the data in a feature
space and the sparse measurements x̃ in the physical space. The challenge in solving for x using
the underdetermined Equation (1) is that C is ill-conditioned and x in itself is not sparse. However,
when x is sparse in Φ, the reconstruction using Θ in Equation (4) becomes practically feasible by
solving for an a that is K-sparse. Thus, one effectively solves for K unknowns (in a) using P constraints
(given by x̃) by computing a sparse solution for a as per Equation (7). This is achieved by minimizing
the corresponding s-norm regularized least squares error with s chosen appropriately and x is then
recovered from Equation (3). The choice s = 2 yields the l2 norm regularized reconstruction of x by
penalizing the larger elements of a. The l2-regularized method finds a that minimizes the expression
shown in Equation (5):

‖x̃−Θa‖2
2 + λ‖a‖2

2. (5)

Using the regularized left pesudo-inverse of Θ, Equation (4) becomes:

a = (Θ)+x̃, (6)

where Θ+ can be approximated as a solution to the normal equation as
(
ΘTΘ + λI

)−1
ΘT x̃. Here λ is

the regularization parameter and I, the identity matrix of the appropriate dimensions. This regularized
least-squares solution procedure is nearly identical to the original GPOD algorithm developed by
Everson and Sirovich [25] when Φ is chosen as the POD basis. However, X̃ in GPOD contains
zeros as placeholders for all the missing elements whereas the above formulation retains only the
measured data points. The GPOD formulation summarized in Section 2.5 is plagued by issues that are
beyond the scope of this article. While this l2 approach provides numerical stability and improved
predictions, it rarely, if ever finds the K-sparse solution. A natural way to enhance sparsity of a is
to minimize ‖a′‖0, i.e., minimize the number of non-zero elements such that Θa′ = x̃ is satisfied.
It has been shown [44] that with P = K + 1 (P > K in general) independent measurements, one can
recover the sparse coefficients with high probability using l0 reconstruction. This condition can be
heuristically interpreted as each measurement needing to excite a different basis vector φi so that
its coefficient ai can be optimally identified. If two or more measurements excite the same basis φj
then additional measurements may be needed to produce acceptable reconstruction. On the other
hand, for P ≤ K independent measurements, the probability of recovering the sparse solution is
highly diminished. Nevertheless, l0-reconstruction is a computationally complex, np-hard, and poorly
conditioned problem with no stability guarantees.

l1 reconstruction : a = min ‖a′‖1 such that Θa′ = x̃

l1 cost function to minimize : min ‖x̃−Θa‖2
2 + λ‖a‖1

(7)

The popularity of compressed sensing arises due to the theoretical advances [45–48] guaranteeing
near-exact reconstruction of the uncompressed information by solving for the K sparsest coefficients
using l1 methods. l1 reconstruction is a relatively simpler convex optimization problem (as compared
to l0) and solvable using linear programming techniques such as basis pursuit [10,41,49] and shrinkage
methods [50]. Theoretically, one can perform the traditional brutal search to locate the largest K
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coefficients of a, but the computational effort increases exponentially with the dimension. To overcome
this burden, a host of greedy algorithms [11,13,51] have been developed to solve the l1 reconstruction
problem in Equation (7) with complexity O(N3) for Nb ≈ N. However, the price one pays here is that
P > O(K log(Nb/K)) measurements are needed [10,41,45] to exactly reconstruct the K-sparse vectors
using this approach. The schematics of both l2 and l1-based formulations are illustrated in Figure 1.

(a) (b)

Figure 1. Schematic illustration of l2 (a) and l1 (b) minimization reconstruction for sparse recovery
using a single-pixel measurement matrix. The numerical values in C are represented by colors: black (1),
white (0). The other colors represent numbers that are neither 0 nor 1. In the above schematics x̃ ∈ RP,
C ∈ RP×N , Φ ∈ RN×Nb and a ∈ RNb , where Nb ≤ N. The number of colored cells in a represents the
system sparsity K. K = Nb for l2 and K < Nb for l1.

Solving the l1 regularized norm minimization problem shown in Equation (7) is complicated
as compared to the l2 minimization solution described in Equation (5). This is because, unlike the
cost function to be minimized in Equation (5), the cost function in Equation (7) is non-differentiable
for any ai = 0, which necessitates an iterative solution instead of a closed form solution. Further,
the minimization of the l1 cost function is also an unconstrained optimization problem that is commonly
converted into a constrained optimization as shown in Equation (8). Here t is a user defined sparsity
knob related to λ. The goal of the regularization parameter, λ in Equations (5) and (7) is to ‘shrink’ the
coefficients. However, for the l2 case, larger values of λ tends to make the different coefficients equal
as against what happens in the l1 regularized case.

l1 constrained minimization : min ‖x̃−Θa‖2
2 such that ‖a‖1 < t (8)

This constrained optimization in Equation (8) is quadratic in a and therefore, yields a quadratic
programming problem with the feasible region bounded by a polyhedron (in the space of a).
The solution to such l1 regularized least squares regression has two classes of solution methodologies:
(i) least absolute selection and shrinkage operator or LASSO [50] and (ii) basis pursuit denoising [49].
LASSO and its variant essentially convert the constrained formulation into a set of linear constraints.
Recently popular approaches include greedy methods such as optimal matching pursuit (OMP) [13,28]
and interior point methods [52]. A simpler iterative sequential least-squares thresholding framework
is suggested by Brunton et al. [53] as a robust l1 method. The idea here is to achieve ‘shrinkage’ by
repeatedly zeroing out the coefficients smaller than a given choice of hyperparameter.

In summary, there are three parameters (Nb, K, and P) that impact the reconstruction framework.
Nb represents the candidate basis space dimension employed for this reconstruction and can at
worst obey Nb ≈ N. K represents the desired system sparsity and is tied to the desired quality of
reconstruction. That is, K is chosen such that if these features are predicted accurately, then the achieved
reconstruction is satisfactory. The more sparse a system, the smaller K is for a desired reconstruction
quality. P represents the available quantity of sensors provided as input to the problem. The interplay
of Nb, K, and P determines the choice of the algorithm employed, i.e., whether the reconstruction is
based on l1 or l2 minimization, and the reconstruction quality as summarized in Table 1. In general,
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K is not known a priori and is tied to the desired quality of reconstruction. N and Nb are chosen by
the practitioner and depends on the feature space in which the reconstruction will happen. N is the
preferred dimension of the reconstructed state, and Nb is the dimension of the candidate basis space
in where the reconstruction problem is formulated. As shown in Table 1, for the case with K = Nb,
the best reconstruction will predict the K weights correctly (using l2 for the over determined problem)
and can be as bad as P when P < K (using l1 minimization for the under determined problem). In all
the cases explored in this discussion, the underlying assumption of Nb � N is used. When K < Nb
and Nb > P ≥ K, the worst case prediction will be K weights (for a desired sparsity K) as compared
to P weights for the best case (maximum possible sparsity) using l1 minimization. With K < Nb
and Nb > K > P, the best case reconstruction will be P weights using l1. For P ≥ Nb > K, the best
reconstruction will predict Nb weights, as compared to K for the worst case. Thus in cases 1, 4, 5
the desired reconstruction sparsity is always realized whereas in cases 2 and 3, the sensor quantity
determines the outcome.

Table 1. The choice of sparse reconstruction algorithm based on problem design using parameters P
(sensor sparsity), K (targeted system sparsity), and Nb (candidate basis dimension).

Case K − Nb Relationship P − K Relationship Algorithm Reconstructed Dimension

1 K = Nb P ≥ K l2 K
2 K = Nb P < K l1 P
3 K < Nb P < K < Nb l1 P
4 K < Nb Nb > P ≥ K l1 K or P
5 K < Nb P ≥ Nb > K l2 K or Nb

All of the above sparse recovery estimations are conditional upon the measurement basis (rows
of C) being incoherent with respect to the sparse basis Φ. In other words, the measurement basis
cannot sparsely represent the elements of the “data basis”. This is usually accomplished by using
a random sampling for sensor placement, especially when Φ is made up of Fourier functions or
wavelets. If the basis functions Φ are orthonormal, such as wavelet and POD basis, one can discard
the majority of the small coefficients in a (setting them as zeros) and still retain reasonably accurate
reconstruction. The mathematical explanation of this conclusion has been previously shown in
Reference [12]. However, it should be noted that incoherency is a necessary, but not sufficient condition
for exact reconstruction. Exact reconstruction requires optimal sensor placement to capture the most
information for a given flow field. In other words, incoherency alone does not guarantee optimal
reconstruction which also depends on the sensor placement as well as quantity.

2.2. Data-Driven Sparse Basis Computation Using POD

In the SR framework, basis such as POD modes, Fourier functions, and wavelets [10,12] can
be used to generate low-dimensional representations for both l2 and l1-based methods. While an
exhaustive study on the effect of different choices on reconstruction performance is potentially
useful, in this study we compare SR using POD and ELM bases. A similar effort using has been
reported in Reference [6] where a comparison between the discrete cosine transform and POD bases
was performed.

Proper orthogonal decomposition (POD), also known as principal components analysis (PCA)
or singular value decomposition (SVD), is a dimensionality reduction technique that computes a
linear combination of low-dimensional basis functions (POD modes) and weights (POD coefficients)
from snapshots of experimental or numerical data [2,4] through eigen-decomposition of the spatial
correlation tensor of the data. It was introduced in the turbulence community by Lumley [54]
to extract coherent structures in turbulent flows. The resulting singular vectors or POD modes
represent an orthogonal basis that maximizes the energy capture from the flow field. For this reason,
such eigenfunctions are considered optimal in terms of energy capture and other optimality constraints
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are theoretically possible. Taking advantage of the orthogonality, one can project these POD basis onto
each snapshot of data in a Galerkin sense to deduce coefficients that represent evolution over time in
the POD feature space. The optimality of the POD basis also allows one to effectively reconstruct the
full field information with knowledge of very few coefficients; a feature that is attractive for solving
sparse reconstruction problems such as in Equation (4). However, this is contingent on the spectrum
of the spatial correlation tensor of the data having sufficiently rapid decay of the eigenvalues, i.e., it
supports a low-dimensional representation. This is typically not true in the case of turbulent flows
with very gradual decay of energy across the singular values. Further, in such dynamical systems,
the small scales with low-energy can still be dynamically important and will need to be reconstructed,
thus requiring a significant number of sensors.

Since the eigen-decomposition of the spatial correlation tensor of the flow field requires handling
a system of dimension N, it requires a significant computational expense. An alternative method is to
compute the POD modes using the method of snapshots [55] where the eigen-decomposition problem
is reformulated in a reduced dimension framework (assuming the number of snapshots in time is
smaller than the spatial dimension), as summarized below. Consider that X ∈ RN×M is the full field
representation with only the fluctuating part, i.e., the temporal mean is taken out of the data. N is the
dimension of the full field representation and M is the number of snapshots. The procedure involves
computation of the temporal correlation matrix C̄M as:

C̄M = XTX. (9)

The resulting correlation matrix C̄M ∈ RM×M is symmetric and an eigendecomposition problem
can be formulated as:

C̄MV = VΛ , (10)

where the eigenvectors are given in V = [v1, v2, ..., vM] and the diagonal elements of Λ are the
eigenvalues [λ1, λ2, ..., λM]. Typically, both the eigenvalues and corresponding eigenvectors are sorted
in descending order such that λ1 > λ2 > ... > λM. The POD modes Φ and coefficients a can then be
computed as

Φ = XV
√

Λ−1. (11)

One can represent the field X as a linear combination of the POD modes Φ as shown in Equation (3)
and leverage orthogonality to compute the Moore–Penrose pseudo-inverse, i.e., Φ† = ΦT . Thus,
computing the POD coefficients, a ∈ RM×M as shown in Equation (12):

a = ΦTX. (12)

It is worth mentioning that subtracting the temporal mean from the input data is not critical to
the success of this procedure. As shown in Appendix B, retaining the mean of the data during the SVD
computation generates an extra mean mode which modifies the energy spectrum. To illustrate, for the
low-dimensional cylinder wake used in this study, retaining the dominant mode when performing
SVD with the mean captures 98% energy, whereas for the SVD without the mean, the dominant mode
captures 49% energy. However, as results in Appendix B show, it does not impact the reconstruction
performance. In fact, during practical application, one does not remove the mean because it is not
known a priori.

Using the snapshot procedure for the POD/SVD computation fixes the maximum number of
POD basis vectors to M which is typically much smaller than the dimension of full state vector, N.
If one wants to reduce the dimension further, then a criterion based on energy capture is devised so
that the modes carrying the least amount of energy are truncated to dimension K < M. For many
common fluid flows, using the first few POD modes and coefficients are sufficient to capture almost all
the relevant dynamics. However, for turbulent flows with large-scale separation, a significant number
of POD modes will need to be retained.
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2.3. Data-Driven Sparse Basis Computation Using an ELM Autoencoder

While POD represents the energy optimal basis for a given data [56,57], they tend to be
highly data-specific and do not span highly evolving flows [5]. As an alternative, one typically
reconstructs data from systems with no prior knowledge using a generic basis such as Fourier
functions [10,12]. Another alternative is to use radial basis function (RBFs) or Gaussian function
regression to represent the data, which are known to be more robust representations of dynamically
evolving flow conditions [5]. In this work, we adopt this flavor by leveraging extreme learning
machines (ELMs) [19,20] which are regressors employing a Gaussian prior. An extension of this
framework to learn encoding–decoding maps of a given data using an autoencoder formulation, was
was proposed by Zhou et al. [21–23]. ELM is a single hidden layer feedforward neural network (SLFN)
with randomly generated weights for the hidden nodes and bias terms followed by the application of
an activation function. Finally, the output weights are computed by constraining to the output data. If
we set the number of hidden nodes smaller than the dimensionality of the input data then we can get
compressed feature representations of the original data as the output weight of ELM autoencoder as
show in Figure 2. Given data X ∈ RN×M with N as the full state dimension and M as the number of
snapshots (or simply xj ∈ RN for j = 1, ..., M), we map the full state to a K-dimensional hidden layer
feature space using the ELM autoencoder as shown below in Figure 2 and Equation (13).

xj =
K

∑
i=1

φia
j
i =

K

∑
i=1

φihi(xj) =
K

∑
i=1

φig(wT
i xj + bi) (13)

Figure 2. Schematic of the extreme learning machine (ELM) autoencoder network. In this architecture,
the output features are the same as input features.

In the above equation, xj ∈ RN is the input data, j is the snapshot index, N is the dimension of
input flow state, wi ∈ RN are the random input weights that map input features to the hidden layer,
bi is the random bias, g(.) is the activation function operating on the linearly transformed input state
and φi ∈ RN are the weights that map hidden layer features to the output features. Additionally, hi
represents the map from input state to the ith hidden layer feature. In this autoencoder architecture,
the output and input features are identical. An example of the activation function is the radial basis
function as shown in Equation (14):

g(z) = e−(z
2). (14)

In matrix form, the linear Equation (13) can be written as in Equation (15) where a is the matrix of
outputs (with elements aj

i) from the hidden layer (Equation (16)) and h(xj) = [h1(xj), · · · , hk(xj)] =
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[aj
1, · · · , aj

k] represents the output from the K hidden nodes as a row vector for the jth input snapshot
xj. h(xj) is also called the feature transformation that maps the data, xj from the N dimensional input
space to the K dimensional hidden layer feature space a.

X = Φa (15)

a =

 a1
1 · · · a1

k
...

. . .
...

aM
1 · · · aM

k )


T

=

 h(x1)
...

h(xM)


T

=

 h1(x1) · · · hk(x1)
...

. . .
...

h1(xM) · · · hk(xM)


T

. (16)

The output weights can be written in matrix form as in Equation (17) and X as in Equation (18).

Φ =

φ1
1 · · · φN

1
...

. . .
...

φ1
k · · · φN

k


T

(17)

X =

 x1
1 · · · x1

N
...

. . .
...

xM
1 · · · xM

N


T

. (18)

Using Equation (15), Φ can be solved as in Equation (19) using the Moore–Penrose pseudo-inverse.

Φtrain = Φ = Xa+ = Xa+train. (19)

The primary difference between POD and the ELM autoencoder is that in the former, the basis
Φ is learned first whereas in ELM, the features a are derived first followed by Φ. The other major
difference is that the columns of the POD basis vectors represent coherent structures contained in the
data snapshots, whereas the interpretation of the ELM basis is not clear.

2.4. Measurement Locations, Data Basis, and Incoherence

Recal from Section 2.1, that the reconstruction performance is strongly tied to the measurement
matrix C being necessarily incoherent with respect to the low-dimensional basis Φ [12], which is
usually accomplished by employing a random sampling for the sensor placement. In practice, one can
adopt two types of random sampling of the data, namely, single-pixel measurements [7,35,58] or
random projections [10,12,42]. Typically, single-pixel measurements refers to measuring information
at the particular spatial locations, such as measurements by unmanned aerial systems (UAS) in
the atmospheric fields. Another popular choice of sensing method in the compressive sensing or
image processing community is random projections, where the measurement matrix is populated
using normally distributed random numbers on to which the full state data is projected. In theory,
the random matrix is highly likely to be incoherent with any fixed basis [12], and hence efficient
for sparse recovery purposes. However, for most of the fluid flow applications, the sparse data is
usually sourced from point measurements and hence, the single-pixel approach is practically relevant.
Irrespective of the approach adopted, the measurement matrix C (Equations (1) and (2)) and basis Φ

should be incoherent to ensure optimal sparse reconstruction. This essentially implies that one should
have sufficient measurements distributed in space to excite the different modes relevant to the data
being reconstructed. Mathematically, this implies that CΦ is full rank and invertible.

There exist metrics to estimate the extent of coherency between C and Φ in the form of a coherency
number, µ as shown in Equation (20) [59]:

µ(C, Φ) =
√

N · max
i≤P, j≤K

∣∣〈ci, φj〉
∣∣ , (20)
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where ci is a row vector in C and φj is a column vector of Φ. µ typically ranges from 1 (incoherent)
to
√

N (coherent). The smaller the µ, the less measurements one needs to reconstruct the data in an
l1 sense. This is because the coherency parameter enters as the prefactor in the lower-bound for the
sensor quantity in l1-based CS for accurate recovery. There exist optimal sensor placement algorithms
such as K-means clustering, the data-driven online sparse Gaussian processes [60], physics-based
approaches [61], and mathematical approaches [15] that minimize the condition number of Θ and
maximize the determinant of the Fisher information matrix [62]. A thorough study on the role of sensor
placement on reconstruction quality is much needed and an active topic of research, but not considered
within the scope of this work. For this analysis, which focuses on the role of basis choice on sparse
reconstruction, we simplify the sensor placement strategy by using the Matlab function randperm
(N) to generate a random permutation from 1 to N and the first p values are chosen as the sampling
locations in the data. However, to minimize the impact of sensor placement on the conclusions of this
study, we perform an ensemble of numerical experiments with different random sensor placements
and explore averaged error metrics to make our interpretations robust. Further, in most practical flow
measurements the sensor placement is random or based on knowledge of the flow physics. The current
approach can be considered to be consistent with that strategy.

2.5. Sparse Recovery Framework

The algorithm used in this work is inspired from the gappy POD or GPOD framework [25] and
can be viewed as an l2 minimization reconstruction of the sparse recovery problem, summarized by
Equations (4)–(6) with Φ composed of K ≤ M basis vectors, i.e., the dimension of a is K ≤ M. At this
point, we remind the reader of naming conventions adopted in this paper: the instantaneous jth full
flow state is denoted by xj ∈ RN , whereas the entire set consisting of M snapshots is assembled into a
matrix form denoted by X ∈ RN×M. In the following, we focus on single snapshot reconstruction and
the extension to multiple snapshots is trivial, i.e., each snapshot can be reconstructed sequentially or
in some cases be grouped together as a batch reconstruction. This allows for such algorithms to be
easily parallelized.

The primary difference between the SR framework in Equation (4) as used by the image processing
community and GPOD [14,15,25,57] as shown in Equation (22) is the construction of the measurement
matrix C and the sparse measurement vector x̃j. For the purposes of this discussion, we will consider
reconstruction of a single snapshot. In SR (Equation (4)) x̃j ∈ RP is a compressed version containing
only the measured data, whereas in the GPOD framework, x̃j ∈ RN is a masked version of the full state
vector, i.e., values outside of the P measured locations are zeroed out to generate a filtered version
of xj. For high resolution data xj ∈ RN with the chosen basis φk ∈ RN , the low-dimensional features,
aj ∈ RK are obtained from the relationship shown below:

xj =
K

∑
k=1

φkaj
k. (21)

The masked (incomplete) data x̃j ∈ RN , corresponding measurement matrix C, and mask vector
m ∈ RN are related by:

x̃j =< m · xj >= Cxj, (22)

where C ∈ RN×N . Therefore, the GPOD algorithm results in a larger measurement matrix with
numerous rows of zeros as shown in Figure 3 (compare with Figure 1). To bypass the complexity
of handling the N × N matrix, a mask vector, m ∈ N × 1 with 1 s and 0 s operates on xj through
a point-wise multiplication operator < · >. As an illustration, the point-wise multiplication is
represented as x̃j =< mj · xj > for each snapshot j = 1...M where each element of xj multiplies the
corresponding element of mj. This is applicable when each data snapshot xj has its own measurement
mask mj, which is a useful way to represent the evolution of sparse sensor locations over time.
The SR formulation in Equation (4) can also support time varying sensor placement, but would
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require a compression matrix Ci that changes with each snapshot. This approach is by design much
more computationally and storage intensive, but can handle situations that do not incorporate point
sensor compression.

Figure 3. Schematic of a gappy proper orthogonal decomposition (GPOD)-like sparse reconstruction
(SR) formulation. The numerical values represented by the colored blocks are: black (1), white (0), color
(other numbers).

The goal of the SR procedure is to recover the full data from the masked data given in Equation (23)
by approximating the coefficients āj (in the l2 sense) with basis φK, learned offline using training data
(snapshots of the full field data).

x̃j ≈ m
K

∑
k=1

āj
kφk. (23)

The coefficient vector āj cannot be computed by direct projection of x̃j onto Φ as these are not
designed to optimally represent the sparse data. Instead, one needs to obtain the “best” approximation
of the coefficient āj, by minimizing the error Ej in the l2 sense as show in Equation (24).

Ej =

∣∣∣∣∣
∣∣∣∣∣x̃j −m

K

∑
k=1

āj
kφk

∣∣∣∣∣
∣∣∣∣∣
2

2

=
∣∣∣∣∣∣x̃j −m · Φāj

∣∣∣∣∣∣2
2
=
∣∣∣∣∣∣x̃j − CΦāj

∣∣∣∣∣∣2
2

. (24)

In Equation (24) we see that m acts on each column of Φ through a point-wise multiplication operation,
which is equivalent to masking each basis vector φk. Unless the sensor placement is constant with
time, we remind one that the above formulation is valid for a single snapshot reconstruction where
the mask vector, mj, changes with every snapshot x̃j for j = 1, ..., M. Thus, the error Ei represents the
single snapshot reconstruction error that will be minimized to compute the approximate features āj.
It can easily be seen from below that one will have to minimize the different Ej’s sequentially to learn
the entire coefficient matrix, ā ∈ RK×M for all M snapshots. Denoting the masked basis functions as
φ̃k(z) =< m(z) · φk(z) >, Equation (24) is rewritten as in Equation (25).

Ej =

∣∣∣∣∣
∣∣∣∣∣x̃j −

K

∑
k=1

āj
kφ̃k

∣∣∣∣∣
∣∣∣∣∣
2

2

. (25)

In the above formulation, Φ̃ is analogous to CΦ = Θ in Equation (4). To minimize Ej,
one computes the derivative with respect to āj and equates it to zero as below:

∂

∂āj (Ej) = 0. (26)

The result is the linear normal equation given by Equation (27):

Māj = f j, (27)
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where Mk1,k2 = 〈φ̃k1, φ̃k2〉 or M = Φ̃TΦ̃ and f j
k = 〈x̃j, φ̃k〉 or f j = Φ̃T x̃j. The reconstructed solution is

given by Equation (28) below:

x̄j =
K

∑
k=1

φk āj
k. (28)

Algorithm 1 summarizes the above SR framework assuming the basis functions (φk) are known.
The above solution procedure for sparse recovery is the same as that described in Section 2.1 except for
the dimensions of x̃ and C.

Algorithm 1: l2-based algorithm: Sparse reconstruction with known basis, Φ.

input :Full data ensemble X ∈ RN×M,
Incomplete data vector X̃ ∈ RN ,
Mask vector m ∈ RN .

output :Approximated full data vector X̄ ∈ RN

1 for each snapshot index j ≤ M do
2 Build a least square problem: Māj = f j (Equation (27)) as below;
3 Compute masked basis function: Φ̃ = mΦ;
4 Compute matrix M = Φ̃TΦ̃;
5 Compute vector: f j = Φ̃T x̃j;
6 Solve āj from the least squares problem: Māj = f j (Equation (27));
7 Reconstruct the approximated solution x̄j = Φāj (Equation (28)).
8 end

2.6. Algorithmic Complexity

The cost of computing both the ELM and POD basis is O(N × M2) where N is the full
reconstructed flow state dimension and M is the number of snapshots. The cost of sparse reconstruction
turns out to beO(N× K×M) for both the methods, where K ≤ M is the system dimension chosen for
reconstruction. Naturally, for many practical problems with an underlying low-dimensional structure,
POD is expected to result in a smaller K than ELM. This will reduce the sensor quantity requirement
and the reconstruction cost to a certain extent. Further, since the number of snapshots (M) is also tied
to the desired basis dimension (K), a larger K requires a larger M and in turn a higher cost to generate
the basis.

3. Data Generation for Canonical Cylinder Wake

Studies of cylinder wakes [33,63–65] have attracted considerable interest from the data-driven
modeling community for their particularly rich flow physics content, encompassing many complexities
of nonlinear fluid flow dynamical systems and ease of simulation using established computational
fluid dynamics (CFD) tools. In this study, we explore data-driven sparse reconstruction for the cylinder
wake flow at Re = 100. It is well known that the cylinder wake is initially stable and then becomes
unstable before settling into a limit-cycle attractor. To illustrate this dynamics, snapshots showing
evolution of the stream-wise velocity component (u) are shown in Figure 4, for Re = 100.
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Figure 4. Isocontour plots of the stream-wise velocity component for cylinder flow at Re = 100
and T = 25, 68, and 200, showing the evolution of the flow field. Here, T represents the time
non-dimensionalized by the advection time-scale.

For this study, we focus on reconstruction in the temporal regime with periodic limit cycle
dynamics, in contrast to our earlier work [35] where we focused on reconstruction in both the limit cycle
and transient regimes. The two-dimensional cylinder flow data is generated using a spectral Galerkin
method [66] to solve incompressible Naiver–Stokes equations, as shown in Equations (29)–(31) below:

∂u
∂x

+
∂u
∂y

= 0, (29)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −∂P
∂x

+ ν∇2u, (30)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −∂P
∂y

+ ν∇2v, (31)

where u and v are the horizontal and vertical velocity components, P is the pressure field, and ν is
the fluid viscosity. The rectangular domain used for this flow simulation is −25D < x < 45D and
−20D < y < 20D, where D is the diameter of the cylinder. For the purposes of this study, data from
a reduced domain, i.e., −2D < x < 10D and −3D < y < 3D, is used. The mesh was designed to
sufficiently resolve the thin shear layers near the surface of the cylinder and transit wake physics
downstream. For the case with Re = 100, the grid includes 24,000 points. The computational method
employed is a fourth order spectral expansion within each element in each direction. The sampling
rate for each snapshot output is chosen as ∆t = 0.2 s.

While the use of the 2D version of the incompressible Navier–Stokes equations, to compute
the full cylinder data is justified for laminar flows, for turbulent flows this full flow state will be a
high resolution 3D dataset with large state dimension that can escalate the computational complexity.
The increased state dimension can severely impact the cost of POD-Galerkin based reduced order
models (ROMs) through the nonlinear term, whose computation scales with the large full state
dimension. This, in turn, can negate the advantages of such ROMs for large-scale systems. To accelerate
such models, methods such as gappy POD [14,15,25], the discrete empirical interpolation method
(DEIM) [67] and missing point estimation (MPE) [68], estimate a low rank mask matrix to approximate
the full state nonlinear term using data at sparse sampled locations. This allows for the expensive
inner products using high-dimensional vectors to be replaced with low-dimensional ones. Given the
strong connections between compressive sensing, sparse reconstruction, and gappy POD, it is not far
fetched to adopt the algorithms presented in this work for complexity reduction of POD-Galerkin
models. Dimitriu et al. [69] compares the performance of these hyper reduction techniques for use in
online model computations and observes that DEIM and GPOD generate similar sensor placement,
online computational cost, and accuracy. On the other hand, MPE was less computationally expensive
in the offline cost, but prone to inaccuracies.

4. Sparse Reconstruction of Cylinder Wake Limit-Cycle Dynamics

In this section, we explore sparse reconstruction of fluid flows at Re = 100 using the above SR
infrastructure for the cylinder flow with well-developed periodic vortex shedding behavior. The GPOD



Fluids 2018, 3, 88 15 of 35

formulation is chosen over the traditional SR formulation to bypass the need for maintaining a separate
measurement matrix, since we are focusing only on point sensors in this discussion. Maintaining a
separate measurement matrix involves storing a lot of elements that are zeros which do not impact the
matrix multiplications in both the versions of the SR algorithm. In most cases reported here, Tikhonov
regularization is employed to reduce overfitting and provide uniqueness to the solution. In this study,
we choose 300 snapshots of data corresponding to a non-dimensional time (T = Ut

D ) of T = 60 with
a uniform temporal spacing of dT = 0.2 s. T = 60 corresponds to multiple (≈10) cycles of periodic
vortex shedding behavior for flow with Re = 100, as seen from the temporal evolution of the POD
coefficients as shown in Figure 5 below.

(a) (b)

Figure 5. The temporal evolution of the first three normalized proper orthogonal decomposition (POD)
coefficients for limit cycle cylinder flow at Re = 100. (a) 2D view; (b) 3D view.

4.1. Sparse Reconstruction Experiments and Analysis

For this a priori assessment of SR performance, we reconstruct sparse data from simulations
where the full field representation is available. The sparse sensor locations are chosen as single
point measurements using a random sampling of the full field data and these locations are fixed for
the ensemble of snapshots used for the reconstruction. Specifically, we employ the Matlab function
randperm (N) to generate random permutation from 1 to N with the first p values chosen as the sensor
locations. Reconstruction performance is evaluated by comparing the original simulation predicted
field with those from SR using both POD and ELM basis, across the entire ensemble of numerical
experiments. We undertake this approach in order to assess the relative roles of system sparsity (K),
sensor sparsity (P), and sensor placement (C) for both the POD and ELM-based SR. In particular,
we aim to accomplish the following through this study: (i) check if P > K is a necessary condition
for accurate reconstruction of the fluid flow irrespective of the basis employed; (ii) determine the
dependence of the estimated sparsity metric K for the desired reconstruction quality on the choice of
basis; and (iii) understand how sensor placement impacts reconstruction quality for different choice
of basis.

To learn the data-driven basis, we employ the method of snapshots [55] as shown in
Equations (9)–(12) for POD and train an autoencoder as shown in Equations (13)–(19) for the ELM
basis. For the numerical experiments described here, the data-driven basis and coefficients are obtained
from the full data ensemble, i.e., M = 300 snapshots corresponding to T = 60 non-dimensional times.
This gives rise to at most M basis for use in the reconstruction process in Equation (3), i.e., a candidate
basis dimension of Nb = M. While this is obvious for the POD case, we observe that for ELM K ≥ M
does not improve the representational accuracy (see Figure 6). As shown in Table 1, the choice of
algorithms depend on the choice of system sparsity (K), data sparsity (P), and the dimension of the
candidate basis space, Nb. Recalling from the earlier discussion in Section 2, we see that P ≥ K would
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require an l2 method for a desired reconstruction sparsity K as long as P ≥ Nb. In the case of POD,
the basis are energy optimal for the training data and hence, contain built-in sparsity. That is, as long as
the basis is relevant for the flow to be reconstructed, retaining only the most energetic modes (basis)
should generate the best possible reconstruction for the given sensor locations. Therefore, the POD
basis needs to be generated once and the sparsity level of the representation is determined by just
choosing to retain the first few modes in the sequence. On the other hand, ELM basis does not have
a built-in mechanism for order reduction. The underlying basis hierarchy for the given sparse data
is not known a priori and therefore requires one to search for the K most significant bases among the
maximum possible dimension of Nb = M, using sparsity promoting l1 methods. However, for this
work we bypass the need for the l1 algorithm in favor of the less expensive l2 method by learning a
new set of basis for each choice of K = Nb < M. The increased cost of l1 methods such as the iterative
thresholding algorithms [28,70] require multiple solutions of the least-squares problem before a sparse
solution is realized.

4.2. Sparsity and Energy Metrics

For this SR study, we explore the conditions for accurate recovery of information in terms of data
sparsity (P) and system sparsity (K), which also represents the dimensionality of the system in a given
basis space. In other words, sparsity represents the size of a given basis space needed to capture a
desired amount of energy. As long as the measurements are incoherent with respect to the basis Φ

and the system is overdetermined, i.e., P > K, one should be able to invert Θ to recover the higher
dimensional state, X. From earlier discussions in Section 2, we know P > K is a sufficient condition
for accurate reconstruction using l0 minimization. Thus, both interpretations require a minimum
quantity of sensor data for accurate reconstruction, which is verified through numerical experiments
in Section 4.3.

In this section, we describe how the different system sparsity metrics, K = Nb, are chosen for
the numerical experiments with both POD and ELM basis. Since the basis spaces are different, a
good way to compare the system dimension is through the energy captured by the respective basis
representations. For POD one easily defines a cumulative energy fraction captured by the K most
energetic modes, EK, using the corresponding singular values of the data as shown in Equation (32).

EK =
K

∑
k=1

λk
(λ1 + λ2 + ... + λM)

× 100, (32)

In the above, the singular values λ are computed from Equation (10), and M is the total number of
possible eigenvalues for M snapshots.

For the cylinder flow case with Re = 100, one requires two and five POD modes to capture 95%
and 99% of the energy content, respectively, indicative of the sparsity of the dynamics in this basis
space. In this case, we compute errPOD

K =
∣∣∣∣X−ΦPOD

1...K aPOD
1...K

∣∣∣∣
2, where ΦPOD

1...K and aPOD
1...K represent the

matrix comprising of the K POD bases and the corresponding coefficients for the different snapshots,
respectively. The approach of tying the system sparsity with the energy content or alternatively
the error obtained by reconstructing the basis with full data, allows one to compare different choices
of basis space. Since there exists no natural hierarchy for the ELM basis, we characterize the system
sparsity K through the reconstruction error (with respect to the true data) obtained during the training
of the ELM network as in Equation (19). This is computed as the 2-norm of the difference between the
ELM trained flow field, i.e., the ELM output layer, XELM

train,K = ΦELM
train,KaELM

train,K and the exact flow field,

i.e., the ELM input layer, Xexact. Mathematically, we compute errELM
K =

∣∣∣∣∣∣X− XELM
train,K

∣∣∣∣∣∣
2
. To relate the

system dimensionality in the ELM and POD spaces and assess their relative sparsity, we compare the
energy captured for different values of K in terms of their respective reconstruction errors as shown in
Figure 6. We note that the ELM training in Equation (13) employs random weights which produces
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variability in the error metric, errELM
K . To minimize this variability, we perform a set of twenty different

training for each value of KELM and compute the average error as plotted in Figure 6.

Figure 6. Error (errPOD
K , errELM

K ) using different number of basis (K) for both POD reconstruction and
ELM prediction.

From this, we observe that for ELM, K = 99 produces the same representation error as produced
by using just K = 2 for the POD basis. It turns out that K = 2 for POD captures 95% of the energy as
per Equation (32), i.e., KELM

95 = 99 and KPOD
95 = 2. The decay of errELM

K with K is nearly exponential,
but slower than that observed for errPOD

K . Further, for K ≥ M, the ELM training over-fits the data
which drives the reconstruction error to near zero. To assess SR performance across different flow
regimes (that have different K95) with different values of K we define a normalized system sparsity
metric, K∗ = K/K95 and a normalized sensor sparsity metric, P∗ = P/K95. This allows us to design
an ensemble of numerical experiments in the discretized P∗ − K∗ space and the outcomes can be
generalized. In this study, the design space is populated over the range 1 < K∗ < 6 and 1 < P∗ < 12
for POD SR, and for ELM SR the range is 1 < K∗ < 3 and 1 < P∗ < 6 as the K is bounded by the total
number of snapshots, M = 300. The lower bound of one is chosen such that the minimally accurate
reconstruction captures 95% of the energy. If one desires a different reconstruction norm, then K95 can
be changed to Kxx without loss of generality and the corresponding K-space modified accordingly.
Alternately, one can choose EK, the normalized energy fraction metric to represent the desired energy
capture as a fraction of EK95 , but this is not used in this study.

To quantify the l2 reconstruction performance, we define the mean squared reconstruction error
as shown in Equation (33) below:

εSR
K∗ ,P∗ =

1
M

1
N

M

∑
j=1

N

∑
i=1

(Xi,j − X̄SR
i,j )

2, (33)

where X is the true data, and X̄SR is the reconstructed field using sparse measurements as per
Algorithm 1 and either POD or ELM as the choice of basis. N and M represent the state and snapshot
dimensions affiliated with indices i and j, respectively. Similarly, the mean squared error εFR

K∗95
and εFR

K∗

for the full reconstruction from both POD and ELM based SR are computed as:

εFR
K∗95

=
1
M

1
N

M

∑
j=1

N

∑
i=1

(Xi,j − X̄FR,K∗95
i,j )2, (34)

εFR
K∗ =

1
M

1
N

M

∑
j=1

N

∑
i=1

(Xi,j − X̄FR,K∗
i,j )2, (35)
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where X̄FR is the full field reconstruction using exactly computed coefficients for both POD and ELM
cases. K∗95 = K95/K95 = 1 is the normalized system sparsity metric (i.e., number of basis normalized
by K95) corresponding to 95% energy capture and K∗ = K/K95 represents the desired system sparsity.
The superscript FR corresponds to the full reconstruction using exactly computed coefficients a. For POD,
this is simply a = ΦTX as per Equation (12). However for ELM, a = Φ+X where Φ = Φtrain and is
obtained as per Equation (19). However, this computed a is not the same as atrain used in the ELM
training step (Equation (19)) as Φ+Φ is not exactly an identity matrix. Therefore, the error in the
pseudo-inverse computation of Φ produces two sets of a, one from direct estimation using the ELM
basis (a = Φ+X) and the other from ELM training step (atrain) through a direct estimation. This results
in two types of error estimations with atrain being used to estimate errELM

K and a being used to compute
εFR

K∗95
in Equation (34) and εFR

K∗ in Equation (35).
Using the above definitions, we can now generate normalized versions of the absolute (ε1)

and relative (ε2) errors as shown in Equation (36). ε1 represents the SR error normalized by the
corresponding full reconstruction error for 95% energy capture. ε2 represents the normalized error
relative to the desired reconstruction accuracy for the chosen system sparsity, K. These two error
metrics are chosen so as to achieve the twin goals of assessing the overall absolute quality of the SR in
a normalized sense (ε1) and the best possible reconstruction accuracy for the chosen problem set-up
(i.e., P, K). Thus, if the best possible reconstruction for a given K is realized then ε2 will take the same
value across different K∗. This error metric is used to assess relative dependence of P∗ on K∗ for the
chosen flow field. On the other hand, ε1 provides an absolute estimate of the reconstruction accuracy
so that minimal values of P∗andK∗ needed to achieve a desired accuracy can be identified.

ε1 =
εSR

K∗ ,P∗

εFR
K∗95

, ε2 =
εSR

K∗ ,P∗

εFR
K∗

. (36)

4.3. Sparse Reconstruction of Limit-Cycle Dynamics in Cylinder Wakes Using the POD Basis

As the first part of this study is designed to establish a baseline SR performance using the
POD basis similar to that performed in Reference [35], we carried out a series of POD-based sparse
reconstruction (SR) experiments corresponding to different points in the P∗ − K∗ design space and
spread over the different sensor placements. In these experiments, the sparse data is obtained from
a priori high resolution flow field data with randomly placed sparse sensors that do not change with
each snapshot. The randomized sensor placement in this case is controlled using a seed value in
Matlab which is fixed for all the experiments within a given design space. By computing the errors
as described in Section 4.2 across the K∗ − P∗ space, the contours of ε1 and ε2 at Re = 100 for a few
different random sensor placements are shown in Figures 7 and 8.

The relative error metric ε2 (the right column in Figures 7 and 8), shows that the smaller errors
(both light and dark blue regions) are predominantly located over the region where P∗ > K∗, separated
from the other region using a diagonal line corresponding to P∗ = K∗. This indicates that the over
specified SR problem with P > K, i.e., having more sensors than the dimensionality chosen to represent
the system yields good results in terms of ε2. For small P∗, the normalized relative error can reach
as high as O(101–102). Since ε2 is normalized by the error contained in the exact K-sparse POD
reconstruction, this metric represents how effectively the sparse sensor data can approximate the
K-sparse solution using l2 minimization. In principle, the exact K-sparse POD reconstruction is
the best possible outcome to expect irrespective of how much sensor data is available, as long as
K = Nb. We note that by constraining the SR problem by choosing the desired energy sparsity K, the l2
reconstruction is reconciled with the l0 minimization solution [35]. Consistent with the observations in
Reference [35], we observe that ε1 contours adhere to an L-shaped structure indicating that absolute
normalized error reduces as K is increased to capture more energy contained in the full field data.
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(a) (b)

(c) (d)

Figure 7. Isocontours of the normalized mean squared POD-based sparse reconstruction errors
(l2 norms) using different random seeds (101 and 102) for sensor placements. Left: normalized absolute
error metric, ε1. Right: normalized relative error metric, ε2. (a) ε1 (seed = 101); (b) ε2 (seed = 101); (c) ε1

(seed = 102); and (d) ε2 (seed = 102).

(a) (b)

(c) (d)

Figure 8. Isocontours of the normalized mean squared POD-based sparse reconstruction errors
(l2 norm) using different random seed (108 and 109) for sensor placements. Left: normalized absolute
error metric, ε1. Right: normalized relative error metric, ε2. (a) ε1 (seed = 108); (b) ε2 (seed = 108); (c) ε1

(seed = 109); and (d) ε2 (seed = 109).
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While this ‘best’ reconstruction is almost always observed for the higher values of P∗ and K∗

for the different sensor placements, there appear to be some exceptions. Notably, for a few sensor
placement choices (seed 101 in Figure 7 and 108 in Figure 8), a small portion of ε1 in the region
abutting the P∗ = K∗ line shows nearly an order of magnitude higher error, O(101) (colored as red in
Figures 7 and 8) as compared to the expected values of O(1) observed for sensor placement using
seeds 102 and 109 in Figures 7 and 8, respectively.

We probe these ‘anomalous’ points by visualizing the SR of a random snapshot along with their
corresponding sensor placements to deduce possible insight into the reason for high errors in terms of
sensor placement. In Reference [35], it was shown that although the coherency number µ was small
for a given sensor placement choice, the sparse data points should still span the physics to be captured.
Inspired by this, we experiment the impact of sensor placement for two regions corresponding to
P∗ ' K∗ and P∗ > K∗.

At point 1 (where P∗ = K∗) for sensor placement with seed 101 (Figure 7) both ε1 and ε2 indicate
an order of magnitude higher error relative to its neighborhood. But for the same point with modified
sensor placement using seed 102, we observe nearly an order of magnitude lower error. Comparing
the SR flow fields for both the sensor placements with different seeds, as shown in Figure 9, we see that
seed 102 places more data points in the wake of the cylinder as compared to that for seed 101, hence
the better reconstruction. A follow up study is needed to explore data-driven methods for optimal
sensor placement and their influence on SR error. Mathematically, data points in the cylinder wake
region excite the most energetic POD modes as compared to sensors placed elsewhere. This is clearly
shown in Reference [35] where the coefficients or features corresponding to the most energetic POD
modes are erroneous when recovered using inadequate sensor placement. This trend is observed even
for the under specified (ill-posed) case with P∗ < K∗, i.e., point 3 in Figure 8 for cases with different
sensor placement (seeds 108 and 109) as shown in Figure 9. As part of the Appendix, we further
illustrate the mechanism of how sensor placement impacts the predictions in Figure A1 where we
compute the reconstructed POD features corresponding to P∗ = 3 and K∗ = 3 for the four different
sensor placement cases (seeds 101–102 and 108–109) discussed here. This plot clearly shows that for the
cases with inadequate sensor placement (seed 101 & 108), we observe large deviations of the predicted
POD features for those corresponding to full data reconstruction. Not surprisingly, the SR cases with
adequate sensor placement show closer agreement with the exact POD features obtained by projecting
the full data onto the POD basis space.

In conclusion, we observe that although the POD-based SR is very efficient in terms of sensor
quantity requirement, the reconstruction errors are sensitive to sensor location even when P∗ ' K∗.
For cases with P∗ > K∗ (points 2 and 4 in Figures 7 and 8), we observe that this sensitivity to sensor
placement is highly minimized although small differences exist as shown in Figure 10 . This is because,
an increase in the number of measurement points enhances the probability of locating points within
the cylinder wake.

In order to generalize the error metrics computed in Figures 7 and 8, we perform an ensemble
of ten different sensor placements corresponding to seeds ranging from 101 to 110. We plot the error
contours corresponding to maximum and minimum errors estimated across the entire P∗ − K∗ design
space and also the average error over this ensemble, as shown in Figure 11. The maximum error is
found for seed 108 and minimum error for seed 109. The average error contours represent the most
probable SR outcome independent of the anomalies from sensor placement.
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(a) (b)

(c) (d)

Figure 9. Comparison of POD-based SR and full reconstruction (FR) for different random sensor
placement and P∗ ≤ K∗. Blue solid line: FR. Red dashed line: SR. Black stars: sensor locations.
(a) Seed = 101 (at P∗ = 3 and K∗ = 3); (b) Seed = 102 (at P∗ = 3 and K∗ = 3); (c) Seed = 108 (at P∗ = 2
and K∗ = 3); and (d) Seed = 109 (at P∗ = 2 and K∗ = 3).

(a) (b)

(c) (d)

Figure 10. Comparison of POD-based SR and FR for different random sensor placement and P∗ > K∗.
Blue solid line: FR. Red dashed line: SR. Black stars: sensor locations. (a) Seed = 101 (at P∗ = 10
and K∗ = 5); (b) Seed = 102 (at P∗ = 10 and K∗ = 5); (c) Seed = 108 (at P∗ = 10 and K∗ = 5); and
(d) Seed = 109 (at P∗ = 10 and K∗ = 5).
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Isocontours of the normalized mean squared POD-based sparse reconstruction errors
(l2 norm) corresponding to the sensor placement with maximum and minimum errors from the chosen
ensemble of random sensor arrangements. The average error across the entire ensemble of ten random
sensor placements is also shown. Left: normalized absolute error metric, ε1. Right: normalized relative
error metric, ε2. (a) ε1 (maximum); (b) ε2 (maximum); (c) ε1 (minimum); (d) ε2 (minimum); (e) ε1

(average); and (f) ε2 (average).

4.4. Sparse Reconstruction Using the ELM Basis

The previous section focused on the SR performance of limit-cycle cylinder wake dynamics using
the POD basis; which was shown to perform well if certain conditions are met, namely, P∗ > K∗ and
reasonable sensor placement. A key issue identified with POD-based SR for low-dimensional systems,
such as the cylinder wake dynamics, is that it requires a small number of sensors for reconstruction,
but is sensitive to their placement. As observed in Section 4.2, ELM requires a greater number of basis
for the same amount of energy capture. For example, for 95% energy capture, we will need K = 99 for
ELM and just K = 2 for POD. While SR using ELM basis is similar in concept, the non-orthogonality
of the ELM basis and their relative lack of sparsity brings about certain differences. It was shown in
Section 4.2 that there exist two different kinds of errors—a training error and the reconstruction error.
If the ELM basis were to be orthogonal just like the POD basis, both these errors (and the ELM features
a and atrain) will be equivalent. Second, in Section 2.3 the algorithm for computing the basis using an
ELM autoencoder uses randomly chosen input weights when generating the K-dimensional hidden
layer features, which represents the low-dimensional representation. Consequently, the realized
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ELM basis are not unique, unlike the POD basis for a given training data set. It was observed from
our numerical experiments that while the sensitivity of this randomness in the ELM basis to the
reconstruction errors is not severe, it is perceptible. To analyze the performance of ELM-based SR,
we carry out two different types of analysis. The first explores of the effect of randomness in the
weights used within ELM training, while fixing the sensor placement. The second explores randomness
from the choice of sensor placement for a given ELM basis.

To accomplish the first, we compute the normalized ELM-based SR error metrics ε1 and ε2 using
ten different choices for the random input weight sets. The contours corresponding to the seed with
maximum, minimum, and the average error are shown in Figure 12. These plots clearly show that
there exist very little sensitivity to the choice of random weights in the ELM training. Further, as was
the case for the POD-based SR, the region of good reconstruction is separated from the high-error
region by the straight line corresponding to P∗ = K∗ indicating that similar normalized performance
bounds exist for both POD (orthogonal basis) and ELM (non-orthogonal basis).

(a) (b)

(c) (d)

(e) (f)

Figure 12. Isocontours of the normalized mean squared (l2) ELM-based sparse reconstruction errors
for the maximum, minimum, and average using different choices of the random input weights. Left:
normalized absolute error metric, ε1. Right: normalized relative error metric, ε2. (a) ε1 (maximum);
(b) ε2 (maximum); (c) ε1 (minimum); (d) ε2 (minimum); (e) ε1 (average); and (f) ε2 (average).

The second part of the ELM-based SR analysis is to assess the effect of sensor placement on the
reconstruction performance for a fixed choice of random weights in the ELM training. To accomplish
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this, we consider an ensemble of numerical simulations with ten different choices of sensor placement
across the entire P∗ − K∗ design space. Figure 13 shows the normalized error contours for the case
with sensor placement resulting in the maximum error, minimum error, and the average error field
over the entire ensemble. Once again, we observe accurate SR performance for P∗ > K∗, which results
in a well-posed reconstruction problem. Further, we observe that the choice of sensor placement has
very minimal impact on the overall SR error metrics. This is not surprising given that ELM requires
more sensors as compared to POD to achieve the same level of reconstruction accuracy. As verification,
we have included in Appendix A, Figures A2 and A3 that compare the reconstruction of a single
snapshot flow field and the corresponding ELM features respectively for two different sensor placement
choices. The two sensor placements correspond to cases with maximum and minimum errors observed
in Figure 13 at design points using K∗ = 2 and P∗ = 3. The comparison of the reconstructed snapshots
using sparse and full data shown in Figure A2 do not show any significant errors (in comparison to
the full data representation) upon visual inspection. However, comparison of the SR predicted ELM
features with those for the FR display strong sensitivity to sensor placement. In particular, we observe
that for sensor placement with seed 101, the ELM features are grossly incorrect as compared to that
for seed 106. In spite of this, the visually accurate prediction of the reconstructed field for seed 101 is
surprising and can be explained as follows. In the ELM-based SR with random sensor placement, a
significant number of these sensors find themselves in the most dynamically relevant regions of the
flow and even if a few of the sensors were to be misplaced, the contribution to the overall error metric
from this is much smaller as compared to POD-based SR. The second speculation is that the higher
dimensional ELM basis represents redundant structures that enable it to be relatively insensitive to
non-optimal sensor placement. This suggests that the ELM basis space could be represented more
compactly, possibly through orthogonalization for improved performance, which will be explored in
the future.

(a) (b)

(c) (d)

Figure 13. Cont.
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(e) (f)

Figure 13. Isocontours of the normalized mean squared (l2) ELM-based sparse reconstruction error for
maximum, minimum, and average error using different choices for the random sensor placement. Left:
normalized absolute error metric, ε1. Right: normalized relative error metric, ε2. (a) ε1 (maximum);
(b) ε2 (maximum); (c) ε1 (minimum); (d) ε2 (minimum); (e) ε1 (average); and (f) ε2 (average).

5. Conclusions

In this article, we explore the interplay of sensor quantity (P) and placement, and system
dimensionality or sparsity (K) using optimal data-driven POD & ELM bases with an l2 sparse
reconstruction (SR) of a cylinder wake flow. Particularly, we attempted to (i) explore whether the
relationship between system dimensionality and sensor quantity for accurate reconstruction of the
fluid flow is independent of the basis employed, and (ii) understand the relative influence of sensor
placement on the different choices of SR basis.

Regarding the first goal of this study, we observed that the choice of the sparse basis plays
a crucial role in the SR performance as it determines system dimensionality or sparsity (K) and
in turn the sensor quantity (P) to ensure the problem is well posed. Specifically, in terms of
non-dimensional variables (P∗, K∗) normalized using the characteristic system dimension for a given
basis (K95 corresponding to 95% energy), all one needed was the system to be well posed, i.e., P∗ > K∗

to realize reasonably accurate reconstruction. This requirement turned out to be independent of the
chosen basis. However, the POD/SVD basis represent optimal energy capture for a given training data
and allows for efficient energy-based SR. Further, unlike generic basis spaces such as Fourier or radial
basis functions, the data-driven POD basis needs to be highly flow relevant as it retains the K most
energetic modes for reconstruction and implicitly generates the K-sparse solution for the given sensor
locations. For the more generic ELM basis, relevance to the reconstructed flow is less important, but
there exists no inherent hierarchy in the basis vectors. Thus, when using a smaller number of sensors,
one may need to employ the l1 regularized least squares algorithms to generate meaningful results.
In addition, training the ELM network with partially random weights generates a new K-dimensional
basis space every time. As such ELM basis are not designed to optimally capture the variance of the
data, they are less parsimonious and non-orthogonal when compared to the orthogonal POD basis.
For the datasets considered in this this study, one needed an order of magnitude larger number of
ELM basis and sensors as compared to POD modes to realize the same reconstruction accuracy.

As for the second goal of this study, we observed that the ELM-based SR was less sensitive to
the choice of random sensor placement as compared to the POD-based SR. With the POD basis being
low-dimensional, the SR problem required very few sensors for accurate reconstruction of this cylinder
wake dynamics, but displayed sensitivity to the choice of random sensor placement. To account for
this sensitivity, all the error metrics reported in this article were ensemble averaged over multiple
choices of sensor placement. On the other hand, ELM-basis being relatively high dimensional required
substantially more sensors for accurate reconstruction and turned out to be less sensitive to the choice
of random sensor placement. To illustrate this, we showed the variability between the worst and best
reconstructions across the different choices of sensor locations is insignificant and not discernable
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by the naked eye. Therefore, we expect optimal sensor placement algorithms to offer more value
in POD-based SR than in ELM-based SR. On a related note, we have provided a brief overview of
different classes of methods for estimating optimal sensor locations in Section 2.4, which operate on
modifying the structure of the matrix Θ. Therefore, these algorithms should be equally applicable to
both POD and ELM-based frameworks.
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Appendix A. Comparison of Predicted ELM Features and Snapshot Reconstruction

Figure A1. Sparse reconstructed (SR) POD coefficients for different sensor placements compared with
full reconstruction (FR) for a given K∗ = 3.

(a) (b)

Figure A2. Comparison of ELM-based parse reconstruction with full reconstruction flow fields for a
single snapshot at T = 48.8, using random sensor placement with seed = 101 (maximum reconstruction
error) and seed = 106 (minimum reconstruction error) from the choice of ten different experiments.
Blue solid line: FR. Red dashed line: SR. Black stars: sensor locations. (a) Seed = 101 (max error); and
(b) Seed = 106 (min error).
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Figure A3. Comparison of the sparse reconstructed (SR) ELM features with the corresponding full
data reconstruction (FR) predicted features. The two SR cases correspond to sensor placement with
maximum error (seed = 101) and minimum error (seed = 106).

Appendix B. Impact of Retaining the Data Mean for Sparse Reconstruction

The SR framework described through the early sections of this article removed the mean before
computing the data-driven basis as a matter of choice. As mentioned in Section 2.2, this step is not
critical to the success of this method. In this section, we compare the effect of retaining the mean,
against removing it, on the computed basis and the reconstruction performance. Figure A4 compares
the first five POD modes using data with and without the mean. It is observed that retaining the mean
(i.e., just the SVD step) generates an extra ‘mean’ POD mode that carries significant energy but the rest
of the basis is similar to those computed after removing the mean. This choice in essence shifts the
resulting energy spectrum. Figure A5 compares the normalized mean squared POD-based SR errors.
This comparison clearly shows that both the variants of the SR framework yield nearly similar error
distribution over the P∗ − K∗ space for the most part. However, the SR with the mean retained have
slightly increased errors in the region P∗ ≈ K∗.

(a) (b)

(c) (d)

Figure A4. Cont.
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(e) (f)

(g) (h)

(i) (j)

Figure A4. Isocontours of first five POD modes with and without removing the mean from the snapshot
data for cylinder wake flow with Re = 100. (a) 1st POD mode (with mean); (b) 1st POD mode (without
mean); (c) 2nd POD mode (with mean); (d) 2nd POD mode (without mean); (e) 3rd POD mode (with
mean); (f) 3rd POD mode (without mean); (g) 4th POD mode (with mean); (h) 4th POD mode (without
mean); (i) 5th POD mode (with mean); and (j) 5th POD mode (without mean).

(a) (b)

Figure A5. Cont.
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(c) (d)

Figure A5. The isocontours of the normalized mean squared POD-based sparse reconstruction errors
(l2 norms). The top figures correspond to the case with mean removed for learning the basis. The bottom
figures correspond to the case with the mean retained. Left: normalized absolute error metric, ε1. Right:
normalized relative error metric, ε2. (a) ε1 (without mean); (b) ε2 (without mean); (c) ε1 (with mean);
and (d) ε2 (with mean).

Appendix C. POD-Based Sparse Reconstruction for Cylinder Wake with Re = 800

In order to assess the SR performance for high Reynolds number flows, we use wake data at
Re = 800. The data generation for this simulation required higher grid resolution to resolve the
thinner boundary layers on the cylinder surface. As one would expect, the system dimension also
increases with Reynolds number which in turn requires more sensors for reconstruction. The focus
of this study is to understand how normalized reconstruction errors depend on normalized system
dimension and sensor quantity for different choice of bases. In this appendix, we reproduce similar
analysis of Sections 4.3 and 4.4 for a higher dimensional system. Figure A6 shows the normalized error
metrics for POD-based SR using different choices of sensor locations corresponding to the maximum,
minimum, and the average accuracy expected for this random sensor placement framework. While
the overall distribution of the error metrics are similar to the lower-dimensional case, we observe that
the high accuracy region for ε2 is determined by P∗ ' 2K∗ for this high-dimensional case (in contrast
to and P∗ ' K∗ for the low-dimensional case). The role of sensor placement on this observation
is expected, but requires further investigation. ELM-based SR for this higher-dimensional system
mimicked the error trends observed for the low-dimensional case as shown Figures A7 and A8.
In particular, the error trends were relatively insensitive to the randomness of the sensor placement
(Figure A7) and randomness associated with the generation of ELM basis (Figure A8). As mentioned
in the discussion of the algorithmic complexity of these methods in Section 2.6, the sparse basis
reconstruction methods depend on the system dimension for a given choice of basis space. Thus,
the ELM basis being less parsimonious than the POD for a given data was more expensive for
this high-dimensional system. We expect orthogonalization of the ELM basis to help improve the
computational and predictive performance.
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(a) (b)

(c) (d)

(e) (f)

Figure A6. Isocontours of the normalized mean squared POD-based sparse reconstruction errors
(l2 norm) for Re = 800 case, corresponding to the sensor placement with maximum and minimum
errors from the chosen ensemble. The average error across the entire ensemble of ten random sensor
placements is also shown. Left: normalized absolute error metric, ε1. Right: normalized relative error
metric, ε2. (a) ε1 (maximum); (b) ε2 (maximum); (c) ε1 (minimum); (d) ε2 (minimum); (e) ε1 (average);
and (f) ε2 (average).
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(a) (b)

(c) (d)

(e) (f)

Figure A7. Isocontours of the normalized mean squared (l2) ELM-based sparse reconstruction errors
of Re = 800 case for maximum, minimum, and average error using different choices for random
sensor placement. Left: normalized absolute error metric, ε1. Right: normalized relative error metric,
ε2. (a) ε1 (maximum); (b) ε2 (maximum); (c) ε1 (minimum); (d) ε2 (minimum); (e) ε1 (average); and
(f) ε2 (average).
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(a) (b)

(c) (d)

(e) (f)

Figure A8. Isocontours of the normalized mean squared (l2) ELM-based sparse reconstruction errors
of Re = 800 case for maximum, minimum, and average error using different choices for the random
input weights in learning the basis. Left: normalized absolute error metric, ε1. Right: normalized
relative error metric, ε2. (a) ε1 (maximum); (b) ε2 (maximum); (c) ε1 (minimum); (d) ε2 (minimum);
(e) ε1 (average); and (f) ε2 (average).
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