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Abstract: This article deals with the stability problem that arises in the modeling of the geological
sequestration of carbon dioxide. It provides a more detailed description of the alternative approach
to tackling the stability problem put forth by Vo and Hadji (Physics of Fluids, 2017, 29, 127101)
and Wanstall and Hadji (Journal of Engineering Mathematics, 2018, 108, 53–71), and it extends
two-dimensional analysis to the three-dimensional case. This new approach, which is based on a
step-function base profile, is contrasted with the usual time-evolving base state. While both provide
only estimates for the instability threshold values, the step-function base profile approach has one
great advantage in the sense that the problem at hand can be viewed as a stationary Rayleigh–Bénard
problem, the model of which is physically sound and the stability of which is not only well-defined
but can be analyzed by a variety of existing analytical methods using only paper and pencil.
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1. Introduction

We consider the mathematical problem that arises in the modeling of the geological sequestration
of carbon dioxide, the background of which is illustrated in [1–5]. We also refer the reader to the review
paper by Huppert and Neufeld [6] for a detailed description of the problem as well as a summary
of recent findings and a list of relevant references. The stability problem that results from the model
is described by differential equations (PDEs) with prescribed boundary conditions. These equations
result from invoking the conservation equations for mass and energy together with Darcy’s equation in
a fluid-saturated porous medium. The geometry that is usually adopted is that of a Rayleigh–Bénard
experimental set-up, whereby the fluid has infinite extent in the horizontal direction and is vertically
confined between two boundaries, at the top of which the concentration of carbon dioxide is maintained
to be constant and the bottom of which is considered impermeable. The Dirichlet boundary condition at
the top boundary expresses the diffusion of CO2 and its subsequent dissolution into the ambient brine
from the gaseous super-critical CO2 that has accumulated at the top of the formation. The question that
has been posed, and which this article addresses, deals with the determination of the stability of a state
of convection, the existence of which is known to have a positive impact on improving the dissolution
rate of CO2 into the brine. This article is devoted to a more detailed discussion of an alternative view
at tackling the stability problem put forth by Vo and Hadji [7] and Wanstall and Hadji [8], henceforth
referred to as VH and WH, respectively. Note that VH imposed a Neumann boundary condition at the
top boundary by modeling a physical situation wherein the injection site is assumed closed after a
carbon-rich layer has formed at the top. This was done for the purpose of modeling the time evolution
of the interface. WH, however, considered the more physical Dirichlet boundary condition at the top
boundary, the so-called one-sided model [9]. Furthermore, due to the way in which the base state
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is introduced in [7,8], the method is expected to yield only conservative estimates for the instability
threshold values. However, one great advantage of this approach is that the problem at hand can be
viewed as a stationary Rayleigh–Bénard problem, the stability of which is mathematically well-defined
and can be treated by a variety of existing mathematical tools.

Given that the approach adopted here hinges on how one formulates the motionless state,
we devote the first section to contrasting our formulation of a base profile with that of the transient-state.
The former is based on describing the base state using a step function. This has also been considered
in [10,11] when a capillary transition zone between the non-wetting gas phase and wetting water
phase was incorporated in the stability problem. In the following sections, we first describe some of
the two-dimensional results that were obtained through the consideration of this alternative view and
then outline how to proceed in order to obtain their three-dimensional extension.

2. The Base State

The base state consists of a motionless fluid in which the diffusion of carbon dioxide takes
place. This is usually modeled as a Rayleigh–Bénard experimental set-up with CO2 being fed into
the underlying ambient brine (the initial concentration of which is zero) through the upper boundary,
while keeping the lower boundary impervious. In terms of the vertical coordinate, z pointing upward,
and time, t, the base CO2-concentration profile C(z, t) satisfies the diffusion equation

∂C
∂t

=
∂2C
∂z2 , (1)

with the following corresponding initial and boundary conditions,

C(z, 0) = 0, C(1, t) = 1,
∂C
∂z

(0, t) = 0. (2)

Its solution, which is derived in [12] with the positive z-direction pointing downward, is given by
Equation (3), the plot of which appears on the left side of Figure 1:

C(z, t) = 1− 4
π

∞

∑
n=1

1
2n− 1

sin ((n− 1
2
)π z) exp (−(n− 1

2
)2 π2 t). (3)

The step-function base profile which satisfies the same diffusion equation and boundary
conditions but with an assumed initial concentration given by

C(z, 0) =

{
1, z0 ≤ z ≤ 1

0, 0 ≤ z ≤ z0
(4)

is described by Equation (5), the plot of which is depicted on the right side of Figure 1:

C(z, t) = (1− z0)− 2
∞

∑
n=1

sin (nπz0)

nπ
cos (nπz) exp (−n2π2t). (5)

As depicted in Figure 1 and described in the schematic diagram (Figure 2), in the time-evolving
base state model, the boundary layer thickens and gains potential energy over time until instability
occurs at some critical time. The stability of such a base state requires the analysis of a set of coupled
PDEs having coefficients that depend on both time and space. This approach has been considered
by Foster [13,14] in his work involving the thermal boundary layer instability. The linear analysis
proceeds by expanding the variables in a series of eigenfunctions having time-dependent coefficients
and determining the critical wavenumber, defined as the one associated with the most dangerous
disturbance among some set of initial conditions. Ennis-King and Patterson [12] point out a couple
of drawbacks to this approach, namely the lack of a mathematically precise definition of critical time
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and the dependence of the latter on the set of initial conditions considered. These are some of the
usual mathematical difficulties that one encounters when dealing with the stability of time-dependent
states [15]. The alternative view considered by WH and VH presupposes that an initial boundary layer
of some thickness and average concentration has developed and that its stability is then investigated
to infinitesimal arbitrary time-dependent perturbations. This developed carbon-rich layer is heavier
than the underlying brine, and is prone to buoyancy-induced Rayleigh–Taylor instability wherein
diffusion has a stabilizing effect. Convection will set in once the layer attains a certain critical thickness
and, by the same token, it has gained just enough potential energy that diffusion is no longer able
to stabilize it [16]. From an experimental viewpoint, the two approaches are homologous in the
sense that the step-function profile approach follows the same scenario as the time-evolving base
state, with the exception that we stop the clock after some time has elapsed and ask whether the
boundary layer that has formed thus far is stable to arbitrary and time-dependent disturbances.
The only approximation made is that the carbon-rich layer is assumed to have some constant average
concentration. This approximation leads to instability threshold conditions that are only conservative.
However, this assumption can be relaxed and the approximation pushed a step further by including
the variations of the concentration with depth within the carbon-rich boundary layer. Thus, with the
approach adopted by VH and WH, the instability is characterized by a critical onset thickness instead
of critical onset time. The former is mathematically more appealing and is amenable to analysis by
simple analytical methods. Table 1 contrasts the predictions resulting from the transient and the
step-function base states.

(a)

(b)

Figure 1. The two plots contrast the time-evolving base state profile, Equation (3) (a) and the
step-function base profile, Equation (5) (b). In the former, a carbon-rich layer forms at the top and
grows with time until instability onset, while in the latter it is assumed that after an initial layer of
thickness (1− z0) and of average concentration C = 1 has initially formed, its stability to arbitrary
infinitesimal time-dependent perturbations is investigated.
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Figure 2. A schematic diagram contrasting the two base configurations.

Table 1. Table contrasting the stability characteristics of the two base states.

Time-Evolving Base State Step-Function Base Profile

Onset as function of time Onset as function of boundary layer thickness
Lack of a precise definition of stability Mathematically precise definition of stability
Stability of a time-dependent state Steady analysis via normal modes
Requires refined numerical techniques Paper-and-pencil analysis
Numerical tracking of the interface fluxes Closed-form expressions for the interface fluxes
Numerical extension to nonlinear regime Analytically tractable weakly nonlinear convection state
Challenging extension to three-dimensional case Analytically tractable pattern formation study
Approximate instability threshold values Conservative instability threshold values

3. Mathematical Model

The mathematical model consists of the conservation equations of mass, momentum, and species
within the Boussinesq approximation, which incorporate horizontal-to-vertical diffusion anisotropy,
height-dependent permeability change, and a first-order reaction between the mixture and the host
mineralogy [7,8,17]:

∇ · u = 0, (6)
u
F (z) = ∇p− ck, (7)

ρ = ρ0[1 + qc(c− C0)], (8)

∂c
∂t

+ u · ∇c + δ(z− z0)w = (ξ/R)∇h · ∇hc + (1/R)
∂2c
∂z2 − (Da/R)c, (9)

where p is the pressure and g = −gk, g is the gravitational constant, k is a unit vector
in the positive z−direction, ρ0 is a reference density, and w is the vertical component of the
velocity vector field. The main dimensionless numbers that emerge are the Rayleigh–Darcy number
R = qC g d K C0/ϕpν κv, the height-dependent permeability functionF = exp[`(1− z)], the Damköhler
number Da = β d2/ϕp κv which represents the ratio of the reaction rate to the convective mass transfer
rate, and ξ = κh/κv depicts the diffusion anisotropy. The other symbols are defined as follows: qc is
the coefficient of solutal expansion, d is the separation between the two horizontal boundaries, K is
the permeability coefficient, C0 is a reference CO2 concentration level, ϕp is the porosity, κv is the
vertical component of the diffusion tensor, β is the reaction rate, and the parameter ` > 0 numerically
quantifies the value of the permeability variation. As detailed in either VH or WH, the model is
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simplified by considering the poloidal component of the divergence free velocity vector field, φ, and
upon removing the pressure term, we obtain [7,8]:

F ∇2φ−F ′ φz = −F 2c, (10)

ct +∇hφz · ∇hcz −∇2
hφ cz = −∇2

hφ δ(z− z0) + (ξ∇2
hc + czz − Da c)/R, (11)

where δ(z− z0) is the Dirac delta function,∇h represents the horizontal gradient vector, and the prime
symbol denotes differentiation with respect to z. The corresponding boundary conditions are:

φ = 0,
∂c
∂z

= 0 at z = 0, z = 1. (12)

Note that the exponential form of F not only brings a tremendous simplification to the
mathematical analysis, but its exponential dependence on depth is experimentally supported by
the work of Klinkenberg [18] (i.e., the permeability shows a slight decrease with depth).

4. Stability Analysis

As detailed in VH and WH, due to the presence of the delta function term δ(z− z0), the equations
are solved in the two regions, 0 < z < z0 where the boundary conditions at z = 0 are used and
z0 < z < 1 where the boundary conditions at z = 1 are used. The rest of the integration constants are
obtained by imposing the continuity conditions for the velocity and all its derivatives at the interface
z = z0. We impose the continuity of the concentration at the interface z = z0 and a jump in the
derivative of the concentration at z = z0. This comes out by integrating the concentration equation
across the interface and leads to an expression for the Rayleigh–Darcy number as a function of both
the wavenumber α and the boundary layer thickness z0. Thus, with this approach the onset of the
instability is accompanied by a jump in the concentration at the interface between the carbon-rich
layer and the underlying ambient brine solution. The critical instability conditions can then be
expressed as the minimum value of R attained at some critical value of the wavenumber α for fixed
z0 ∈ (0, 1), namely:

Rc = min
α∈R

R(α, z0), (13)

and the absolute minimum Rayleigh–Darcy number is then obtained by minimizing Rc with respect to
z0, namely:

Rc
(abs) = min

z0∈(0,1)

(
min
α∈R

R(α, z0)
)
. (14)

The derivation of a formula for Rc, Equation (15), uses only analytical methods that are carried
out using only paper and pencil. We refer the reader to VH and WH for the algebra details which
are far too long to display here. This expression for Rc reveals the explicit dependence of the critical
threshold values on parameters. Thus, Equation (14) provides both the critical wavenumber αc and the
critical depth of the carbon-rich boundary layer at the onset of convection. Figure 3 depicts the stability
diagram showing a plot of R as function of α for a selected set of values of the Damköher number
Da. We note the emergence of a zero wavenumber instability in the limit of vanishing Da. This limit
is used to carry out a long wavelength asymptotic analysis. Figure 3 also depicts the variation of
Rc with z0. We note that Rc tends to infinity when either z0 approaches 0 or 1 as both of these two
limiting cases pertain to a layer that is stably stratified over the full vertical extent of the formation.
One way to interpret this plot is as follows: consider a sequestration site whose physical constants
and other externally imposed variables are such that R has a value R∗ and Rc is described by the top
continuous curve in Figure 3. By following the arrows from R∗ to the corresponding curve and then
down, we retrieve the thickness of the boundary layer at the onset of convection, namely (1− z∗). If R∗

happens to be below the value of Rc
(abs) corresponding to that curve, then convection will be absent in

that site and the dissolution of CO2 occurs solely by diffusion. The weakly nonlinear effects as well as



Fluids 2018, 3, 60 6 of 11

the effect of permeability variations are shown in Figure 4. We note that an increase in permeability
contrast, represented by the parameter `, leads to instability onset occurring at thinner boundary layer
depths. This is because an increase in permeability forces the intense convection flow to be confined at
the top of the formation.

Rc(z0) =
ξ`(e−` − 1)

z0e`z0 − z0 e`(1−z0) + 1− e`z0
. (15)

Figure 3. Suppose that for some sequestration site, the physical parameters and the concentration level
are such that the Rayleigh–Darcy number is R∗. Then, the thickness of the boundary layer at which
the instability sets in is given by (1− z0). If R∗ happens to be less than the absolute minimum for
that particular site, then convection will be absent and the carbon dioxide will dissolve by diffusion
alone. Note also that the magnitude of the critical Rayleigh number can be large, so the large R values
encountered in sequestration sites is not necessarily an indication of a turbulent mixing (from [7]).

Figure 4. The critical Rayleigh number obtained through the weakly nonlinear analysis is plotted as a
function of z0 for three distinct values of `, namely ` = 0.0001 (continuous line), ` = 1 (dashed line),
and ` = 2 (dotted line) [8]. Note that Rc values get very large as z0 gets closer to 1. Furthermore, only
the interval (0.5, 1) is plotted since convection set in first at the top half of the formation.

5. Two-Dimensional Results

We considered an alternative view of the convective stability associated with the geological
sequestration of carbon dioxide, the solution of which is amenable to purely analytical methods using
only paper and pencil. When the transient base state is considered, the carbon-rich boundary layer that
forms at the top of the formation thickens and gains potential energy over time until instability occurs
at some critical time. The determination of the stability threshold conditions requires the analysis of the
stability of a base state that is both space- and time-dependent. One popular way to proceed is through
defining the onset of convection in terms of critical time, the determination of which requires the use
of similarity variables, quasi-normal modes, and energy methods combined with refined numerical
techniques [19]. For instance, Xu et al. [20] used a Galerkin method to solve the stability problem.
Upon invoking the dimensional scaling, R = Constant× t−1/2

c , where tc denotes the critical onset time,
they were able to predict a dimensional critical time tc ≈ 25 years for a saline aquifer, the physical
parameters of which are listed in [12].
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An alternative view of the stability problem was pursued where it is supposed that an initial
layer of some thickness and some average concentration has formed, leading to a base state having a
step-function profile. The stability of the latter can then be investigated as a time-independent problem
using a normal modes approach, leading to the onset of convection in terms of a critical boundary
layer thickness. For instance, if we consider the data corresponding to the Sleipner site in the North
Sea [21], we have a Rayleigh number R∗ ≈ 1.2× 104. Upon using the stability diagram corresponding
to the uniform permeability case, Figure 3, we have a critical boundary layer thickness of ≈0.2. For a
formation of thickness 20 m, this corresponds to a dimensional critical thickness of ≈4 m and a critical
time of ≈ 42/(2κ) ≈253 years, with κ = 2× 10−9 m2· s−1.

As shown in VH, this approach shed light on the formation of the finger regime (Figure 5), and the
influence of permeability variation with depth on the convective flow (Figure 5). The analysis was also
able to shed some light on the interface motion and deformation that accompanies the jump in solute
flux. For instance, it is found that in a some parameter range in the linear regime, the motion of the
interface position, h(t), is described by the following ordinary differential equation (ODE) :

dh
dt

= A− sinh (α h)− A+ sinh (α h− α), h(0) = zc, (16)

where coefficients A− and A+ are expressions that are displayed in [8], α is the scaled wavenumber,
and zc is the critical thickness of the boundary layer. For a small interface deflection, we have:

dh
dt
∼ (A− − A+)α h + A+ α, (17)

whose solution is h(t) ∼ A+α t + zc(1− e(A−−A+)α t). Thus, The interface position evolves almost
linearly with time until it reaches the upper boundary, signaling the end of the convection mixing
within the formation.
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Figure 5. Plot of the concentration as function of the deviation from onset of convection,
namely c = c0 + ε2 c2 where ε denotes the amplitude of motion and ci are the O(i) contributions
to the concentration. A large deviation leads to the appearance of finger morphology (a) [7]. Plot of
the streamlines for parameter values, ξ = 1, Da = 0 and ` = 2 (b) [8]. As the permeability contrast
between the top and bottom regions increases, high intensity convection gets confined at the top and
penetrates the bottom regions, thus inducing only a low-intensity convective flow there.

6. Three-Dimensional Results

The analysis can be extended to the weakly nonlinear regime using only paper and pencil,
as shown in VH and WH. For instance, VH considered a physical situation that can be analyzed
using long-wavelength asymptotics to derive a 2D nonlinear evolution PDE for the leading order
perturbation for the concentration. In this paper, we consider its 3D extension which is found to be
described by:
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∂η

∂τ
= −∇4

hη − 2µ2∇2
hη − βη +∇2

hη|∇hη|2 + Γ
−→∇h · [∇2

hη(
−→∇hη)], (18)

where the parameter Γ, which incorporates the various physical parameters that govern the problem,
has a strong dependence on the permeability and Da = ε4 β̂ for consistency with the long-wavelength
limit [7]. The weakly nonlinear 2D analysis led the authors to posit a set of conditions for the appearance
of the finger morphology shown in Figure 5, namely the presence of impervious boundaries, nonlinear
regime, and the existence of a jump in the flux at the interface separating the carbon-rich layer from the
underlying ambient brine. Based on the solution of the 2D evolution equation, it is further suggested
that the finger pattern morphology results from a self-organization mechanism for the convective
exchange of carbon at the interface to optimally adapt to the higher Rayleigh–Darcy number regime.
In this paper, we highlight how to extend the 2D analysis to the 3D case by deriving an asymptotic
solution to Equation (18) in order to examine the interfacial exchange between the carbon-rich and
brine layers that leads to the three-dimensional finger pattern formation. Note that there is another
way to proceed by performing a pattern formation analysis following the same line of analysis as
in [22].

Upon considering the principal part of Equation (18), the solutions of which can be expressed as

η(x, y, τ) = exp (σ τ + ıK · r), (19)

where K and r =< x, y > are the two-dimensional wave-vectors and position vector, respectively,
we find that the growth rate is given by

σ = −(|K|2 − µ2)2 + µ4 − β. (20)

Thus, the static solution, η = 0, becomes unstable whenever β < µ4. For simplicity and
without loss of generality, we set µ = 1. The weakly nonlinear development of this instability
is investigated by deriving an asymptotic representation for the steady-state solution η(x, y).
We introduce the perturbation parameters, 0 < δ << 1, and consider the following expansions
near the instability threshold:

β = 1− δ β1 − δ2 β2 + . . . , (21)

η = δ η(0) + δ2 η(1) + δ3 η(2) + . . . . (22)

At the leading order in δ, we have

L(η(0)) = ∇4
h η(0) + 2∇2

hη(0) + η(0) = 0. (23)

In view of the asymmetry that exists between the top and bottom fluid layers, we consider the
hexagonal planform solution of Equation (23), namely:

η(0)(x, y) = cos (

√
3

2
x +

x
2
) + cos (

√
3x
2
− y

2
) + cos y ≡ H. (24)

At the order δ2, we have

L(η(1)) = β1H+ ΓH2 − Γ |∇hH|2. (25)
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After expanding the right-hand side of Equation (25) and collecting similar terms, we conclude
that the secular terms can be removed provided we set β1 = −Γ/2. The order δ2 of η is then governed
by the following problem:

L(η(1)) = Γ[cos (2y) + 2 cos (
√

3x) + 2 cos (

√
3x
2

+
3y
2
) + 2 cos (

√
3x
2
− 3y

2
)], (26)

whose solution is given by

η(1) =
Γ
9

cos (2y) +
Γ
2

cos (
√

3 x) +
64Γ
37

cos (

√
3 x
2

) cos (
3y
2
). (27)

Thus, up to O(δ2), η = δH+ δ2η(1). Following the work of VH and WH, the order ε2 concentration
quantities are then given by:

c−2 = H+ ε2[−Q1∇2
hη + |∇hη|2(−Q2 + Q3 −Q4 + Q5)], (28)

c+2 = H+ ε2[−S1∇2
hη + |∇hη|2(−Q2 + Q3 −Q4 + Q5)], (29)

where c− and c+ are the concentration in the brine (0 ≤ z < z0) and in the carbon-rich layer (z0 < z ≤ 1),
respectively, and

Q1 = − z2

2
−

z2
0

2
+ z0 −

1
3

, S1 = − z2

2
−

z2
0

2
+ z− 1

3
Q2 =

Rc

`(1− e−`)
, (30)

Q3 =
−ze`z

`2 +
e`z

`3 +
e`z

`2(1− e−`)
, Q4 =

2Rc

`4 Q5 =
Rc

2`(1− e−`
. (31)

7. Conclusions

In this paper, we summarized some of the results obtained by VH and WH in their study of the
instability associated with the sequestration of CO2 in geological formations. In the papers by VH
and WH, an attempt was made to solve the stability problem by considering a different approach
that is suitable to a time-independent analysis. The methods of normal modes and long wavelength
asymptotics were used to perform both linear and nonlinear analyses, derive carbon fluxes at the
interface between the carbon-rich layer and the ambient brine, use them to put forth the time evolution
of the interface, and estimate an upper bound for the shutdown regime. In this paper, we also
examined the extension to the three-dimensional case by first deriving the evolution equation for the
planforn function, η(x, y), and then solving it near onset. Its solution which is then used to plot the
concentration profiles, shown in Figure 6, gives insight on how the exchange of carbon takes place at
the interface. We invoked the asymmetry that exists between the top and bottom layers to assume
a solution of the hexagonal form. Based on the findings in VH and WH and the three-dimensional
extension carried out here, we also posited a possible scenario of how the ascending light currents and
heavy descending currents may self-organize at the interface, as shown in Figure 7. Below the interface
at z = z0, the light brine currents move up the walls of the lower hexagonal cell and converge toward
the center of the upper hexagonal cell (z > z0), while above the interface, the heavy brine currents
move also down the walls of the upper hexagonal cell and converge toward the center of lower cell.
These conclusions are only qualitative. A quantitative evaluation of the results obtained so far through
either the time-dependent or step-function profiles is difficult due to the lack of realistic data, which
can be obtained only through large-scale experiments at reservoir conditions [21].
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Figure 6. Plot of the concentration as a function of the deviation from onset of convection,
namely c = c0 + ε2 c2, where ε denotes the amplitude of motion and ci are the O(i) contributions
to the concentration. In this case, c0 = H and c2 is given by Equation (29). The plots depict c(x, y, z) as
slices by planes x = 0, y = 0, and z = 0.05. We note that the xz slice reduces to the two-dimensional case
studies in VH as shown in Figure 5. The z-slice covers a wider region in the xy-plane. The parameters
used are as follows: Γ = 4, δ = 0.2, R = 1200, ` = 2, z0 = 0.5, and ε = 0.5.

Interface 

Figure 7. Schematic diagram depicting a possible scenario of the ascending light currents and
descending carbon-rich currents near the interface at z = z0.
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