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Abstract: Viscoelastic rate-type fluid models involving the stress and frame-indifferent time
derivatives of second order, like those in Burgers’ model, are used to describe the complicated
response of fluid like materials that are endowed with a complex microstructure that allows them
to possess two different relaxation mechanisms as well as other non-Newtonian characteristics.
Such models are used in geomechanics, biomechanics, chemical engineering and material sciences.
We show how to develop such rate-type fluid models that include the classical Burgers’ model as well
as variants of Burgers’ model, using a thermodynamic approach based on constitutive assumptions
for two scalar quantities (namely, how the material stores energy and how the energy is dissipated)
and appealing to the concept of natural configuration associated with the placement of the body that
evolves as the body deforms.

Keywords: Burgers model; rate-type fluid models; viscoelasticity; second law of thermodynamics;
thermodynamics

1. Introduction

To describe non-Newtonian phenomena such as stress relaxation, nonlinear creep and normal
stress differences exhibited by geomaterials like asphalt or biomaterials like the vitreous in the
eye, rate-type viscoelastic fluid models are commonly used. These materials exhibit more than one
relaxation mechanism (see Narayan et al. [1], Sharif-Kashani et al. [2]) that can be identified by
the different relaxation times observed in experimental studies. The presence of more than one
relaxation time excludes the classical Maxwell model (originally proposed by Maxwell [3] in one
spatial dimension) or the Oldroyd-B model (see Oldroyd [4] who developed the first general systematic
three-dimensional theory to develop proper frame indifferent rate-type viscoelastic models) from
one’s consideration. On the other hand, the presence of multiple relaxation times in the response of
materials in creep or stress relaxation tests can be well described by rate-type fluid models of higher
order. An example of a higher order model capable of describing two different relaxation times is
the model due to Burgers. In the case of asphalt, Monismith and Secor [5], Narayan et al. [1] and
Málek et al. [6] used the model due to Burgers to corroborate experimental data, while in the case
of the vitreous of the bovine eye, Sharif-Kashani et al. [2] correlated experimental data also using
a Burgers model.

The model proposed by Burgers [7] in one spatial dimension can be associated with as many as
four different mechanical systems consisting of springs and dashpots. The Maxwell fluid model and
the Kelvin–Voigt solid model are special cases of the Burgers model (see Figure 1).
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Figure 1. Lumped parameter system mechanical analog used by Burgers.

The relation between the stress σ and the strain ε for this one-dimensional model satisfies the
second order differential equation

σ + λ1σ̇ + λ2σ̈ = η1 ε̇ + η2 ε̈, (1)

where the constant parameters λ1, λ2, η1, η2 can be expressed in the terms of the shear moduli G1,
G2 and the viscosities µ1, µ2. We can also consider a system of two Maxwell elements in parallel,
see Figure 2a, that gives the same constitutive relation as in (1).
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Figure 2. (a) mechanical analog of a variant of the Burgers model; (b) mechanical analog of a variant of
the Burgers model with an additional dashpot.

Since many materials possess some additional viscous dissipation (connected, for example,
with the properties of an aqueous plasma), it is desirable to add an additional dashpot in parallel
(see Figure 2b). A possible generalization of the setting sketched in Figure 2b to three dimensions
reads as

T = −pI + 2µD + S,
OO
S +

(
G1

µ1
+

G2

µ2

)
O
S +

G1G2

µ1µ2
S = 2G1G2

(
1

µ1
+

1
µ2

)
D + 2(G1 + G2)

O
D,

(2)

where T is the Cauchy stress, I is the identity tensor, and −p is a scalar associated with the fact that
the fluid is incompressible (Note that p is merely the indeterminate part of the stress and the symbol
gives the impression that it is the pressure, a term that is ill-understood, see [8]. We continue to use

the symbol p as it is a conventional notation.). The symbol
O
S = ∂S

∂t + (v · ∇)S− (∇v)S− S(∇v)T

denotes the upper convected Oldroyd derivative, v is the velocity and D is the symmetric part of
velocity gradient (see the definitions of the kinematical quantities introduced in the next section).
There are however subtle issues connected with these constitutive equations. First, a generalization
from one-dimensional mechanical analog to three-dimensional model is not unique and, in principle,
other objective derivatives such as the Jaumann–Zaremba or Gordon–Schowalter can be used instead
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of the upper convected Oldroyd derivative. Second, it is not at all obvious that generalizations of the
form (2) satisfy the second law of thermodynamics.

In order to overcome these issues, Rajagopal and Srinivasa [9] proposed a methodology to derive
thermodynamically consistent viscoelastic rate-type fluid models. Their derivation is based on the
notion that as the body produces entropy the natural configuration associated with the body evolves.
The existence of a natural configuration that evolves as a body deforms allows one to split the total
deformation into that associated with the purely elastic response and the dissipative response. Then by
prescribing two constitutive relations for two scalar quantities: the Helmholtz free energy ψ (or the
Gibbs potential) describing the elastic response of the body and the rate of entropy production ξ that
characterizes how the body dissipates energy, they obtained the form of the Cauchy stress tensor T
including its evolution equation. Later, this approach was used to obtain a generalization of Burgers’
model (Rajagopal and Srinivasa [10], Krishnan and Rajagopal [11], Krishnan and Rajagopal [12],
Karra and Rajagopal [13], Málek et al. [14]). A new idea that is used in these studies is to connect
two different relaxation times with two different underlying natural configurations. Even though the
complex models that are obtained do not exactly coincide with the model (2), it was shown that when
the elastic response between the natural configuration and the current configuration is linearized,
then all these models reduce to the model (2). This may, at first glance, indicate that the classical
Burgers model is an approximation rather than a proper model in its own right.

The first purpose of this study is to show that model (2) can be obtained directly without any
additional linearization or through a reduction of more complex models. In this regard, we follow
a recent study Málek et al. [15] where we show how to derive the classical Maxwell and Oldroyd-B
model using the thermodynamic approach based on the notion of natural configuration. The basic step
that makes the analysis possible is the following. The standard models due to Maxwell, Oldroyd and
Burgers usually concern incompressible materials. It means that all admissible deformations have to be
isochoric. Since the introduction of the notion of natural configuration allows one to split any process
into an elastic response from an evolving natural configuration and a dissipative process describing
(irreversible) changes in the natural configuration, it seems reasonable to require that, if the total
process is isochoric, then its instantaneous elastic part is isochoric as well. However, Málek et al. [6]
found that, if they gave up the requirement that both the elastic and dissipative responses be isochoric
and only required that the compound response be isochoric, then they were able to develop the
Maxwell and Oldroyd-B model without resorting to any approximation. We refer the reader to [15]
for a detailed discussion of this issue. Following [15], we will require, in this study, that the total
deformation process is isochoric while its instantaneous elastic part and its purely dissipative part are
not necessarily isochoric.

The constitutive assumptions for the Helmholtz energy ψ and the rate of entropy production ξ

provide, in a straightforward way, a priori energy estimates (see for example [16,17]), lead to the correct
and complete form of the evolution equation for temperature ([18]) and automatically guarantee the
stability of the rest state. Furthermore, the knowledge of the Lyapunov functional connected with such
complex systems helps one to construct a distance measure that can be used in studying the stability
of the steady states, error between two solutions (regular and weak one, discrete and continuous), etc.
(see [19–22]).

The generalized Burgers models are obtained using two natural configurations, which yields a set
of two first order differential equations for the parts of the Cauchy stress tensor. This immediately
provides two pieces of information. First, owing to its clear physical interpretation, it is easier to
provide proper initial conditions. Otherwise, for the classical second order differential Equation (2),
we would need to provide initial conditions both for the unknown and its derivative, which is a difficult
task (see Průša and Rajagopal [23]). Second, the split into two symmetric first order equations renders
the numerical implementation of the Burgers model easier because, without such a split, it would be
quite difficult to numerically implement the standard second order equation (see Hron et al. [24],
Málek et al. [14], Tůma et al. [25]).
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The second purpose of this paper is to develop a new hierarchy of viscoelastic rate-type fluid
models of Maxwell, Oldroyd-B and Burgers type. This is achieved by modifying the rate of entropy
production corresponding to the classical Burgers model. Moreover, by restricting to only one natural
configuration, we also obtain new variants of Maxwell and Oldroyd-B type models, depending on one
additional scalar parameter.

The structure of the paper is as follows. In Section 2, we introduce basic kinematical quantities
distinguishing whether the kinematical setting consists of two (reference, current), three (reference,
current, natural) or four (reference, current and two natural) configurations. We also describe the
thermodynamic framework used in this study and document its efficacy by illustrating selected
examples; these examples also motivate the form for the constitutive equations postulated in Sections 3
and 4. In Section 3, we first recall how one can derive the three-dimensional viscoelastic rate-type fluid
models of the first order (Maxwell, Oldroyd-B, Giesekus) and simultaneously guarantee that these
models are compatible with the second law of thermodynamics. Then, we extend this approach to
a more general class of viscoelastic rate-type fluid models. The final section is devoted to a similar
discussion, but within the context of viscoelastic rate-type fluid models of the second order, and the
development of several variants of Burgers’ models.

2. Kinematics and Thermodynamic Approach

2.1. Kinematic Quantities

Let t ∈ [0, T], where T > 0 is fixed, denote time and let B denote an abstract three-dimensional
body. Let, for any t ∈ [0, T], κt : B → R3 denote a placer that maps B into the configuration κt(B).
For the sake of convenience, we identify the initial configuration κ0(B) with the reference configuration
and write κR(B) (or simply κR) instead of κ0(B), while κt(B) (or κt) will always represent the current
configuration (see Figure 3). The placers κt are supposed to be one-to-one and the whole family
{κt}t∈([0,T] is called the motion (see [26] for a detailed discussion of these concepts). Introducing then
the mapping χκR : [0, T]× κR(B)→ κt(B) by setting

x = χκR(t, X) for X ∈ κR(B) and x ∈ κt(B), (3)

the basic kinematical quantities, namely the deformation gradient F and the velocity v are
defined through

F =
∂χκR

∂X
and v =

∂χκR

∂t

(
⇐⇒ v(t, x) = v(t, χ−1

κR
(t, x))

)
. (4)

κR
κt

F

Figure 3. Deformation gradient F maps an infinitesimal filament from the reference configuration κR

to the current configuration κt.

The two quantities are linked through the equation describing the evolution of F that takes
the form .

F = LF
(
⇐⇒ L =

.
FF−1

)
, where L := ∇v. (5)
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The symbol
.
A denotes the material time derivative of a (not necessarily tensorial) quantity

A. Let AT denote the transpose of a tensor A. Then, the left and right Cauchy–Green tensors are
defined through

B := FFT and C := FTF. (6)

We will also introduce the standard notation for the symmetric and antisymmetric parts of
L through:

D :=
1
2

(
L + LT

)
and W :=

1
2

(
L− LT

)
. (7)

Note that it follows from the relations (5)–(7) that

.
B = LB + BLT and tr

.
B = 2D · B, (8)

where tr A is the trace of the tensor A, i.e., tr A := ∑3
i=1 Aii. Introducing, for a tensor A, the notation

O
A :=

.
A− LA−ALT,

the first identity in (8) can be rewritten as

O
B = 0, where 0 is the zero tensor. (9)

In this study, we restrict ourselves to those processes that are volume preserving, it means
det F = 1 and consequently

tr D = div v = 0. (10)

Setting with one natural configuration. Next, following [9], one can associate with the current
configuration a configuration κp(t)(B) (or shortly κp(t)) that splits the total deformation F into its purely
elastic part Fκp(t) and the part G that is associated with all irreversible changes during deformation
so that

F = Fκp(t)G. (11)

See Figure 4.
The configuration κp(t) is called the natural configuration. Note that, if G = I, where I is the

identity tensor, then κp(t) = κR, F = Fκp(t) and the response between κR and κt is elastic. On the other
hand, if Fκp(t) = I (or a scalar multiplier of the identity tensor), then κp(t) = κt.

κR
κt

κp(t)

G

F

Fκp(t)

Figure 4. Using the natural configuration κp(t) the deformation gradient F is split into instantaneous
elastic response Fκp(t) and the response G associated with energy dissipation.

With this extended setting, one can introduce the left and right Cauchy–Green tensors
corresponding to Fκp(t) through

Bκp(t) := Fκp(t)F
T
κp(t)

and Cκp(t) := FT
κp(t)

Fκp(t) . (12)
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Next, we introduce (see (5) and (7) for comparison)

Lκp(t) :=
.

GG−1, Dκp(t) :=
1
2

(
Lκp(t) + LT

κp(t)

)
, Wκp(t) :=

1
2

(
Lκp(t) − LT

κp(t)

)
. (13)

Using (11)–(13), one arrives at (see [27] for details)

.
Bκp(t) = LBκp(t) + Bκp(t)L

T − 2Fκp(t)Dκp(t)F
T
κp(t)

=⇒
O
Bκp(t) = −2Fκp(t)Dκp(t)F

T
κp(t)

,

tr
.
Bκp(t) = 2D · Bκp(t) − 2Dκp(t) · Cκp(t) .

(14)

Setting with two natural configurations. The key concept of the theory of interacting continua
(theory of mixtures) is the assumption that each constituent of the mixture co-occupies every point
belonging to the mixture, in a homogenized sense (see for example [28,29]). Here, this idea is applied
to the concept of natural configuration requiring that there are two co-existing natural configurations
κp1(t)(B) and κp2(t)

(B) associated with the current configuration κt(B) (see Figure 5).

κR
κt

κp1(t)

κp2(t)

G1

G2

F

Fκp1(t)

Fκp2(t)

Figure 5. Using two natural configurations, κp1(t) and κp2(t), the total deformation F is split into purely
elastic parts corresponding to the mappings Fκp1(t)

, Fκp2(t)
, and dissipative parts G1, G2.

This means that the total deformation F can be split in two ways, namely

F = Fκp1(t)
G1 and F = Fκp2(t)

G2. (15)

Proceeding in the same way as before in the case of one natural configuration, we set, for i = 1, 2,

Bκpi(t)
:= Fκpi(t)

FT
κpi(t)

, Cκpi(t)
:= FT

κpi(t)
Fκpi(t)

, (16)

Lκpi(t)
:=

.
GiGi

−1, Dκpi(t)
:=

1
2

(
Lκpi(t)

+ LT
κpi(t)

)
, Wκpi(t)

:=
1
2

(
Lκpi(t)

− LT
κpi(t)

)
, (17)

and then conclude that, for i = 1, 2,

.
Bκpi(t)

= LBκpi(t)
+ Bκpi(t)

LT − 2Fκpi(t)
Dκpi(t)

FT
κpi(t)

=⇒
O
Bκpi(t)

= −2Fκpi(t)
Dκpi(t)

FT
κpi(t)

, (18)

tr
.
Bκpi(t)

= 2D · Bκpi(t)
− 2Dκpi(t)

· Cκpi(t)
. (19)

2.2. Thermodynamical Framework

We briefly describe the framework we will incorporate in the following sections to derive several
classes of rate-type viscoelastic fluid models. More details can be found in [10,17,27].
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The basic setup of the framework is outlined by the set of balance equations (for mass, linear and
angular momenta, and energy, completed by the formulation of the second law of thermodynamics)
that take the form

.
ρ = −ρ div v, (20a)

ρ
.v = div T + ρb, T = TT, (20b)

ρ
.
E = div (Tv− je) + ρb · v, E = e +

|v|2
2

, (20c)

ρ
.
η = −div jη + ρζ with ζ ≥ 0. (20d)

Here, ρ is the density, T is the Cauchy stress, e is the internal energy, η is the entropy, je is the
energy flux, jη is the entropy flux, ξ is the rate of entropy production, b is the specific density of the

given body forces and
.z =

∂z
∂t

+ v · ∇z denotes a material time derivative.
In this study, we restrict ourselves to isothermal processes in which the temperature θ is constant

and jη = je/θ. Introducing the Helmholtz free energy ψ := e− θη, the balance equations (20) reduce to

.
ρ = −ρ div v, (21a)

ρ
.v = div T + ρb, T = TT, (21b)

T ·D− ρ
.

ψ = ξ with ξ = ρθζ ≥ 0. (21c)

Next, we state the assumption on how the material stores the energy by choosing ψ of the form

ψ = ψ̃(y1, . . . , yn), (22)

where y1, . . . , yn are the state variables. Inserting (22) into (21c) and using the balance equations and
kinematics, one ends up with the identity

ξ =
m

∑
α=1

Jα Aα, (23)

where each summand (of the form of the product Jα Aα) represents a different dissipative mechanism.
Note that T appears in the expression provided on the right-hand side of (23).

In order to guarantee that ξ ≥ 0, we can proceed in two ways. Either we relate Jα and Aα in such
a way that the product Jα Aα is, for each α = 1, . . . , k, always non-negative, and we read the constitutive
equation for T from these relations, or we postulate the constitutive assumption concerning how the
material dissipates the energy in the form

ξ = ξ̃ J1,...,Jk (A1, . . . , Ak) ≥ 0 (24)

and we determine the constitutive equation for T by maximizing ξ̃ J1,...,Jk (A1, . . . , Ak) with respect
to A1, . . . , Ak provided that ξ̃ J1,...,Jk (A1, . . . , Ak)−∑k

α=1 Jα Aα = 0. Here, the role of {A1, . . . , Ak} and
{J1, . . . , Jk} is symmetric and can be interchanged, see also (PA) vs. (PB) below. If ξ̃ is quadratic in
Ai, i = 1, . . . , k, then both the procedures lead to the same constitutive equation for T.

Since viscoelastic fluids exhibit both viscous and elastic response, we feel it would be instructive
to show how to obtain models that exhibit such responses within the context of the thermodynamical
process that we employ before going on to develop complicated viscoelastic models. In view of this,
we describe how to obtain the compressible Navier–Stokes fluid model that exhibits both elastic and
viscous behavior, the compressible neo-Hookean solid that exhibits purely elastic behavior, and the
Kelvin–Voigt solid that exhibits viscoelastic behavior but has a reasonably simple structure so that the
thermodynamic procedure is clear and easy to follow. Note that the ideal fluids that are elastic bodies



Fluids 2018, 3, 69 8 of 18

represent a special class of the compressible Navier–Stokes fluids when the bulk and shear viscosities
are set to zero.

Compressible Navier–Stokes fluid. Assume that ψ = ψ̃(ρ). Then, by applying the balance of mass,
one gets from (21c)

ξ = T ·D− ρ
.

ψ = Tδ ·Dδ +
(

m + pNS
th (ρ)

)
div v, (25)

where Aδ := A− 1
3 (tr A)I, m := 1

3 tr T and pNS
th (ρ) := ρ2 ∂ψ̃

∂ρ
(ρ). Note that we have expressed ξ in

the form ∑2
α=1 Jα Aα, where A1 = Dδ, A2 = div v, J1 = Tδ, J2 = m + pNS

th (ρ). The first summand
corresponds to all kinds of isochoric forms of dissipation (such as shearing), while the second term
corresponds to dissipation associated with volume changes. Requiring that

Tδ = 2µDδ and m + pNS
th (ρ) = (2µ + 3λ)div v with µ > 0 and 2µ + 3λ > 0, (26)

we obtain
T = mI + Tδ = −pNS

th I + 2µD + λ(div v)I. (27)

The same constitutive equation can be also obtained if we perform the constrained maximization:

Find (div v, Dδ) such that

Ξ(div v, Dδ) = max
(z,A)∈Aad

Ξ(z, A),

where

Ξ(z, A) := 2µ|A|2 + (2µ + 3λ)z2

and

Aad :=
{
(z, A) ∈ R×R3×3

sym,0; Tδ ·A +
(

m + pNS
th (ρ)

)
z = Ξ(z, A)

}
,

where R3×3
sym,0 :=

{
A ∈ R3×3; A = AT and tr A = 0

}
.

(PA)

On introducing the Lagrange function L through

L(z, A) := Ξ(z, A) + `
(

Ξ(z, A)− Tδ ·A−
(

m + pNS
th (ρ)

)
z
)

, (28)

the necessary conditions considered at maximal values (div v, Dδ) read

∂L
∂z

(div v, Dδ) = 0,
∂L
∂A

(div v, Dδ) = 0. (29)

Provided that ` 6= 0, these conditions lead to the equations:

1 + `

`

∂Ξ
∂z

(div v, Dδ) = m + pNS
th (ρ), (30a)

1 + `

`

∂Ξ
∂A

(div v, Dδ) = Tδ, (30b)

which, after substituting for the derivatives, take the form

1 + `

`
2(2µ + 3λ)div v = m + pNS

th (ρ), (31a)

1 + `

`
4µDδ = Tδ. (31b)
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Upon multiplying (31a) by div v and taking the scalar product of (31b) with Dδ, and adding these
results together, we conclude that

1 + `

`
=

(m + pNS
th (ρ))div v + Tδ ·Dδ

2(2µ + 3λ)(div v)2 + 4µ|Dδ|2
=

Ξ(div v, Dδ)

2Ξ(div v, Dδ)
=

1
2

(⇒ ` = −2). (32)

Inserting (32) into (31a) and (31b), we obtain (27).
In fact, the same constitutive Equation (27) can be also obtained if we perform the dual

constrained maximization:

Find (m, Tδ) such that

Ξ(m, Tδ) = max
(z,A)∈Bad

Ξ(z, A),

where

Ξ(z, A) :=
1

2µ
|A|2 + 1

2µ + 3λ

(
z + pNS

th (ρ)
)2

and

Bad :=
{
(z, A) ∈ R×R3×3

sym,0; A ·Dδ +
(

z + pNS
th (ρ)

)
div v = Ξ(z, A)

}
.

(PB)

Let us set the Lagrange function L to be

L(z, A) := Ξ(z, A) + `
(

Ξ(z, A)−A ·Dδ −
(

z + pNS
th (ρ)

)
div v

)
. (33)

The necessary conditions at maximal values (m, Tδ) after substituting for the derivatives of Ξ
over z and A read

1 + `

`

2
2µ + 3λ

(
m + pNS

th (ρ
)
= div v, (34a)

1 + `

`

2
2µ

Tδ = Dδ. (34b)

Upon multiplying (34a) by (m + pNS
th (ρ)) and taking the scalar product of (34b) with Tδ,

and adding these results together, we conclude that

1 + `

`
=

(
m + pNS

th (ρ
)

div v + Tδ ·Dδ

2
2µ+3λ

(
m + pNS

th (ρ)
)2

+ 2
2µ |Tδ|2

=
Ξ(m, Tδ)

2Ξ(m, Tδ)
=

1
2

. (35)

Inserting (35) into (34a) and (34b), we once again obtain (27).
Compressible neo-Hookean solid. Assume that

ψ = ψ̃(ρ) +
G
2ρ

(tr B− 3− ln det B). (36)

Using the formula
.

det A = (det A)tr (
.
AA−1) (see for example [6] for its proof) and (8), we obtain

ξ = T ·D− ρ
.

ψ

= T ·D + ρ2 ∂ψ̃(ρ)

∂ρ
div v− G

2
(tr B− 5− ln det B)div v− GB ·D

= (Tδ − GBδ) ·Dδ +

(
m + pth(tr B, det B)− G

tr B
3

)
div v,

(37)
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where pth(tr B, det B) := ρ2 ∂ψ̃(ρ)

∂ρ
− G

2
(tr B− 5− ln det B). Requiring that

Tδ − GBδ = 0 and m + pth(tr B, det B)− G
tr B

3
= 0, (38)

we obtain both ξ = 0 (and thus the material is elastic) and

T = −pth(tr B, det B)I + GB, (39)

which describes a compressible neo-Hookean solid.
Compressible Kelvin–Voigt solid. Assuming again (36) leading to (37), and requiring that

Tδ − GBδ = 2µDδ and m + pth(tr B, det B)− G
tr B

3
= (2µ + 3λ)div v (40)

with µ > 0 and 2µ + 3λ > 0, we obtain

T = −pth(tr B, det B)I + 2µD + λ(div v)I + GB, (41)

which represents the constitutive equation for compressible Kelvin–Voigt solid.
Note that the system of governing equations for compressible Kelvin–Voigt solid, specified in the

current configuration, takes the form

.
ρ = −ρ div v, (42a)

ρ
.v = div T + ρb with T = −pth(tr B, det B)I + GB + 2µD + λ(div v)I, (42b)
.
B = LB + BLT. (42c)

Note that the compressible neo-Hookean solid can be easily obtained if one assumes that
viscosities µ and λ are zero.

Since we are interested primarily in incompressible fluids in this study, let us describe the variants
of the previous cases here. If div v = tr D = 0 (see (10)), then the density fulfills in general the
transport equation

∂ρ

∂t
+ v · ∇ρ = 0. (43)

Consequently, ρ is constant along χκR(t, X), but may vary from x1 to x2 at the current configuration,
since it can vary with X1 and X2.

Incompressible Navier–Stokes fluid. If ψ = ψ̃(ρ) and div v = 0, then we end up with ξ̃ = Tδ ·Dδ.
Requiring that Tδ = 2µDδ with µ > 0, we obtain

T = mI + 2µD, µ > 0, (44)

as D = Dδ. Usually, the symbol−p is used instead of m. This quantity is not determined constitutively
as in the case for compressible materials.

Incompressible neo-Hookean and Kelvin–Voigt solids. Since det F = det B = 1, we assume that

ψ = ψ̃(ρ) +
G
2ρ

(tr B− 3). (45)

Inserting it into (21c), we conclude that

ξ = (Tδ − GBδ) ·Dδ. (46)
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Requiring that Tδ − GBδ = 0, we obtain the constitutive equation for an incompressible
neo-Hookean solid, i.e.,

T = mI + GBδ = −φI + GB with φ := −
(

m−G
tr B

3

)
. (47)

On the other hand, postulating Tδ − GBδ = 2µDδ with µ > 0, we end-up with

T = mI + 2µDδ + GBδ = −φI + 2µD + GB with φ := −
(

m−G
tr B

3

)
, (48)

which is the constitutive equation for an incompressible Kelvin–Voigt solid. Here, φ is not equal to
mean normal stress m and it is not specified constitutively.

3. Derivation of the Variants of Maxwell and Oldroyd-B Models

In this section, we consider a setting described by three configurations: reference, current and
a natural one (see Figure 4). We first recall the derivation developed in [6,9,27] and then provide its
extension. Throughout the rest of this paper, we suppose that

det F = 1 and div v = tr D = 0, (49)

but Fκp(t) and G do not fulfill det Fκp(t) = 1 = det G.
We assume that (compare with (36))

ψ = ψ̃(ρ) +
G
2ρ

(
tr Bκp(t) − 3− ln det Bκp(t)

)
. (50)

Inserting (50) into (21c), using also (14) and (43), we obtain

ξ =
(

Tδ − G(Bκp(t))δ

)
·Dδ + G(Cκp(t) − I) ·Dκp(t) =: ξ1 + ξ2. (51)

This identity is the starting point for developing a plethora of models of the Maxwell type or the
Oldroyd-B type. We say that the model is of Maxwell type if

Tδ − G(Bκp(t))δ = 0 =⇒ T = −φI + GBκp(t) with φ := −
(

m− G
tr Bκp(t)

3

)
(52)

and is of Oldroyd-B type if

Tδ − G(Bκp(t))δ = 2µDδ =⇒ T = −φI + 2µD + GBκp(t) with φ := −
(

m− G
tr Bκp(t)

3

)
. (53)

One could decompose the dissipative term G(Cκp(t) − I) ·Dκp(t) into the product of deviatoric
parts and the product of traces (which would distinguish the dissipative contributions due to volume
changing processes from the isochoric processes). The reason that we do not do so here is threefold.
First, getting into these details would tend to hinder the clarity of the central ideas of the development.
Second, it is unnecessary for the development of the rate-type models that are carried out in this work.
Finally, the interested reader can find the consequences of splitting the dissipation in such a manner
in [27] where it has been carried out systematically within the context of general compressible bodies.

In [9], Rajagopal and Srinivasa treat the case tr Dκp(t) = 0 (which is relaxed here and consequently
(51) differs from the equation for ξ obtained in [9]), considering two types of dissipation connected
with ξ2. First, the choice

G(Cκp(t) − I) = 2µ1Dκp(t) (54)



Fluids 2018, 3, 69 12 of 18

leads to
ξ2 = 2µ1|Dκp(t) |

2. (55)

Second, the choice
G(Cκp(t) − I) = 2µ1Dκp(t)Cκp(t) (56)

leads to
ξ2 = 2µ1Dκp(t)Cκp(t) ·Dκp(t) = 2µ1|Dκp(t)Fκp(t) |

2. (57)

The relation (54) and similarly the relation (56) are the identities that lead to rate-type equation
for the stress as shown next.

Multiplying (56) from the left by Fκp(t) and from the right by F−1
κp(t)

, and recalling Cκp(t) = FT
κp(t)

Fκp(t) ,
we obtain

G(Bκp(t) − I) = 2µ1Fκp(t)Dκp(t)F
T
κp(t)

. (58)

Using (14), we get
O
Bκp(t) +

G
µ1

(Bκp(t) − I) = 0. (59)

Recalling (52), (53) and setting S := G(Bκp(t) − I), we conclude that

T = −pI + S + 2µD with p = φ− G,
O
S +

G
µ1

S = 2GD ⇔ µ1

G
O
S + S = 2µ1D,

(60)

where we have also used the fact that
O
I = −2D.

The model (60) with µ > 0 is the Oldroyd-B model [4], while (60) with µ = 0 is the Maxwell model.
On the other hand, multiplying (54) from the left by Fκp(t) and from the right by FT

κp(t)
and using

(14), we arrive at
O
Bκp(t) +

G
µ1

(Bκp(t) − I)Bκp(t) = 0. (61)

Setting again S := G(Bκp(t) − I), we end up with

T = −pI + S + 2µD with p = φ− G,
O
S +

G
µ1

S +
1

µ1
S2 = 2GD ⇔ µ1

G
O
S + S +

1
G

S2 = 2µ1D,
(62)

which is the fluid model due to Giesekus [30].
Both of the above models can be shown to be special cases of a more general model. In order to

show this, we set (instead of (54) and (56))

G(Cκp(t) − I) = 2µ1Dκp(t)C
λ
κp(t)

, λ ≥ 0. (63)

This leads to
ξ2 = 2µ1Dκp(t)C

λ
κp(t)
·Dκp(t) = |Dκp(t)U

λ
κp(t)
|2, (64)

where Uκp(t) comes from the polar decomposition of Fκp(t) , i.e., Fκp(t) = Rκp(t)Uκp(t) .
Clearly, if λ = 0, then we get the case leading to the Giesekus model, while, if λ = 1, then we get

the Maxwell/Oldroyd-B model depending on whether µ is zero/positive.
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Now, multiplying (63) from the left by Fκp(t) and from the right by U1−2λ
κp(t)

RT
κp(t)

, we finally get

T = −φI + 2µD + GBκp(t) ,
O
Bκp(t) +

G
µ1

(Bκp(t) − I)B1−λ
κp(t)

= 0,
(65)

which as discussed above generalizes the three-dimensional models developed by Maxwell, Oldroyd-B,
Giesekus and includes them as special cases.

4. Burgers Model

Finally, we consider a setting wherein there are two evolving natural configurations associated
with the body (see Figure 4 and kinematics summarized in (15)–(19)). Again, we assume that (49)
holds and, motivated by the discussion in the preceding section, we assume that

ψ = ψ̃(ρ) +
G1

2ρ

(
tr Bκp1(t)

− 3− ln det Bκp1(t)

)
+

G2

2ρ

(
tr Bκp2(t)

− 3− ln det Bκp2(t)

)
. (66)

Inserting (66) into (21c), using (18), (19) and (49), we obtain

ξ =
(

T− G1Bκp1(t)
− G2Bκp2(t)

)
δ
·Dδ + G1(Cκp1(t)

− I) ·Dκp1(t)
+ G2(Cκp2(t)

− I) ·Dκp2(t)

=: C(Dδ, Dκp1(t)
, Dκp2(t)

).
(67)

Next, as in Section 3, we postulate that(
T− G1Bκp1(t)

− G2Bκp2(t)

)
δ
= 2µDδ, (68)

G1(Cκp1(t)
− I) = 2µ1Dκp1(t)

Cλ1
κp1(t)

, (69)

G2(Cκp2(t)
− I) = 2µ2Dκp2(t)

Cλ2
κp2(t)

, (70)

which upon inserting these relations into (67), yields

ξ = 2µ|Dδ|2 + 2µ1Dκp1(t)
Cλ1

κp1(t)
·Dκp1(t)

+ 2µ2Dκp2(t)
Cλ2

κp2(t)
·Dκp2(t)

, µ, µ1, µ2 > 0, λ1, λ2 ≥ 0. (71)

Using the fact that Cκpi(t)
= U2

κpi(t)
, i = 1, 2, where Uκpi(t)

is the right stretch tensor obtained from
the polar decomposition of Fκpi(t)

, i.e., Fκpi(t)
= Rκpi(t)

Uκpi(t)
, we conclude from (49) and (71) that

ξ = 2µ|Dδ|2 + 2µ1|Dκp1(t)
Uλ1

κp1(t)
|2 + 2µ2|Dκp2(t)

Uλ2
κp2(t)
|2; (72)

thus, ξ ≥ 0.
The constitutive equations for a class of Burgers models are obtained from (68)–(70) in the

following way. We multiply (69) from the left by Fκp1(t)
and from the right by U1−2λ1

κp1(t)
RT

κp1(t)
and we also

multiply (70) from the left by Fκp2(t)
and from the right by U1−2λ2

κp2(t)
RT

κp2(t)
. Referring to (18), we observe

that Equations (68)–(70) lead to

T = −φI + 2µD + G1Bκp1(t)
+ G2Bκp2(t)

with φ = −
(

m− G1
tr Bκp1(t)

3
− G2

tr Bκp2(t)

3

)
, (73a)

O
Bκp1(t)

+
G1

µ1
(B2−λ1

κp1(t)
− B1−λ1

κp1(t)
) = 0, (73b)

O
Bκp2(t)

+
G2

µ2
(B2−λ2

κp2(t)
− B1−λ2

κp2(t)
) = 0. (73c)
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By choosing λ1 = λ2 = 1, one gets

T = −φI + 2µD + G1Bκp1(t)
+ G2Bκp2(t)

, (74a)

O
Bκp1(t)

+
G1

µ1
(Bκp1(t)

− I) = 0, (74b)

O
Bκp2(t)

+
G2

µ2
(Bκp2(t)

− I) = 0. (74c)

Next, following [6], we show that the model (74) is equivalent to the Burgers model (2). Indeed,
first, we define S1 := G1(Bκp1(t)

− I) and S2 := G2(Bκp2(t)
− I) and S := S1 + S2. Using (74b) and (74c),

we have
O
S =

O
S1 +

O
S2 = −G1

µ1
S1 −

G2

µ2
S2 + 2(G1 + G2)D. (75)

Applying the upper convected Oldroyd derivative to (75) and using (74b) and (74c) again,
we obtain

OO
S = −G1

µ1

O
S1 −

G2

µ2

O
S2 + 2(G1 + G2)

O
D =

G2
1

µ2
1

S1 +
G2

2
µ2

2
S2 − 2

(
G2

1
µ1

+
G2

2
µ2

)
D + 2(G1 + G2)

O
D. (76)

Multiplying the Equation (75) by (G1/µ1 + G2/µ2), and adding the result to (76), we obtain

T = −pI + 2µD + S with p = φ− G1 − G2, (77a)
OO
S +

(
G1

µ1
+

G2

µ2

)
O
S +

G1G2

µ1µ2
S = 2G1G2

(
1

µ1
+

1
µ2

)
D + 2(G1 + G2)

O
D, (77b)

which coincides with (2).
It is also worth mentioning how the Equation (73) looks for λ1 = λ2 = 0:

T = −φI + 2µD + G1Bκp1(t)
+ G2Bκp2(t)

, (78a)

O
Bκp1(t)

+
G1

µ1
(B2

κp1(t)
− Bκp1(t)

) = 0, (78b)

O
Bκp2(t)

+
G2

µ2
(B2

κp2(t)
− Bκp2(t)

) = 0. (78c)

When λ1 = 1 and λ2 = 0, we obtain a model where one response corresponds to the Giesekus
model and the other to the Maxwell model (note that the natural configurations are interchangable):

T = −φI + 2µD + G1Bκp1(t)
+ G2Bκp2(t)

, (79a)

O
Bκp1(t)

+
G1

µ1
(B2

κp1(t)
− Bκp1(t)

) = 0, (79b)

O
Bκp2(t)

+
G2

µ2
(Bκp2(t)

− I) = 0. (79c)

Finally, we show that the Equations (68)–(70), which represent the initial forms for the final
structure of constitutive equations, can be obtained using the knowledge of how the material dissipates
the energy and referring to the assumption that the material response is such that it maximizes the rate
of entropy production.

Following the methodology outlined in Section 2.2, we first specify how the material dissipates
the energy. Referring to (71), we set ξ̂Cκp1(t)

,Cκp2(t)
(Dδ, Dκp1(t)

, Dκp2(t)
) to be the function appearing on

right-hand side of (71). Note that ξ̂Cκp1(t)
,Cκp2(t)

(Dδ, Dκp1(t)
, Dκp2(t)

) is in virtue of (72) non-negative,
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and is quadratic in Dδ, Dκp1(t)
, Dκp2(t)

, and includes Cκp1(t)
and Cκp2(t)

as parameters. In the rest of this
section, we simplify the notation by omitting the subscripts, i.e.,

ξ̂(Dδ, Dκp1(t)
, Dκp2(t)

) = ξ̂Cκp1(t)
,Cκp2(t)

(Dδ, Dκp1(t)
, Dκp2(t)

). (80)

In accordance with the scheme described in Section 2.2, we determine the constitutive equation
by the maximization ξ̂(Dδ, Dκp1(t)

, Dκp2(t)
) over the set of Dδ, Dκp1(t)

, Dκp2(t)
fulfilling

ξ̂Cκp1(t)
,Cκp2(t)

(Dδ, Dκp1(t)
, Dκp2(t)

) = C(Dδ, Dκp1(t)
, Dκp2(t)

), (81)

where C(Dδ, Dκp1(t)
, Dκp2(t)

) is given in (67). This constrained maximization is performed by employing
the Lagrange multiplier method. We set

L(Dδ, Dκp1(t)
, Dκp2(t)

) =ξ̂(Dδ, Dκp1(t)
, Dκp2(t)

) + `
(

ξ̂(Dδ, Dκp1(t)
, Dκp2(t)

)− C(Dδ, Dκp1(t)
, Dκp2(t)

)
)

, (82)

where ` is the Lagrange multiplier corresponding to the constraint (81). The necessary conditions for
the extrema are

∂L
∂Dδ

= 0,
∂L

∂Dκp1(t)

= 0,
∂L

∂Dκp2(t)

= 0, (83)

which results in

1 + `

`
4µDδ = Tδ − G1(Bκp1(t)

)δ − G2(Bκp2(t)
)δ, (84a)

1 + `

`
2µ1(Dκp1(t)

Cλ1
κp1(t)

+ Cλ1
κp1(t)

Dκp1(t)
) = G1(Cκp1(t)

− I), (84b)

1 + `

`
2µ2(Dκp2(t)

Cλ2
κp2(t)

+ Cλ2
κp2(t)

Dκp2(t)
) = G2(Cκp2(t)

− I). (84c)

Upon taking the scalar product of (84a) with Dδ and (84b) with Dκp1(t)
and (84c) with Dκp2(t)

and
adding these results together, we obtain

1 + `

`
=

(T− G1Bd
κp1(t)

− G2Bd
κp2(t)

)δ ·Dδ + ∑2
i=1 Gi(Cκpi(t)

− I) ·Dκpi(t)

4µ|D|2 + 4µ1Dκp1(t)
Cλ1

κp1(t)
·Dκp1(t)

+ 4µ2Dκp2(t)
Cλ2

κp2(t)
·Dκp2(t)

=
ξ̂

2ξ̂
=

1
2

. (85)

Then, it follows from (84a) (compare with (68)) that

T = mI + Tδ = mI + 2µDδ + G1(Bκp1(t)
)δ + G2(Bκp2(t)

)δ. (86)

Now, similar to the arguments advanced in [9], we show that Cλi
κpi(t)

and Dκpi(t)
commute. Let Cκpi(t)

have an eigenvector e corresponding to an eigenvalue φ. Then, Cλi
κpi(t)

has the same eigenvector e

corresponding to the eigenvalue φλi . After substituting for `, we apply both sides of (84b) on e
and obtain

µi(φ
λi I + Cλi

κpi(t)
)Dκpi(t)

e = Gi(φ− 1)e, i = 1, 2. (87)

Since Cκpi(t)
is positive definite, φ is positive and φλi I + Cλi

κpi(t)
is invertible with the same

eigenvector e. Thus,
Dκpi(t)

e = φ̃e, (88)

which means that e is also an eigenvector of Dκpi(t)
. Thus, the tensors Cλi

κpi(t)
and Dκpi(t)

commute and
we obtain relations given in (69) and (70), which we wished to show.
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5. Conclusions

The models developed by Maxwell, Oldroyd and Burgers to describe the viscoelastic response of
fluids are comprised of elastic and viscous responses. Recently, Rajagopal and Srinivasa [9] developed
a thermodynamic framework wherein they assumed two scalar functions, the stored energy and
the rate of entropy production, and assuming further that the rate of entropy production has to be
maximized as the body undergoes deformation, they developed nonlinear models for viscoelastic
fluids that are generalizations of the models due to Maxwell, Oldroyd and Burgers. When attention is
restricted to incompressible viscoelastic fluids, the models developed by Rajagopal and Srinivasa [9],
when the elastic response was linearized, in the sense that the displacement gradients are small
so that the square of the norm of the displacement gradients can be ignored in comparison to the
norm of the displacement gradient, leads exactly to the models developed by Maxwell, Oldroyd
and Burgers. This might suggest that the models due to Maxwell, Oldroyd and Burgers allow only
small elastic responses. In this paper, we show that this is not the case, provided we allow both the
elastic and viscous responses to be non-isochoric while the combined response meets the condition of
isochoricity. Such an assumption implies that an instantaneous elastic isochoric response as well as an
instantaneous viscous response are not possible as we assume that the elastic response as well as the
viscous response are not isochoric to begin with. The notion that a process can be instantaneous is an
oxymoron as the word process implies something that takes time (the Oxford English Dictionary [31]
defines process as “to go on” implying clearly something that takes time). Thus, one cannot expect
any process to be instantaneous; however, we resort to the use of such processes in view of certain
mathematical considerations (e.g., within the context of linear theories, this allows us to study the
response to Heaviside functions using Laplace transforms). In this paper, we have shown that, in all
other processes, the assumptions that are used lead to the models developed by Maxwell, Oldroyd
and Burgers without having to resort to any approximation of the elastic response, that is, they are
exactly the models developed by Maxwell, Oldroyd and Burgers.

We also introduced new generalizations (one-parameter families) of models of the Maxwell,
Oldroyd and Burgers type that are compatible with the second law of thermodynamics.
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