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Abstract: This paper presents a free code for calculating 1D hydraulic transients in liquid-filled piping.
The transient of focus is the Water Hammer phenomenon which may arise due to e.g.,
sudden valve closure, pump start/stop etc. The method of solution of the system of partial differential
equations given by the continuity and momentum balance is the Method of Characteristics (MOC).
Various friction models ranging from steady-state and quasi steady-state to unsteady friction models
including Convolution Based models (CB) as well as an Instantaneous Acceleration Based (IAB) model
are implemented. Furthermore, two different models for modelling cavitation/column separation
are implemented. Column separation may occur during low pressure pulses if the pressure decreases
below the vapour pressure of the fluid. The code implementing the various models are compared to
experiments from the literature. All experiments consist of an upstream reservoir, a straight pipe and
a downstream valve.

Keywords: water hammer; unsteady friction; fluid transients; method of characteristics; column
separation; cavitation; numerical simulation

1. Introduction

Sudden changes to fluid flow in piping may result in the generation of a pressure surge
or a chock wave travelling at the speed of sound. The flow changes may be induced by e.g.,
pump starting/stopping, pipe rupture/leakage, valve opening/closing etc. The phenomenon is
referred to as Water Hammer and is most common for liquid flow, due to the low compressibility
of water. Probably the most common water hammer is when a downstream valve closes suddenly.
When the valve closes, the liquid column upstream is still moving and when the liquid column
is slowed down, the kinetic energy is converted to pressure head. The pressure pulse created is
noisy and the pressure pulse may have a magnitude which causes pipe rupture or resulting in other
equipment damage. Water hammer may be observed in a variety of applications e.g., in power
plant steam generation/cooling systems [1,2], district heating system [3], hydro-power [4], irrigation
systems [5,6], domestic plumbing [7], pipeline transport of oil and chemicals [8,9] etc. It is important
to be able to accurately model the physical phenomenon for correct dimensioning of pipes, adequate
choice of valve closing time etc. to prevent damages.

The water hammer phenomenon is fully described by the continuity and momentum equations.
Different methods for solving these equations exist, e.g., the Finite Volume Method (FVM) [10],
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the Finite Difference Method (FDM) [11,12], the Finite Element Method (FEM) [13], and the Method of
Characteristics (MOC) [14]. The most popular method is the explicit MOC because it is relatively easy
to implement and it has a relatively high accuracy [15].

In this paper an implementation of the MOC proposed by [15] will be demonstrated. The MOC
is discretized and implemented in Octave [16]/MATLAB R© (The MathWorks, Natick, MA, USA).
A number of different friction models are implemented, as well as two different methods for handling
column separation/cavitation. As a part of the present paper, the full source code is provided, in order
for anyone to explore the code and freely use it for their own studies and for further improvement.
Many commercial tools are available in the market, a vast amount already summarised by [14].
The authors find it important to have a tool which is easy to modify and extend in order to e.g.,
explore different solution schemes, grid types, friction models etc. Furthermore such code may find
potential usage in applications such as failure analysis [17], condition monitoring [18], and aid the
design of protective measures in order to avoid e.g., pipeline rupture [19]. By sharing the source code,
the authors hope, at least partially, to contribute to achieving this goal. The full verbatim code is
provided in the Appendix A of the present paper and further it is available for download [20]. In the
present paper the code and the implementation of the different friction and cavitation models are
validated against experimental data from the literature. The different implemented models will be
investigated and quantitatively compared.

2. Theory and Model Implementation

2.1. Water Hammer Equations and Method of Characteristics

The water hammer phenomenon is described by the continuity equation in Equation (1) and the
momentum equation in Equation (2) [21,22].

g
∂H
∂t

+
a2

A
∂Q
∂x
− g

Q
A

sin(α) = 0 (1)

g
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+
1
A

∂Q
∂t

+ J = 0 (2)

where g is the gravitational acceleration, H is the piezometric head, t is time, A is the cross-sectional
area of the pipe, Q is the volumetric flow rate, x is position in the axial direction, J is the friction term,
and α is the angle from horizontal. In the equations, it is assumed that the cross sectional area and the
wave speed, a, are constant, and that a >> v which means that the convective terms can be neglected.
It is also assumed that the flow is one dimensional and that the compressibility and flexibility of the
pipe is accounted for in the wave speed as seen in Equation (3).

a2 =
K/ρ

1 + [(K/E)(D/e)] c1
(3)

where ρ is the density of the fluid, K is the bulk modulus of the fluid, E is Young’s modulus of the pipe,
D is the inner pipe diameter, e is the pipe wall thickness, and c1 is a coefficient describing the relation
to Poisson’s ratio, ν.

The method used to solve the set of Partial Differential Equations (PDEs) is the MOC.
The MOC transforms the set of PDEs into the four Ordinary Differential Equations (ODEs) seen
in Equations (4) and (5).

dQ
dt
± gA

a
dH
dt

+ AJ ∓ g
a

sin(θ)Q = 0 (4)

dx
dt

= ±a (5)

The equations in Equation (4) can be solved along the characteristic lines with the slope
determined by Equation (5), as is illustrated in Figure 1. By use of the characteristic lines, point P can
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be found using point A and B. This is done by the positive characteristic line, C+, corresponding to
a positive a and the negative characteristic line, C−, corresponding to a negative a. In this case the
characteristic lines are linear, since it is assumed that a is constant.

Figure 1. Characteristic lines in the x-t plane.

Approximating Equation (4) with finite differences and integrating along the positive
characteristic line and along the negative characteristic line yield Equations (6) and (7), where Cp and
Cm are described with Equations (8) and (9), respectively and B = a

gA .

C+ : HP = Cp − BQP (6)

C− : HP = Cm + BQP (7)

Cp = HA + BQA −
a
g

JA∆t +
∆x
aA

sin(θ)QA (8)

Cm = HB − BQB +
a
g

JB∆t +
∆x
aA

sin(θ)QB (9)

Inserting Equation (6) into Equation (7) and solving for HP yields:

HP =
Cp + Cm

2
(10)

QP can then be calculated with Equation (11).

QP =
HP − Cm

B
(11)

Equations (6) to (9) are used in a rectangular grid to simulate the water hammer. The friction term
J is evaluated explicitly.

A rectangular grid is chosen over the less computationally intensive diamond grid to enhance the
plotting of the pressure distribution. Note that the rectangular grid, which consists of two independent
diamond grids, tends to generate small unphysical oscillations, which are visible on the plots.

2.2. Steady State

In the previous section the values at point A and B are assumed to be known which means that
the steady state of the system has to be determined. In steady state the volumetric flow rate is constant
through the pipe. The head through the pipe is calculated with Equation (12).

HP = HA −
1
g

J∆x +
sin(θ)

aA
Q0∆x (12)
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2.3. Friction

The estimation of the water hammer pressure propagation is largely dependent on the
friction forces. Traditionally, the friction is modelled as steady or quasi-steady. The steady and
quasi-steady friction is able to predict the pressure at the first pressure peak, but as the wave propagates,
the dampening of the pressure is not sufficient [23]. For engineering design, the first and thereby largest
pressure peak, for single phase flows, is of primary interest. However, there are also specific situations
where the secondary pressure peaks are of interest [24]. An example of this is in the cooling system of
a nuclear power plant, where a quick restart of the cooling system is necessary. Another example can
be quick restart of (off-shore) oil and gas production facilities in order to reduce loss of production etc.
If there are sensitive components behind the closed valve, it is necessary to wait for the water hammer
to dissipate to a sufficiently low pressure, at which the sensitive components can survive without
damage [25].

A method to accurately describe the dampening of the pressure peak is by modelling the unsteady
friction. It is complex and more computationally heavy to model unsteady friction compared to
modelling steady friction, but unsteady friction modelling is essential for a more precise estimation of
the transient behavior [24]. Unsteady friction models fall into three main groups.

• Convolution Based (CB)
• Instantaneous Acceleration Based (IAB)
• Extended Irreversible Thermodynamics (EIT)

The CB friction models are dependent on the convolution of the history of accelerations with a
weighting function. This was first derived by Zielke [26] for laminar flow. Work has been carried out to
extend Zielke’s CB model to the turbulent regime by Vardy and Brown, assuming a bilinear turbulent
viscosity distribution for both smooth pipes [27] and fully rough pipes [28]. Zarzycki et al. [29]
derived a more advanced CB friction model for turbulent flow assuming a four-region turbulent
viscosity model.

The IAB model suggested by Brunone et al. [30] is dependent on the instantaneous acceleration,
the convective acceleration, and a damping coefficient. The damping coefficient can be found either
empirically as suggested by [30] or as will be used here, the theoretical values derived by Vardy and
Brown [27,28]. The determination of the damping coefficient can be done from the initial Reynolds
number as a constant or updated on the local Reynolds number, which has been shown to give better
results [31]. IAB models with two damping coefficients exist [32,33], but they are not covered herein
because there is no analytical way of determining these and therefore they have to be determined
empirically.

The EIT derived by Axworthy et al. [34] is a physically well described model, but it has a
relaxation time that is usually determined empirically. Storli and Nielsen [35] have derived values
based on position dependent coefficients from CB models.

The friction term J consists of a quasi-steady friction term and an unsteady friction term as in
Equation (13) [22].

J = Jqs + Jus (13)

The quasi-steady friction term is the skin friction of the pipe and it is modelled using Equation (14).

Jqs =
fqsQ|Q|
2DA2 (14)

where fqs is the quasi-steady Darcy friction factor which is updated for the local flow.
The unsteady friction is modelled with both convolution based friction models, and an

instantaneous acceleration based friction model.
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2.4. Convolution Based Friction Models

The convolution based friction model was developed by Zielke [26] for laminar flow. The unsteady
friction is dependent on the convolution of past accelerations with a weighting function as seen in
Equation (15).

Jus =
16µ

ρD2 A

(
∂Q
∂t
∗W(τ)

)
(15)

where µ is the dynamic viscosity of the fluid and W(τ) is the weighting function, which is dependent
on the dimensionless time τ, defined as in Equation (16).

τ =
4ρt
µD2 (16)

All the CB models are defined as in Equation (15) with different weighting functions. The CB
models are implemented in a rectangular grid with first order finite difference approximations as in
Equation (17) [36].

Jus =
16ρ

µD2 A

n−1

∑
j=2

(Q(i, n− j + 1)−Q(i, n− j)) ·W
(

j∆τ − ∆τ

2

)
(17)

where i is the spatial index, j is the time index, n ≥ 3 and is the number of time steps from the
beginning of the closure of the valve. It should also been noted that in the implementation of the
accelerations in the code, the acceleration vector is filled from the bottom of the vector for simplifying
the convolution with the weighting function. Equation (17) is evaluated at both the positive and
negative characteristics.

The weighting function suggested by Zielke is defined as in Equation (18).

W(τ) =


6

∑
j=1

mjτ
0.5j−1 ; τ ≤ 0.02

5

∑
j=1

e−njτ ; τ > 0.02
(18)

where mj = {0.282095, −1.25, 1.057855, 0.9375, 0.396696, −0.351563} and nj = {26.3744, 70.8493,
135.0198, 218.9216, 322.5544}.

Vardy and Brown [27,28] extended the range of applicability to the turbulent flow regime for
Reynolds numbers up to 108 with a two-region turbulent viscosity model. In the two-region turbulent
viscosity model, it is assumed that the turbulent viscosity varies linearly from the wall to the core
region and is constant in the core region. It is also assumed that the viscosity distribution is constant
over time. The approximated weighting function derived for a smooth pipe has the form as seen in
Equation (19) [27].

W(τ) =
A∗eτB∗

√
τ

(19)

where A∗ = 1
2
√

π
, B∗ = Reκ

12.86 , κ = log
(

15.29
Re0.0567

)
, and it is assumed that the eddy viscosity at the wall is

equal to the laminar viscosity, i.e., νw = νlam.
Zarzycki et al. [29] utilizes a four-region turbulent viscosity model. The four regions are the

viscous sublayer, the buffer layer, the developed turbulent layer and the turbulent core. The weighting
function by Zarzycki et al. [29] is approximated as in Equation (20).

W(τ) = C
Ren
√

τ
(20)

where C = 0.299635 and n = −0.005535.
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2.5. Instantaneous Acceleration Based Friction Models

In the instantaneous acceleration based friction model, suggested by Brunone et al. [30],
the unsteady friction is dependent on the instantaneous acceleration, the instantaneous convective
acceleration and a damping coefficient as in Equation (21), with the sign correction suggested by
Vítkovský [37].

Ju =
k
A

(
∂Q
∂t
− a · sign(Q)

∂Q
∂x

)
(21)

where k is Brunone’s friction coefficient, which describes the damping of the head, ∂Q
∂t is the local

instantaneous acceleration, and ∂Q
∂x is the instantaneous convective acceleration. The implementation

of the IAB model has been done explicitly with first order finite differences as in Equation (22) for the
positive characteristic and as in Equation (23) for the negative characteristics.

C+ :

{
∂Q
∂t ≈

Q(i−1,j−1)−Q(i−1,j−2)
∆t

∂Q
∂x ≈

Q(i,j−1)−Q(i−1,j−1)
∆x

(22)

C− :

{
∂Q
∂t ≈

Q(i+1,j−1)−Q(i+1,j−2)
∆t

∂Q
∂x ≈

Q(i+1,j−1)−Q(i,j−1)
∆x

(23)

Brunone’s friction coefficient, k, can either be determined empirically [30] or analytically via
Vardy’s shear decay coefficient, C∗, as in Equation (24) [37].

k =

√
C∗

2
(24)

Vardy’s shear decay coefficient for laminar flow is defined as in Equation (25) and for turbulent
flow, in smooth pipes, as in Equation (26) [37].

C∗ = 0.000476 (25)

C∗ =
7.41

Relog(14.3/Re0.05)
(26)

The analytical solution is based on the CB model suggested by Vardy & Brown, where Vardy’s
shear coefficient is derived as a limiting value of the unsteady friction coefficient with the special case
of constant acceleration.

2.6. Boundary Conditions

All the experiments were conducted with a single pipe with a reservoir at the upstream boundary
and a valve at the downstream boundary. Therefore, it was necessary to implement the reservoir and
valve boundary conditions in the code.

2.6.1. Reservoir

When using a reservoir, it is assumed that the reservoir is large enough, so that elevation changes
during operation can be neglected. The head at the reservoir is assumed to be constant, HP = HR,
and the flow rate can be isolated from Equation (7).

2.6.2. Valve

When applying a valve, it is important to correctly describe the closure, since it affects both the
magnitude and the shape of the pressure peak. It is possible to approximate the valve behaviour using
Equation (27) [21].
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τv = 1−
(

t
tc

)m
(27)

where τv is the dimensionless valve closure time, tc is the actual closure time, t is the time, and m is an
adjustable constant. If m is set to zero, then the valve is assumed to close instantaneously which yields
the maximum pressure peak. The behaviour of τv is illustrated in Figure 2 for m > 0. When 0 < m < 1,
there will be a rapid decrease in flow rate at the beginning and a slow decrease at the end of the closure.
For m = 1 there will be a linear fall in flow rate during the closure. When m > 1, there will a slow
decrease in flow rate at the beginning and a rapid decrease at the end of the closure. The flow rate can
be calculated with Equation (28).

QP = −BCv +
√
(BCv)

2 + 2CvCp (28)

where Cv = (Q0τv)
2

2H0
and 0 denotes steady state values.

Figure 2. Effect of m on τv with tc = 1.

2.7. Column Separation and Cavitation

If the pressure during a low pressure period for a liquid-filled pipe reaches the vapour pressure,
the water starts to evaporate. This evaporation will form vapour bubbles and cavities. A subsequent
increase in pressure will cause the bubbles to collapse. This phenomenon often referred to as cavitation
or column separation has been implemented in the code by two different models–the Discrete Vapour
Cavity Model (DVCM) [15,21] and the Discrete Gas Cavity Model (DGCM) [38].

Both the DVCM and the DGCM models assume that the wave speed is not affected by the amount
of free gas. It is also assumed that all the free gas in each reach is present in a single pocket at the
node causing the wave speed to be constant and identical to the wave speed for a single phase system
between each node. The gas pocket at the node is modelled with Equation (29) [21].

dVg

dt
= Qout −Qin (29)

where Qout is the volumetric flow rate exiting the node and Qin is the volumetric flow rate entering the
node. To determine the volume of the gas pocket, Equation (29) can be integrated from time t− 2∆t to
time t, and the result is given in Equation (30) [21].

Vg,P = Vg,P0 + 2∆t (ψ (QP −Qu,P) + (1− ψ) (QP0 −Qu,P0)) (30)
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where Vg is the volume of the gas pocket, Q is the volumetric flow rate, the subscript P indicate points
at time t, P0 indicate points at time t− 2∆t, u indicate volumetric flow rate entering the node, and ψ is
a weighting factor.

The volumetric flow rates are illustrated in Figure 3. It can be seen that there is a modification
to the negative characteristics equation, C−, since it goes from Qu,B and not QB. Therefore the QB in
Equation (9) is replaced with Qu,B and Qu,P is calculated by Equation (31).

Qu,P =
Cp − HP

B
(31)

Figure 3. Grid for two phase Method of Characteristics (MOC).

The weighting factor ψ controls the weight of the values at t and at t− 2∆t. With ψ = 0 only
values at t− 2∆t are used and with ψ = 1 only values at t are used. It is generally recommended to
keep ψ above 0.5 as an over reliance of old values have shown to give excessive numerical oscillation.
A value close to 0.5 is expected to give the most accurate results, but at this low value some numerical
oscillations may still be present. The numerical oscillation is primarily present when gas cavity sizes
are small, i.e., in the high pressure zones of the water hammer event. To decrease the numerical
oscillations, the value of ψ can be increased towards unity. However, this will cause more spreading of
rarefaction waves which can result in increased attenuation. Setting ψ = 1 will remove all numerical
oscillations, but will introduce the largest amount of attenuation. Therefore it is recommended to
choose a value of ψ as close to 0.5 as possible while experiencing minimal oscillation [21].

2.7.1. Discrete Vapour Cavity Model

DVCM is the simplest of the two phase models included in the program, and it can be used for
many flow conditions [21]. However, as will be seen later, DVCM has its limitations when the void
fraction becomes too high. Therefore it is recommended to only use DVCM when the void fraction is
below 10% [39].

It is assumed that there is no free gas in the system, and that at steady state, and when the pressure
is above the vaporization pressure, there is no vapour present in the system, Vcav = 0. The flow can
therefore be treated as a single phase system, where the volumetric flow rates can be set equal to
each other, Qu,P = QP, because the difference between them describes the increase in vapour volume
for each time step. When the pressure becomes lower than or equal to the vaporization pressure,
the nodes are treated as boundary nodes, with a fixed pressure as described in Equation (32) [21].



Fluids 2018, 3, 64 9 of 49

HP = zP + Hv (32)

When the head in the node is known, it is possible to calculate the volumetric flow rates and the
vapour cavity size with Equation (11), (30) and (31) respectively, where Vg,P and Vg,P0 are replaced
with Vcav,P and Vcav,P0.

DVCM—Steady State

As described earlier, DVCM assumes that flow at steady state can be treated as a single
phase system, with Vcav = 0, and it is therefore calculated as described in Section 2.2.

DVCM—Boundary Conditions

The upstream reservoir is calculated as in Section 2.6.1, with Vcav = 0, because it is assumed that
the pressure in the reservoir is always above the vaporization pressure.

For the downstream valve, the outlet volumetric flow rate, QP, is described as in Section 2.6.2,
while the nodes are treated in a similar fashion as in Section 2.7.1. The difference between the
calculation method for the interior nodes, see Figure A2 in Appendix A.1, and the valve boundary,
is that Equation (10) is replaced with Qu,P = QP and Equation (33) in the flowchart, while Equation (11)
is replaced with Equation (28) in the flowchart in Appendix A.1.

HP = Cp − BQu,P (33)

2.7.2. Discrete Gas Cavity Model

DGCM is the more complex model, of the two phase models included in the program, and it can
be used for many flow conditions.

In DGCM, it is assumed that there is always a small amount of free gas present in the system,
and because there is always a small amount of free gas present, it is not possible to calculate the flow
as in DVCM. A new expression for the head, which takes into account the effect of the gas cavity,
has to be implemented. This is done via Equation (30), where Equation (31) is used to describe Qu,P
and Equation (28) is used to describe QP. This results in Equation (30) with two unknown parameters,
HP and Vg,P. Vg,P can be described with the ideal gas law, as seen in Equation (34), where it is assumed
that the mass of free gas, Mg, is constant.

MgRgT = Pg αV︸︷︷︸
Vg,P

= Pg,0α0V (34)

Rg is the gas constant, T is the temperature, Pg is the absolute partial pressure of the free gas,
and Pg,0 is the absolute partial pressure for the initial void fraction α0 (i.e., at steady state). Vg,P is
isolated from Equation (34) and a simplified form can be seen in Equation (35), where Pg is described
with Equation (36).

Vg,P =
C3

HP − zP − Hv
(35)

Pg = ρl g(HP − zP − Hv) (36)

C3 is a constant which is calculated with Equation (37).

C3 =
Pg,0α0V

ρl g
(37)



Fluids 2018, 3, 64 10 of 49

With the expression for Vg,P in Equation (35), Equation (30) will have the form seen in
Equation (38), remembering that Qu,P and QP are described with Equations (31) and (28) respectively.

C3
HP−zP−Hv

= Vg,P0

+ 2∆t
[
ψ
(

HP−Cm
B − Cp−HP

B

)
+ (1− ψ) (QP0 −Qu,P0)

] (38)

Equation (38) can be rearranged into Equation (39).

0 = (HP − zP − Hv)︸ ︷︷ ︸
x

)2 + 2B1 (HP − zP − Hv)︸ ︷︷ ︸
x

−C4 (39)

where B2, C4, Bv, and B1 are defined as in Equation (40).

B2 = 0.5
2

C4 = B2BC3
ψ∆t

Bv =
Vg,P0

2∆t +(1−ψ)(QP0−Qu,P0)
ψ

B1 = −B2
(
Cp + Cm

)
+ B2BBv +

zP+Hv
2

(40)

Equation (39) can be solved as a quadratic equation, where x is the variable. The result can be seen
in Equation (41), where the two first expressions are isolated from the roots of the quadratic equation.
The third and fourth expressions are linearised versions of the two first expressions, which can produce
inaccurate results in extreme conditions of high pressure and very low void fraction, or at very low
pressure and high void fraction, where |BB| = |C4/B2

1 | << 1. The fifth expression is for the case
when B1 = 0.

HP =



−B1
(
1 +
√

1 + BB
)
+ zP + Hv if B1 < 0 and BB > 0.001

−B1
(
1−
√

1 + BB
)
+ zP + Hv if B1 > 0 and BB > 0.001

−2B1 − C4
2B1

+ zP + Hv if B1 < 0 and BB < 0.001
C4
2B1

+ zP + Hv if B1 > 0 and BB < 0.001
√

C4 + zP + Hv otherwise

(41)

With the head described as in Equation (41), the volumetric flow rates and the gas cavity size are
calculated with Equations (31), (11), and (30) respectively.

DGCM—Steady State

For the steady state conditions, DGCM uses the same calculation method as for single phase flow,
Section 2.2, with the addition of the calculation of the gas cavity size. At steady state Equation (34) can
be simplified to Equation (42) because Pg,0 = Pg.

Vg,P = α0V (42)

DGCM—Boundary Conditions

For DGCM, the upstream reservoir uses the same calculation method as for single phase flow,
Section 2.6.1, with the addition of the calculation of the gas cavity size. The gas cavity size is calculated
with Equation (35), where HP is replaced with Hr.

For the downstream valve, the same method for calculating the outlet volumetric flow rate,
QP, as in Section 2.6.2 is used. The expression for the head is derived in a similar fashion as
to Section 2.7.2, but this time an expression for QP is not needed in Equation (30), as it is now
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described with Equation (28). This gives the expression in Equation (43), which can be rearranged in
Equation (44).

C3

HP − zP − Hv
= Vg,P0 + 2∆t

[
ψ

(
QP −

Cp − HP

B

)
+ (1− ψ) (QP0 −Qu,P0)

]
(43)

0 = (HP − zP − Hv)
2 + 2B1 (HP − zP − Hv)− C4 (44)

where B2, C4, Bv, and B1 are defined as in Equation (45).

B2 = 1
2

C4 = B2BC3
ψ∆t

Bv =
Vg,P0

2∆t +(1−ψ)(QP0−Qu,P0)
ψ

B1 = −B2
(
Cp − BQP

)
+ B2BBv +

zP+Hv
2

(45)

It can be seen that Equations (44) and (39) has the same form and therefore they are solved in the
same form, and give the same results, Equation (41). It is important to note that the expressions for the
coefficients in Equation (45) are different from the coefficients in Equation (40).

The volumetric flow rates and the gas cavity size are calculated with Equations (31),
(28) and (30), respectively.

3. Experimental

Previous articles have compared CB and IAB friction models to a single experiment, where a
friction model is recommended for a single experiment [40,41]. In this article, three CB friction models
and one IAB friction model will be compared to three different experiments to establish how the
different friction models behave under different experimental conditions. As for the implementation
of different friction models, the implemented cavitation models are compared to experiments from
the literature.

The experiments chosen consist of a single pipe between a reservoir/pressure tank at the upstream
end and a fast closing valve at the downstream end as seen in Figure 4.

Figure 4. Typical experimental setup modelled.

The different friction models are compared with experimental results found in literature.
The pressure is evaluated at the valve position. The selected experiments vary in pipe material,
diameter, length, thickness as well as flow velocity in an attempt to see how these differences affect,
prediction of the water hammer phenomenon. An overview of the different parameters is found in
Table 1.
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Table 1. Material and water properties in the simulations.

Experiment No. E [GPa] ε [µm] ν [−] D [mm] e [mm] L [m] α [−] ρ [kg/m3] µ [kg/m· s] K [GPa] u0 [m/s] a [m/s] Re [−]

1 200 2.0 0.28 19 1.5 7.671 1◦ 998.2 1.002× 10−3 2.2 2.75 1386 52052
2 120 1.5 0.35 16 1 98.11 0◦ 1000 0.9493× 10−3 2.1 0.94 1282 15843
3 120 1.5 0.35 20 1 15.22 0◦ 998.2 1.002× 10−3 2.2 0.42 1275 8435
4 120 1.5 0.35 20 1 15.22 0◦ 998.2 1.002× 10−3 2.2 0.5 1275 9894
5 120 1.5 0.35 22.1 1.63 37.23 3.12◦ 998.2 1.002× 10−3 2.2 0.3 1319 6605
6 120 1.5 0.35 22.1 1.63 37.23 3.12◦ 998.2 1.002× 10−3 2.2 1.4 1319 30823

It is attempted to cover a wide variety of flow conditions to test the implemented models. The three
chosen experiments for validating the different implemeted friction models have a Reynolds number
of 52052, 15843, and 8453, respectively. The experiments used for comparing the different cavitation
models have Reynolds number of 6605, 9894 and 30823, respectively.

3.1. Experiment 1

The experimental study conducted by Traudt et al. [42] consist of a 7.7 m stainless steel pipe
(grade 1.4541) with a diameter of 19 mm and a wall thickness of 1.5 mm. Young’s modulus is set to
200 GPa, the pipe roughness to ε = 2× 10−6 m, and Poisson’s ratio to ν = 0.28. The test section has a
high-pressure tank at the upstream end and a fast acting valve, with a closure time of 18 ms, at the
downstream end. The piping also has a 1◦ upwards slope. The initial flow velocity is 2.75 m/s with a
head at the reservoir of 433 m. For the simulation, m is set to 3.8, which was the best fit for the valve
closure, as τv is not reported by Traudt et al. The fluid in the study is water at room temperature.

3.2. Experiment 2

The experimental study conducted by Adamkowski and Lewandowski [40] consists of a 98 m
copper pipe in a spiral coil with an inner pipe diameter of 16 mm and a wall thickness of 1.0 mm.
Young’s modulus and Poisson’s ratio are reported in the article at 120 GPa and 0.35 GPa, respectively.
The roughness was not stated by [40]. For the present investigation, a roughness of 1.5× 10−6 m is used
corresponding to a typical value of copper. The test section has a high-pressure tank at the upstream
end and a quick-closing spring driven ball valve, with a closure time of 3 ms, at the downstream
end. The test section has a reported maximum inclination angle of less than 0.5◦. Because of the
uncertainty of the inclination and its small size it is neglected in the simulations. The initial flow
velocity is 0.94 m/s with a head at the reservoir of 128 m. For the simulation, m is chosen as 0.1, which
was the best fit for the valve closure as τv is not reported by Adamkowski et al. The fluid in the study is
water where the density, viscosity, and bulk modulus was given at 1000 kg/m3, 0.9493× 10−3 kg/m· s,
and 2.1 GPa, respectively.

3.3. Experiment 3 and 4

The experimental study conducted by Soares et al. [41] consists of a 15.22 m straight copper
pipe with an inner diameter of 20 mm and a wall thickness of 1.0 mm. The test section has a
hydropneumatic tank at the upstream end and a pneumatically actuated quarter turn ball valve
at the downstream end. The closure time for the valve is not described and therefore it is approximated
by the time it takes to reach maximum pressure from steady state pressure. The closure time is
estimated at 18 ms. Two experiments were conducted by Soares et al. with an initial velocity of
0.423 m/s (Experiment 3) and 0.497 m/s (Experiment 4). The lowest velocity resulted in a single phase
water hammer, whereas the largest velocity resulted in a two phase water hammer. The head at the
reservoir is 46 m for the two experiments. For the simulation, m is chosen as 3, which was the best fit
for the valve closure as τv were not described by Soares et al. The material properties for the copper
pipes were not given in the study, and the properties from experiment 2 were used. The fluid used in
the study is water and the experiment is conducted at 20 ◦C.
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3.4. Experiment 5 and 6

The experimental study conducted by Bergant et al. [43] consists of a 37.22 m straight copper pipe
with an inner diameter of 22.1 mm and a wall thickness of 1.63 mm. The test section has a pressurized
tank at the upstream and the downstream end of the pipe. To generate the transient, a fast closing valve
is placed at the downstream end of the pipe. The pipe has an inclination of 3.12◦. Two experiments
have been conducted with an initial velocity of 0.30 m/s (experiment 5) and 1.40 m/s (experiment 6)
which resulted in column separation. The closure time for both experiments in 0.009 s and the head at
the upstream pressurized tank is 22 m. The material parameters were not given by [43], therefore the
same parameters used for the [41] experiments is used for experiment 5 and 6 as the pipes consists of
the same material. For the simulation, m is set to 5, which was the best fit for the valve closure, as τv is
not reported by [43]. Water is the working fluid at room temperature.

4. Results and Discussion

In this section the results for the single phase simulations of experiments 1, 2 and 3 and the
column separation simulations of experiment 4, 5 and 6 will be presented and discussed. In addition
to this, the code has been benchmarked against computational fluid dynamics (CFD) simulations.
The results are presented elsewhere [44]. Good agreement was found both for with and without
column separation when unsteady friction modelling was applied in the MOC code.

4.1. Single Phase

A grid independence study showed no difference for the steady and quasi-steady friction models.
For the unsteady friction models the head varied from 12 to 24 reaches, but hereafter the change was
insignificant. Therefore all single phase simulations are performed with 24 reaches.

Figure 5 and Table 2 show the results of the different friction models for experiment 1. The mean
oscillation frequency of the experiment is found at 43.14 Hz which is lower than the frequencies
calculated with the Steady and Quasi-Steady friction models with the fastest frequency of 45.14 Hz,
followed by Brunone with 44.78 Hz and the CB friction models with a frequency of 44.67 Hz.
This causes a phase offset between the experimental and simulated data, which is evident in Figure 5
after the third high pressure peak. At the end of the data the phase offset is almost half an oscillation.

It can be seen that all the friction models have the same tendency at the first peak and are able
to accurately estimate the head of the peak with only a slight overestimation. At the third pressure
peak, the CB friction models accurately model the friction with an overestimation of the head in the
range of 0.43–0.50%, whereas the other friction models start to underestimate the friction. At the tenth
pressure peak, none of the friction models accurately describe the dampening of the head with the
Steady and Quasi-Steady friction models overestimating the head with 24.64% and 24.23%, the Brunone
friction model with 15.33% and the CB models with 10.33–10.52%. From Table 2, it can be seen that the
CB based models gives the best prediction of the experimental results.

Table 2. Comparison of model and experimental results for experiment 1 conducted by [42].
The calculations were conducted on a laptop with an Intel

R©
CoreTM i7-4700MQ processor (Santa

Clara, CA, USA) and 8 GB of random access memory (RAM).

Parameter Experiment Steady Quasi-Steady Brunone Zielke Vardy & Brown Zarzycki

Oscillation frequency 43.14 45.14 45.14 44.78 44.67 44.67 44.67
Maximum head [m] 803.16 805.89 804, 79 805.10 807.07 807.04 807.10
Deviation from experiment [%] − 0.22 0.20 0.24 0.49 0.48 0.49
Third pressure peak [m] 762.28 795.78 795.13 779.57 766.08 765.52 765.74
Deviation from experiment [%] − 4.39 4.31 2.27 0.50 0.43 0.45
Tenth pressure peak [m] 616.16 767.99 765.47 710.64 680.98 680.95 679.78
Deviation from experiment [%] − 24.64 24.23 15.33 10.52 10.51 10.33
Calculation time [s] − 0.26 0.31 0.45 1.09 1.14 1.19
Normalized calculation time [-] − 1.00 1.19 1.73 4.19 4.38 4.58
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Figure 5. Comparison of the experimental data (experiment 1 [42]) with the simulated results for each
friction model. Note that the steady and quasi-steady friction models gave similar results and all the
Convolution Based models (CB) friction models also gave similar results.

The experimental results [42] indicate some double peaks, which are not predicted by any of
the friction models. This is believed to be caused by harmonics of the experimental setup. As such
Traudt et al. [42] report that the second harmonic frequency of the experimental setup of 132 Hz
is interfering with the frequency of the water hammer which is 43 Hz. Since none of the models
accurately describe the experimental data, a sensitivity analysis on the parameters, Young’s modulus,
Poisson’s ratio and the temperature of the water were conducted to see, whether this could explain the
difference. Both Young’s modulus and Poisson’s ratio are varied ±20% and the temperature of the
water ±10 ◦C. Decreasing the Young’s modulus and the temperature and increasing the Poisson’s ratio
individually improved the results slightly compared to the experiment, but not enough to explain the
difference. Investigating combined effects also showed an improvement compared to the experimental
data, but again it could not explain the difference. Therefore, there must be an effect in the experiment
that causes extra damping on the head and a slower oscillation frequency that is not taken into account
in the friction models.

In Table 2, an average calculation time, for five identical simulations, for each friction model
can be seen, together with a normalized calculation time, where the reference time is the average
calculation time for the steady friction model. It can be seen that as the complexity of the friction
model increases, so does the calculation time, where a significant increase is seen when going from
Brunone’s unsteady friction model to the CB models. The reason for this increase is because of the
convolution in the CB models, which uses all of the calculated volumetric flow rates in the used nodes,
while Brunone only uses the volumetric flow rate from the two previous time steps.

Figure 6 and Table 3 show the results of the different friction models for experiment 2.
The oscillation frequency for all the models is close to the experimental, see Table 3.

Looking overall on the first peak, the steady, quasi-steady and Brunone coincide best with the data,
and all three CB friction models seem to overestimate the head slightly, but it is close to the highest
peak in the experimental data with a difference of −0.01% for Vardy and Brown, 0.63% for Zielke and
0.91% for Zarzycki. The head at the valve in steady state is lower for the experiment compared to
the simulations, which could be because of an underestimation of the steady state friction. Initially,
the friction models suggested by Zielke and Zarzycki render the most accurate representation of the
dampening of the head and at the third pressure peak, only underestimating the head by 0.05% and
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0.58%, respectively. This is followed by the friction model by Brunone with an overestimation of 1.01%,
the Quasi-Steady model with 1.83%, the Steady model with 2.15%, and the model by Vardy and Brown
with 2.35%. At the tenth pressure peak, the picture is different with the model by Vardy and Brown
giving the most accurate representation with an overestimation of the head by 1.17% followed by the
model by Brunone with an overestimation of 2.31%, the model by Zielke with an underestimation
of 3.86%, the model by Zarzycki with an underestimation of 5.31%, the Quasi-Steady model with an
overestimation of 7.64%, and the Steady model with an overestimation of 9.81%. The behaviour of the
steady, quasi-steady and Brunone models is not reminiscent of the experimental results. The CB based
models behaviour is reminiscent of the experimental data with the Vardy & Brown model being the
closest to the experimental. The difference in the CB friction models is attributed to the difference in
the weighting functions and their dependency on the Reynolds number. Overall, it is the model by
Vardy & Brown that provides the best representation.

Figure 6. Comparison of the experimental data (experiment 2 [40])with the simulated results for each
friction model. Note that Zielke and Zarzycki friction models gave similar results.

Table 3. Comparison of model and experimental results for experiment 2 [40].

Parameter Experiment Steady Quasi-Steady Brunone Zielke Vardy & Brown Zarzycki

Oscillation frequency 3.19 3.32 3.32 3.31 3.31 3.31 3.31
Maximum head [m] 256.64 252.10 252.08 253.63 258.26 256.62 258.97
Deviation from experiment [%] − −1.77 −1.77 −1.17 0.63 −0.01 0.91
Third pressure peak [m] 223.92 228.73 228.01 226.19 223.82 229.18 222.63
Deviation from experiment [%] − 2.15 1.83 1.01 −0.05 2.35 −0.58
Tenth pressure peak [m] 171.77 188.62 184.90 175.74 165.15 173.78 162.65
Deviation from experiment [%] − 9.81 7.64 2.31 −3.86 1.17 −5.31
Calculation time [s] − 0.28 0.28 0.42 1.06 1.11 1.15
Normalized calculation time [-] − 1.00 1.00 1.50 3.79 3.96 4.11

In Table 3, the average calculation time is summarised. It can be seen, that as the complexity of
the friction model increases, the calculation time increases, which was also seen for experiment 1.

Figure 7 and Table 4 show the results of the different friction models for experiment 3.
The oscillation frequency of the models, ranging from 20.74 to 20.94 Hz, is close to the experimental
one, at 20.69 Hz, therefore no offset between the experimental data and the simulations is expected, and
it is also evident in Figure 7. The head at steady state is larger for the simulations than the experiment,
which could be due to an underestimation of the steady state friction.
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Figure 7. Comparison of the experimental data (experiment 3 [41]) with the simulated results for each
friction model. Note that the steady and quasi-steady friction models gave similar results and all the
CB friction models also gave similar results.

Table 4. Comparison of model and experimental results for experiment 3 [41].

Parameter Experiment Steady Quasi-Steady Brunone Zielke Vardy & Brown Zarzycki

Oscillation frequency 20.69 20.94 20.94 20.80 20.74 20.74 20.74
Maximum head [m] 98.70 100.96 100.95 100.98 101.53 101.53 101.55
Deviation from experiment [%] − 2.29 2.28 2.31 2.87 2.87 2.89
Third pressure peak [m] 94.9 100.20 100.17 96.49 96.97 96.88 96.84
Deviation from experiment [%] − 5.58 5.55 1.67 2.19 2.09 2.05
Tenth pressure peak [m] 83.3 97.70 97.57 83.79 85.20 85.02 84.71
Deviation from experiment [%] − 17.29 17.13 0.59 2.28 2.06 1.70
Calculation time [s] − 0.35 0.37 0.55 1.61 1.65 1.73
Normalized calculation time [-] − 1.00 1.06 1.57 4.60 4.71 4.94

All the friction models slightly overestimate the first pressure peak with steady and quasi-steady
giving the best estimation with an overestimation of 2.29% and 2.28%, respectively, Brunone being
comparable with an overestimation of 2.31% and the CB friction models with an overestimation ranging
from 2.87% to 2.89%. Part of the overestimation of the models is likely caused by the overestimation of
the steady state head. The model by Brunone represents the dampening of the head most accurately
by overestimating the head with 1.67% at the third pressure peak and with 0.59% at the tenth pressure
peak, followed by the CB friction models overestimating the third pressure peak in the range 2.05–2.19%
and for the tenth pressure peak 1.70–2.28%, the Steady and Quasi-Steady models overestimating the
third peak with 5.58% and 5.55%, and for the tenth peak with 17.29% and 17.13%.

In Table 4, the average calculation time is summarised. The same trend as for experiment 1 and 2
is observed.

For all the experiments, it can be seen that the steady and quasi-steady friction models accurately
estimate the first peak of the pressure wave, but do not accurately describe the damping of the
pressure wave. There is almost no difference in the head of steady and quasi-steady, which means that
there is little to no gain from calculating the friction factor for each node and time step which is done in
the quasi-steady model. If a precise estimation of the wave propagation is wanted, an unsteady friction
model shall be used. A general behaviour for the experiments with copper pipes (experiments 2 and 3)
is that the friction in the pipe in steady state is underestimated. This can be due to some of the material
properties chosen for the simulations not exactly matching the real properties.
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Based on the four experiments, the Vardy & Brown friction model is recommended as a generic
choice. The friction model has a good estimation of the wave behaviour and propagation. The head
of the friction model is in neither of the experiments underestimated, as e.g., Zielke and Zarzycki in
experiment 2.

4.2. Column Separation

For both DVCM and DGCM for all three experiments, a grid test was made and it showed that
a grid of 24 to 48 reaches was sufficient. Compared to single phase model, an additional parameter
(the weighing factor, φ) had to be tuned for the two phase models. It is recommended that φ is set
to 0.5 and it was found that values close to this was adequate. It was also found that the best results
were obtained for both column separation models in combination with the friction model suggested
by Vardy & Brown. Further information of the grid test, choice of φ, and results obtained by the other
friction models are found in [44].

Figure 8 and Table 5 show the results obtained with DVCM and DGCM for experiment 4.

Figure 8. Comparison of the experimental data of experiment 4 [41] with the simulated results obtained
with the Discrete Vapour Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM).

Table 5. Comparison of the Discrete Vapour Cavity Model (DVCM), the Discrete Gas Cavity Model
(DGCM), and experimental results for experiment 4 [41].

Parameter Experiment DVCM DGCM

Oscillation frequency 20.24 20.37 20.16
1st pressure peak [m] 108.00 111.17 111.16
Deviation [%] − 2.93 2.93
2nd pressure peak [m] 143.00 151.98 155.16
Deviation [%] − 6.28 8.51
3rd pressure peak [m] 145.00 101.40 113.23
Deviation [%] − −30.07 −21.91
10th pressure peak [m] 81.40 89.68 95.67
Deviation [%] − 10.17 17.53
Calculation time [s] − 9.58 9.75

The oscillation frequency of both DVCM and DGCM are close to the one obtained from the
experimental data of 20.24 Hz. In the first high pressure zone it can be seen that DVCM and DGCM
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give almost identical results both overestimating the pressure by 2.93%. In the second high pressure
zone the large pressure peak is caused by the implosion of bubbles. Both models give an overestimation
of the second high pressure peak with DVCM giving an error of 6.28%. In the third pressure zone
neither of the models are able to model the largest pressure peak with DVCM underestimating the
pressure peak by 30.07% and DGCM by 21.91%. However, both models have a maximum pressure
exceeding this pressure in the previous pressure peak, and is therefore still conservative although
slightly inaccurate. On the tenth peak DVCM gives the best results overestimating the head by 10.17%
compared to DGCM by 17.53%. Overall the DVCM is the best model for experiment 4.

In Table 5, it can be seen that the calculation time for DVCM and DGCM is very similar, and hence
the added complexity of DGCM does not extend the calculation time significantly. Figure 9 and Table 6
show the results obtained with DVCM and DGCM for experiment 5.

The oscillation frequency is larger for both DVCM, 8.70 Hz, and DGCM, 8.46 Hz, than the one
obtained by the experimental data, 8.15 Hz. Thus, the models are expected to oscillate faster than
the experiment, which is also clear for DVCM. For DGCM it seems that there is almost no difference
between the oscillation of the model and the experiment. This means that the oscillation of the pressure
wave is accurate but that the timing of the pressure peaks are off.

Figure 9. Comparison of the experimental data of experiment 5 [43] with the simulated results obtained
with DVCM and DGCM.

Table 6. Comparison of DVCM, DGCM, and experimental results for experiment 5 [43].

Parameter Experiment DVCM DGCM

Oscillation frequency 8.15 8.70 8.46
1st pressure peak [m] 62.13 65.14 65.13
Deviation [%] − 4.84 4.83
2nd pressure peak [m] 95.37 99.90 99.69
Deviation [%] − 4.75 4.53
3rd pressure peak [m] 78.62 67.76 84.60
Deviation [%] − −13.80 7.61
7th pressure peak [m] 41.84 46.84 51.31
Deviation [%] − 11.96 19.57
Calculation time [s] − 2.00 2.03
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In the first high pressure zone both models give similar results overestimating the pressure by
4.83% or 4.84%. For the second pressure peak both models give a good approximation of the pressure
with DGCM giving the best approximation with an overestimation of 4.53%. In the third high pressure
zone there is two high pressure peaks; one in the beginning and one in the end. Neither of the models
are able to model the pressure peak in the beginning of the third pressure zone, but both are able
to model the pressure peak in the end. This pressure peak is most accurately modelled by DGCM
with an overestimation of 7.61% compared to an underestimation of 13.80% with DVCM. In the
seventh pressure zone DVCM gives the best results with an overestimation of the pressure by 11.96%
compared to 19.57% obtained with DGCM. Overall DGCM gives the best result as it accurately model
the oscillation of the pressure wave and provides the best results when cavitation is occurring.

In Table 6, it can be seen that the calculation time for DVCM and DGCM is very similar, as was
the case with experiment 5, and hence the complexity of DGCM does not extend the calculation
time significantly.

Figure 10 and Table 7 show the results obtained with DGCM for experiment 6.

Figure 10. Comparison of the experimental data of experiment 6 [43] with the simulated results
obtained with DGCM.

Table 7. Comparison of DGCM and experimental results for experiment 6 [43].

Parameter Experiment DGCM

Oscillation frequency 2.92 2.90
1st pressure peak [m] 210.69 215.53
Deviation [%] − 2.30
2nd pressure peak [m] 204.58 212.96
Deviation [%] − 4.10
3rd pressure peak [m] 187.40 198.32
Deviation [%] − 5.83
4th pressure peak [m] 164.41 197.45
Deviation [%] − 20.09
Calculation time [s] − 0.80

In this experiment only the DGCM gives satisfactory results. The DVCM model has a way too fast
oscillation and dampening of the pressure, giving unrealistic results. Therefore, the results obtained
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from DVCM have been omitted. This failure to obtain realistic results is attributed to the large void
fractions obtained, which is known to cause problems for the DVCM.

Comparing the oscillation frequency of the DGCM with the experiment it is clear that they
are almost identical at 2.92 Hz and 2.90 Hz respectively. Therefore almost no offset between the
experimental data and the simulated data are expected, as is also evident in Figure 10. The DGCM
give accurate results for the first three pressure zones never overestimating the pressure by more than
5.83%. However, at the fourth pressure zone the simulated data starts to exhibit some oscillations
causing an overestimation of 20.09%.

In Table 7, the calculation time for DGCM is shown. The reason for the calculation time being
lower than experiment 5, while still with a higher flow time, is due to experiment 5 using 48 reaches,
while experiment six uses only 24 reaches.

The overall best model for cavitation/column separation is considered to be the DGCM. It is
more robust and provides accurate results of the pressure while never underestimating the maximum
pressure. DGCM is recommended as a generic choice.

5. Conclusions

In this paper an implementation of a code for simulation of pressure transients in liquid-filled
piping both with and without cavitation/column separation has been presented. The solution scheme
implemented for simulating water hammer is the MOC.

For single phase/ liquid-filled pipe water hammer, six friction models are implemented and
tested against three different experiments found in literature. The friction models consist of a steady,
quasi-steady, and four unsteady models. The unsteady friction models consist of three CB models
(Zielke, Vardy and Brown, and Zarzycki) and one IAB model (Brunone). For the experiments included
in the present study the Vardy and Brown model seems to provide the best results.

Two models for taking the effects of cavitation/column separation into account have been
implemented, the DVCM and DGCM models. The two models are compared to three different
experiments. For all experimental comparisons the Vardy and Brown CB friction model has been
applied. For the included experiments the DGCM gives the best results overall, although the DVCM
provides a slightly better fit for a single experiment.

Generally, it is found that employing unsteady friction models the presented code is adequately
able to simulate the chosen experiments.

The authors provide the full verbatim source code to the presented MOC implementation along
with the present paper. In doing so, the authors hope that the code can find good use for others.
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Abbreviations

The following common symbols are used in this manuscript:

α Void fraction, −
∆ Difference, −
ε Pipe roughness, µm
µ Dynamic viscosity, kg/m· s
ν Kinematic viscosity, m2/s
νp Poisson’s ratio, −
ρ Density, kg/m3

τ Dimensionless time, −
τv Dimensionless closing time, −
θ Pipe inclination, ◦

ψ Weighting factor, −
∗ Convolution operator, −
A Cross sectional area, m2

a Single phase wave speed, m/s
a′ Two phase wave speed, m/s
B Pipe constant, s/m2

c1 Poisson’s ratio dependent constant, −
C∗ Vardy shear decay coefficient, −
D Inner pipe diameter, m
E Young’s modulus, Pa
e Thickness of the pipe wall, m
f Darcy’s friction factor, −
g Gravitational acceleration, 9.81 m/s2

H Piezometric head, m
Hr Piezometric head at the reservoir, m
i & j Index notation, −
J Friction term, m/s2

K Bulk modulus, Pa
k Brunone’s friction coefficient or turbulent kinetic energy, − or m2/s2

L Length of the pipe, m
n Number of reaches (divisions of the pipes), −
P Pressure, Pa
Q Volumetric flow rate, m3/s
R & r Radius, m
Re Reynolds number, −
S Surface tension, N/m
T Temperature, K
t Time, s
u Velocity, m/s
V Volume, m3

W Weighting function, −
x Spatial coordinate, m
z Elevation of the pipe from datum, m

Appendix A. MOC Code

Appendix A.1. MOC Calculation Flow

In the Octave/MATLAB program all equations are implemented explicitly and a flowchart of the
program is in Figure A1.
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Figure A1. Flow chart of the MOC code.

The program starts with importing user defined parameters and settings. The steady state
conditions is calculated before the closure of the valve. Then the spatial index, i, and the time index,
j, are set to 2. All the interior nodes are calculated, i.e., from i = 2 to i = n − 1 for time j = 2.
When i = n − 1 the boundary conditions, i.e., the flow conditions at the reservoir and the valve.
Then the accelerations are calculated if an unsteady friction model is used. If the time step j < nt,
the time step is updated to j = j + 1 and i = 2 or if j = nt the simulation is finished and the data can
be outputted.

A flow chart of the calculation method for the interior nodes for the DVCM can be seen in
Figure A2, where the block with Vcav(i, j − 1) > 0 investigates the presence of a vapour cavity in
the previous time step. If a vapour cavity was present, it is assumed that the current time step
should be treated as a pressure boundary. If the node is calculated as a pressure boundary, the
calculations are followed by a check for whether the vapour cavity is less than or equal to zero. If this
is true, it is assumed that the vapour cavity has condensed, but the pressure has not risen above the
vapourization pressure.
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Figure A2. DVCM flow chart.

Appendix A.2. Code Organisation

To make the program easily adjustable, the code has been divided into a input-file, master-file,
solver-file, function-files, boundary condition-files and output-file. All the files are executed in the
master-file which is the file that has to be "run". All the user specified values are entered into the
input-file, which is also where the solver type, boundary conditions and friction models are chosen.
The following boundary conditions have been implemented into the program: Reservoir, instantaneous
valve closure and transient valve closure. If additional boundary conditions are wanted, it is easy to
define in the input-file, when the boundary condition function-file has been constructed. Additional
interior nodes have to be implemented into the solver. The program solves for the setup seen in
Figure 4 where the system parameters are specified in the input-file.

The file structure and organisation of code is provided below.

Root
| Master.m
|
+---Functions
| BrunoneFricm.m
| BrunoneFricp.m
| CBFricm.m
| CBFricp.m
| Characteristic_Minus.m
| Characteristic_Plus.m
| FricFac.m
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| FrictionTerm.m
| PipeConst.m
| ResistanceCoeff.m
| WaveSpeed.m
| WeightFuncVardyBrown.m
| WeightFuncZarzycki.m
| WeightFuncZielke.m
|
+---Input
| Input.m
| Input_OnePhase_Adamkowski.m
| Input_OnePhase_Covas.m
| Input_OnePhase_Soares.m
| Input_OnePhase_Traudt.m
| Input_TwoPhase_Bergant_High_DGCM.m
| Input_TwoPhase_Bergant_High_DVCM.m
| Input_TwoPhase_Bergant_Low_DGCM.m
| Input_TwoPhase_Bergant_Low_DVCM.m
| Input_TwoPhase_Soares_DGCM.m
| Input_TwoPhase_Soares_DVCM.m
|
+---Output
| | Output.m
| |
| +---Mat_Files
| | Flow_Rate.mat
| | Head.mat
| | t.mat
| | Volume_Cavities.mat
| | Volume_Gas.mat
| |
| +---Text_Files
| | Flow_Rate.txt
| | Head.txt
| | t.txt
| | Volume_Cavities.txt
| | Volume_Gas.txt
| |
| \---Plot
| Head_and_Flow_Node_X.png
|
\---Solver

| Solver_DGCM.m
| Solver_DVCM.m
| Solver_SinglePhase.m
|
+---Boundary
| Reservoir_Upstream.m
| Reservoir_Upstream_DGCM.m
| Valve_Closure.m
| Valve_Closure_DGCM.m
| Valve_Closure_DVCM.m
|
+---InteriorNodes
| InteriorNodes_DGCM.m
| InteriorNodes_DVCM.m
| InteriorNodes_SinglePhase.m
|
\---SteadyState

SteadyState.m
SteadyState_DGCM.m
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Appendix A.2.1. Main Calculation Source Code

Master

1 %−%−%−%−% MASTER %−%−%−%−%
2 c l e a r
3 c l c
4

5 %% S t a r t i n g timer
6 t i c
7

8 %% Adding f o l d e r s to d i r e c t o r y
9 addpath ( ’ Functions ’ , ’ Output ’ , ’ Solver ’ , ’ Solver\Boundary ’ , . . .

10 ’ Solver\Inter iorNodes ’ , ’ Solver\SteadySta te ’ , ’ Output\P l o t ’ , ’ Input ’ )
11

12 %% Spec i fy Input F i l e
13 %Input
14 %Input_OnePhase_Traudt
15 %Input_OnePhase_Covas
16 %Input_OnePhase_Adamkowski
17 %Input_OnePhase_Soares
18 %Input_TwoPhase_Soares_DVCM
19 Input_TwoPhase_Soares_DGCM
20 %Input_TwoPhase_Bergant_Low_DVCM
21 %Input_TwoPhase_Bergant_Low_DGCM
22 %Input_TwoPhase_Bergant_High_DVCM
23 %Input_TwoPhase_Bergant_High_DGCM
24

25 %% Ca lc u la t i n g the s i z e and number of the reaches and time s teps .
26 % T r a v e l l i n g time f o r the pressure wave , from downstream to upstream
27 t _ t r a v = L/a ;
28 % Time step s i z e [ s ]
29 dt = t _ t r a v /Reaches ;
30 % Maximum time [ s ]
31 t_max = 4∗ O s c i l l a t i o n s ∗ t _ t r a v ;
32 % Reach length ( d i s t a n c e between nodes ) [m]
33 dx = a∗dt ;
34 % Number of time s teps [−]
35 n_t = round ( t_max/dt + 1) ;
36 % Number of nodes [−]
37 n = round ( L/dx + 1) ;
38

39 %% Ca lc u la t i n g the weighting funct ion f o r unsteady f r i c t i o n
40 W = 0 ;
41 switch Fr ic t ion_Type
42 case ’ Unsteady_Fr ic t ion_Zie lke ’
43 W = WeightFuncZielke ( v i s c o s i t y , dt ,D, rho , n_t ) ;
44 case ’ Unsteady_Friction_VardyBrown ’
45 W = WeightFuncVardyBrown ( v i s c o s i t y , dt , D, rho , Re_0 , n_t ) ;
46 case ’ Unsteady_Fric t ion_Zarzycki ’
47 W = WeightFuncZarzycki ( v i s c o s i t y , dt , D, rho , Re_0 , n_t ) ;
48 end
49

50 %% Solver
51 switch Solver
52 case ’ 1 D_SinglePhase ’
53 Solver_SinglePhase
54 case ’ 1D_TwoPhase_DVCM ’
55 Solver_DVCM
56 case ’ 1D_TwoPhase_DGCM ’
57 Solver_DGCM
58 end
59
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60 %% Displaying and s t o r i n g the c a l c u l a t i o n time
61 toc
62 % C a l c u l a t i o n time [ s ]
63 t _ c a l = toc ;
64

65 %% Output
66 Output

Input

1 %% Choose Solver , Boundary Conditions , Wave Speed method and F r i c t i o n Type
2 % Choose s o l v e r :
3 % 1) 1 D_SinglePhase
4 % 2) 1D_TwoPhase_DVCM
5 % 3) 1D_TwoPhase_DGCM
6 Solver = ’ 1D_TwoPhase_DGCM ’ ;
7

8 % Choose upstream boundary condi t ion :
9 % 1) Reservoir

10 Upstream_boundary = ’ Reservoir ’ ;
11

12 % Choose downstream boundary condi t ion :
13 % 1) Valve_Instantaneous_Closure
14 % 2) Valve_Transient_Closure
15 Downstream_boundary = ’ Valve_Transient_Closure ’ ;
16

17 % Choose wave speed method : already known or need c a l c u l a t i o n :
18 % 1) WaveSpeed_Known
19 % 2) WaveSpeed_Calculate
20 WaveSpeed_Type = ’ WaveSpeed_Calculate ’ ;
21

22 % Choose f r i c t i o n type :
23 % 1) P r e s c r i b e d _ S t e a d y _ S t a t e _ F r i c t i o n ( i n s e r t value in f_pre )
24 % 2) S t e a d y _ S t a t e _ F r i c t i o n
25 % 3) Quasi_Steady_Fr ic t ion
26 % 4) Unsteady_Friction_Brunone
27 % 5) Unsteady_Fr ic t ion_Zie lke
28 % 6) Unsteady_Friction_VardyBrown
29 % 7) Unsteady_Fric t ion_Zarzycki
30 Fr ic t ion_Type = ’ Unsteady_Friction_VardyBrown ’ ;
31

32 %% Mesh
33 % Number of d i v i s i o n s of the pipe [−]
34 Reaches = 4 8 ;
35 % One o s c i l l a t i o n i s four times the t r a v e l i n g time of the pressure wave [−]
36 O s c i l l a t i o n s = 2 0 ;
37

38 %% Universal Constants
39 % G r a v i t a t i o n a l a c c e l e r a t i o n [m/s ^2]
40 g = 9 . 8 ;
41

42 %% Pipe Dimensions and Parameters
43 % Length of pipe [m]
44 L = 1 5 . 2 2 ;
45 % Diameter of pipe [m]
46 D = 0 . 0 2 ;
47 % Cross s e c t i o n a l area of pipe [m^2]
48 A = pi ∗ D^2/4;
49 % Thickness of pipe [m]
50 e = 0 . 0 0 1 ;
51 % Young ’ s modulus [ Pa ]
52 E = 120E9 ;
53 % Absolute roughness [m]



Fluids 2018, 3, 64 27 of 49

54 roughness = 0 .0015E−3;
55 % Poisson ’ s r a t i o [−]
56 nu_p = 0 . 3 5 ;
57 % Angle of i n c l i n a t i o n [ deg ]
58 t h e t a = 0 ;
59

60 %% Fluid P r o p e r t i e s
61 % Density of water [ kg/m^3]
62 rho = 9 9 8 . 2 ;
63 % Bulk modulus of water [ Pa ]
64 K = 2 . 2 E9 ;
65 % Dynamic v i s c o s i t y [ kg/m∗s ]
66 v i s c o s i t y = 1 .002E−3;
67

68 switch Solver
69 case ’ 1D_TwoPhase_DVCM ’
70 % Vapour pressure in piezometr ic head [m]
71 H_vap = 0 . 1 0 7 9 3 ;
72 % Barometric pressure head [m]
73 H_b = 101325/( rho∗g ) ;
74 % Vapour pressure in gauge piezometr ic head [m]
75 H_v = H_vap − H_b ;
76 case ’ 1D_TwoPhase_DGCM ’
77 % S a t u r a t i o n pressure in piezometr ic head [m]
78 H_sat = 0 . 1 0 7 9 3 ;
79 % Barometric pressure head [m]
80 H_b = 101325/( rho∗g ) ;
81 % S a t u r a t i o n pressure in gauge piezometr ic head [m]
82 H_v = H_sat − H_b ;
83 % Void f r a c t i o n at r e f e r e n c e pressure [−]
84 alpha_0 = 1e−7;
85 end
86

87 %% Weighting f a c t o r f o r DVCM and DGCM
88 % Weighting f a c t o r [−]
89 ps i = 0 . 5 5 ;
90

91 %% Flow Inputs
92 % I n i t i a l flow v e l o c i t y [m/s ]
93 u_0 = 0 .156 e−3/A;
94 % I n i t i a l volumetric flow r a t e [m^3/s ]
95 Q_0 = u_0∗A;
96 % I n i t i a l Reynolds number [−]
97 Re_0 = rho∗u_0∗D/ v i s c o s i t y ;
98

99 %% Upstream r e s e r v o i r / I n i t i a l head
100 % Height/pressure of the r e s e r v o i r [m]
101 H_r = 4 6 ;
102

103 %% Downstream valve
104 % Closing time of valve [ s ]
105 t _ c = 18/1000;
106

107 switch Downstream_boundary
108 case ’ Valve_Instantaneous_Closure ’
109 % Valve c l o s u r e c o e f f i c i e n t [−]
110 m = 0 ;
111 case ’ Valve_Transient_Closure ’
112 % Valve c l o s u r e c o e f f i c i e n t [−]
113 m = 5 ;
114 end
115

116 %% Wave speed − pure l i q u i d
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117 switch WaveSpeed_Type
118 case ’ WaveSpeed_Calculate ’
119 % Speed of the pressure wave [m/s ]
120 a = WaveSpeed ( e ,D, K, rho , E , nu_p ) ;
121 case ’WaveSpeed_Known ’
122 % Speed of the pressure wave [m/s ]
123 a = 1200 ;
124 end
125

126 %% Prescr ibed steady s t a t e f r i c t i o n c o e f f i c i e n t ( do not remove or hide )
127 % Prescr ibed steady s t a t e f r i c i o n c o e f f i c i e n t [−]
128 f_pre = 0 ;

WaveSpeed

1 func t ion a = WaveSpeed ( e , D, K, rho , E , nu_p )
2 %% C a l c u l a t i o n of c_1
3 % The p i p e l i n e i s anchored a g a i n s t l o n g i t u d i n a l movement
4 i f D/e < 25
5 % Constant [−]
6 c_1= 2∗e/D∗ (1 + nu_p ) + D∗(1−nu_p ^( 2 ) ) /(D + e ) ;
7 e l s e
8 % C o e f f i c i e n t [−]
9 c_1=1−nu_p ^( 2 ) ;

10 end
11

12 %% C a l c u l a t i o n of the wave speed
13 % Wave speed [m/s ]
14 a = s q r t (K/rho ) / s q r t (1 + (K∗D/(E∗e ) ) ∗c_1 ) ;
15

16 end

WeightingFuncVardyBrown

1 func t ion W = WeightFuncVardyBrown ( v i s c o s i t y , dt , D, rho , Re_0 , n_t )
2 %% Vardy and Brown ’ s weighting funct ion
3 % Dimensionless time step [−]
4 dtau = 4∗ v i s c o s i t y ∗dt /(D^2∗rho ) ;
5 % Constant [−]
6 A_star = 1/(2∗ s q r t ( pi ) ) ;
7 % Constant [−]
8 Kappa = log10 ( 1 5 . 2 9∗Re_0 ^(−0.0567) ) ;
9 % Constant [−]

10 B_star = Re_0^Kappa / 1 2 . 8 6 ;
11

12 f o r j = 1 : n_t−2
13 % Dimensionless time [−]
14 tau ( j ) = j ∗dtau − 0 .5∗ dtau ;
15 % Weighting funct ion [−]
16 W( j ) = A_star ∗ exp(−B_star∗ tau ( j ) ) / s q r t ( tau ( j ) ) ;
17 end
18 end

Solver SinglePhase

1 %% I n i t i a l i z e matr ices to reduce c a l c u l a t i o n time
2 % Volumetric flow r a t e [m^3/s ]
3 Q( 1 : n , 1 : n_t ) = 0 ;
4 % Piezometr ic head [m]
5 H( 1 : n , 1 : n_t ) = 0 ;
6 % Time [ s ]
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7 t ( 1 : n_t ) = 0 ;
8 % Height from datum [m]
9 z ( 1 : n ) = 0 ;

10 % Volumetric flow r a t e a c c e l e r a t i o n [m^3/s ^2]
11 dQ( n , n_t−2) = 0 ;
12

13 %% Ca lc u la t i n g the o f f s e t of each node from the datum ( r e f e r e n c e height )
14 % i i n d i c a t e node number [−]
15 f o r i = 1 : n
16 % Height from datum [m]
17 z ( i ) = ( i −1)∗dx∗ sind ( t h e t a ) ;
18 end
19

20 %% Steady S t a t e
21 [Q, H] = SteadySta te ( Q_0 , H_r , rho , D, v i s c o s i t y , a , A, roughness , g , . . .
22 dx , Q, H, n , theta , Fr ict ion_Type , f_pre ) ;
23

24 %% Trans ient flow
25 % j i n d i c a t e time step number [−]
26 f o r j = 2 : n_t
27 % Time [ s ]
28 t ( j ) = t ( j −1) + dt ;
29

30 %% I n t e r i o r Nodes
31 f o r i = 2 : n−1
32 [Q( i , j ) , H( i , j ) ] = Inter iorNodes_SinglePhase ( a , g , A, rho , D , . . .
33 v i s c o s i t y , roughness , dx , theta , Q( i −1, j −1) , H( i −1, j −1) , . . .
34 Q( i +1 , j −1) , H( i +1 , j −1) , Q, Re_0 , i , j , dt , Fr ict ion_Type , . . .
35 Q_0 , f_pre , W, dQ, n_t ) ;
36 end
37

38 %% Upstream Boundary
39 switch Upstream_boundary
40 case ’ Reservoir ’
41 [Q( 1 , j ) , H( 1 , j ) ] = Reservoir_Upstream ( a , g , A, rho , D, dx , . . .
42 v i s c o s i t y , roughness , theta , Q( 2 , j −1) , H( 2 , j −1) , H_r , . . . .
43 Q, Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, dQ, n_t ) ;
44 end
45

46 %% Downstream Boundary
47 switch Downstream_boundary
48 case ’ Valve_Instantaneous_Closure ’
49 [Q( n , j ) , H( n , j ) ] = Valve_Closure ( a , g , A, D, dx , roughness , . . .
50 rho , v i s c o s i t y , t ( j ) , t_c , m, theta , Q( n , 1 ) , H( n , 1 ) , . . .
51 Q( n−1, j −1) , H( n−1, j −1) , Q, Re_0 , i , j , dt , . . .
52 Frict ion_Type , f_pre , W, dQ, n_t ) ;
53 case ’ Valve_Transient_Closure ’
54 [Q( n , j ) , H( n , j ) ] = Valve_Closure ( a , g , A, D, dx , roughness , . . .
55 rho , v i s c o s i t y , t ( j ) , t_c , m, theta , Q( n , 1 ) , H( n , 1 ) , . . .
56 Q( n−1, j −1) , H( n−1, j −1) , Q, Re_0 , i , j , dt , . . .
57 Frict ion_Type , f_pre , W, dQ, n_t ) ;
58 end
59

60 %% Ca lc u la t i ng the change in volumetric flow r a t e f o r unsteady f r i c t i o n
61 switch Fr ic t ion_Type
62 case ’ Unsteady_Fr ic t ion_Zie lke ’
63 i f j <n_t
64 dQ ( : , n_t− j +1) = Q( : , j )−Q( : , j −1) ;
65 end
66 case ’ Unsteady_Friction_VardyBrown ’
67 i f j <n_t
68 dQ ( : , n_t− j +1) = Q( : , j )−Q( : , j −1) ;
69 end
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70 case ’ Unsteady_Fric t ion_Zarzycki ’
71 i f j <n_t
72 dQ ( : , n_t− j +1) = Q( : , j )−Q( : , j −1) ;
73 end
74 end
75 end

Solver DVCM

1 %% I n i t i a l i z e matr ices to reduce c a l c u l a t i o n time
2 % Volumetric flow r a t e [m^3/s ]
3 Q_u ( 1 : n , 1 : n_t ) = 0 ;
4 % Volumetric flow r a t e [m^3/s ]
5 Q( 1 : n , 1 : n_t ) = 0 ;
6 % Piezometr ic head [m]
7 H( 1 : n , 1 : n_t ) = 0 ;
8 % Time [ s ]
9 t ( 1 : n_t ) = 0 ;

10 % Height from datum [m]
11 z ( 1 : n ) = 0 ;
12 % Volumetric flow r a t e a c c e l e r a t i o n [m^3/s ^2]
13 dQ( n , n_t−2) = 0 ;
14 % Vapour c a v i t y volume [m^3]
15 V_cav ( 1 : n , 1 : n_t ) = 0 ;
16

17 %% Ca lc u la t i n g the o f f s e t of each node from the datum ( r e f e r e n c e height )
18 % i i n d i c a t e node number [−]
19 f o r i = 1 : n
20 % Height from datum [m]
21 z ( i ) = ( i −1)∗dx∗ sind ( t h e t a ) ;
22 end
23

24 %% Steady S t a t e
25 [Q, H] = SteadySta te ( Q_0 , H_r , rho , D, v i s c o s i t y , a , A, roughness , g , . . .
26 dx , Q, H, n , theta , Fr ict ion_Type , f_pre ) ;
27 Q_u ( : , 1 ) = Q( : , 1 ) ;
28

29 %% Trans ient
30 % j i n d i c a t e time step number [−]
31 f o r j = 2 : n_t
32 % Time [ s ]
33 t ( j ) = t ( j −1) + dt ;
34

35 %% I n t e r i o r Nodes
36 % The d i f f e r e n t formulaton f o r j = 2 and j > 2 i s because Equation 7 . 9
37 % r e q u i r e s a vapour c a v i t y volume from two time s teps back . However as
38 % there i s no j = −1, the steady s t a t e values ( j = 1 ) w i l l be used f o r
39 % V_cav , Q, and Q_u in Equation 7 . 9 .
40 i f j == 2
41 f o r i = 2 : n−1
42 [Q_u( i , j ) , Q( i , j ) , H( i , j ) , V_cav ( i , j ) ] = InteriorNodes_DVCM ( . . .
43 a , g , A, rho , D, v i s c o s i t y , roughness , dx , theta , . . .
44 Q( i −1, j −1) , H( i −1, j −1) , Q_u( i +1 , j −1) , H( i +1 , j −1) , Q , . . .
45 Q_u , Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, dQ , . . .
46 n_t , V_cav ( i , j −1) , V_cav ( i , j −1) , Q( i , j −1) , Q_u( i , j −1) , . . .
47 psi , z ( i ) , H_v) ;
48 end
49 e l s e
50 f o r i = 2 : n−1
51 [Q_u( i , j ) , Q( i , j ) , H( i , j ) , V_cav ( i , j ) ] = InteriorNodes_DVCM ( . . .
52 a , g , A, rho , D, v i s c o s i t y , roughness , dx , theta , . . .
53 Q( i −1, j −1) , H( i −1, j −1) , Q_u( i +1 , j −1) , H( i +1 , j −1) , Q , . . .
54 Q_u , Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, dQ , . . .
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55 n_t , V_cav ( i , j −1) , V_cav ( i , j −2) , Q( i , j −2) , Q_u( i , j −2) , . . .
56 psi , z ( i ) , H_v) ;
57 end
58 end
59

60 %% Upstream Boundary
61 switch Upstream_boundary
62 case ’ Reservoir ’
63 [Q( 1 , j ) , H( 1 , j ) ] = Reservoir_Upstream ( a , g , A, rho , D, dx , . . .
64 v i s c o s i t y , roughness , theta , Q_u( 2 , j −1) , H( 2 , j −1) , H_r , . . .
65 Q_u , Re_0 , 1 , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, dQ, n_t ) ;
66 end
67 Q_u( 1 , j ) = Q( 1 , j ) ;
68

69 %% Downstream Boundary
70 % Again , because there i s no j = −1, the steady s t a t e values are used
71 % f o r V_cav , Q, and Q_u in Equation 7 . 9 .
72 i f j == 2
73 switch Downstream_boundary
74 case ’ Valve_Instantaneous_Closure ’
75 [Q_u( n , j ) , Q( n , j ) , H( n , j ) , V_cav ( n , j ) ] = Valve_Closure_DVCM ( . . .
76 a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
77 t ( j ) , t_c , m, theta , Q( n , 1 ) , H( n , 1 ) , Q( n−1, j −1) , . . .
78 H( n−1, j −1) , Q, Re_0 , n , j , dt , Fr ict ion_Type , f_pre , . . .
79 W, dQ, n_t , V_cav ( n , j −1) , V_cav ( n , j −1) , Q( n , j −1) , . . .
80 Q_u( n , j −1) , psi , z ( n ) , H_v) ;
81 case ’ Valve_Transient_Closure ’
82 [Q_u( n , j ) , Q( n , j ) , H( n , j ) , V_cav ( n , j ) ] = Valve_Closure_DVCM ( . . .
83 a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
84 t ( j ) , t_c , m, theta , Q( n , 1 ) , H( n , 1 ) , Q( n−1, j −1) , . . .
85 H( n−1, j −1) , Q, Re_0 , n , j , dt , Fr ict ion_Type , f_pre , . . .
86 W, dQ, n_t , V_cav ( n , j −1) , V_cav ( n , j −1) , Q( n , j −1) , . . .
87 Q_u( n , j −1) , psi , z ( n ) , H_v) ;
88 end
89 e l s e
90 switch Downstream_boundary
91 case ’ Valve_Instantaneous_Closure ’
92 [Q_u( n , j ) , Q( n , j ) , H( n , j ) , V_cav ( n , j ) ] = Valve_Closure_DVCM ( . . .
93 a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
94 t ( j ) , t_c , m, theta , Q( n , 1 ) , H( n , 1 ) , Q( n−1, j −1) , . . .
95 H( n−1, j −1) , Q, Re_0 , n , j , dt , Fr ict ion_Type , f_pre , . . .
96 W, dQ, n_t , V_cav ( n , j −1) , V_cav ( n , j −2) , Q( n , j −2) , . . .
97 Q_u( n , j −2) , psi , z ( n ) , H_v) ;
98 case ’ Valve_Transient_Closure ’
99 [Q_u( n , j ) , Q( n , j ) , H( n , j ) , V_cav ( n , j ) ] = Valve_Closure_DVCM ( . . .

100 a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
101 t ( j ) , t_c , m, theta , Q( n , 1 ) , H( n , 1 ) , Q( n−1, j −1) , . . .
102 H( n−1, j −1) , Q, Re_0 , n , j , dt , Fr ict ion_Type , f_pre , . . .
103 W, dQ, n_t , V_cav ( n , j −1) , V_cav ( n , j −2) , Q( n , j −2) , . . .
104 Q_u( n , j −2) , psi , z ( n ) , H_v) ;
105 end
106 end
107

108 %% Ca lc u la t i ng the change in volumetric flow r a t e f o r unsteady f r i c t i o n
109 switch Fr ic t ion_Type
110 case ’ Unsteady_Fr ic t ion_Zie lke ’
111 i f j <n_t
112 dQ ( : , n_t− j +1) = Q( : , j )−Q( : , j −1) ;
113 end
114 case ’ Unsteady_Friction_VardyBrown ’
115 i f j <n_t
116 dQ ( : , n_t− j +1) = Q( : , j )−Q( : , j −1) ;
117 end
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118 case ’ Unsteady_Fric t ion_Zarzycki ’
119 i f j <n_t
120 dQ ( : , n_t− j +1) = Q( : , j )−Q( : , j −1) ;
121 end
122 end
123 end
124

125 %% Ca lc u la t i n g the void f r a c t i o n − used to warn f o r void f r a c t i o n >10%
126 V_reach_boundary = dx/2 ∗ A;
127 V _ r e a c h _ i n t e r i o r = dx ∗ A;
128

129 alpha ( 1 , : ) = V_cav ( 1 , : ) /V_reach_boundary ;
130 alpha ( 2 : n−1 , : ) = V_cav ( 2 : end−1 , : )/V _ r e a c h _ i n t e r i o r ;
131 alpha ( n , : ) = V_cav ( end , : ) /V_reach_boundary ;
132

133 i f max(max( alpha ) ) > 0 . 1
134 f p r i n t f ( 2 , ’ Warning : A void f r a c t i o n above 0.1\n ’ )
135 f p r i n t f ( 2 , ’ has been c a lc u l a t e d , and the s o l u t i o n \n ’ )
136 f p r i n t f ( 2 , ’ might not be accura te . Try using \n ’ )
137 f p r i n t f ( 2 , ’DGCM instead , as i t might produce\n ’ )
138 f p r i n t f ( 2 , ’ b e t t e r r e s u l t s .\n ’ )
139 disp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )
140 end

Solver DGCM

1 %% I n i t i a l i z e matr ices to reduce c a l c u l a t i o n time
2 % Volumetric flow r a t e [m^3/s ]
3 Q_u ( 1 : n , 1 : n_t ) = 0 ;
4 % Volumetric flow r a t e [m^3/s ]
5 Q( 1 : n , 1 : n_t ) = 0 ;
6 % Piezometr ic head [m]
7 H( 1 : n , 1 : n_t ) = 0 ;
8 % Time [ s ]
9 t ( 1 : n_t ) = 0 ;

10 % Height from datum [m]
11 z ( 1 : n ) = 0 ;
12 % Volumetric flow r a t e a c c e l e r a t i o n [m^3/s ^2]
13 dQ( n , n_t−2) = 0 ;
14 % Gas c a v i t y volume [m^3]
15 V_g ( 1 : n , 1 : n_t ) = 0 ;
16

17 %% Ca lc u la t i n g the o f f s e t of each node from the datum ( r e f e r e n c e height )
18 f o r i = 1 : n
19 % Height from datum [m]
20 z ( i ) = ( i −1)∗dx∗ sind ( t h e t a ) ;
21 end
22

23 %% Ca lc u la t i n g the pipe volume a s s o c i a t e d to each node
24 % Volume a s s o c i a t e d to the node at the upstream boundary [m^3]
25 V_tota l ( 1 , 1 ) = A∗dx /2;
26 % Volume a s s o c i a t e d to the indiv idua l i n t e r i o r nodes [m^3]
27 V_tota l ( 2 : n−1 ,1) = A∗dx ;
28 % Volume a s s o c i a t e d to the node at the downstream boundary [m^3]
29 V_tota l ( n , 1 ) = A∗dx /2;
30

31 %% Steady S t a t e
32 [Q, H, V_g ] = SteadyState_DGCM ( Q_0 , H_r , rho , D, v i s c o s i t y , a , A , . . .
33 roughness , g , dx , Q, H, n , theta , Fr ict ion_Type , f_pre , alpha_0 , . . .
34 V_total , V_g , z , H_v) ;
35 Q_u ( : , 1 ) = Q( : , 1 ) ;
36

37 %% Trans ient
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38 % j i n d i c a t e time step number [−]
39 f o r j = 2 : n_t
40 % Time [ s ]
41 t ( j ) = t ( j −1) + dt ;
42

43 %% I n t e r i o r Nodes
44 % The d i f f e r e n t formulaton f o r j = 2 and j > 2 i s because Equation 7 . 9
45 % r e q u i r e s a vapour c a v i t y volume from two time s teps back . However as
46 % there i s no j = −1, the steady s t a t e values ( j = 1 ) w i l l be used f o r
47 % V_g , Q, and Q_u in Equation 7 . 9 .
48 i f j == 2
49 f o r i = 2 : n−1
50 [Q_u( i , j ) , Q( i , j ) , H( i , j ) , V_g ( i , j ) ] = InteriorNodes_DGCM ( . . .
51 a , g , A, rho , D, v i s c o s i t y , roughness , dx , theta , . . .
52 Q( i −1, j −1) , H( i −1, j −1) , Q_u( i +1 , j −1) , H( i +1 , j −1) , Q , . . .
53 Q_u , Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, dQ , . . .
54 n_t , H( i , 1 ) , alpha_0 , V_to ta l ( i , 1 ) , V_g ( i , j −1) , Q( i , j −1) , . . .
55 Q_u( i , j −1) , psi , z ( i ) , H_v) ;
56 end
57 e l s e
58 f o r i = 2 : n−1
59 [Q_u( i , j ) , Q( i , j ) , H( i , j ) , V_g ( i , j ) ] = InteriorNodes_DGCM ( . . .
60 a , g , A, rho , D, v i s c o s i t y , roughness , dx , theta , . . .
61 Q( i −1, j −1) , H( i −1, j −1) , Q_u( i +1 , j −1) , H( i +1 , j −1) , Q , . . .
62 Q_u , Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, dQ , . . .
63 n_t , H( i , 1 ) , alpha_0 , V_to ta l ( i , 1 ) , V_g ( i , j −2) , Q( i , j −2) , . . .
64 Q_u( i , j −2) , psi , z ( i ) , H_v) ;
65 end
66 end
67

68 %% Upstream Boundary
69 switch Upstream_boundary
70 case ’ Reservoir ’
71 [Q_u( 1 , j ) , Q( 1 , j ) , H( 1 , j ) , V_g ( 1 , j ) ] = Reservoir_Upstream_DGCM ( . . .
72 a , g , A, rho , D, dx , v i s c o s i t y , roughness , theta , . . .
73 Q_u( 2 , j −1) , H( 2 , j −1) , H_r , Q_u , Re_0 , 1 , j , dt , . . .
74 Frict ion_Type , Q_0 , f_pre , W, dQ, n_t , H( 1 , 1 ) , alpha_0 , . . .
75 V_tota l ( 1 , 1 ) , z ( 1 ) , H_v) ;
76 end
77

78 %% Downstream Boundary
79 % Again , because there i s no j = −1, the steady s t a t e values are used
80 % f o r V_g , Q, and Q_u in Equation 7 . 9 .
81 i f j == 2
82 switch Downstream_boundary
83 case ’ Valve_Instantaneous_Closure ’
84 [Q_u( n , j ) , Q( n , j ) , H( n , j ) , V_g ( n , j ) ] = Valve_Closure_DGCM ( . . .
85 a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
86 t ( j ) , t_c , m, theta , Q( n , 1 ) , H( n , 1 ) , Q( n−1, j −1) , . . .
87 H( n−1, j −1) , Q, Re_0 , n , j , dt , Fr ict ion_Type , f_pre , . . .
88 W, dQ, n_t , alpha_0 , V_to ta l ( n , 1 ) , V_g ( n , j −1) , . . .
89 Q( n , j −1) , Q_u( n , j −1) , psi , z ( n ) , H_v) ;
90 case ’ Valve_Transient_Closure ’
91 [Q_u( n , j ) , Q( n , j ) , H( n , j ) , V_g ( n , j ) ] = Valve_Closure_DGCM ( . . .
92 a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
93 t ( j ) , t_c , m, theta , Q( n , 1 ) , H( n , 1 ) , Q( n−1, j −1) , . . .
94 H( n−1, j −1) , Q, Re_0 , n , j , dt , Fr ict ion_Type , f_pre , . . .
95 W, dQ, n_t , alpha_0 , V_to ta l ( n , 1 ) , V_g ( n , j −1) , . . .
96 Q( n , j −1) , Q_u( n , j −1) , psi , z ( n ) , H_v) ;
97 end
98 e l s e
99 switch Downstream_boundary

100 case ’ Valve_Instantaneous_Closure ’
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101 [Q_u( n , j ) , Q( n , j ) , H( n , j ) , V_g ( n , j ) ] = Valve_Closure_DGCM ( . . .
102 a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
103 t ( j ) , t_c , m, theta , Q( n , 1 ) , H( n , 1 ) , Q( n−1, j −1) , . . .
104 H( n−1, j −1) , Q, Re_0 , n , j , dt , Fr ict ion_Type , f_pre , . . .
105 W, dQ, n_t , alpha_0 , V_to ta l ( n , 1 ) , V_g ( n , j −2) , . . .
106 Q( n , j −2) , Q_u( n , j −2) , psi , z ( n ) , H_v) ;
107 case ’ Valve_Transient_Closure ’
108 [Q_u( n , j ) , Q( n , j ) , H( n , j ) , V_g ( n , j ) ] = Valve_Closure_DGCM ( . . .
109 a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
110 t ( j ) , t_c , m, theta , Q( n , 1 ) , H( n , 1 ) , Q( n−1, j −1) , . . .
111 H( n−1, j −1) , Q, Re_0 , n , j , dt , Fr ict ion_Type , f_pre , . . .
112 W, dQ, n_t , alpha_0 , V_to ta l ( n , 1 ) , V_g ( n , j −2) , . . .
113 Q( n , j −2) , Q_u( n , j −2) , psi , z ( n ) , H_v) ;
114 end
115 end
116

117 %% Ca lc u la t i n g the change in volumetric flow r a t e f o r unsteady f r i c t i o n
118 switch Fr ic t ion_Type
119 case ’ Unsteady_Fr ic t ion_Zie lke ’
120 i f j <n_t
121 dQ ( : , n_t− j +1) = Q( : , j )−Q( : , j −1) ;
122 end
123 case ’ Unsteady_Friction_VardyBrown ’
124 i f j <n_t
125 dQ ( : , n_t− j +1) = Q( : , j )−Q( : , j −1) ;
126 end
127 case ’ Unsteady_Fric t ion_Zarzycki ’
128 i f j <n_t
129 dQ ( : , n_t− j +1) = Q( : , j )−Q( : , j −1) ;
130 end
131 end
132 end

SteadyState

1 func t ion [Q, H] = SteadySta te ( Q_0 , H_r , rho , D, v i s c o s i t y , a , A , . . .
2 roughness , g , dx , Q, H, n , theta , Fr ict ion_Type , f_pre )
3 %% Steady S t a t e Solver
4 % Volumetric flow r a t e [m^3/s ]
5 Q( : , 1 ) = Q_0 ;
6 % Piezometr ic head at r e s e r v o i r [m]
7 H( 1 , : ) = H_r ;
8

9 % R i s a r e s i s t a n c e c o e f f i c i e n t , which d e s c r i b e s the f r i c t i o n a t steady
10 % s t a t e where unsteady f r i c t i o n i s zero .
11 switch Fr ic t ion_Type
12 case ’ P r e s c r i b e d _ S t e a d y _ S t a t e _ F r i c t i o n ’
13 % Re s i s t a n ce c o e f f i c i e n t [ s^2/m^5]
14 R = f_pre∗dx/(2∗g∗D∗A^2) ;
15 otherwise
16 % Re s i s t a n ce c o e f f i c i e n t [ s^2/m^5]
17 R = Res i s tanceCoef f ( g , D, A, dx , roughness , rho , Q_0 , v i s c o s i t y ) ;
18 end
19

20 f o r i = 2 : n
21 % Piezometr ic head , disregarding f r i c t i o n [m]
22 H_0 = H( i −1 ,1) − dx ∗ sind ( t h e t a ) ;
23 % Piezometr ic head [m]
24 H( i , 1 ) = H_0 − R∗Q_0∗abs ( Q_0 ) + dx/( a∗A) ∗ sind ( t h e t a ) ∗Q_0 ;
25 end
26

27 end
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SteadyState DGCM

1 func t ion [Q, H, V_g ] = SteadyState_DGCM ( Q_0 , H_r , rho , D, v i s c o s i t y , a , . . .
2 A, roughness , g , dx , Q, H, n , theta , Fr ict ion_Type , f_pre , alpha_0 , . . .
3 V_total , V_g , z_P , H_v)
4 %% Steady S t a t e Solver
5 % Volumetric flow r a t e [m^3/s ]
6 Q( : , 1 ) = Q_0 ;
7 % Piezometr ic head at r e s e r v o i r [m]
8 H( 1 , : ) = H_r ;
9

10 % R i s a r e s i s t a n c e c o e f f i c i e n t , which d e s c r i b e s the f r i c t i o n a t steady
11 % s t a t e where unsteady f r i c t i o n i s zero .
12 switch Fr ic t ion_Type
13 case ’ P r e s c r i b e d _ S t e a d y _ S t a t e _ F r i c t i o n ’
14 % Re s i s t a n ce c o e f f i c i e n t [ s^2/m^5]
15 R = f_pre∗dx/(2∗g∗D∗A^2) ;
16 otherwise
17 % Re s i s t a n ce c o e f f i c i e n t [ s^2/m^5]
18 R = Res i s tanceCoef f ( g , D, A, dx , roughness , rho , Q_0 , v i s c o s i t y ) ;
19 end
20

21 f o r i = 2 : n
22 % Piezometr ic head , disregarding f r i c t i o n [m]
23 H_0 = H( i −1 ,1) − dx ∗ sind ( t h e t a ) ;
24 % Piezometr ic head [m]
25 H( i , 1 ) = H_0 − R∗Q_0∗abs ( Q_0 ) + dx/( a∗A) ∗ sind ( t h e t a ) ∗Q_0 ;
26 end
27

28 f o r i = 1 : n
29 % Gas c a v i t y volume [m^3]
30 V_g ( i , 1 ) = alpha_0∗V_tota l ( i , 1 ) ;
31 end
32

33 end

InteriorNodes SinglePhase

1 func t ion [Q_P , H_P] = Inter iorNodes_SinglePhase ( a , g , A, rho , D , . . .
2 v i s c o s i t y , roughness , dx , theta , Q_A, H_A, Q_u_B , H_B, Q, Re_0 , i , j , . . .
3 dt , Fr ict ion_Type , Q_0 , f_pre , W, dQ, n_t )
4 %% I n t e r i o r nodes
5 % Pipe constant [ s/m^2]
6 B = PipeConst ( a , g , A) ;
7 % P o s i t i v e c h a r a c t e r i s t i c s equation [m]
8 C_p = C h a r a c t e r i s t i c _ P l u s ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
9 theta , Q_A, H_A, Q, Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, . . .

10 dQ, n_t ) ;
11 % Negative c h a r a c t e r i s t i c s equation [m]
12 C_m = Charac ter i s t i c_Minus ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
13 theta , Q_u_B , H_B, Q, Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, . . .
14 dQ, n_t ) ;
15 % Piezometr ic head [m]
16 H_P = ( C_p + C_m) /2;
17 % Volumetric flow r a t e [m^3/s ]
18 Q_P = (H_P − C_m) /B ;
19 end

InteriorNodes DVCM

1 func t ion [ Q_u_P , Q_P , H_P, V_cav_P ] = InteriorNodes_DVCM ( a , g , A, rho , . . .
2 D, v i s c o s i t y , roughness , dx , theta , Q_A, H_A, Q_u_B , H_B, Q, Q_u , . . .
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3 Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, dQ, n_t , V_cav_t , . . .
4 V_cav_P0 , Q_P0 , Q_u_P0 , psi , z_P , H_v)
5 %% I n t e r i o r nodes
6 % Pipe constant [ s/m^2]
7 B = PipeConst ( a , g , A) ;
8 % P o s i t i v e c h a r a c t e r i s t i c s equation [m]
9 C_p = C h a r a c t e r i s t i c _ P l u s ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .

10 theta , Q_A, H_A, Q, Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, . . .
11 dQ, n_t ) ;
12 % Negative c h a r a c t e r i s t i c s equation [m]
13 C_m = Charac ter i s t i c_Minus ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
14 theta , Q_u_B , H_B, Q_u , Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , f_pre , . . .
15 W, dQ, n_t ) ;
16

17 % Checking i f a vapour c a v i t y was present a t the previous time step .
18 i f V_cav_t > 0
19 %% Vapour c a v i t y was present a t the previous time step .
20 % Piezometr ic head [m]
21 H_P = z_P + H_v ;
22 % Volumetric flow r a t e [m^3/s ]
23 Q_u_P = ( C_p − H_P) /B ;
24 % Volumetric flow r a t e [m^3/s ]
25 Q_P = (H_P − C_m) /B ;
26 % Vapour c a v i t y volume [m^3]
27 V_cav_P = V_cav_P0 + 2∗dt ∗ ( ps i ∗ (Q_P − Q_u_P ) + (1 − ps i ) ∗ (Q_P0 − Q_u_P0 ) ) ;
28

29 % Checking i f the vapour c a v i t y disappears .
30 i f V_cav_P <= 0
31 %% Vapour c a v i t y disappears because of a r i s e in head .
32 % Vapour c a v i t y volume [m^3]
33 V_cav_P = 0 ;
34 % Piezometr ic head [m]
35 H_P = ( C_p + C_m) /2;
36

37 i f H_P < z_P + H_v
38 % Piezometr ic head [m]
39 H_P = z_P + H_v ;
40 end
41

42 % Volumetric flow r a t e [m^3/s ]
43 Q_u_P = ( C_p − H_P) /B ;
44 % Volumetric flow r a t e [m^3/s ]
45 Q_P = Q_u_P ;
46

47 end
48 e l s e
49 %% No vapour c a v i t y was present in the previous time step .
50 % Piezometr ic head [m]
51 H_P = ( C_p + C_m) /2;
52

53 % Checking i f the head f a l l s below the l e v e l where vapour c a v i t i e s are crea ted .
54 i f H_P <= z_P + H_v
55 %% Head f e l l below vapourizat ion l e v e l .
56 % Piezometr ic head [m]
57 H_P = z_P + H_v ;
58 % Volumetric flow r a t e [m^3/s ]
59 Q_u_P = ( C_p − H_P) /B ;
60 % Volumetric flow r a t e [m^3/s ]
61 Q_P = (H_P − C_m) /B ;
62 % Vapour c a v i t y volume [m^3]
63 V_cav_P = V_cav_P0 + 2∗dt ∗ ( ps i ∗ (Q_P − Q_u_P ) + (1 − ps i ) ∗ (Q_P0 − Q_u_P0 ) ) ;
64

65 % Checking i f a vapour c a v i t y i s crea ted .
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66 i f V_cav_P <= 0
67 %% No vapour c a v i t y i s crea ted .
68 % Vapour c a v i t y volume [m^3]
69 V_cav_P = 0 ;
70 % Piezometr ic head [m]
71 H_P = ( C_p + C_m) /2;
72

73 i f H_P < z_P + H_v
74 % Piezometr ic head [m]
75 H_P = z_P + H_v ;
76 end
77

78 % Volumetric flow r a t e [m^3/s ]
79 Q_u_P = ( C_p − H_P) /B ;
80 % Volumetric flow r a t e [m^3/s ]
81 Q_P = Q_u_P ;
82

83 end
84 e l s e
85 %% Head i s above vapourizat ion l e v e l .
86 % Vapour c a v i t y volume [m^3]
87 V_cav_P = 0 ;
88 % Volumetric flow r a t e [m^3/s ]
89 Q_u_P = ( C_p − H_P) /B ;
90 % Volumetric flow r a t e [m^3/s ]
91 Q_P = Q_u_P ;
92 end
93 end
94

95 end

InteriorNodes DGCM

1 func t ion [ Q_u_P , Q_P , H_P, V_g_P ] = InteriorNodes_DGCM ( a , g , A, rho , D , . . .
2 v i s c o s i t y , roughness , dx , theta , Q_A, H_A, Q_u_B , H_B, Q, Q_u , Re_0 , . . .
3 i , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, dQ, n_t , H_0 , alpha_0 , . . .
4 V_total , V_g_P0 , Q_P0 , Q_u_P0 , psi , z_P , H_v)
5 %% I n t e r i o r nodes
6 % Pipe constant [ s/m^2]
7 B = PipeConst ( a , g , A) ;
8 % P o s i t i v e c h a r a c t e r i s t i c s equation [m]
9 C_p = C h a r a c t e r i s t i c _ P l u s ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .

10 theta , Q_A, H_A, Q, Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, . . .
11 dQ, n_t ) ;
12 % Negative c h a r a c t e r i s t i c s equation [m]
13 C_m = Charac ter i s t i c_Minus ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
14 theta , Q_u_B , H_B, Q_u , Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, . . .
15 dQ, n_t ) ;
16

17 %% C a l c u l a t i o n of head − Fluid T r an s i e n t s in Systems
18 % Pressure a t steady s t a t e [ Pa ]
19 P_0 = rho∗g∗ (H_0 − z_P − H_v) ;
20 % Constant [m^4]
21 C_3 = P_0∗alpha_0∗V_tota l /( rho∗g ) ;
22 % Constant [−]
23 B_2 = 0 . 5 / 2 ;
24 % Constant [m^2]
25 C_4 = B_2∗B∗C_3/( ps i∗dt ) ;
26 % Constant [m^3/s ]
27 B_v = ( V_g_P0/(2∗dt ) + (1 − ps i ) ∗ (Q_P0 − Q_u_P0 ) ) /ps i ;
28

29 i f B_v <= 0
30 % Constant [m^3/s ]
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31 B_v = 0 ;
32 end
33

34 % Constant [m/s ]
35 B_1 = −B_2 ∗ (C_m + C_p ) + B_2∗B∗B_v + ( z_P + H_v) /2;
36

37 i f B_1 == 0
38 % Piezometr ic head [m]
39 H_P = s q r t ( C_4 ) + z_P + H_v ;
40 e l s e
41 % Constant [−]
42 B_B = C_4/B_1 ^2;
43

44 i f B_1 < 0 && B_B > 0 .001
45 % Piezometr ic head [m]
46 H_P = −B_1∗ (1 + s q r t (1 + B_B ) ) + z_P + H_v ;
47 e l s e i f B_1 > 0 && B_B > 0 .001
48 % Piezometr ic head [m]
49 H_P = −B_1∗ (1 − s q r t (1 + B_B ) ) + z_P + H_v ;
50 e l s e i f B_1 < 0 && B_B < 0 .001
51 % Piezometr ic head [m]
52 H_P = −2∗B_1 − C_4/(2∗B_1 ) + z_P + H_v ;
53 e l s e i f B_1 > 0 && B_B < 0 .001
54 % Piezometr ic head [m]
55 H_P = C_4/(2∗B_1 ) + z_P + H_v ;
56 end
57 end
58

59 i f H_P < z_P + H_v
60 % Piezometr ic head [m]
61 H_P = z_P + H_v ;
62 end
63

64 %% C a l c u l a t i o n of flows and vapour s i z e s
65 % Volumetric flow r a t e [m^3/s ]
66 Q_u_P = ( C_p − H_P) /B ;
67 % Volumetric flow r a t e [m^3/s ]
68 Q_P = (H_P − C_m) /B ;
69 % Gas c a v i t y volume [m^3]
70 V_g_P = V_g_P0 + ( ps i ∗ (Q_P − Q_u_P ) + (1−ps i ) ∗ (Q_P0 − Q_u_P0 ) ) ∗2∗dt ;
71

72 i f V_g_P < 0
73 % Gas c a v i t y volume [m^3]
74 V_g_P = C_3/(H_P − z_P − H_v) ;
75 end
76

77 end

Reservoir Upstream

1 func t ion [Q_P , H_P] = Reservoir_Upstream ( a , g , A, rho , D, dx , . . .
2 v i s c o s i t y , roughness , theta , Q_B , H_B, H_r , Q, Re_0 , i , j , dt , . . .
3 Frict ion_Type , Q_0 , f_pre , W, dQ, n_t )
4 %% Boundary condi t ions f o r upstream r e s e r v o i r
5 % Pipe constant [ s/m^2]
6 B = PipeConst ( a , g , A) ;
7 % Piezometr ic head [m]
8 H_P = H_r ;
9 % Negative c h a r a c t e r i s t i c s equation [m]

10 C_m = Charac ter i s t i c_Minus ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
11 theta , Q_B , H_B, Q, Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, . . .
12 dQ, n_t ) ;
13 % Volumetric flow r a t e [m]
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14 Q_P = (H_P − C_m) /B ;
15 end

Reservoir Upstream DGCM

1 func t ion [ Q_u_P , Q_P , H_P, V_g_P ] = Reservoir_Upstream_DGCM ( a , g , A , . . .
2 rho , D, dx , v i s c o s i t y , roughness , theta , Q_u_B , H_B, H_r , Q_u , Re_0 , . . .
3 i , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, dQ, n_t , H_0 , alpha_0 , . . .
4 V_total , z_P , H_v)
5 %% Boundary condi t ions f o r upstream r e s e r v o i r
6 % Pipe constant [ s/m^2]
7 B = PipeConst ( a , g , A) ;
8 % Negative c h a r a c t e r i s t i c s equation [m]
9 C_m = Charac ter i s t i c_Minus ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .

10 theta , Q_u_B , H_B, Q_u , Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , f_pre , . . .
11 W, dQ, n_t ) ;
12 % Piezometr ic head [m]
13 H_P = H_r ;
14 % Volumetric flow r a t e [m^3/s ]
15 Q_P = (H_P − C_m) /B ;
16 % Volumetric flow r a t e [m^3/s ]
17 Q_u_P = Q_P ;
18 % Pressure a t steady s t a t e [ Pa ]
19 P_0 = rho∗g∗ (H_0 − z_P − H_v) ;
20 % Constant [m^4]
21 C_3 = P_0∗alpha_0∗V_tota l /( rho∗g ) ;
22 % Gas c a v i t y volume [m^3]
23 V_g_P = C_3/(H_P − z_P − H_v) ;
24 end

Valve Closure

1 func t ion [Q_P , H_P] = Valve_Closure ( a , g , A, D, dx , roughness , rho , . . .
2 v i s c o s i t y , t , t_c , m, theta , Q_0 , H_0 , Q_A, H_A, Q, Re_0 , i , j , dt , . . .
3 Frict ion_Type , f_pre , W, dQ, n_t )
4 %% Ca lc u la t i n g the dimensionless c l o s u r e time f o r the valve
5 i f t < t _ c
6 % Dimensionless valve c l o s u r e time [−]
7 tau_v = 1 − ( t / t _ c ) m̂;
8 e l s e
9 % Dimensionless valve c l o s u r e time [−]

10 tau_v = 0 ;
11 end
12

13 %% Ca lc u la t i ng the volumetric flow r a t e a t the valve
14 % Pipe constant [ s/m^2]
15 B = PipeConst ( a , g , A) ;
16 % P o s i t i v e c h a r a c t e r i s t i c s equation [m]
17 C_p = C h a r a c t e r i s t i c _ P l u s ( a , g , A, D, dx , roughness , rho , . . .
18 v i s c o s i t y , theta , Q_A, H_A, Q, Re_0 , i , j , dt , . . .
19 Frict ion_Type , Q_0 , f_pre , W, dQ, n_t ) ;
20 % Variable [m^5/s ^2]
21 C_v = ( Q_0∗ tau_v ) ^2/(2∗H_0 ) ;
22 % Volumetric flow r a t e [m^3/s ]
23 Q_P = − B∗C_v + s q r t ( ( B∗C_v ) ^2 + 2∗C_v∗C_p ) ;
24

25 %% C a l c u l a t i o n of the head
26 % Piezometr ic head [m]
27 H_P = C_p − B∗Q_P ;
28

29 end
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Valve Closure DVCM

1 func t ion [ Q_u_P , Q_P , H_P, V_cav_P ] = Valve_Closure_DVCM ( a , g , A, D, dx , . . .
2 roughness , rho , v i s c o s i t y , t , t_c , m, theta , Q_0 , H_0 , Q_A, H_A, Q , . . .
3 Re_0 , i , j , dt , Fr ict ion_Type , f_pre , W, dQ, n_t , V_cav_t , V_cav_P0 , . . .
4 Q_P0 , Q_u_P0 , psi , z_P , H_v)
5 %% Ca lc u la t i ng the dimensionless c l o s u r e time f o r the valve
6 i f t < t _ c
7 % Dimensionless valve c l o s u r e time [−]
8 tau_v = 1 − ( t / t _ c ) m̂;
9 e l s e

10 % Dimensionless valve c l o s u r e time [−]
11 tau_v = 0 ;
12 end
13

14 %% Ca lc u la t i ng the volumetric flow r a t e a t the valve
15 % Pipe constant [ s/m^2]
16 B = PipeConst ( a , g , A) ;
17 % P o s i t i v e c h a r a c t e r i s t i c s equation [m]
18 C_p = C h a r a c t e r i s t i c _ P l u s ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
19 theta , Q_A, H_A, Q, Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, . . .
20 dQ, n_t ) ;
21 % Variable [m^5/s ^2]
22 C_v = ( Q_0∗ tau_v ) ^2/(2∗H_0 ) ;
23 % Volumetric flow r a t e [m^3/s ]
24 Q_P = − B∗C_v + s q r t ( ( B∗C_v ) ^2 + 2∗C_v∗C_p ) ;
25

26 %% C a l c u l a t i o n of the head
27 % Checking i f a vapour c a v i t y was present a t the previous time step .
28 i f V_cav_t > 0
29 %% Vapour c a v i t y was present a t the previous time step .
30 % Piezometr ic head [m]
31 H_P = z_P + H_v ;
32 % Volumetric flow r a t e [m^3/s ]
33 Q_u_P = ( C_p − H_P) /B ;
34 % Vapour c a v i t y volume [m^3]
35 V_cav_P = V_cav_P0 + 2∗dt ∗ ( ps i ∗ (Q_P − Q_u_P ) + (1 − ps i ) ∗ (Q_P0 − Q_u_P0 ) ) ;
36

37 % Checking i f the vapour c a v i t y disappears .
38 i f V_cav_P <= 0
39 %% Vapour c a v i t y disappears because of a r i s e in head
40 % Vapour c a v i t y volume [m^3]
41 V_cav_P = 0 ;
42 % Volumetric flow r a t e [m^3/s ]
43 Q_u_P = Q_P ;
44 % Piezometr ic head [m]
45 H_P = C_p − B∗Q_P ;
46

47 i f H_P < z_P + H_v
48 % Piezometr ic head [m]
49 H_P = z_P + H_v ;
50 end
51

52 end
53 e l s e
54 %% No vapour c a v i t y was present in the previous time step
55 % Volumetric flow r a t e [m^3/s ]
56 Q_u_P = Q_P ;
57 % Piezometr ic head [m]
58 H_P = C_p − B∗Q_u_P ;
59

60 % Checking i f the head f a l l s below the l e v e l where vapour c a v i t i e s are crea ted .
61 i f H_P <= z_P + H_v
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62 %% Head f e l l below vapourizat ion l e v e l .
63 % Piezometr ic head [m]
64 H_P = z_P + H_v ;
65 % Volumetric flow r a t e [m^3/s ]
66 Q_u_P = ( C_p − H_P) /B ;
67 % Vapour c a v i t y volume [m^3]
68 V_cav_P = V_cav_P0 + 2∗dt ∗ ( ps i ∗ (Q_P − Q_u_P ) + (1 − ps i ) ∗ (Q_P0 − Q_u_P0 ) ) ;
69

70 % Checking i f a vapour c a v i t y i s crea ted .
71 i f V_cav_P <= 0
72 %% No vapour c a v i t y i s crea ted
73 % Vapour c a v i t y volume [m^3]
74 V_cav_P = 0 ;
75 % Piezometr ic head [m]
76 H_P = C_p − B∗Q_P ;
77

78 i f H_P < z_P + H_v
79 % Piezometr ic head [m]
80 H_P = z_P + H_v ;
81 end
82

83 % Volumetric flow r a t e [m^3/s ]
84 Q_u_P = Q_P ;
85 end
86 e l s e
87 %% Head i s above vapourizat ion l e v e l
88 % Vapour c a v i t y volume [m^3]
89 V_cav_P = 0 ;
90 end
91 end
92

93 end

Valve Closure DGCM

1 func t ion [ Q_u_P , Q_P , H_P, V_g_P ] = Valve_Closure_DGCM ( a , g , A, D, dx , . . .
2 roughness , rho , v i s c o s i t y , t , t_c , m, theta , Q_0 , H_0 , Q_A, H_A, Q , . . .
3 Re_0 , n , j , dt , Fr ict ion_Type , f_pre , W, dQ, n_t , alpha_0 , V_total , . . .
4 V_g_P0 , Q_P0 , Q_u_P0 , psi , z_P , H_v)
5 %% Ca lc u la t i n g the dimensionless c l o s u r e time f o r the valve
6 i f t < t _ c
7 % Dimensionless valve c l o s u r e time [−]
8 tau = 1 − ( t / t _ c ) m̂;
9 e l s e

10 % Dimensionless valve c l o s u r e time [−]
11 tau = 0 ;
12 end
13

14 %% Ca lc u la t i n g the volumetric flow r a t e a t the valve
15 % Pipe constant [ s/m^2]
16 B = PipeConst ( a , g , A) ;
17 % P o s i t i v e c h a r a c t e r i s t i c s equation [m]
18 C_p = C h a r a c t e r i s t i c _ P l u s ( a , g , A, D, dx , roughness , rho , v i s c o s i t y , . . .
19 theta , Q_A, H_A, Q, Re_0 , n , j , dt , Fr ict ion_Type , Q_0 , f_pre , W, . . .
20 dQ, n_t ) ;
21 % Variable [m^5/s ^2]
22 C_v = ( Q_0∗ tau ) ^2/(2∗H_0 ) ;
23 % Volumetric flow r a t e [m^3/s ]
24 Q_P = − B∗C_v + s q r t ( ( B∗C_v ) ^2 + 2∗C_v∗C_p ) ;
25

26 %% C a l c u l a t i o n of the head
27 % Pressure a t steady s t a t e [ Pa ]
28 P_0 = rho∗g∗ (H_0 − z_P − H_v) ;
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29 % Constant [m^4]
30 C_3 = P_0∗alpha_0∗V_tota l /( rho∗g ) ;
31 % Constant [−]
32 B_2 = 1/2;
33 % Constant [m^2]
34 C_4 = B_2∗B∗C_3/( ps i∗dt ) ;
35 % Constant [m^3/s ]
36 B_v = ( V_g_P0/(2∗dt ) + (1 − ps i ) ∗ (Q_P0 − Q_u_P0 ) ) /ps i ;
37

38 i f B_v <= 0
39 % Constant [m^3/s ]
40 B_v = 0 ;
41 end
42

43 % Constant [m/s ]
44 B_1 = −B_2 ∗ (C_p − B∗Q_P) + B_2∗B∗B_v + ( z_P + H_v) /2;
45

46 i f B_1 == 0
47 % Piezometr ic head [m]
48 H_P = s q r t ( C_4 ) + z_P + H_v ;
49 e l s e
50 % Constant [−]
51 B_B = C_4/B_1 ^2;
52 i f B_1 < 0 && B_B >= 0 .001
53 % Piezometr ic head [m]
54 H_P = −B_1∗ (1 + s q r t (1 + B_B ) ) + z_P + H_v ;
55 e l s e i f B_1 > 0 && B_B >= 0 .001
56 % Piezometr ic head [m]
57 H_P = −B_1∗ (1 − s q r t (1 + B_B ) ) + z_P + H_v ;
58 e l s e i f B_1 < 0 && B_B < 0 .001
59 % Piezometr ic head [m]
60 H_P = −2∗B_1 − C_4/(2∗B_1 ) + z_P + H_v ;
61 e l s e i f B_1 > 0 && B_B < 0 .001
62 % Piezometr ic head [m]
63 H_P = C_4/(2∗B_1 ) + z_P + H_v ;
64 end
65 end
66

67 i f H_P < z_P + H_v
68 % Piezometr ic head [m]
69 H_P = z_P + H_v ;
70 end
71

72 %% C a l c u l a t i o n of flows and vapour s i z e s
73 % Volumetric flow r a t e [m^3/s ]
74 Q_u_P = ( C_p − H_P) /B ;
75 % Gas c a v i t y volume [m^3]
76 V_g_P = V_g_P0 + ( ps i ∗ (Q_P − Q_u_P ) + (1−ps i ) ∗ (Q_P0 − Q_u_P0 ) ) ∗2∗dt ;
77

78 i f V_g_P < 0
79 % Gas c a v i t y volume [m^3]
80 V_g_P = C_3/(H_P − z_P − H_v) ;
81 end
82

83 end

Characteristic Plus

1 func t ion C_p = C h a r a c t e r i s t i c _ P l u s ( a , g , A, D, dx , roughness , rho , . . .
2 v i s c o s i t y , alpha , Q_p , H_p, Q, Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , . . .
3 f_pre , W, dQ, n_t )
4 %% C a l c u l a t i o n of the p o s i t i v e c h a r a c t e r i s t i c s l i n e .
5 % In " Frict ionTerm " , " Charact_Line " i n d i c a t e s whether the f r i c t i o n term i s
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6 % f o r the p o s i t i v e or the negat ive c h a r a c t e r i s t i c s l i n e .
7 Charact_Line = ’ Plus ’ ;
8

9 % Pipe constant [ s/m^2]
10 B = PipeConst ( a , g , A) ;
11

12 % F r i c t i o n term [m]
13 J = Frict ionTerm ( Frict ion_Type , D, roughness , rho , Re_0 , Q_0 , Q_p , Q , . . .
14 v i s c o s i t y , A, i , j , dx , dt , Charact_Line , g , a , f_pre , W, dQ, n_t ) ;
15

16 % P o s i t i v e c h a r a c t e r i s t i c s equation [m]
17 C_p = H_p + Q_p∗ (B + dx/( a∗A) ∗ sind ( alpha ) ) − J ;
18 end

Characteristic Minus

1 func t ion C_m = Charac ter i s t i c_Minus ( a , g , A, D, dx , roughness , rho , . . .
2 v i s c o s i t y , alpha , Q_m, H_m, Q, Re_0 , i , j , dt , Fr ict ion_Type , Q_0 , . . .
3 f_pre , W, dQ, n_t )
4 %% C a l c u l a t i o n of the negat ive c h a r a c t e r i s t i c s l i n e .
5 % In " Frict ionTerm " , " Charact_Line " i n d i c a t e s whether the f r i c t i o n term i s
6 % f o r the p o s i t i v e or the negat ive c h a r a c t e r i s t i c s l i n e .
7 Charact_Line = ’ Minus ’ ;
8

9 % Pipe constant [ s/m^2]
10 B = PipeConst ( a , g , A) ;
11

12 % F r i c t i o n term [m]
13 J = Frict ionTerm ( Frict ion_Type , D, roughness , rho , Re_0 , Q_0 , Q_m, Q , . . .
14 v i s c o s i t y , A, i , j , dx , dt , Charact_Line , g , a , f_pre , W, dQ, n_t ) ;
15

16 % Negative c h a r a c t e r i s t i c s equation [m]
17 C_m = H_m + Q_m∗(−B + dx/( a∗A) ∗ sind ( alpha ) ) + J ;
18 end

FrictionTerm

1 func t ion [ J ] = Frict ionTerm ( Frict ion_Type , D, roughness , rho , Re_0 , Q_0 , . . .
2 Q_point , Q, v i s c o s i t y , A, i , j , dx , dt , Charact_Line , g , a , f_pre , . . .
3 W, dQ, n_t )
4 % The f r i c t i o n term i s comprised of three parts , steady s t a t e f r i c t i o n , J _ s
5 % ( only used by " P r e s c r i b e d _ S t e a d y _ S t a t e _ F r i c t i o n " and
6 % " S t e a d y _ S t a t e _ F r i c t i o n " ) , quasi−steady f r i c t i o n , J_q , and unsteady
7 % f r i c t i o n , J_u ( f o r the unsteady f r i c t i o n models ) . Theses three are
8 % summarized a f t e r the c a l c u l a t i o n of each part .
9 switch Fr ic t ion_Type

10 case ’ P r e s c r i b e d _ S t e a d y _ S t a t e _ F r i c t i o n ’
11 % Re s i s t a n ce c o e f f i c i e n t [ s^2/m^5]
12 R = f_pre∗dx/(2∗g∗D∗A^2) ;
13 J _ s = R∗Q_point∗abs ( Q_point ) ;
14 J_q = 0 ;
15 J_u = 0 ;
16 case ’ S t e a d y _ S t a t e _ F r i c t i o n ’
17 % Darcy f r i c t i o n f a c t o r , determined f o r e i t h e r laminar flow or via
18 % the Colebrook−White equation f o r turbulent flow [−]
19 f _ s = F r i c F a c (D, roughness , rho , Q_0 , v i s c o s i t y , A) ;
20 % Re s i s t a n ce c o e f f i c i e n t [ s^2/m^5]
21 R = f _ s ∗dx/(2∗g∗D∗A^2) ;
22 J _ s = R∗Q_point∗abs ( Q_point ) ;
23 J_q = 0 ;
24 J_u = 0 ;
25 case ’ Quas i_Steady_Fr ic t ion ’
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26 % Darcy f r i c t i o n f a c t o r , determined f o r e i t h e r laminar flow or via
27 % the Colebrook−White equation f o r turbulent flow [−]
28 f_q = F r i c F a c (D, roughness , rho , Q_point , v i s c o s i t y , A) ;
29 % Re s i s t a n ce c o e f f i c i e n t [ s^2/m^5]
30 R = f_q∗dx/(2∗g∗D∗A^2) ;
31 J _ s = 0 ;
32 J_q = R∗Q_point∗abs ( Q_point ) ;
33 J_u = 0 ;
34 case ’ Unsteady_Friction_Brunone ’
35 % Darcy f r i c t i o n f a c t o r , determined f o r e i t h e r laminar flow or via
36 % the Colebrook−White equation f o r turbulent flow [−]
37 f_q = F r i c F a c (D, roughness , rho , Q_point , v i s c o s i t y , A) ;
38 % Re s i s t a n ce c o e f f i c i e n t [ s^2/m^5]
39 R = f_q∗dx/(2∗g∗D∗A^2) ;
40 J _ s = 0 ;
41 J_q = R∗Q_point∗abs ( Q_point ) ;
42 switch Charact_Line
43 case ’ Plus ’
44 J_u = BrunoneFricp (Q, Re_0 , D, j , i , a , dt , dx , g ,A) ;
45 case ’ Minus ’
46 J_u = BrunoneFricm (Q, Re_0 , D, j , i , a , dt , dx , g ,A) ;
47 end
48 case ’ Unsteady_Fr ic t ion_Zie lke ’
49 % Darcy f r i c t i o n f a c t o r , determined f o r e i t h e r laminar flow or via
50 % the Colebrook−White equation f o r turbulent flow [−]
51 f_q = F r i c F a c (D, roughness , rho , Q_point , v i s c o s i t y , A) ;
52 % Re s i s t a n ce c o e f f i c i e n t [ s^2/m^5]
53 R = f_q∗dx/(2∗g∗D∗A^2) ;
54 J _ s = 0 ;
55 J_q = R∗Q_point∗abs ( Q_point ) ;
56 switch Charact_Line
57 case ’ Plus ’
58 J_u = CBFricp ( dt , j , i , D, rho , v i s c o s i t y , g ,A, a ,W, dQ, n_t ) ;
59 case ’ Minus ’
60 J_u = CBFricm ( dt , j , i , D, rho , v i s c o s i t y , g ,A, a ,W, dQ, n_t ) ;
61 end
62 case ’ Unsteady_Friction_VardyBrown ’
63 % Darcy f r i c t i o n f a c t o r , determined f o r e i t h e r laminar flow or via
64 % the Colebrook−White equation f o r turbulent flow [−]
65 f_q = F r i c F a c (D, roughness , rho , Q_point , v i s c o s i t y , A) ;
66 % Re s i s t a n ce c o e f f i c i e n t [ s^2/m^5]
67 R = f_q∗dx/(2∗g∗D∗A^2) ;
68 J _ s = 0 ;
69 J_q = R∗Q_point∗abs ( Q_point ) ;
70 switch Charact_Line
71 case ’ Plus ’
72 J_u = CBFricp ( dt , j , i , D, rho , v i s c o s i t y , g ,A, a ,W, dQ, n_t ) ;
73 case ’ Minus ’
74 J_u = CBFricm ( dt , j , i , D, rho , v i s c o s i t y , g ,A, a ,W, dQ, n_t ) ;
75 end
76 case ’ Unsteady_Fric t ion_Zarzycki ’
77 % Darcy f r i c t i o n f a c t o r , determined f o r e i t h e r laminar flow or via
78 % the Colebrook−White equation f o r turbulent flow [−]
79 f_q = F r i c F a c (D, roughness , rho , Q_point , v i s c o s i t y , A) ;
80 % Re s i s t a n ce c o e f f i c i e n t [ s^2/m^5]
81 R = f_q∗dx/(2∗g∗D∗A^2) ;
82 J _ s = 0 ;
83 J_q = R∗Q_point∗abs ( Q_point ) ;
84 switch Charact_Line
85 case ’ Plus ’
86 J_u = CBFricp ( dt , j , i , D, rho , v i s c o s i t y , g ,A, a ,W, dQ, n_t ) ;
87 case ’ Minus ’
88 J_u = CBFricm ( dt , j , i , D, rho , v i s c o s i t y , g ,A, a ,W, dQ, n_t ) ;
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89 end
90 end
91 % F r i c t i o n term [m]
92 J = J _ s + J_q + J_u ;
93 end

FricFac

1 func t ion f = F r i c F a c (D, roughness , rho , Q, v i s c o s i t y , A)
2 %% Calcuat ion of the Darcy f r i c t i o n f a c t o r .
3 % Reynolds number [−]
4 Re = rho∗D∗abs (Q) /( v i s c o s i t y ∗A) ;
5

6 i f Re==0
7 % Darcy f r i c t i o n f a c t o r f o r zero flow [−]
8 f = 1 ;
9 e l s e i f Re>0 && Re<2100

10 %% Laminar flow
11 % Darcy f r i c t i o n f a c t o r f o r laminar flow [−]
12 f = 64/Re ;
13 e l s e
14 %% Colebrook−White equation
15 % The f r i c t i o n f a c t o r , f , i s solved i t e r a t i v e l y with f f being the i n i t i a l
16 % value , and the accepted e r r o r being 1E−12. e r r i s the e r r o r compared
17 % with the allow error , and the f r i c t i o n f a c t o r i s only accepted when
18 % e r r becomes lower than 1E−12.
19 % I n i t i a l i z i n g f f [−]
20 f f = 1 0 ;
21 % S e t t i n g lower e r r o r l i m i t [−]
22 e r r = 0 . 0 0 0 1 ;
23 % I n i t i a l i z i n g Darcy f r i t i o n f a c t o r [−]
24 f_o ld = 0 ;
25

26 while e r r > 1E−12
27 % Darcy f r i c t i o n f a c t o r f o r turbulent flow [−]
28 f = 1/ f f ^2;
29 % Resul t from Colebrook equation [−]
30 f f = −2∗ log10 ( roughness /( 3 .7∗D) +2.51/( Re∗ s q r t ( f ) ) ) ;
31 % Error between i t e r a t i o n s [−]
32 e r r = abs ( f − f_o ld ) ;
33 % Darcy f r i c t i o n f a c t o r f o r turbulent flow [−]
34 f_o ld = f ;
35 end
36 end
37 end

BrunoneFricp

1 func t ion h_up = BrunoneFricp (Q, Re , D, j , i , a , dt , dx , g ,A)
2 %% Brunone ’ s unsteady f r i c t i o n model
3 % Brunone ’ s unsteady f r i c t i o n i s c a l c u l a t e d f o r the p o s i t i v e
4 % c h a r a c t e r i s t i c s l i n e .
5 i f Re < 2100
6 % Vardy shear c o e f f i c i e n t f o r laminar flow [−]
7 C = 0 . 0 0 4 7 6 ;
8 e l s e
9 % Vardy shear c o e f f i c i e n t f o r turbulent flow [−]

10 C = 7 . 4 1 / ( Re^( log10 ( 1 4 . 3 / . . .
11 Re ^ 0 . 0 5 ) ) ) ;
12 end
13

14 % Brunone ’ s f r i c t i o n c o e f f i c i e n t [−]
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15 k = s q r t (C) /2;
16

17 % For j = 2 , there i s no nodes two time steps , so i t i s not p o s s i b l e to
18 % c a l c u l a t e the a c c e l e r a t i o n of the volumetric flow r a t e . I t i s t h e r e f o r e
19 % s e t to zero , because two values from steady s t a t e would otherwise be
20 % used , which would r e s u l t in zero f o r the a c c e l e r a t i o n term .
21 i f j == 2
22 % Unsteady f r i c t i o n term [m]
23 h_up = a∗dt∗k/(g∗A) ∗ ( a∗ s ign (Q( i −1, j −1) ) . . .
24 ∗abs ( (Q( i , j −1)−Q( i −1, j −1) ) /dx ) ) ;
25 e l s e
26 % Unsteady f r i c t i o n term [m]
27 h_up = a∗dt∗k/(g∗A) ∗ ( (Q( i −1, j −1)−Q( i −1, j −2) ) /dt + a∗ s ign (Q( i −1, j −1) ) . . .
28 ∗abs ( (Q( i , j −1)−Q( i −1, j −1) ) /dx ) ) ;
29 end
30 end

BrunoneFricm

1 func t ion J_u = BrunoneFricm (Q, Re , D, j , i , a , dt , dx , g ,A)
2 %% Brunone ’ s unsteady f r i c t i o n model
3 % Brunone ’ s unsteady f r i c t i o n i s c a l c u l a t e d f o r the negat ive
4 % c h a r a c t e r i s t i c s l i n e .
5 i f Re < 2100
6 % Vardy shear c o e f f i c i e n t f o r laminar flow [−]
7 C = 0 . 0 0 4 7 6 ;
8 e l s e
9 % Vardy shear c o e f f i c i e n t f o r turbulent flow [−]

10 C = 7 . 4 1 / ( Re^( log10 ( 1 4 . 3 / . . .
11 Re ^ 0 . 0 5 ) ) ) ;
12 end
13

14 % Brunone ’ s f r i c t i o n c o e f f i c i e n t [−]
15 k = s q r t (C) /2;
16

17 % For j = 2 , there i s no nodes two time steps , so i t i s not p o s s i b l e to
18 % c a l c u l a t e the a c c e l e r a t i o n of the volumetric flow r a t e . I t i s t h e r e f o r e
19 % s e t to zero , because two values from steady s t a t e would otherwise be
20 % used , which would r e s u l t in zero f o r the a c c e l e r a t i o n term .
21 i f j == 2
22 % Unsteady f r i c t i o n c o e f f i c i e n t [m]
23 J_u = a∗dt∗k/(g∗A) ∗ ( a∗ s ign (Q( i +1 , j −1) ) . . .
24 ∗abs ( (Q( i +1 , j −1)−Q( i , j −1) ) /dx ) ) ;
25 e l s e
26 % Unsteady f r i c t i o n c o e f f i c i e n t [m]
27 J_u = a∗dt∗k/(g∗A) ∗ ( (Q( i +1 , j −1)−Q( i +1 , j −2) ) /dt + a∗ s ign (Q( i +1 , j −1) ) . . .
28 ∗abs ( (Q( i +1 , j −1)−Q( i , j −1) ) /dx ) ) ;
29 end
30 end

CBFricp

1 func t ion J_u = CBFricp ( dt , j , i , D, rho , v i s c o s i t y , g ,A, a ,W, dQ, n_t )
2 %% Convolution based f r i c t i o n models
3 % The convolut ion based f r i c t i o n i s c a l c u l a t e d f o r the p o s i t i v e
4 % c h a r a c t e r i s t i c s l i n e ( the weighting f a c t o r W( tau ) def ines i f i t i s Vardy
5 % & Brown ’ s unsteady f r i c t i o n model being used or another ) .
6 i f j > 2
7 % Unsteady f r i c t i o n term [m]
8 J_u = 16∗ v i s c o s i t y ∗dt∗a∗sum(dQ( i −1,n_t− j +2 : n_t−1) . ∗ . . .
9 W( 1 , 1 : j −2) ) /(D^2∗rho∗A∗g ) ;

10 e l s e
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11 % Unsteady f r i c t i o n term [m]
12 J_u = 0 ;
13 end
14 end

CBFricp

1 func t ion J_u = CBFricp ( dt , j , i , D, rho , v i s c o s i t y , g ,A, a ,W, dQ, n_t )
2 %% Convolution based f r i c t i o n models
3 % The convolut ion based f r i c t i o n i s c a l c u l a t e d f o r the p o s i t i v e
4 % c h a r a c t e r i s t i c s l i n e ( the weighting f a c t o r W( tau ) def ines i f i t i s Vardy
5 % & Brown ’ s unsteady f r i c t i o n model being used or another ) .
6 i f j > 2
7 % Unsteady f r i c t i o n term [m]
8 J_u = 16∗ v i s c o s i t y ∗dt∗a∗sum(dQ( i −1,n_t− j +2 : n_t−1) . ∗ . . .
9 W( 1 , 1 : j −2) ) /(D^2∗rho∗A∗g ) ;

10 e l s e
11 % Unsteady f r i c t i o n term [m]
12 J_u = 0 ;
13 end
14 end
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