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Abstract: One of the most significant difficulties in subsurface hydrology is the considerable
uncertainty in hydraulic conductivity values in the medium. This stimulates qualitative analysis
of the effect of conductivity distribution on the solutions or on some components of the solutions
of groundwater flow equations. This work is an attempt to develop a rigorous basis for deciding
whether the solutions are monotonous with respect to hydraulic conductivity. Such monotonicity
is analogous to the well-known comparison principles with respect to variations of initial data or
external supplies. Some example problems are given in this paper, including a problem with a free
boundary, in which the monotonous dependence of the solution on the conductivity distribution
is proved rigorously. Examples are also given, in which monotonicity assumptions, despite being
apparently obvious, are proved to be invalid.
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1. Introduction

The use of mathematical models to solve practical problems of subsurface hydrology implies
specifying many model parameters. These include the hydraulic properties of soils, the initial data, and
the external inflow rates. Such characteristics show a high variability over spatial coordinates. This is
especially true for the hydraulic conductivity, as its values can vary by several times or even orders of
magnitude within the model domain even in geologically homogeneous media. When these source
data cannot be determined with sufficient detail, the researcher, in what regards the majority of inputs,
can rely only on data on the likely ranges of their variations. The result is that, as a general matter,
a considerable portion of input data in engineering groundwater flow problems can be specified by
guess with a high degree of arbitrariness. The chance to guess the correct values of parameters is
clearly not high in this case, and the solutions of the problems based on such data will, most likely,
be far from those required.

In this context, when solving practical engineering problems, one has to have an idea about the
magnitude and the sign of the difference between the model solution with assumed input data and
the solution that one would have with true, but unknown, parameter values. Such question will
always arise in model calibration or when one tries to evaluate the accuracy and reliability of model
calculations. In numerical studies, such problems are commonly solved with the use of sensitivity
analysis. This rapidly developing field incorporates the ideas of small-perturbation theory, stochastic
analysis, and many other methods. The analysis of the state of the art in this field falls beyond the
focus of this study; therefore, we refer the reader to a recent review [1] and research articles [2,3]. It is
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worth noting that, if the number of unknown variables and the ranges of their possible variations are
great, a thorough sensitivity analysis might require exceeding computational resources. This fact can
be of importance for engineers dealing with applications if the objective of their work is not to prepare
a scientific paper, but to perform a professional task. At the same time, the researchers can avoid such
problem in some cases by assuming the characteristics of solutions of flow equations to be monotone
functions of model parameters. For example, it is obvious that the position of groundwater table in
an unconfined aquifer monotonously depends on the rate of external water inflow, i.e., the greater
the inflow, the higher the level. Therefore, in the problems where groundwater table position is to be
found and the external inflow rates are input data known with a considerable uncertainty, the rates of
external inflow can be assigned maximal possible values (with a margin), thus making the calculated
position of groundwater table a reliable upper estimate for the true value. Thus, the monotonicity
allows this estimate to be obtained by a single calculation, avoiding the examination of many possible
inflow rate values. This idea works well whatever the dimension of the parameter space, including the
infinite-dimensional case for continuous-domain problems.

This assumption regarding the monotonous dependence of groundwater table position on external
inflow in groundwater flow models is both intuitively obvious and mathematically rigorous. Textbooks
on partial differential equations commonly contain such statements in the section devoted to the
maximum and comparison principles (see, e.g., [4,5]). The monotonicity of solutions of non-stationary
flow problems with respect to initial conditions has also been well studied ([6]); in particular, the rise
of the initial groundwater level is followed by its rise in later time moments, other conditions being
the same. This allows us to state that the solutions of flow problems with initial data chosen
appropriately, i.e., with a margin, can be used as upper or lower estimates for solutions to the
same problems with actual distributions of the initial data. Note that the methods used to prove
the comparison theorems involve neither numerical approximations of models, nor conventional
approaches to sensitivity analysis.

The monotonicity of the dependence of groundwater flow problem solutions on the distribution of
the hydraulic conductivity has not been studied by mathematicians. At the same time, the engineering
approaches to groundwater flow simulation often involve estimates based on the assumptions that
some characteristics of the flow monotonically depend on the values of hydraulic conductivity.
In the absence of rigorous mathematical proofs, such assumptions are based on the researcher’s
intuition and regarded as obvious. This study gives examples of problems in which such assumptions
can be proved rigorously, and, most importantly, counterexamples, in which seemingly obvious
monotonicity hypotheses are proved to be erroneous. This is the goal of the paper. The examples and
counterexamples presented here are continuous rather than numerical models. The monotonicity is
proved with the use of variation methods similar to those commonly used to prove the comparison
theorems [5,6].

A key factor in the construction of these counterexamples is the heterogeneity of the medium,
as in the case of homogeneous media, the dependence of flow problem solutions on parameters
commonly does not contradict intuition and can be easily substantiated. The issues of the qualitative
properties of solutions considered in this article are not intended to be a consistent presentation of
a complete mathematical theory; they are rather to be considered as an attempt to attract attention
to the formulated problem. At the same time, the researchers who are focused on solving practical
problems can find this article useful as a caution to be careful with conclusions based on the results of
mathematical modeling of groundwater flow processes.

2. Problem Formulation and Results

2.1. The Problem of Water Inflow into an Open Water Body (a Pit)

To vividly demonstrate the problem described in the Introduction, we start with a detailed analysis
of a simple example. We consider a stationary two-dimensional problem describing groundwater
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discharge from a confined aquifer into an open water body. Let the aquifer planar view be a ring-shaped
domain Ω in a plane with coordinates x1, x2 (Figure 1). In the hydraulic approximation (see, e.g., [7]
Chap. X, [8] Chap. 8), the pressure head u = u(x1, x2) in the aquifer depends only on the horizontal
coordinates and satisfies the equations

∇ · q = 0, q = −T∇u (1)

where∇ = (∂/∂x1, ∂/x2) is the gradient operator, q = (q1, q2) is water flow vector field, and T = T(x1, x2)

is the transmissivity. The latter parameter is determined by aquifer thickness and the distribution of
hydraulic conductivity in it; therefore, it can vary over spatial coordinates. We assume that the inner
contour of the ring Cint is a boundary of an open water body with a fixed head u = 0, and the head along
the external boundary Cext is known and specified as a function u = U(s) > 0, where s is the length along
this curve. With the specified boundary conditions, the system of Equation (1) has a unique solution,
provided that the distribution of transmissivity T(x1, x2) is known.

Figure 1. Illustration to the problem of groundwater discharge from a confined aquifer into an open
water body.

Given the water flow distribution along boundaries, the total inflow into the water body can be
calculated as

Q =
∫

Cint

q · n ds = −
∫

Cext
q · n ds

where n is the outward normal vector to the boundary of the flow domain Ω.
If the size of the aquifer is large and its hydraulic conductivity distribution is heterogeneous,

the data on the distribution of transmissivity T all over the domain Ω are difficult to collect. Generally,
a few exploration wells are available to obtain reliable data on the geological structure of the aquifer,
but these data can only be used to determine the possible ranges of transmissivity values in different
parts of the aquifer. As the solution of Equation (1) cannot be found when parameter T(x1, x2) is
unknown, a natural step is to try to determine at least the ranges of possible values of the solution,
for example, the values of discharge Q, assuming that the limits of possible values of transmissivity
T(x1, x2) are specified.

The approach based on successively trying all possible distributions of T(x1, x2) with solving
Equation (1) to obtain estimates for discharge Q is unrealistic. However, if we assume that the
discharge Q monotonically increases with increasing transmissivity T(x1, x2), then we can avoid
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the need to try all possible functions T(x1, x2). In this case, it will be enough to consider only two
distributions with maximal and minimal possible values of T and, solving appropriate problems,
to obtain upper and lower estimates for Q. The exact formulation of the relevancy of the above
assumption is as follows. Let T0(x1, x2) and T1(x1, x2) be two different distributions of transmissivity
with T0(x1, x2) ≤ T1(x1, x2) all over the flow domain, and Q(0) and Q(1) be the corresponding values
of the total discharge, calculated with the use of Equation (1). Can we expect that Q(0) ≤ Q(1) in
this case?

If we consider a homogeneous aquifer with a constant transmissivity T, then the total discharge
Q is proportional to T, as follows from dimensional considerations. In that case, the monotonous
dependence of Q on T is obvious and needs no substantiation. The assumption that the dependence is
still monotonous in the case of variable coefficients looks so natural and agreeing with engineering
intuition that even the question of whether this is always so can astonish some researchers. This makes
even more surprising the following statement.

Proposition 1. If the head at the inflow boundary of the aquifer is constant, i.e., U(s) ≡ const > 0, then the
dependence of Q on T(x1, x2) is monotonous. However, if U(s) 6= const, then, for any transmissivity
distribution T0(x1, x2), there exists a distribution T1(x1, x2), such that T1(x1, x2) ≥ T0(x1, x2) in all points of
domain Ω, but Q(1) < Q(0).

This mathematical result means that, in heterogeneous aquifers at U(s) 6= const, correct estimates
of the total discharge cannot be constructed based on the monotonicity assumption. The proof of
Proposition 1 is given in Section 3.1. Note that the results formulated here keep true in the case of
anisotropic medium, when the transmissivity T(x1, x2) in Equation (1) is a matrix-valued rather than
a scalar function of coordinates. In the case of matrices, the relationship T1(x1, x2) ≥ T0(x1, x2) is
assumed to mean that all eigenvalues of the difference T1 − T0 are nonnegative.

2.2. The Rate of Groundwater Table Rise in the Process of Flooding from Contour Ditches

Let an unconfined aquifer be located between two parallel open canals and underlain by an
impermeable bed. A vertical cross-section ABCD of this aquifer is given in Figure 2. We consider a
two-dimensional profile problem of groundwater flow caused by an abrupt and simultaneous level
rise in the left and right canals. Suppose that water table in the soil before time t = 0 lies at a height h0

and coincides with the levels in the canals, while at t = 0+ the level of both canals instantaneously
rises to H > h0 and remains constant for t > 0. The state of groundwater at t > 0 and, in particular,
the dynamics of its free surface y = h(t, x) are to be determined. In practice, this type of problems
arises in land irrigation.

Figure 2. Cross-section of the flow domain in the problem of water rise in an unconfined aquifer.



Fluids 2018, 3, 102 5 of 12

Boussinesq approximation (see, e.g., [7] Chap. X, [8] Chap. 8) is unacceptable for the problem,
at least, at the first stage of the process. Therefore, a two-dimensional flow model should be used
to describe water flow in the aquifer. In this case, the state of groundwater in the flow domain can
be described by the distribution of water head u = u(t, x, y) and flux vector q = (qx, qy) , satisfying
the equations

∇ · q = 0, q = −K∇u (2)

where ∇ = (∂/∂x, ∂/∂y), and K = K(x, y) is a symmetrical and positively defined matrix of hydraulic
conductivity for inhomogeneous and anisotropic medium. The domain above the flow zone is assumed
dry, i.e., the residual water content there is not greater than the threshold above which water motion
becomes possible. If aquifer recharge is negligible, then the conditions at the free boundary, separating
the dry and wet zones and coinciding with the plot of the function y = h(t, x) to be determined, read

u(t, x, y) = h(t, x) and qy = m
∂h
∂t

+ qx
∂h
∂x

at y = h(t, x), (3)

where m = m(x, y) is a specified distribution of effective porosity coefficient. The aquifer bed is
assumed horizontal and impermeable, i.e., qy(t, x, y) = 0 at y = 0. At the boundaries of the flow zone
with the left and right open canals, we specify constant head values at t > 0:

u(t, x, y) = H on AD and on BC at y < H. (4)

Problem formulation is completed by the initial condition h(0, x) = h0.
The relationships in Equations (2)–(4) correspond to the so-called strong formulation of the

problem of groundwater flow with a free surface. In this formulation, the existence of a solution is
not guaranteed. A solution existence theorem is given in [9], limited to a rectangular cross-section
and homogeneous medium. As shown by examples in previous studies [10,11], the solution may not
exist in the case of homogeneous medium. To ensure the solvability, the problem in Equations (2)–(4)
can be presented in another form, which the authors of [12,13] called weak. The solvability in weak
sense of a stationary problem for a dam and other similar free-boundary problems is discussed in
detail in [10,14]. In the weak formulation, the solution is described by another set of functions, and the
study of the dependence of these solutions on hydraulic conductivity distribution becomes much more
complicated. Therefore, here, we limit our analysis to a strong formulation of the problem, assuming
its solution to exist.

If K(x, y) = kI and k = const > 0, i.e., the medium is homogeneous and isotropic, dimensional
analysis shows that the unknown groundwater table h = h(t, x) in the problem under consideration
depends monotonically on the constant hydraulic conductivity k. This could suggest an assumption
that this monotonicity holds for heterogeneous medium as well, i.e., the greater the hydraulic
conductivity in a medium, the faster the recovery of groundwater table during inundation. An exact
formulation of this hypothesis is as follows: if K0(x, y) and K1(x, y) are two different distributions of the
hydraulic conductivity tensor in the medium such that K0(x, y) ≤ K1(x, y) everywhere, and h(0)(t, x)
and h(1)(t, x) are the corresponding solutions of the problem in Equations (2)–(4), then the inequality
h(0)(t, x) ≤ h(1)(t, x) will hold for any t and x. The main result of this section is the proof that this
natural assumption is not quite correct. For this purpose, we give a counterexample in which the
inequality h(0)(t, x) ≤ h(1)(t, x) will be true not for all but for large enough values of time t, while at
the initial stages of the process, we have h(0)(t, x) > h(1)(t, x).

To construct the counterexample, we use a two-layer aquifer system given in Figure 3. The domain
ABCD is a rectangle, the bottom and top parts of which are beds with hydraulic conductivities k+ and
k−, respectively, with k+ > k−. The distribution of the corresponding isotropic hydraulic conductivity
tensor has the form: K0(x, y) = k+ I at y < H1 and K0(x, y) = k− I at y > H1, where H1 is the thickness
of the bottom bed. The second medium will be a homogenous structure with a hydraulic conductivity
tensor K1(x, y) ≡ k+ I. Now, in any point of the rectangle ABCD, we have K0(x, y) ≤ K1(x, y). Figure 4
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shows numerical plots of the levels h(0)(t, x) and h(1)(t, x) as functions of time in the central point
x = L/2 between the canals. This result shows that h(0)(t, x) > h(1)(t, x) at the initial stage of the
process. This refutes the assumption of monotonicity of the water table level with respect to hydraulic
conductivity. The calculations were made with the following parameter values: L = 108 m, H = 8.4 m,
h0 = 5 m, H1 = 4.5 m, k+ = 1 m/day, k− = 0.01 m/day, and m = 0.2.
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Figure 4. Recovery dynamics of groundwater level ( h, m) in the central point between canals over time
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The effect of faster level rise in the case of an overlying low-permeability bed, as shown in Figure 4,
is highly sensitive to parameter values. This effect manifests itself when the parameters satisfy the
conditions h0 > H1, H << L, k− << k+, and k−/k+ ∼ (H/L)2. The physical mechanisms underlying
this effect are as follows.

When the difference between the hydraulic conductivities k− and k+ is not very large,
for example, when (H/L)2 << k−/k+ < 1, the process under consideration can be described with
Dupuit–Boussinesq approximation. In this case, the head in the flow zone is assumed constant over
the vertical, i.e., u(t, x, y) ≡ h(t, x). It can be shown that, with such one-dimensional approximation,
the level rise in the two-layer structure will not be faster than that in the homogenous one. However,
if (H/L)2 ∼ k−/k+ << 1, Dupuit–Boussinesq approximation is inapplicable because, in this
case, the head becomes constant along the vertical only in the more permeable bottom layer,
rather than all over the vertical. Engineering applications in such situations commonly rely on
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Figure 4. Recovery dynamics of groundwater level (h, m) in the central point between canals over time
(t, day) in media with a homogeneous (dashed curve) and a heterogeneous (solid curve) structure.

The effect of faster level rise in the case of an overlying low-permeability bed, as shown in Figure 4,
is highly sensitive to parameter values. This effect manifests itself when the parameters satisfy the
conditions h0 > H1, H << L, k− << k+, and k−/k+ ∼ (H/L)2. The physical mechanisms underlying
this effect are as follows.

When the difference between the hydraulic conductivities k− and k+ is not very large,
for example, when (H/L)2 << k−/k+ < 1, the process under consideration can be described with
Dupuit–Boussinesq approximation. In this case, the head in the flow zone is assumed constant over
the vertical, i.e., u(t, x, y) ≡ h(t, x). It can be shown that, with such one-dimensional approximation,
the level rise in the two-layer structure will not be faster than that in the homogenous one. However,
if (H/L)2 ∼ k−/k+ << 1, Dupuit–Boussinesq approximation is inapplicable because, in this
case, the head becomes constant along the vertical only in the more permeable bottom layer,
rather than all over the vertical. Engineering applications in such situations commonly rely on
another one-dimensional approximation based on Girinskii–Myatiev hypothesis [15,16]. In particular,
Manukyan [17] developed this approach for problems of peatland rewetting for areas with appropriate
geological structure of the medium. In the Girinskii–Myatiev approximation, it is assumed that the
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head in the low-permeability layer can be approximated by a linear function of coordinate y. Now,
to describe the flow, two sought variables are needed, namely, the groundwater table in the top layer
h = h(t, x) and the head in the bottom layer u = u(t, x). They can be found from the following
one-dimensional equations

k+H
∂2u
∂x2 + k−

h− u
h− H1

= 0, m
∂h
∂t

+ k−
h− u

h− H1
= 0 (5)

with the boundary and initial conditions

u(t, 0) = u(t, L) = H, h(0, x) = h0.

With these conditions substituted into Equation (5) at t = 0, one can explicitly calculate the rate
of level rise at the initial moment ∂h(0, x)/∂t, which is strictly positive over the interval 0 < x < L.
An analogous calculation of the same value for a homogeneous structure with the use of the original
Equations (2)–(4) or their simplified Dupuit–Boussinesq version leads to the equality ∂h(0, x)/∂t ≡ 0.
Therefore, at the initial stage of the process, the values of h(0)(t, x) in the two-layer aquifer lie above the
level h(1)(t, x) in the homogeneous medium. In the case of a higher contrast between the permeability
of the top and bottom layers, i.e., at k−/k+ << (H/L)2, the rate of head rise in the bottom layer
increases (at k− = 0, the value of u(t, x) will instantaneously attain at t = 0+ its maximal possible
value u = H), while the increase rate of the level h(t, x), in virtue of Equation (5), conversely, drops, to
become zero at k− = 0. Therefore, the time interval within which the plot h(0)(t, L/2) lies above the
plot h(1)(t, L/2) in Figure 4 decreases and the effect of faster level rise becomes insignificant.

At greater values of time t, in the particular case considered above, the plot of function
y = h(1)(t, L/2) in Figure 4 lies higher than the plot of y = h(0)(t, L/2). This property holds in
the general situation with an arbitrary distribution of hydraulic conductivity in the flow domain
ABCD. The exact formulation of this statement is the following.

Proposition 2. As soon as K0(x, y) < K1(x, y) everywhere in the flow domain ABCD, the inequality
h(1)(t, x) > h(0)(t, x) will hold for the solutions to the problem in Equations (2)–(4) at sufficiently large
values of time t.

Therefore, the dependence of the rate of groundwater table rise on hydraulic conductivity during
inundation becomes monotonous only after a long enough time. In this, weaker, sense, the intuitively
evident rule “the greater the conductivity, the faster water level stabilization” is correct. The proof of
Proposition 2 is given in Section 3.2.

3. Mathematical Proofs

3.1. The Proof of Proposition 1

We give a brief proof of the statements formulated in Section 2.1 regarding the discharge from
a confined aquifer into an open water body. We consider an anisotropic case with the distributions
of transmissivity T0(x1, x2) and T1(x1, x2) assumed to be tensors, for which T0(x1, x2) ≤ T1(x1, x2)

everywhere in the domain Ω shown in Figure 1. We denote the nonnegative difference between
these tensors by M(x1, x2) = T1(x1, x2)− T0(x1, x2). For an auxiliary parameter τ, 0 ≤ τ ≤ 1, we
define a one-dimensional family of tensors Tτ(x1, x2) = T0(x1, x2) + τM(x1, x2). At τ = 0 and τ = 1,
the tensor Tτ(x1, x2) coincides with T0(x1, x2) and T1(x1, x2), respectively. The solution to the problem
in Equation (1) with tensor Tτ(x1, x2) as a matrix of coefficients is denoted by u = u(τ)(x,1 , x2) and
the corresponding discharge value by Q = Q(τ). Thus, the family of heads u(τ)(x,1 , x2) satisfies
the equations

q(τ) = −Tτ(x1, x2)∇u(τ)(x1, x2), ∇ · q(τ) = 0 in Ω, (6)
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u(τ)(x1, x2) = 0 on Cint, u(τ)(x1, x2) = U(s) on Cext. (7)

Owing to the incompressibility condition, we have for the discharge value

Q(τ) =
∫

Cint

q(τ) · n ds = −
∫

Cext
q(τ) · n ds (8)

where n is the outer normal to the boundary of domain Ω.
Let us consider a problem, analogous to Equations (6) and (7), with a unit Dirichlet condition on

the outer contour Cext of domain Ω. Its solution v(τ)(x1, x2) satisfies the equations

∇ · Tτ(x1, x2)∇v(τ)(x1, x2) = 0, (9)

v(τ)(x1, x2) = 0 on Cint, v(τ)(x1, x2) = 1 on Cext. (10)

Multiplying the second part of Equation (6) by v(τ)(x1, x2) and integrating the product over the
domain Ω with Equations (8) and (10) taken into account, we obtain the following expression for
the discharge: ∫ ∫

Ω
Tτ∇u(τ) · ∇v(τ) dx1dx2 = −

∫
Cext

q(τ) · n ds = Q(τ). (11)

Finally, the differentiation of this expression with respect to parameter τ yields the equality

d
dτ

Q(τ) =
∫ ∫

Ω
M∇u(τ) · ∇v(τ) dx1dx2 (12)

because dTτ/dτ = M, and the terms with derivatives of functions u(τ) and v(τ) with respect to τ

under the double integral in the left part of Equation (11) vanish after integration by parts in virtue of
Equations (6), (7), (9) and (10).

If U(s) ≡ U0 = const > 0, then functions u(τ) and v(τ) are proportional and ∇u(τ)(x1, x2) =

U0∇v(τ)(x1, x2) in virtue of the linearity of the problems in Equations (6), (7), (9) and (10). Now,
the equality in Equation (12) yields dQ(τ)/dτ ≥ 0, because the tensor M(x1, x2) is nonnegative.
Therefore, in this case, we have Q(0) ≤ Q(1), i.e., the discharge is monotonic with respect to
transmissivity coefficients.

If, conversely, U(s) 6= const, the solutions of the problems in Equations (6), (7), (9) and (10) are
not proportional, whatever the value of τ, and the gradients of those solutions, ∇u(τ) and ∇v(τ), are
nonzero and nonparallel on a set of points (x1, x2) with a nonzero measure. This holds true, at least
for small neighborhoods of the segments of the outer contour Cext of domain Ω, where dU/ds 6= 0,
because, in these segments, the vector ∇v(τ) is perpendicular to the boundary, while the vector ∇u(τ)

is not. For a fixed value of τ, for example, for τ = 0, in all such points a positively defined matrix
M(x1, x2) can be chosen, such that M∇u(τ) · ∇v(τ) < 0, while in other points we can set M(x1, x2) = 0.
Now, the inequality dQ(τ)/dτ < 0 at τ = 0 will follow from Equation (12). Therefore, at sufficiently
small values of parameter τ, the inequality Q(0) > Q(τ) will hold, while T0(x1, x2) ≤ Tτ(x1, x2). This
proves that the dependence of discharge Q on transmissivity coefficients is non-monotone in the
general case.

If we limit ourselves to isotrophic distributions of transmissivity coefficients, i.e., assume the
distributions T0(x1, x2), T1(x1, x2), and M(x1, x2) to be scalar functions rather than tensors, then the
above reasoning about the absence of monotonicity at U(s) 6= const will require some supplement.
Indeed, if the vectors ∇u(τ) and ∇v(τ), though not parallel, form an acute angle with one another
everywhere in Ω, then it would be impossible to choose a nonnegative scalar function M(x1, x2), such
that the integral in Equation (12) be negative. This obstacle can be overcome by using the ideas of the
homogenization theory of elliptic operators (see [18]).

The main result of this theory is that, if the distribution of coefficients T(x1, x2) in Equation (1) has
a fine structure with a small characteristic spatial scale (e.g., periodic in both variables with a period
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ε << 1), then the solutions of boundary-value problems at ε → 0 will be close to the solutions of
analogous problems with some effective distribution Te f f , not depending on ε. In this case, the limiting
distribution Te f f can be anisotropic, even if the coefficients in the original problems at any fixed ε > 0
are isotropic. Based on this fact, the absence of monotonicity can be proved in two steps. In the
first step, a nonnegative tensor distribution M(x1, x2) is to be chosen such that the right-hand part of
Equation (12) is negative at τ = 0. This distribution can be anisotropic; therefore, the transmissivity
tensor Tτ(x1, x2) = T0(x1, x2) + τM(x1, x2), for which the inequality Q(0) > Q(τ) holds for small
values of τ, may also be anisotropic.

In the second step, we fix the value of parameter τ > 0 for which Q(0) > Q(τ), and introduce a
two-component composite medium consisting of two different isotropic media with transmissivities
T0(x1, x2) and T0(x1, x2) + M′(x1, x2) where M′(x1, x2) is a nonnegative scalar function to be
found. To describe the distribution of both components within the aquifer, we consider a function
T(x1, x2, y1, y2) which is 1-periodic with respect to y1 and y2 and, for any fixed x1, x2, takes only
two values, namely T0(x1, x2) and T0(x1, x2) + M′(x1, x2). Let us take the transmissivity distribution
of the above mentioned composite in the form T(ε)(x1, x2) = T(x1, x2, x1/ε, x2/ε) where ε > 0 is
a small parameter. At any point (x1, x2) of the aquifer, the arguments x1/ε, x2/ε are so-called fast
variables. They are responsible for the micro-geometry of the composite in the ε-neighbourhood
of this point. The transmissivities of both components and the geometric parameters of their
distribution within periodicity cells are not assumed uniform overall the flow domain. The first
pair of arguments in the expression for the function T(x1, x2, y1, y2) serves to describe slow variations
of these macroscopic parameters within the aquifer. In approaches to the homogenization theory,
such small-scaled composite structures are called locally periodic. In contrast with strictly periodic
composites, the effective transmissivity tensor Te f f (x1, x2) for them inherits the slow variations of
macroscopic properties and depends on x1, x2. The value of the effective tensor is determined by the
microstructure of the composite, i.e. by the particular form of the function T(x1, x2, y1, y2), which is
not specified yet.

Let us denote by Qε and Qe f f the flow rates for the composite and effective aquifers, respectively.
Then, in accordance with the homogenization theory, Qε converges to Qe f f as ε→ 0. If, occasionally,
the distribution of effective transmissivity Te f f (x1, x2) coincides with the distribution of Tτ(x1, x2),
then Qe f f = Q(τ) < Q(0). In this case, the inequality Qε < Q(0) will be valid for sufficiently small
values of ε. Since the composite medium is isotropic, it could be taken in place of the desired
counterexample. Thus, it remans to construct a local geometry of the composite and find a nonnegative
function M′(x1, x2) providing the prescribed values of the effective transmissivity Te f f (x1, x2) =

Tτ(x1, x2) for any x1 and x2. This is a typical inverse problem of the homogenization theory. In the case
of two-component composites, it is thoroughly studied. There are different ways to provide desirable
designs of the composites. One of them is given in [19], and references for the others can be found
there. Since the microstructure with the required properties is not unique, there is no reason to give
here a precise description of a particular example of solution in explicit form. Right now, it is important
that the microstructures with the required properties exist. This completes the proof of Proposition 1.

3.2. The Proof of Proposition 2

Here, we give a proof of the statement claimed in Section 2.2 that the solution h(t, x) to the
inundation problem in Equations (2)–(4) with an arbitrary distribution of hydraulic conductivity
K(x, y) in the domain ABCD is monotonous with respect to K for sufficiently large t. Clearly, at large
times, the solution approaches equilibrium, in which h ≡ H and u ≡ H. Near the equilibrium state,
we introduce new sought variables, V(t, x) = H − h(t, x) and U(t, x, y) = u(t, x, y)− H, and linearize
the problem in Equations (2)–(4) with respect to them. In the linearized problem, the upper boundary
of the flow domain is fixed and coincides with the horizontal segment of the line y = H between its
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intersection points with the lateral boundaries of ABCD. In the new variables, the problem can be
written as

q = −K(x, y)∇U, ∇ · q = 0 for 0 < y < H (13)

with boundary conditions

U(t, x, y) = 0 on AC and BC at 0 < y < H, (14)

U(t, x, H) = −V(t, x), (15)

qy = 0 at y = 0, (16)

m(x, H)
∂V
∂t

= −qy at y = H. (17)

Given the function V(t, x) on the upper boundary of the linearized flow domain, the mixed-type
boundary conditions in Equations (14)–(16) are sufficient to solve linear Equation (13). The existence
and uniqueness of such solution is guaranteed for any function V(t, x) which is continuous with
respect to x and takes zero values at the ends of the upper boundary of the flow domain. This solution
is linearly dependent on V(t, x). Accordingly, the vertical component of the flow qy at the upper
boundary of the domain can be uniquely determined by V(t, x). Thus, a linear nonlocal operator
V → A(V) is defined, transforming an arbitrary function V = V(t, x) into a function qy(t, x, H) via
the solution of the boundary value problem in Equations (13)–(16). In the mathematical literature, this
operator is called after Lyapunov. Now, the remaining Equation (17) becomes m∂V/∂t = −A(V).

As qy(t, x, H) depends on time only via function V(t, x), the linear operator A(·) does not depend
on time. Therefore, the non-stationary Equation (17) can be solved by Fourier method, by expanding
its solution as a series in the eigenfunctions of the spectral problem

λmV = A(V). (18)

The properties of Lyapunov operator spectrum are well known (see, eg., [20]). This operator
is self-adjoint, and the problem in Equation (18) has a countable set of real eigenvalues λ = λN ,
N = 1, 2, ..., 0 < λ1 ≤ λ2 ≤ λ3 ≤ ..., and corresponding eigenfunctions V = VN(x), which form
a basis in the space of square integrable functions. Therefore, the solution of Equation (17) can be
given as

V(t, x) = H − h(t, x) =
∞

∑
N=1

CNe−λN tVN(x) (19)

where CN are some constants, determined by the initial conditions. All terms of this series exponentially
tend to zero at t→ ∞, although with different rates. Clearly, at large time, the main contribution to
V(t, x) is due to the longest-living among these terms, which corresponds to the least λN . The first
eigenvalue λ1 of the Lyapunov operator is known to be simple, so λ1 < λ2, and the corresponding
eigenfunction has a constant sign all over the interval of x. Therefore, C1 6= 0, because the level of
y = h(t, x) at any time moment lies below the value of H.

In the case of arbitrary distribution of parameters, the least eigenvalue λ1 cannot be calculated,
although some variational estimates can be obtained for it. For the least eigenvalue of the self-adjoint
operator and the corresponding eigenfuction, the Rayleigh principle holds in the following form:

λ1 = min
V

(∫
A(V)V dx

)(∫
m(x, H)V2(x) dx

)−1
(20)

where integrals are calculated along the horizontal segment of the line y = H between its intersection
points with the lateral boundaries of domain ABCD, and the minimum is taken over all functions
V(x) from the domain of definition of operator A(·), which are not identically zero. The minimum
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is attained at V = V1(x). A variation formulation also exists for the two-dimensional problem in
Equations (13)–(16) in the flow domain. In accordance with Dirichlet principle, its solution minimizes
the expression

I(U) =
∫ ∫

K∇U · ∇U dxdy

over all functions U = U(x, y) with square integrable gradient, which satisfy the boundary conditions
in Equations (14) and (15). The remaining boundary condition on the aquiclude in Equation (16) and
Equation (13) are satisfied in the flow domain for the function that minimizes this expression, and
these conditions are necessary for the existence of extremum. In the minimum, i.e., for the solution of
the problem in Equations (13)–(16), the expression for I(U) can be reduced by integration by parts
to become ∫

(K∇U)y U|y=H dx =
∫

A(V)V dx

because U = −V and (K∇U)y = −qy at y = H. As a result, the Rayleigh principle (Equation (20))
takes the form

λ1 = min
U

(∫ ∫
K∇U · ∇U dxdy

)(∫
m(x, H)U2(x, H) dx

)−1

where the minimum is taken over all functions U = U(x, y) that satisfy the boundary conditions in
Equation (14) on the lateral sides of the flow domain and are not identically zero.

The obtained expression is convenient to construct estimates for the eigenvalue λ1 and, therefore,
for the principal term of the asymptotic at t → ∞ of the solution h = h(t, x) to the problem of level
recovery in Equations (2)–(4), as this expression monotonically depends on the distribution of the tensor
of hydraulic conductivity K(x, y). Indeed, for any fixed function U = U(x, y), the greater is right-hand
part of this expression, the greater is K(x, y). Therefore, the minimal value λ1 of this expression
over all possible functions U(x, y) has the appropriate monotonicity properties. If K0(x, y) and
K1(x, y) are two different distributions of the hydraulic conductivity tensor, and K0(x, y) < K1(x, y),
then the last variation equality yields the relationship λ

(0)
1 < λ

(1)
1 for the respective eigenvalues.

Now, from the presentation of the solution in Fourier series (Equation (19)), we have the inequality
h(0)(t, x) < h(1)(t, x) for sufficiently large t, which was to be proved.

4. Conclusions

The rigorous analysis of two groundwater flow problems has shown that the dependence of the
solutions on the permeability distribution in porous media can be quite different from intuitively
obvious expectations. It has been proved that, in the problem of groundwater inflow into an open
reservoir, the rule “the greater the hydraulic conductivity, the greater the inflow” holds true only in
particular cases, for example, for homogeneous aquifers. In general, the engineering estimates that are
based on this rule require more careful argumentation. In addition, it has been demonstrated that the
rate of groundwater level response to changes in boundary conditions may depend non-monotonically
on hydraulic conductivity. For instance, at the initial stage of the inundation process, the free boundary
may rise faster in a medium with lower conductivity.

On the other hand, in many cases, the dependence of solutions on permeability turns out to be in a
good qualitative agreement with intuitive assumptions. However, a rigorous mathematical justification
of these assumptions can be non-trivial. In particular, for the problem of groundwater inflow into an
open reservoir, it is shown that the rate of inflow is monotone with respect to transmissivity distribution
if the groundwater head at the external boundary of the flow domain is constant. In addition, it is
proved that, for the inundation problem in a heterogeneous aquifer, the heuristic rule “the greater the
soil permeability, the faster the water level rise” holds true for the long-time behavior of the solution.
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