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Abstract: The Noble–Abel Stiffened-Gas (NASG) equation of state (Le Métayer, O. and Saurel,
R. proposed in 2016) is extended to variable attractive and repulsive effects to improve the liquid
phase accuracy when large temperature and pressure variation ranges are under consideration.
The transition from pure phase to supercritical state is of interest as well. The gas phase is considered
through the ideal gas assumption with variable specific heat rendering the formulation valid for
high temperatures. The liquid equation-of-state constants are determined through the saturation
curves making the formulation suitable for two-phase mixtures at thermodynamic equilibrium.
The overall formulation is compared to experimental characteristic curves of the phase diagram
showing good agreement for various fluids (water, oxygen). Compared to existing cubic equations of
state, the present one is convex, a key feature for computations with hyperbolic flow models.

Keywords: Noble–Abel; stiffened-gas; convexity; two-phase flows; sub-supercritical flows;
hyperbolic systems; phase change

1. Introduction

Modeling liquid–gas systems with or without phase transition is an old research topic in the
physics community but still challenging at both theoretical and computational levels. The most
common thermodynamical approach relies on cubic equations of state (EOS), the van der Waals one
being the basic prototype. Indeed, this EOS involves all relevant molecular effects present in matter,
i.e., thermal agitation, short distance repulsive forces and long-range attractive ones. It is thus able to
deal, at least qualitatively, with pure liquid, pure gas and a two-phase mixture. This EOS, as all cubic
ones, is aimed to close flow models based on balance equations of mass, momentum and energy for
the mixture. The Euler equations are one of the relevant possible options, as well as more sophisticated
ones aimed to model capillary effects, such as the Cahn and Hilliard [1] model for example. In this
context, the thermodynamical state is determined from two internal variables only, the density and
the internal energy of the mixture, or alternatively the density and the temperature, depending on
the formulation of the equations. This approach consequently seems simple but involves serious
difficulties and limitations:

- The first and certainly the most obvious and limiting is related to its inability to deal with liquid
and non-condensable gas separated by well-defined interfaces, such as for example interfacial
flows of liquid water and air. The thermodynamics of these two media being considered as
discontinuous, specific theoretical and numerical treatments have been addressed. In this context,
Arbitrary Lagrangian Eulerian (Hirt et al. [2]), Interface Reconstruction (Youngs [3]), Front Tracking
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(Glimm et al. [4]), Level-Set (Fedkiw et al. [5]), anti-diffusion (Kokh and Lagoutiere [6]) methods
are possible options. Another approach relies on continuous models with extra internal variables,
such as volume and mass fractions and extended equation of state. Examples of such models
are the Kapila et al. [7] one and its extension with phase transition (Saurel et al. [8]) to cite a few.
With these formulations, the same equations are solved everywhere routinely, in pure liquid,
pure gas and interface which becomes a diffuse zone. These models are indeed often named
“diffuse interface methods” (Saurel and Pantano [9]). In this approach, hyperbolic models with
relaxation are considered and each phase evolves in its own volume, with its own thermodynamics.
In particular, there is no need to address cubic formulations. When phase transition is addressed,
it occurs through mass transfer terms that can be considered finite rate (Saurel et al. [8], Furfaro
and Saurel [10]) or assumed stiff when the physical knowledge of the phase change kinetics is not
enough documented (Le Métayer et al. [11], Chiapolino et al. [12,13]) or unnecessary.

- The second limitation is related to the lack of convexity of cubic EOSs, having dramatic
consequences on sound propagation during phase transition. The square sound speed becomes
negative in the spinodal decomposition zone, such behavior not being physical.

- The third limitation is related to the description of phase transition with such EOSs.
Cubic equations of state consider phase transition as a thermodynamic process and not a kinetic
one. It is unclear at this level whether cubic EOSs are limited to the description of global two-phase
mixtures with many interfaces and not local ones, at the scale of a single interface.

- The fourth, but possibly not the last, is related to the numerical treatment of boundary conditions
(BC) in practical compressible flow computations. Subsonic inflow and outflow BCs rely on
stagnation enthalpy and entropy invariance coupled to Riemann invariants that can be defined
and computed correctly only if the equation of state is well-posed. The second issue related to EOS
convexity consequently reemerges at this level. Moreover, the practical expression of Riemann
invariants may be inextricable with these EOSs.

This list of arguments gives motivations to the present work where an extended version of the
Noble–Abel Stiffened-Gas (NASG, Le Métayer and Saurel [14]) EOS is examined to:

- Represent the thermodynamics of pure liquid, pure vapor and supercritical fluid. Combination
of the pure liquid and pure vapor EOSs must be able to represent as accurately as possible the
two-phase region.

- Each phase EOS must be convex in its respective domain.
- The EOS must be as simple as possible, while remaining accurate, to simplify practical

computations and building of mixture EOS in hyperbolic multiphase flow models.

Hyperbolic multiphase flow models have demonstrated their ability to solve a wide range of
complex flow situations in severe conditions. Material interface problems [15], chemical reactions [16],
phase change [17], surface tension [18], solid-fluid [19], plastic transformation [20], dense and dilute
flows [21], and shallow water flows [22] can be cited for instance. In these flow models, compressibility
of each phase is responsible for the hyperbolic character of the equations and an appropriate and
convex EOS is required for each fluid.

The NASG EOS combines relevant physics and simplicity. Its predictions are in good agreement
with experimental data but in restricted temperature range, [300 K–500 K] for example with liquid
water at saturation. This limitation is linked to constant attractive and repulsive effects. Indeed,
this assumption no longer holds when larger pressure and temperature ranges are addressed.

The present contribution aims at extending the liquid NASG EOS to variable attractive and
repulsive effects to improve its range of validity, a necessary improvement in view of future
engineering applications.

The thermodynamics of the liquid and vapor phases must be combined correctly to reproduce the
phase diagram and relevant properties, such as the latent heat of phase change and saturation pressure
for example. Building of appropriate EOSs in this direction was done by Le Métayer et al. [23] and Le
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Métayer and Saurel [14] with extended “Stiffened-Gas” (SG) formulations. In the present contribution,
the proposed EOS is also meant to describe transitions from pure fluids to supercritical state.

Such transition is indeed essential in some industrial applications such as flows evolving in
combustion chambers of cryotechnic rocket engines as well as combustion systems of modern
automotive engines for the sake of reduced pollutant emissions and fuel consumption.

The determination of the corresponding EOS parameters is of interest as well. For gases,
the new formulation reduces to the ideal gas description. Variable heat capacities can easily be
considered with such formulation making the equation of state able to deal with supercritical fluids at
high temperatures.

This paper is organized as follows. The determination of the novel liquid EOS is described in
Section 2. Among the different relations, the Gibbs free energies of the liquid–vapor couple provide
the saturation conditions. Those latter ones are developed in Section 3 and the overall formulation is
summarized in Section 4. Experimental and theoretical curves are compared in Section 5, considering
water and oxygen at saturation. The abilities of the proposed EOS are illustrated in Section 6 with
transitions from sub to supercritical state. Practical applications are illustrated in Section 7.

2. Extended NASG EOS

The following Extended NASG EOS (ENASG) is considered as a postulate,

p(e, v) =
(γ− 1)(e− q)

v− b(v)
− γp∞(e, v), (1)

with p∞(e, v) = p∞(T) = p∞,1T + p∞,0 and b(v) = b1v + b0, (2)

where p, T, v, e and q represent respectively, the pressure, temperature, specific volume, specific
internal energy and reference energy of a corresponding single phase fluid. q and γ are parameters
considered as constant coefficients and are meant to be characteristics of the thermodynamic properties
of the fluid. b(v) represents the covolume, modeling short range repulsive effects. The term γp∞(T)
represents attractive ones, present in condensed matter only.

In the NASG formulation, the parameters b and p∞ are considered constant, yielding simplicity
while ensuring presence of the main molecular forces present in a fluid. In addition, as the formulation
is close to the ideal gas expression, it facilitates the resolution of the Riemann problem (Plohr [24],
Menikoff and Plohr [25], Cocchi and Saurel [26]). The Riemann problem is indeed the cornerstone of
numerical methods used to solve hydrodynamic problem (see Toro [27] for example).

The simplicity of the corresponding formulas is beneficial to the theoretical analysis and
computational efficiency. This section aims at extending the liquid NASG EOS to deal with large
pressure and temperature variations while remaining simple and convex.

In this work, simple linear dependencies on the specific volume and temperature have been
added to the NASG EOS regarding respectively the covolume b(v) and attractive pressure p∞(T).
The formulation is meant to be convex and thermodynamically consistent. These two points are
addressed hereafter. Inverting Equation (1), the internal energy reads

e(v, T) =
(

p(v, T) + γp∞(T)
γ− 1

) [
v− b(v)

]
+ q. (3)

From postulate (1) or its alternative (3) form, the aim is now to derive the thermal EOS p = p(v, T)
and the caloric one e = e(v, T).
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2.1. Thermal and Caloric EOSs

Thermal and caloric EOSs must fulfill the compatibility condition,

∂

∂v

[(
∂ f
∂T

)

v

]

T

=
∂

∂T

[(
∂ f
∂v

)

T

]

v

, (4)

which is precisely the first Maxwell’s relation, where f represents the Helmholtz free energy defined by

f = e− Ts,

where s denotes the specific entropy. With the help of the thermodynamic definition of pressure and
entropy, p = −

(
∂ f
∂v

)
T

and s = −
(

∂ f
∂T

)
v
, identity (4) transforms to a more convenient expression

linking the thermal EOS p(v, T) and the caloric one e(v, T),
(

∂e
∂v

)

T
= T

(
∂p
∂T

)

v
− p. (5)

From postulate (3), the following partial derivatives arise,

(
∂e
∂T

)

v
=

(
v− b(v)

γ− 1

)[(
∂p
∂T

)

v
+ γp∞,1

]
, (6)

(
∂e
∂v

)

T
=

(
v− b(v)

γ− 1

)(
∂p
∂v

)

T
+

(
1− b1

γ− 1

) [
p + γp∞(T)

]
. (7)

As the thermal capacity at constant volume is defined as

Cv =

(
∂e
∂T

)

v
, (8)

combining Equations (6) and (8) results in
(

∂p
∂T

)

v
=

(γ− 1)Cv

v− b(v)
− γp∞,1. (9)

The preceding relation (9) is now integrated over the temperature T leading to

p(v, T) =
(γ− 1)CvT

v− b(v)
− γp∞,1T + K(v), (10)

where K(v) is a function depending on the specific volume v. Expression (10) is differentiated over v
and at constant temperature T, yielding

(
∂p
∂v

)

T
= − (1− b1)(γ− 1)CvT

[
v− b(v)

]2 +
dK(v)

dv
. (11)

Afterwards, relation (7) is inserted into Maxwell’s relation (5), resulting in

(
∂p
∂v

)

T
=

(γ− 1)T
v− b(v)

(
∂p
∂T

)

v
− γ

[
p + p∞(T)

]

v− b(v)
+

b1
[
p + p∞(T)

]

v− b(v)
. (12)

Expressions (9) and (10) are now introduced into relation (12), leading to



Fluids 2018, 3, 48 5 of 40

(
∂p
∂v

)

T
= − (γ− 1)CvT(1− b1)[

v− b(v)
]2 − K(v)(γ− b1) + γp∞(T)(1− b1)

v− b(v)
+

p∞,1γT(1− b1)

v− b(v)
. (13)

The equality between Equations (11) and (13) yields a first-order ordinary differential equation,

dK(v)
dv

+
K(v)(γ− b1) + γp∞,0(1− b1)

v− b(v)
= 0. (14)

The solution of Equation (14) is given by

K(v) =
cst

(γ− b1)
[
v− b(v)

] γ−b1
1−b1

− γp∞,0(1− b1)

γ− b1
. (15)

Inserting Equation (15) into Equation (10), the thermal equation of state reads

p(v, T) =
(γ− 1)CvT

v− b(v)
− p′∞(T)− d

[
v− b(v)

] γ−b1
1−b1

, (16)

where d = −cst/(γ − b1) is a constant to be determined and the “attractive” pressure p′∞(T) is
defined as

p′∞(T) = γp∞,1T +
γp∞,0(1− b1)

γ− b1
. (17)

In the present approach, as in Le Métayer et al. [23] and Le Métayer and Saurel [14], each fluid,
liquid and gas, is governed by the same EOS, here Equation (16) but with different parameters unlike
cubic EOSs. The term p′∞(T) is important for the liquid state whereas the second attractive term

d/
[
v− b(v)

] γ−b1
1−b1 , reminiscent of cubic EOSs, is important for dense gases. However, this coefficient

yields conditional convexity (see Appendix E). The same observation holds for cubic EOSs. As this
section aims to build an unambiguously convex EOS, the parameter d is set to zero. Note that d = 0 is
a particular solution of Equation (14). The corresponding ENASG EOSs then read

p(v, T) =
(γ− 1)CvT

v− b(v)
− p′∞(T), (18)

e(v, T) = CvT +
γp∞,0

[
v− b(v)

]

γ− b1
+ q. (19)

With the help of the caloric EOS (19), the temperature is expressed as

T(e, v) =
e− q

Cv
− γp∞,0

[
v− b(v)

]

Cv(γ− b1)
, (20)

and yields

p(e, v) =
(γ− 1)(e− q)

v− b(v)
− γp∞

[
T(e, v)

]
. (21)

Note that Equations (18)–(21) reduce to the NASG expressions if p∞,1 = 0 and b1 = 0.
In addition, inserting Equation (18) into (21), the internal energy expresses

e(p, T) =
(

p + γp∞(T)
p + p′∞(T)

)
CvT + q. (22)
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The expressions of the thermal and caloric EOSs being now available, the other thermodynamic
variables may be obtained from the knowledge of the two independent variables p and T. This task is
addressed hereafter.

2.2. Expression of the Entropy

Expression of the specific entropy is mandatory to express the Gibbs free energy, a key function to
address phase transition. The entropy formulation must fulfill the compatibility relation,

∂

∂p

[(
∂g
∂T

)

p

]

T

=
∂

∂T

[(
∂g
∂p

)

T

]

p

, (23)

which is precisely the second Maxwell’s relation, where g represents the Gibbs free energy defined by

g = h− Ts,

where h represents the specific enthalpy. As the thermodynamic definition of entropy and specific
volume implies s = −

(
∂g
∂T

)
p

and v =
(

∂g
∂p

)
T

, identity (23) transforms to a more convenient expression,
(

∂s
∂p

)

T
= −

(
∂v
∂T

)

p
. (24)

With the help of Equation (18), the partial derivative expresses

(
∂v
∂T

)

p
= −

(
1

1− b1

)(−(γ− 1)Cv

p + p′∞(T)
+

γp∞,1(γ− 1)CvT
[
p + p′∞(T)

]2

)
. (25)

In addition, by use of Maxwell’s rule (24), the next equations arise,

(
∂s
∂p

)

T
=

(
1

1− b1

)(−(γ− 1)Cv

p + p′∞(T)
+

γp∞,1(γ− 1)CvT
[
p + p′∞(T)

]2

)
, (26)

s(p, T) =
(

1
1− b1

)(
−(γ− 1)Cv ln

[
p + p′∞(T)

]
− γp∞,1(γ− 1)CvT

p + p′∞(T)

)
+ K(T). (27)

Equation (18) is now inserted into Equation (27) and yields

s(v, T) =
(

1
1− b1

)(
−(γ− 1)Cv ln

[ (γ− 1)CvT
v− b(v)

]
− γp∞,1

[
v− b(v)

])
+ K(T). (28)

This last equation admits the partial derivative,
(

∂s
∂T

)

v
= − (γ− 1)Cv

T(1− b1)
+

dK(T)
dT

. (29)

The definition of the thermal capacity at constant volume may be used under the following form,
(

∂s
∂T

)

v
=

Cv

T
. (30)

Consequently, the next equation arises,

dK(T) = Cv
dT
T

+
(γ− 1)Cv

(1− b1)

dT
T

,

and is directly integrated yielding a temperature-dependent function K(T),
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K(T) = Cv ln(T) +
(γ− 1)Cv

(1− b1)
ln(T) + q′, (31)

where q′ is defined as a constant (reference entropy). Equation (31) is now embedded in Equation (28).
After some algebraic manipulations, the resulting equation reads

s(v, T) = Cv ln(T)− γp∞,1
[
v− b(v)

]

1− b1
+

(γ− 1)Cv

(1− b1)
ln
[
v− b(v)

]
− (γ− 1)Cv

(1− b1)
ln
[
(γ− 1)Cv

]
+ q′.

As the last term of this equation is constant, it is convenient to define

q′′ = − (γ− 1)Cv

(1− b1)
ln
[
(γ− 1)Cv

]
+ q′. (32)

The entropy equation consequently reads

s(v, T) = Cv ln(T) +
(γ− 1)Cv

(1− b1)
ln
[
v− b(v)

]
− γp∞,1

[
v− b(v)

]

1− b1
+ q′′. (33)

Obviously, definition (30) is satisfied. Equation (18) is now inserted into Equation (33), yielding

s(p, T) = Cv ln(T) +
(γ− 1)Cv

(1− b1)
ln
(
(γ− 1)CvT
p + p′∞(T)

)
− γp∞,1(γ− 1)CvT[

1− b1
][

p + p′∞(T)
] + q′′. (34)

The relation s(p, T) being now available, it is worth analyzing the expression of heat capacity at
constant pressure. Equation (34) admits as partial derivative,

(
∂s
∂T

)

p
=

Cv

T
+

(γ− 1)Cv

(1− b1)T
−
(

γp∞,1(γ− 1)Cv[
1− b1

][
p + p′∞(T)

]
)(

1 +
p + p′∞(T)− γp∞,1T

p + p′∞(T)

)
. (35)

As the heat capacity is defined as
(

∂s
∂T

)

p
=

Cp

T
, (36)

the ENASG thermal capacity at constant pressure consequently reads

Cp = Cv +
(γ− 1)Cv

(1− b1)
−
(

γp∞,1(γ− 1)CvT[
1− b1

][
p + p′∞(T)

]
)(

1 +
p + p′∞(T)− γp∞,1T

p + p′∞(T)

)
. (37)

It then appears that Cp 6= γCv. However, if p∞,1 = 0 and b1 = 0, then the preceding relation reduces to

Cp = Cv + (γ− 1)Cv = γCv,

and the NASG thermal capacity at a constant pressure is recovered. Note also that this feature is valid
for the Stiffened-Gas (SG) (b0 = 0) and ideal gas (p∞,0 = 0) equations of state as well.

Equation (34) can be manipulated to obtain an entropy relation closer to the NASG one.
Indeed, after some algebraic manipulations, Equation (34) can be written as

s(p, T) = Cv

[
ln(T)+ ln

(
T

p + p′∞(T)

) γ−1
1−b1

]
− γp∞,1(γ− 1)CvT[

1− b1
][

p + p′∞(T)
] + (γ− 1)Cv

1− b1
ln
[
(γ− 1)Cv

]
+ q′′.

Using Equation (32), the last term of this equation reduces to
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(γ− 1)Cv

1− b1
ln
[
(γ− 1)Cv

]
+ q′′ = q′.

Equation (34) consequently transforms to

s(p, T) = Cv ln


 T

γ−b1
1−b1

[
p + p′∞(T)

] γ−1
1−b1


− γp∞,1(γ− 1)CvT[

1− b1
][

p + p′∞(T)
] + q′. (38)

Under form (38), it is straightforward to see that the relation does reduce to the NASG equation if
p∞,1 = 0 and b1 = 0.

At this point, the caloric, thermal and entropy equations of state are determined. The next step is
to check positivity of the sound speed as it is a key feature in fluid dynamics.

2.3. Speed of Sound

The sound speed is defined as

c2 = −v2
(

∂p
∂v

)

s
. (39)

The pressure is expressed as a function of the specific volume and the specific entropy by combining
relations (18) and (38),

p(v, s) =
exp

(
s−q′′

Cv

)
exp

(
γp∞,1

[
v−b(v)

]
Cv(1−b1)

) [
(γ− 1)Cv − γp∞,1

[
v− b(v)

]]

[
v− b(v)

] γ−b1
1−b1

− γp∞,0(1− b1)

γ− b1
, (40)

with

q′′ = − (γ− 1)Cv

(1− b1)
ln
[
(γ− 1)Cv

]
+ q′. (41)

The ENASG speed of sound consequently expresses after some algebraic manipulations as

c2(p, v) =− v2γp∞,1

(
p +

γp∞,0(1− b1)

γ− b1

)(
γ− 1

(γ− 1)Cv − γp∞,1
[
v− b(v)

] + 1
Cv

)

+


 p +

γp∞,0(1−b1)
γ−b1

(γ− 1)Cv − γp∞,1
[
v− b(v)

]



(

v2(γ− b1)(γ− 1)Cv

v− b(v)

)
.

(42)

It is worth mentioning that Equation (42) reduces to

c2(p, v) =
v2(p + p∞,0)γ

v− b0
, (43)

if p∞,1 = 0 and b1 = 0, that corresponds to the NASG speed of sound. It also appears that c2 > 0
unambiguously if p∞,1 ≤ 0, p∞,0 ≥ 0 and b1 < 1. Obviously, v− b(v) must be positive as well.

For a liquid state, the attractive effects summarized by the terms p∞(T) and p′∞(T) are expected
to decrease when the temperature rises. The conditions p∞,1 ≤ 0 and p∞,0 ≥ 0 are consequently in
agreement with the physics to represent, at least qualitatively. The same observation holds for the
repulsive effects summarized by the covolume b(v). When the density decreases, those short distance
effects are expected to vanish as the liquid tends to become a dense gas. Condition b1 < 1 is then not
restrictive for liquids. In addition, it is worth noticing from Equation (42) that

p∞,1 6=
(

γ− 1
v− b(v)

)
Cv

γ
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must be satisfied for the ENASG sound speed function to be defined. However, as the right-hand side
of this relation is necessarily positive, considering p∞,1 ≤ 0 satisfies unambiguously this condition.

The two linear dependencies p∞(T) and b(v) are thus in agreement with the description of a liquid
state. As it will be seen further, those simple functions result in predictions in very good agreement
with experimental data.

This set of liquid EOS relationships results in a convex formulation, this feature being essential
for both theoretical and numerical considerations. Indeed, sufficient conditions to ensure convexity
are summarized by

p∞,1 ≤ 0, p∞,0 ≥ 0 and b1 < 1, (44)

related calculations being given in Appendix A.
For the gas phase, the attractive effects are expected to increase with the temperature, but this

evolution is not in agreement with the convexity condition (44). Gas attractive effects are thus removed
by setting p∞,0 = 0 and p∞,1 = 0, reducing the formulation to the Noble–Abel (NA) EOS with variable
covolume b(v).

However, covolume effects alone are not enough to describe dense gases near the critical point.
Attractive effects are needed in addition (see Appendix E) but yield conditional convexity. As it will be
seen further, the ideal gas EOS is well suited for fluids evolving away from the critical point, either at
low temperatures where thermal capacities can be considered constant or at much higher ones where
heat capacities are meant to evolve with the temperature.

Thereby, for the sake of simplicity, covolume effects will be removed as well reducing the
formulation to the ideal gas description. Consequently, the saturated vapor phase lacks accuracy near
the critical point since attractive effects are absent but the overall formulation remains convex, a key
feature for computational fluid dynamics.

For ENASG formulation completion, the expression of the saturation conditions of the
liquid–vapor couple must be determined. This task is addressed in the next section.

3. Saturation Condition of the Liquid–Vapor Couple

Thermodynamic equilibrium is considered when the fluids are in pressure, temperature and
Gibbs free energies (gl = gv) equilibrium. The saturation condition results from these equilibria. As

g(p, T) = h(p, T)− Ts(p, T), (45)

the enthalpies of pure constituents must be determined first. The enthalpy is defined as

h(p, T) = e(p, T) + pv(p, T). (46)

Combining Equations (18) and (21), the enthalpy of the ENASG EOS reads

h(p, T) =
(

CvT
p + p′∞(T)

)(
γ
[
p + p∞(T)

]
− pb1 − γb1 p∞(T)

1− b1

)
+

pb0

1− b1
+ q. (47)

Note that the partial derivative of Equation (47) gives after some algebraic manipulations,

(
∂h
∂T

)

p
= Cv +

(γ− 1)Cv

(1− b1)
−
(

γp∞,1(γ− 1)CvT[
1− b1

][
p + p′∞(T)

]
)(

1 +
p + p′∞(T)− γp∞,1T

p + p′∞(T)

)
. (48)

Equation (37) is then recovered and the definition of the thermal capacity at constant pressure is
satisfied, providing extra verification,

Cp = T
(

∂s
∂T

)

p
=

(
∂h
∂T

)

p
. (49)
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Note that, if p∞,1 ≤ 0, b1 < 1 and γ > 1, then the thermodynamic condition Cp > Cv is ensured.
These conditions are the same that preserve convexity of the formulation.

Thanks to Equations (38), (45) and (47), the Gibbs free energy of a pure constituent is expressed as

g(p, T) =

[(
Cv

1− b1

)(
γ
[
p + p∞(T)

]
− pb1 − γb1 p∞(T)

p + p′∞(T)

)
− q′

]
T − CvT ln


 T

γ−b1
1−b1

[
p + p′∞(T)

] γ−1
1−b1




+
pb0

1− b1
+ q +

γp∞,1(γ − 1)CvT2
[
1− b1

][
p + p′∞(T)

] .

(50)

Solution of the equation,
gl(p, T) = gv(p, T), (51)

provides the saturation pressure as a function of temperature psat(T). Subscripts l and v denote,
respectively, the liquid and vapor states.

The equality of Gibbs free energies of both phases corresponds to phase equilibrium and leads to
the following expression linking the pressure and temperature,

ln
[
p + p′∞,v(T)

]
=

Cv,l(1− b1,v)

(1− b1,l)(γv − 1)Cv,v

(
γl
[
p + p∞,l(T)

]
− pb1,l − γlb1,l p∞,l(T)

p + p′∞,l(T)

)

−
(

1
γv − 1

)(
γv
[
p + p∞,v(T)

]
− pb1,v − γvb1,v p∞,v(T)

p + p′∞,v(T)

)
+

(q′v − q′l)(1− b1,v)

(γv − 1)Cv,v

B + Ep
T

+ C ln(T) + D ln
[
p + p′∞,l(T)

]
− T

(
γv p∞,1,v

p + p′∞,v(T)
− γl p∞,1,l D

p + p′∞,l(T)

)
,

(52)

with

B =
(ql − qv)(1− b1,v)

(γv − 1)Cv,v
, C =

(
(γv − b1,v)Cv,v

1− b1,v
− (γl − b1,l)Cv,l

1− b1,l

)(
1− b1,v

(γv − 1)Cv,v

)
,

D =
(γl − 1)Cv,l(1− b1,v)

(γv − 1)Cv,v(1− b1,l)
, E =

(
b0,l

1− b1,l
− b0,v

1− b1,v

)(
1− b1,v

(γv − 1)Cv,v

)
.

(53)

Relation (52) provides a unique value of the pressure for a given temperature and implicitly represents
the theoretical saturated pressure as a function depending on the temperature. Numerical resolution is
needed to compare the predictions with experiments, as will be examined later. When p∞,1,k and b1,k
are set to zero, the preceding relation reduces to

ln
[
p + p∞,0,v

]
= A +

B + Ep
T

+ C ln(T) + D ln
[
p + p∞,0,l

]
, (54)

with

A =
γlCv,l − γvCv,v + q′v − q′l

γvCv,v − Cv,v
, B =

ql − qv

γvCv,v − Cv,v
,

C =
γvCv,v − γlCv,l

γvCv,v − Cv,v
, D =

γlCv,l − Cv,l

γvCv,v − Cv,v
, E =

b0,l − b0,v

γvCv,v − Cv,v
.

(55)

The NASG relation is then recovered. The whole ENASG formulation is summarized in the next
section and is compared with experimental data in the following ones.
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4. Summary of the Extended NASG State Functions

The different liquid ENASG functions of common use are





p(e, v) =
(γ − 1)(e− q)

v− b(v)
− γp∞

[
T(e, v)

]
,

v(p, T) =
(γ − 1)CvT

(1− b1)(p + p′∞(T))
+

b0

(1− b1)
,

e(p, T) =
(

p + γp∞(T)
p + p′∞(T)

)
CvT + q,

h(p, T) =
(

CvT
p + p′∞(T)

)(
γ
[
p + p∞(T)

]
− pb1 − γb1 p∞(T)

1− b1

)
+

pb0

1− b1
+ q,

s(p, T) = Cv ln


 T

γ−b1
1−b1

[
p + p′∞(T)

] γ−1
1−b1


− γp∞,1(γ− 1)CvT[

1− b1
][

p + p′∞(T)
] + q′,

g(p, T) =

[(
Cv

1− b1

)(
γ
[
p + p∞(T)

]
− pb1 − γb1 p∞(T)

p + p′∞(T)

)
− q′

]
T − CvT ln


 T

γ−b1
1−b1

[
p + p′∞(T)

] γ−1
1−b1




+
pb0

1− b1
+ q +

γp∞,1(γ − 1)CvT2
[
1− b1

][
p + p′∞(T)

] ,

c2(p, v) = −v2γp∞,1

(
p +

γp∞,0(1− b1)

γ − b1

)(
γ − 1

(γ − 1)Cv − γp∞,1
[
v− b(v)

] + 1
Cv

)

+


 p +

γ p∞,0(1−b1)
γ−b1

(γ − 1)Cv − γp∞,1
[
v− b(v)

]



(

v2(γ − b1)(γ − 1)Cv

v− b(v)

)
,

(56)

with

T(e, v) =
e− q

Cv
− γp∞,0

[
v− b(v)

]

Cv(γ − b1)
,

p∞(e, v) = p∞(T) = p∞,1T + p∞,0, p′∞(T) = γp∞,1T +
γp∞,0(1− b1)

γ − b1
and b(v) = b1v + b0.

Those different functions are in agreement with the fundamental relations of Maxwell analyzed in
Appendix B and are thermodynamically consistent and convex under conditions p∞,1 ≤ 0, p∞,0 ≥ 0
and b1 < 1. The whole formulation reduces to the NASG EOS if p∞,1 = 0 and b1 = 0. In addition,
the ideal gas description is recovered if b0 = 0, b1 = 0 and is used for the sake of convexity and
simplicity of the gas-phase formulation. The corresponding equations thus read





p(e, v) =
(γ − 1)(e− q)

v
,

v(p, T) =
(γ − 1)CvT

p
,

e(T) = CvT + q,

h(T) = γCvT + q,

s(p, T) = Cv ln
(

Tγ

pγ−1

)
+ q′,

g(p, T) =
(
γCv − q′

)
T − CvT ln

(
Tγ

pγ−1

)
+ q,

c2(p, v) = γpv.

(57)

In these formulations (ENASG and ideal gas), heat capacities are considered constant.
This assumption is fair for the liquid phase. It is also valid for the gas phase evolving at low
temperatures. However, this assumption fails at high temperatures motivating consideration of
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variable heat capacities as introduced in Section 6. This situation is typical of supercritical fluids at
high temperatures.

5. Extended NASG Parameters

The method used in this work to determine the different EOS parameters is summarized in
Appendix C.1. The liquid parameters are computed with the experimental saturation curve as in Le
Métayer and Saurel [14], but unlike this last reference the gas parameters are chosen regardless of the
saturation conditions. The present method is directly applied to water and oxygen liquid–gas couples
as countless engineering applications involve those two fluids. Safety studies of thermohydraulic
systems of power plants and flows in cryotechnic rocket engines can be cited for instance. This latter
example involves specific situations where transitions from pure fluid into two-phase mixture are
present as well as transition to supercritical state. In the same context, combustion systems of
modern automotive engines also involve transitions from pure phase to both two-phase mixture
and supercritical fluid. Tables 1 and 2 provide the associated parameters of the ENASG EOS (56), (57).

Table 1. Extended Noble–Abel Stiffened-Gas (ENASG) coefficients for water. The NASG parameters are
also given and determined with the method given in Le Métayer and Saurel [14] except for the liquid
reference entropy q′ that is computed with the NASG reduction of Equation (A31) (see Appendix C).
The NASG water parameters are determined with n = 201 experimental saturation points in the
temperature range Texp ∈ [300 K–500 K].

Coefficients ENASGLiq ENASGgas NASGLiq NASGgas

γ 1.0147 1.3079 1.1807 1.5377
Cv (J/kg/K) 4014 1500 3630 856

b1 −0.6050 0 0 0
b0 (m3/kg) 1.5196× 10−3 0 6.8428× 10−4 0
p∞,1 (Pa/K) −471,025 0 0 0

p∞,0 (Pa) 307,078,403 0 664,961,465 0
q (J/kg) −1,112,426 1,947,630 −1,178,154 2,176,064

q′ (J/kg/K) −22,049 1136 −10,742 4863

Table 2. Extended NASG (ENASG) coefficients for oxygen. The NASG parameters are also given
and determined with the method given in Le Métayer and Saurel [14] except for the liquid reference
entropy q′ that is computed with the NASG reduction of Equation (A31) (see Appendix C). The NASG
oxygen parameters are determined with n = 41 experimental saturation points in the temperature
range Texp ∈ [60 K–100 K].

Coefficients ENASGLiq ENASGgas NASGLiq NASGgas

γ 1.0281 1.3985 1.6610 1.4730
Cv (J/kg/K) 1535 652 1016 548

b1 −0.6721 0 0 0
b0 (m3/kg) 1.3131× 10−3 0 5.7003× 10−4 0
p∞,1 (Pa/K) −324,997 0 0 0

p∞,0 (Pa) 50,890,107 0 196,815,802 0
q (J/kg) −278,134 −1589 −285,545 6528

q′ (J/kg/K) −3691 4237 8171 4650

Figures 1 and 2 compare the present theoretical predictions to experimental data at saturation for
water and oxygen.

The ENASG EOS (56) presents good agreement with liquid experimental data at saturation.
The saturated pressure resulting from the equality of the liquid and vapor Gibbs energies is rather
good as well. Away from the critical point, the vapor phase, described by the ideal gas expressions (57),
is also in good agreement with experimental data. However, the saturated vapor phase necessarily
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lacks accuracy near the critical point as the attractive effects have been removed in order to keep
an unambiguously convex formulation.
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Figure 1. Comparison between experimental and theoretical saturation curves for liquid l and vapor

v water. Symbols represent experimental data. The thick lines represent the theoretical saturation
curves obtained with the Extended Noble–Abel Stiffened-Gas EOS (ENASG) reducing to the ideal gas
description for the vapor phase, Equations (56) and (57). The thin lines represent results obtained with
the original NASG EOS also reducing to the ideal gas formulation for the vapor phase. psat denotes
the saturation pressure, Lv the latent heat, h the specific enthalpy and ρ the density.

The results of the original NASG EOS (Le Métayer and Saurel [14]) are plotted as well in Figures
1 and 2 for comparison. The corresponding parameters are given in Tables 1 and 2. As the attractive
pressure is constant in such formulation, liquid density necessarily lacks accuracy away from its
reference temperature range. However, as the ideal gas parameters have been determined thanks
the saturation curve in [14] (unlike the present work, see Appendix C.2), the vapor enthalpy and
latent heat are in slightly better agreement than the present ENASG EOS (56), (57).

The present paper aims at building an overall EOS able to deal with pure liquid, pure vapor
and supercritical phases, while being as accurate as possible at saturation. When thermodynamic
conditions remain close to the saturation ones and away from the critical point, the original NASG
EOS with its associated parameters (Le Métayer and Saurel [14]) is preferred as the formulation is
simpler than the ENASG one and yields excellent results as seen in Figures 1 and 2.

However, as the original method [14] uses the saturation curves for both liquid and vapor
phases when determining the corresponding parameters, the NASG EOS lacks accuracy away from
the saturation conditions. This will be illustrated in the following section. As it will be seen later,

Figure 1. Comparison between experimental and theoretical saturation curves for liquid l and vapor

v water. Symbols represent experimental data. The thick lines represent the theoretical saturation
curves obtained with the Extended Noble–Abel Stiffened-Gas EOS (ENASG) reducing to the ideal gas
description for the vapor phase, Equations (56) and (57). The thin lines represent results obtained with
the original NASG EOS also reducing to the ideal gas formulation for the vapor phase. psat denotes the
saturation pressure, Lv the latent heat, h the specific enthalpy and ρ the density.

The results of the original NASG EOS (Le Métayer and Saurel [14]) are plotted as well in Figures 1
and 2 for comparison. The corresponding parameters are given in Tables 1 and 2. As the attractive
pressure is constant in such formulation, liquid density necessarily lacks accuracy away from its
reference temperature range. However, as the ideal gas parameters have been determined thanks the
saturation curve in [14] (unlike the present work, see Appendix C.2), the vapor enthalpy and latent
heat are in slightly better agreement than the present ENASG EOS (56), (57).

The present paper aims at building an overall EOS able to deal with pure liquid, pure vapor
and supercritical phases, while being as accurate as possible at saturation. When thermodynamic
conditions remain close to the saturation ones and away from the critical point, the original NASG
EOS with its associated parameters (Le Métayer and Saurel [14]) is preferred as the formulation is
simpler than the ENASG one and yields excellent results as seen in Figures 1 and 2.
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However, as the original method [14] uses the saturation curves for both liquid and vapor
phases when determining the corresponding parameters, the NASG EOS lacks accuracy away from
the saturation conditions. This will be illustrated in the following section. As it will be seen later,
the overall ENASG EOS presents good agreement with experimental data away from the saturated
conditions while being rather satisfying at saturation (except for the vapor phase near the critical point
as discussed earlier).

In the next section, the theoretical behavior of the ENASG EOS is analyzed with thermodynamic
conditions corresponding to the transition from single phase to supercritical state.
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v oxygen. Symbols represent experimental data. The thick lines represent the theoretical saturation
curves obtained with the Extended NASG EOS (ENASG) reducing to the ideal gas description for
the vapor phase, Equations (56) and (57). The thin lines represent results obtained with the original
NASG EOS also reducing to the ideal gas formulation for the vapor phase. psat denotes the saturation
pressure, Lv the latent heat, h the specific enthalpy and ρ the density.

6. Transition to Supercritical Fluids

This section deals with fluids transitioning from a pure phase to supercritical state as
schematically illustrated in Figure 3.

At high temperatures, the assumption of constant heat capacities no longer holds for the
supercritical phase. The ideal gas description can still be fairly assumed in the supercritical state
but variable heat capacities are required when reaching a certain temperature. Consequently, the
following definition of heat capacity (at constant volume or pressure) is considered:

{
Cv = Cv,0, if T ≤ T0,

Cv = Cv(T), otherwise,
(58)

Figure 2. Comparison between experimental and theoretical saturation curves for liquid l and vapor

v oxygen. Symbols represent experimental data. The thick lines represent the theoretical saturation
curves obtained with the Extended NASG EOS (ENASG) reducing to the ideal gas description for
the vapor phase, Equations (56) and (57). The thin lines represent results obtained with the original
NASG EOS also reducing to the ideal gas formulation for the vapor phase. psat denotes the saturation
pressure, Lv the latent heat, h the specific enthalpy and ρ the density.

6. Transition to Supercritical Fluids

This section deals with fluids transitioning from a pure phase to supercritical state as schematically
illustrated in Figure 3.

At high temperatures, the assumption of constant heat capacities no longer holds for the
supercritical phase. The ideal gas description can still be fairly assumed in the supercritical state but
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variable heat capacities are required when reaching a certain temperature. Consequently, the following
definition of heat capacity (at constant volume or pressure) is considered:

{
Cv = Cv,0, if T ≤ T0,

Cv = Cv(T), otherwise,
(58)

where Cv,0 denotes the constant heat capacity given in Tables 1 and 2. T0 is the temperature at which
the assumption of constant heat capacities starts to fail. At such temperature, the fluid is necessarily
supercritical. These temperatures are reported in Table 3 for water and oxygen.

For ideal gases, Mayer’s relation Cp(T)− Cv(T) = R holds and the ratio of heat capacities reads

γ(T) = Cp(T)
Cv(T)

. In these relations, R = R̂/W with R̂ denoting the universal gas constant and W the
molar mass. In the present work, Cp(T) is estimated via the NASA polynomial expression [28],

Cp(T) = R
[

a1 + a2T + a3T2 + a4T3 + a5T4
]
, (59)

with corresponding parameters reported in Table 3.

Liquid-vapor
mixture

v

p

Critical point

Critical isotherm

vc

pc

Vapor

Liquid

Liquid-to-supercritical-state transition

Vapor-to-supercritical-state transition

Supercritical state

Figure 3. The saturation curve is composed of the boiling and the dew curves separating the two-phase
mixture zone and the pure phase zones. Beyond the critical isotherm, there is no transition between
the liquid and the gaseous state. The fluid is neither liquid nor gas. It is said to be supercritical.
Phase transition can happen either through the saturation dome corresponding to liquid–vapor phase
change, or through the critical isotherm corresponding to a pure-phase-to-supercritical-state transition.

Table 3. Parameters of the NASA polynomial expression [28] for the heat capacity at constant pressure,
Equation (59).

Fluid T0 (K) a1 a2 (K−1) a3 (K−2) a4 (K−3) a5 (K−4)

H2O 1000 3.31570 2.10648× 10−3 −3.76340× 10−7 3.47520× 10−11 −1.70335× 10−15

O2 400 3.78246 −2.99673× 10−3 9.84730× 10−6 −9.68129× 10−9 3.24373× 10−12

Proceeding similar derivations as in Section 2, the ideal gas formulation yields
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p(v, T) =
RT
v

,

e(T) =
∫

Cv(T)dT + q,

h(T) =
∫

Cp(T)dT + q,

s(p, T) =
∫

Cp(T)
dT
T
− R ln(p) + q′,

c2(T) = γ(T)RT =
Cp(T)
Cv(T)

RT,

Cp(T)− Cv(T) = R.

(60)

As explained in Appendix C.2, the γ parameter of the gas phase is determined thanks to Mayer’s
relation as to ensure

[
γ(T) − 1

]
Cv(T) = R. Note that the ideal gas reduction of the NASG EOS

(Le Métayer and Saurel [14]), with its associated original method to determine the different coefficients,
does not ensure the preceding Mayer’s relation as the gas parameters are determined with the
saturation curves.

6.1. Liquid-to-Supercritical-State Transition

The liquid phase is described with the ENASG EOS as its particular interest resides in variable
repulsive and attractive effects. In the transcritical zone, attractive and repulsive molecular forces are
the dominant effects of the fluid. Thereby, the ENASG EOS is also used to describe liquids transitioning
to their supercritical state. The transition is then continuous.

At much higher temperatures, thermal agitation becomes the dominant effect. The ideal gas
description is then to be used in this context. However, as two different EOSs are used through
different parameters, the continuity between the ENASG EOS and its ideal gas reduction is not trivial.

Indeed, the two EOSs must be connected in order to make a continuous formulation. For a
given pressure, there exists a connection temperature where the two EOSs are equal. Nevertheless,
those connection temperatures are a priori dependent on the variable of interest.

Equations (56) and (57) provide expressions of the different variables for the ENASG and ideal gas
EOSs. Equality of both expressions provides the connection temperature that is the positive solution of
a quadratic equation,

aT2 + bT + c = 0. (61)

Note that the admissible range of the sought-after temperature is known as this latter is necessarily
higher than the critical one (Tc) and must ensure p + p∞,l(T) > 0 and p + p′∞,l(T) > 0. Note also that
Equation (61) is available only if the heat capacities are constant. An iterative method is required
otherwise, but this situation (high temperatures, T ≥ T0) is not to be encountered in practice as the
fluid is necessarily supercritical and the ENASG EOS is not to be used (see Section 7). The different
parameters of the quadratic Equation (61) are provided in Appendix D.

In the following, two isobars are considered for both fluids (water and oxygen). The first one
is rather close (230 bars for water and 60 bars for oxygen) to the critical pressure (220 bars for water
and 50 bars for oxygen) and the second is much higher (500 bars for water and 200 bars for oxygen).
Figures 4–7 show results corresponding to the transition from pure liquid to the supercritical state as
schematically represented in Figure 3.

As seen in Figures 4–7, the liquid ENASG EOS (56) presents excellent agreement with experimental
data. Passed the critical temperature Tc, the ENASG EOS is also used until connection with the ideal
gas EOS and yields good agreement as well.

At the temperature of connection, the ideal gas EOS is considered with constant heat capacities
until the temperature T0 is reached. From this temperature, variable thermal capacities are used.
Consequently, the ideal gas formulation is rather well-suited in the supercritical state. At such high
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temperatures, thermal agitation is indeed expected to be the dominant effect determining the properties
of the fluid. The fundamental assumption of the ideal gas description (molecules free to evolve
regardless of the others) then reappears in such thermodynamic conditions. The results computed
with the ideal gas expression in the supercritical state are in excellent agreement with experimental
data with the exception of the specific volume of supercritical water that presents a lesser agreement.

The results of the overall ENASG formulation are in good agreement with experimental data at
both pressures close to the critical one and much higher. They also show the good behavior of the
ENASG EOS when dealing with conditions away from the saturation ones.

As seen in Figures 4–7, the extension of the liquid ENASG EOS results in good agreement with
experimental data and provides a continuous formulation in the transcritical zone.

Fluids 2018, xx, 1 17 of 41

high temperatures, thermal agitation is indeed expected to be the dominant effect determining the
properties of the fluid. The fundamental assumption of the ideal gas description (molecules free
to evolve regardless of the others) then reappears in such thermodynamic conditions. The results
computed with the ideal gas expression in the supercritical state are in excellent agreement with
experimental data with the exception of the specific volume of supercritical water that presents a
lesser agreement.

The results of the overall ENASG formulation are in good agreement with experimental data at
both pressures close to the critical one and much higher. They also show the good behavior of the
ENASG EOS when dealing with conditions away from the saturation ones.

As seen in Figures 4–7, the extension of the liquid ENASG EOS results in good agreement with
experimental data and provides a continuous formulation in the transcritical zone.

1000

2000

3000

4000

5000

500

1000

1500

2000

2500

3000

3500

4000

200

400

600

800

1000

1200

0.005

0.01

0.015

0.02

0.025

273 400 600 800 1000 1200

1000

2000

3000

4000

5000

6000

7000

8000

273 400 600 800 1000 1200

500

1000

1500

2000

2500

T (K)T (K)

h (kJ/kg) e (kJ/kg)

ρ (kg/m3) v (m3/kg)

s (J/kg/K)

c (m/s)
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the experimental isobar p = 230 bars. Beyond the critical temperature Tc = 646 K, the liquid
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reducing to the ideal gas description for the supercritical phase, Equations (56), (57) and (60). The
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indicated with the dotted lines. From this temperature, the liquid ENASG EOS is extended and joins
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Figure 4. Comparison between experimental and theoretical isobar for water. The symbols represent
the experimental isobar p = 230 bars. Beyond the critical temperature Tc = 646 K, the liquid transforms
to supercritical state. The thick solid lines represent the Extended NASG (ENASG) EOS, reducing to
the ideal gas description for the supercritical phase, Equations (56), (57) and (60). The thin solid lines
represent the original NASG EOS also reducing to the ideal gas formulation for the supercritical phase.
The dashed lines represent the van der Waals (VdW) theoretical predictions and the dashed-dotted lines
represent the Soave–Redlich–Kwong (SRK) ones. The critical temperature is indicated with the dotted
lines. From this temperature, the liquid ENASG EOS is extended and joins the ideal gas EOS (except
for the sound speed). The temperature T0 = 1000 K at which variable heat capacities are considered is
indicated in dotted lines as well.
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Figure 5. Comparison between experimental and theoretical isobar for water. The symbols represent
the experimental isobar p = 500 bars. Beyond the critical temperature Tc = 646 K, the liquid
transforms to supercritical state. The thick solid lines represent the Extended NASG (ENASG) EOS,
reducing to the ideal gas description for the supercritical phase, Equations (56), (57) and (60). The
thin solid lines represent the original NASG EOS also reducing to the ideal gas formulation for the
supercritical phase. The dashed lines represent the van der Waals (VdW) theoretical predictions and
the dashed-dotted lines represent the Soave–Redlich–Kwong (SRK) ones. The critical temperature is
indicated with the dotted lines. From this temperature, the liquid ENASG EOS is extended and joins
the ideal gas EOS (except for the sound speed). The temperature T0 = 1000 K at which variable heat
capacities are considered is indicated in dotted lines as well.

Figure 5. Comparison between experimental and theoretical isobar for water. The symbols represent
the experimental isobar p = 500 bars. Beyond the critical temperature Tc = 646 K, the liquid transforms
to supercritical state. The thick solid lines represent the Extended NASG (ENASG) EOS, reducing to
the ideal gas description for the supercritical phase, Equations (56), (57) and (60). The thin solid lines
represent the original NASG EOS also reducing to the ideal gas formulation for the supercritical phase.
The dashed lines represent the van der Waals (VdW) theoretical predictions and the dashed-dotted lines
represent the Soave–Redlich–Kwong (SRK) ones. The critical temperature is indicated with the dotted
lines. From this temperature, the liquid ENASG EOS is extended and joins the ideal gas EOS (except
for the sound speed). The temperature T0 = 1000 K at which variable heat capacities are considered is
indicated in dotted lines as well.

The only discontinuous thermodynamic variable is the speed of sound. This is clearly seen in
Figure 7 for example. Regarding the sound speed, the liquid ENASG EOS is not extended beyond the
critical temperature as the formulation may not connect to the ideal gas expression. The discontinuous
speed of sound at the critical temperature appears to be in practice similar to situations involving
large sound–speed variations such as the transition from a pure fluid into a two-phase mixture at
equilibrium, which does not cause practical difficulties. Obviously, this flaw is not encountered with
cubic EOSs.
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Figure 6. Comparison between experimental and theoretical isobar for oxygen. The symbols represent
the experimental isobar p = 60 bars. Beyond the critical temperature Tc = 154 K, the liquid transforms
to supercritical state. The thick solid lines represent the Extended NASG (ENASG) EOS, reducing to
the ideal gas description for the supercritical phase, Equations (56), (57) and (60). The thin solid lines
represent the original NASG EOS also reducing to the ideal gas formulation for the supercritical phase.
The dashed lines represent the van der Waals (VdW) theoretical predictions and the dashed-dotted
lines represent the Soave–Redlich–Kwong (SRK) ones. The critical temperature is indicated with the
dotted lines. From this temperature, the liquid ENASG EOS is extended and joins the ideal gas EOS
(except for the sound speed). The temperature T0 = 400 K at which variable heat capacities are
considered is indicated in dotted lines as well.

Figure 6. Comparison between experimental and theoretical isobar for oxygen. The symbols represent
the experimental isobar p = 60 bars. Beyond the critical temperature Tc = 154 K, the liquid transforms
to supercritical state. The thick solid lines represent the Extended NASG (ENASG) EOS, reducing to
the ideal gas description for the supercritical phase, Equations (56), (57) and (60). The thin solid lines
represent the original NASG EOS also reducing to the ideal gas formulation for the supercritical phase.
The dashed lines represent the van der Waals (VdW) theoretical predictions and the dashed-dotted lines
represent the Soave–Redlich–Kwong (SRK) ones. The critical temperature is indicated with the dotted
lines. From this temperature, the liquid ENASG EOS is extended and joins the ideal gas EOS (except
for the sound speed). The temperature T0 = 400 K at which variable heat capacities are considered is
indicated in dotted lines as well.

The ENASG EOS is also compared to cubic ones in the preceding figures. The van der Waals
(VdW) [29] and Soave–Redlich–Kwong (SRK) [30] are used in this work. Detailed reviews of cubic
equations of state can be found in Wei and Sadus [31], for instance.

As shown in Figures 4 and 5, the cubic EOSs present poor accuracy regarding liquid water.
However, the supercritical phase is well-described and the transition from liquid to supercritical state
is naturally continuous since a unique formulation is used for both phases.

When oxygen is considered (Figures 6 and 7), the VdW EOS shows very good results regarding
the supercritical phase but is unable to represent properly the liquid state. Nevertheless, the SRK EOS
presents excellent agreement with experimental data for both liquid and supercritical phases.
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Figure 7. Comparison between experimental and theoretical isobar for oxygen. The symbols represent
the experimental isobar p = 200 bars. Beyond the critical temperature Tc = 154 K, the liquid
transforms to supercritical state. The thick solid lines represent the Extended NASG (ENASG) EOS,
reducing to the ideal gas description for the supercritical phase Equations (56), (57) and (60). The
thin solid lines represent the original NASG EOS also reducing to the ideal gas formulation for the
supercritical phase. The dashed lines represent the van der Waals (VdW) theoretical predictions and
the dashed-dotted lines represent the Soave–Redlich–Kwong (SRK) ones. The critical temperature is
indicated with the dotted lines. From this temperature, the liquid ENASG EOS is extended and joins
the ideal gas EOS (except for the sound speed). The temperature T0 = 400 K at which variable heat
capacities are considered is indicated in dotted lines as well.

Figure 7. Comparison between experimental and theoretical isobar for oxygen. The symbols represent
the experimental isobar p = 200 bars. Beyond the critical temperature Tc = 154 K, the liquid transforms
to supercritical state. The thick solid lines represent the Extended NASG (ENASG) EOS, reducing to
the ideal gas description for the supercritical phase Equations (56), (57) and (60). The thin solid lines
represent the original NASG EOS also reducing to the ideal gas formulation for the supercritical phase.
The dashed lines represent the van der Waals (VdW) theoretical predictions and the dashed-dotted lines
represent the Soave–Redlich–Kwong (SRK) ones. The critical temperature is indicated with the dotted
lines. From this temperature, the liquid ENASG EOS is extended and joins the ideal gas EOS (except
for the sound speed). The temperature T0 = 400 K at which variable heat capacities are considered is
indicated in dotted lines as well.

6.2. Vapor-to-Supercritical-State Transition

Much lower pressures (30 bars for water and 10 bars for oxygen) are considered in Figures 8 and
9. Consequently, the three states of the corresponding fluids are involved (liquid, vapor, supercritical)
and the vapor phase transforms to supercritical fluid beyond the critical temperature (Figure 3).
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Figure 8. Comparison between experimental and theoretical isobar for water. The symbols represent
the experimental isobar p = 30 bars. Beyond the critical temperature Tc = 646 K, the vapor
transforms to supercritical state. The thick solid lines represent the Extended NASG (ENASG) EOS,
reducing to the ideal gas description for vapor and supercritical phases, Equations (56), (57) and (60).
The thin solid lines represent the original NASG EOS also reducing to the ideal gas formulation.
The dashed-dotted lines represent the van der Waals (VdW) theoretical predictions and the dashed
lines represent the Soave–Redlich–Kwong (SRK) ones. The critical temperature is indicated with
the dotted lines. The temperature T0 = 1000 K at which variable heat capacities are considered is
indicated in dotted lines as well.

As seen in Figure 8, the ENASG EOS is able to represent correctly the liquid water unlike the
VdW and SRK ones. The vapor and supercritical phases are rather well-described with all EOSs
(ideal gas, VdW, SRK) and with continuous formulations (except for the sound speed with the ideal
gas EOS).

The ENASG EOS is also well-suited for oxygen as seen in Figure 9. The VdW EOS is again unable
to represent properly the liquid state, but the SRK one presents excellent results.

Figure 8. Comparison between experimental and theoretical isobar for water. The symbols represent
the experimental isobar p = 30 bars. Beyond the critical temperature Tc = 646 K, the vapor transforms
to supercritical state. The thick solid lines represent the Extended NASG (ENASG) EOS, reducing to the
ideal gas description for vapor and supercritical phases, Equations (56), (57) and (60). The thin solid
lines represent the original NASG EOS also reducing to the ideal gas formulation. The dashed-dotted
lines represent the van der Waals (VdW) theoretical predictions and the dashed lines represent
the Soave–Redlich–Kwong (SRK) ones. The critical temperature is indicated with the dotted lines.
The temperature T0 = 1000 K at which variable heat capacities are considered is indicated in dotted
lines as well.

As seen in Figure 8, the ENASG EOS is able to represent correctly the liquid water unlike the VdW
and SRK ones. The vapor and supercritical phases are rather well-described with all EOSs (ideal gas,
VdW, SRK) and with continuous formulations (except for the sound speed with the ideal gas EOS).

The ENASG EOS is also well-suited for oxygen as seen in Figure 9. The VdW EOS is again unable
to represent properly the liquid state, but the SRK one presents excellent results.
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Figure 9. Comparison between experimental and theoretical isobar for oxygen. The symbols represent
the experimental isobar p = 10 bars. Beyond the critical temperature Tc = 154 K, the vapor
transforms to supercritical state. The thick solid lines represent the Extended NASG (ENASG) EOS,
reducing to the ideal gas description for vapor and supercritical phases, Equations (56), (57) and (60).
The thin solid lines represent the original NASG EOS also reducing to the ideal gas formulation.
The dashed-dotted lines represent the van der Waals (VdW) theoretical predictions and the dashed
lines represent the Soave–Redlich–Kwong (SRK) ones. The critical temperature is indicated with the
dotted lines. The temperature T0 = 400 K at which variable heat capacities are considered is indicated
in dotted lines as well.

6.3. Concluding Remarks

The results of the present section illustrate the good behavior of the ENASG EOS (56) and its
reduction to the ideal gas expressions (57), (60) in situations away from the saturation thermodynamic
conditions. Figures 4–7 show that the proposed EOS is able to deal with pure liquids and supercritical
states in pressure conditions both close and much higher than the critical pressure. Figures 8 and
9 illustrate the good behavior of the overall formulation with much lower pressures as well. The
liquid expression seems able to represent the whole liquid phase diagram including the saturation
conditions and the transcritical zone with a unique set of parameters. The corresponding vapor and
supercritical phases are described accurately as well with the ideal gas expressions, except near the
critical point as attractive terms have been removed in order to remain unambiguously convex, as
discussed earlier.

The results of the original NASG EOS (Le Métayer and Saurel [14]), with associated parameters
given in Tables 1 and 2, are also plotted in Figures 4–9 for comparison. As already discussed, the

Figure 9. Comparison between experimental and theoretical isobar for oxygen. The symbols represent
the experimental isobar p = 10 bars. Beyond the critical temperature Tc = 154 K, the vapor transforms
to supercritical state. The thick solid lines represent the Extended NASG (ENASG) EOS, reducing to the
ideal gas description for vapor and supercritical phases, Equations (56), (57) and (60). The thin solid
lines represent the original NASG EOS also reducing to the ideal gas formulation. The dashed-dotted
lines represent the van der Waals (VdW) theoretical predictions and the dashed lines represent
the Soave–Redlich–Kwong (SRK) ones. The critical temperature is indicated with the dotted lines.
The temperature T0 = 400 K at which variable heat capacities are considered is indicated in dotted
lines as well.

6.3. Concluding Remarks

The results of the present section illustrate the good behavior of the ENASG EOS (56) and its
reduction to the ideal gas expressions (57), (60) in situations away from the saturation thermodynamic
conditions. Figures 4–7 show that the proposed EOS is able to deal with pure liquids and supercritical
states in pressure conditions both close and much higher than the critical pressure. Figures 8 and 9
illustrate the good behavior of the overall formulation with much lower pressures as well. The liquid
expression seems able to represent the whole liquid phase diagram including the saturation conditions
and the transcritical zone with a unique set of parameters. The corresponding vapor and supercritical
phases are described accurately as well with the ideal gas expressions, except near the critical point as
attractive terms have been removed in order to remain unambiguously convex, as discussed earlier.

The results of the original NASG EOS (Le Métayer and Saurel [14]), with associated parameters
given in Tables 1 and 2, are also plotted in Figures 4–9 for comparison. As already discussed,
the supercritical phase is inaccurate as the different parameters have been determined with the
help of the saturation curve.
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Nevertheless, for flows evolving away from saturation and at pressures much lower than the
critical one, the NASG EOS is preferred to the ENASG one for the sake of simplicity. However,
its reduction to the ideal gas formulation should use parameters determined away from the saturation
curves since the ones determined at the thermodynamic equilibrium [14] induce inaccuracy as seen in
Figures 4–9. The results at saturation may be slightly degraded, but the overall formulation is expected
to deal with multiple thermodynamic conditions.

7. Two-Phase Flow Illustrations

In the following, two-phase flows subject to phase change are of interest. When evaporation
or condensation phenomena appear, instantaneous phase transition is considered through the
stiff thermochemical relaxation solver of Chiapolino et al. [12,13]. For the sake of simplicity,
the Homogeneous Relaxation Model (HRM) [32] is considered and is reminiscent of the reactive
(or multicomponent) Euler equations widely used in chemically reacting flows. The corresponding
system reads 




∂ρ

∂t
+ div(ρu) = 0,

∂(ρu)
∂t

+ div
(
ρu⊗ u + pI

)
= 0,

∂(ρE)
∂t

+ div
[
(ρE + p)u

]
= 0,

∂(ρY1)

∂t
+ div(ρY1u) = ρν(g2 − g1),

∂(ρY2)

∂t
+ div(ρY2u) = −ρν(g2 − g1),

∂(ρYk)

∂t
+ div(ρYku) = 0,

(62)

with

E = e +
1
2

u2, e =
N

∑
k=1

Ykek.

System (62) considers implicitly mechanical and thermal equilibrium. The thermodynamic equilibrium
is reached through the instantaneous relaxation (ν → ∞) of Gibbs free energies g1 = g2, where the
indexes 1 and 2 denote respectively the liquid and vapor phases (see [12,13]). The other constituents of
the flow (N = 3→ N) are considered as non-condensable gases. u represents the mixture centre of
mass velocity and E the mixture total energy.

System (62) is closed by a mixture equation of state made from the mechanical and thermal
equilibrium. In the first place, let us consider gaseous flows transitioning to a supercritical state.
When the critical temperature is reached, liquid is no longer present and the ENASG EOS is not to be
used. Following the strategy of Chiapolino et al. [12,13], two expressions of the mixture temperature
can be found according to the definitions of the mixture mass and mixture energy,

T = Tk ∀k, p = pk ∀k, v = ∑(Ykvk), e = ∑(Ykek), (63)

with Yk denoting the mass fraction of the chemical species k.
In practical computations, gaseous mixture can be considered if Y1 < ε with ε ' 10−8. In that

case, k = 2→ N and the combination of Equations (63) and (56) leads to

Tv =
pv

∑N
k=2

[
Yk(γk − 1)Cv,k

] and Te =
e−∑N

k=2
[
Ykqk

]

∑N
k=2

[
YkCv,k

] . (64)

Equality of Tv and Te provides the mixture gas pressure,



Fluids 2018, 3, 48 24 of 40

p(e, v) =

(
e−∑N

k=2
[
Ykqk

])
∑N

k=2
[
Yk(γk − 1)Cv,k

]

v ∑N
k=2

[
YkCv,k

] . (65)

Figure 10 shows such a situation where water vapor transforms into a supercritical state through
compression effects of a shock wave. A shock tube is indeed considered with liquid water, vapor water
and air. In the high pressure chamber, air is initially in major proportion, Y3 → 1 with thermodynamic
conditions p = 30 bars and T = 800 K. In the second chamber, water vapor is in major proportion
Y2 → 1 with p = 1 bar and T = 600 K. The mixture is initially at thermodynamic equilibrium according
to the conditions detailed in [13]. The ideal gas reduction of the ENASG EOS is used with parameters
for water given in Table 1 while the only coefficients needed for air are: Cv,3 = 719 J/kg/K and
γ3 = 1.4. Liquid is present but in negligible proportions so mixture equation of state (65) is used in
practice.

As seen in Figure 10, the transition from “pure” vapor to supercritical state is naturally continuous
when the temperature becomes higher than the critical one Tc = 646 K.
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Figure 10. Shock tube test illustrating the transition from “pure” water vapor to supercritical state.
The critical temperature is indicated with the dotted line. The thick lines represent the solution
obtained with the mixture ENASG EOS reducing to Equation (65) in the present example as liquid
mass fraction is non-zero but in negligible proportions. The dashed lines represent the initial
conditions. In the left chamber, air is initially in major proportions with Yle f t

3 = 1 − 2 × 10−7,

p = 30 bars and T = 800 K. Liquid and vapor mass fractions are deduced as Yle f t
1 ≃ 10−8 and

Yle f t
2 ≃ 1.9 × 10−7. In the right chamber, water vapor is in major proportions with Yright

3 = 10−7,

p = 1 bar and T = 600 K. Liquid and vapor mass fractions are deduced as Yright
1 ≃ 10−8 and

Yle f t
2 ≃ 0.99999989. The test was carried out with Godunov time integration method and HLLC

Riemann solver [27] extended to the second order: MUSCL scheme [27] with Minmod flux limiter
[27]. The solution is given at t ≈ 0.3 ms on a 1000-cell mesh using CFL= 0.8 [27].

Let us now consider a situation where liquid is in major proportion. In that case, the combination
of the mixture definitions (63) and the ENASG relations (56) leads to two quadratic expressions for
the mixture temperature (note that only one liquid is considered in this work),

aT2 + bT + c = 0, (66)

with the corresponding coefficients,





av =
γ1 p∞,1,1

p

N

∑
k=2

[
Yk(γk − 1)Cv,k

]
,

bv = Y1
(γ1 − 1)Cv,1

1 − b1,1
+

N

∑
k=2

[
Yk(γk − 1)Cv,k

(
1 +

γ1 p∞,0,1(1 − b1,1)

(γ1 − b1,1)p

)]
+
(
b̄0 − v

)
γ1 p∞,1,1,

cv =
(
b̄0 − v

) (
p +

γ1 p∞,0,1(1 − b1,1)

γ1 − b1,1

)
,

(67)

Figure 10. Shock tube test illustrating the transition from “pure” water vapor to supercritical state.
The critical temperature is indicated with the dotted line. The thick lines represent the solution obtained
with the mixture ENASG EOS reducing to Equation (65) in the present example as liquid mass fraction
is non-zero but in negligible proportions. The dashed lines represent the initial conditions. In the left
chamber, air is initially in major proportions with Yle f t

3 = 1− 2× 10−7, p = 30 bars and T = 800 K.

Liquid and vapor mass fractions are deduced as Yle f t
1 ' 10−8 and Yle f t

2 ' 1.9× 10−7. In the right

chamber, water vapor is in major proportions with Yright
3 = 10−7, p = 1 bar and T = 600 K. Liquid and

vapor mass fractions are deduced as Yright
1 ' 10−8 and Yle f t

2 ' 0.99999989. The test was carried out
with Godunov time integration method and HLLC Riemann solver [27] extended to the second order:
MUSCL scheme [27] with Minmod flux limiter [27]. The solution is given at t ≈ 0.3 ms on a 1000-cell
mesh using CFL= 0.8 [27].
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Let us now consider a situation where liquid is in major proportion. In that case, the combination
of the mixture definitions (63) and the ENASG relations (56) leads to two quadratic expressions for the
mixture temperature (note that only one liquid is considered in this work),

aT2 + bT + c = 0, (66)

with the corresponding coefficients,





av =
γ1 p∞,1,1

p

N

∑
k=2

[
Yk(γk − 1)Cv,k

]
,

bv = Y1
(γ1 − 1)Cv,1

1− b1,1
+

N

∑
k=2

[
Yk(γk − 1)Cv,k

(
1 +

γ1 p∞,0,1(1− b1,1)

(γ1 − b1,1)p

)]
+
(
b̄0 − v

)
γ1 p∞,1,1,

cv =
(
b̄0 − v

) (
p +

γ1 p∞,0,1(1− b1,1)

γ1 − b1,1

)
,

(67)





ae = Y1γ1 p∞,1,1Cv,1 +
N

∑
k=2

[
YkCv,k

]
γ1 p∞,1,1,

be = Y1 (p + γ1 p∞,0,1)Cv,1 +
N

∑
k=2

[
YkCv,k

(
p +

γ1 p∞,0,1(1− b1,1)

γ1 − b1,1

)]
+ (q̄− e) γ1 p∞,1,1,

ce = (q̄− e)
(

p +
γ1 p∞,0,1(1− b1,1)

γ1 − b1,1

)
,

(68)

where mixture quantities are introduced:

q̄ =
N

∑
k=1

Ykqk, b̄ =
N

∑
k=1

Ykbk. (69)

Equality of the two positive solutions provides the mixture pressure p(e, v). An iterative method
is required nonetheless. However, Equation (65) is to be used where Y1 ≤ ε → 0 corresponds to
a gaseous mixture.

The transition from supercritical state to pure liquid is now considered through a double expansion
test. In Figure 11, vapor water and air are present in negligible proportions and supercritical water
undergoes expansion waves. Those induce a pressure drop from 350 bars to about 226 bars. The final
pressure then remains slightly above the critical one, pc = 220 bars. They also induce a temperature
drop from 655 K to about 641 K. The final temperature is consequently inferior to the critical one
Tc = 646 K resulting in transition from supercritical to liquid phase that is computed continuously.

A configuration where liquid–gas interfaces are present is now considered. Phase change is
illustrated on the evaporating liquid jet configuration detailed in Chiapolino et al. [13]. In this last
reference, the mixture EOS is made from the NASG EOS for each fluid (reduced to SG in this test) and
is reconsidered in the following in the frame of the ENASG EOS.
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The conditions are typical of cryotechnic rocket engines during the ignition phase (for which the
engine has not yet reached supercritical conditions). The flow consists of a coaxial liquid oxygen jet
surrounded by a high-speed hydrogen flow (non-condensable gas), injected in conditions above the
saturation point of the inner oxygen core, which then evaporates whilst being destabilized. Such a case
is very challenging because there is initially no vapor oxygen, and mass transfer is the only possible
term for vapor production. The ENASG EOS is used with parameters for oxygen given in Table 2 while
the only coefficients needed for hydrogen are: Cv,3 = 10,183 J/kg/K, γ3 = 1.4 and q3 = −1.2× 106 J/kg.
Mass transfer is treated with the thermochemical relaxation solver detailed in [13]. Figure 12 shows
the density contours and the vapor mass fraction created.
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Figure 11. Double expansion test illustrating the transition from supercritical state to “pure” liquid
water. The critical pressure and temperature are indicated with the dotted lines. The thick lines
represent the solution obtained with the mixture ENASG EOS. The dashed lines represent the initial
conditions. Liquid water is initially in major proportions with Y1 = 1 − 2 × 10−6, Y2 = Y3 = 10−6 ,
p = 350 bars, T = 655 K and u = ±45 m/s. The test was carried out with a Godunov time integration
method and HLLC Riemann solver extended to the second order: MUSCL scheme with Minmod flux
limiter. The solution is given at t ≈ 0.3 ms on a 1000-cell mesh using CFL = 0.8.

As expected, the filaments separating the main liquid core and the gas gradually vanish as a
consequence of evaporation and the created vapor mass fraction is of utmost importance for future
works, which shall include the gaseous combustion between vapor oxygen and hydrogen. In that
case, only the ideal gas reduction of the ENASG EOS is to be used with variable heat capacities.

8. Conclusions

The Noble–Abel Stiffened-Gas (NASG) equation of state has been extended to variable attractive
and repulsive effects to deal with liquids when large temperature and pressure ranges are under
consideration. The liquid phase is well-described at thermodynamic conditions both near and away
from the saturation ones with a convex formulation. The overall ENASG EOS reduces to the ideal gas
description for both vapor and supercritical phases for the sake of convexity.

The transition from pure fluid to supercritical state is of interest as well, including at high
pressures where the liquid directly transforms to supercritical fluid. The ENASG EOS proposes
a solution in the direction of such transition while remaining convex, an essential property in
computational fluid dynamics.

Two different liquid–gas couples have been addressed, water and oxygen, presenting
respectively triatomic and diatomic molecular fluids. The overall formulation presents good
agreement with experimental data. However, the saturated vapor phase necessarily lacks accuracy
near the critical point as attractive effects are absent.

Figure 11. Double expansion test illustrating the transition from supercritical state to “pure” liquid
water. The critical pressure and temperature are indicated with the dotted lines. The thick lines
represent the solution obtained with the mixture ENASG EOS. The dashed lines represent the initial
conditions. Liquid water is initially in major proportions with Y1 = 1− 2× 10−6, Y2 = Y3 = 10−6 ,
p = 350 bars, T = 655 K and u = ±45 m/s. The test was carried out with a Godunov time integration
method and HLLC Riemann solver extended to the second order: MUSCL scheme with Minmod flux
limiter. The solution is given at t ≈ 0.3 ms on a 1000-cell mesh using CFL = 0.8.
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Figure 12. Density and vapor mass fraction profiles of a liquid oxygen jet surrounded by hydrogen
at high speed entering a combustion chamber of a cryotechnic rocket engine. Shear effects induce
jet fragmentation. The filaments separating the main liquid core and the gas gradually vanish as a
consequence of evaporation. The computation was done with the MUSCL scheme with Superbee
limiter [27] and CFL = 0.7. The solution is given at t ≈ 4.1 ms. The mesh is unstructured and made of
about 360,000 triangles.

As expected, the filaments separating the main liquid core and the gas gradually vanish as
a consequence of evaporation and the created vapor mass fraction is of utmost importance for future
works, which shall include the gaseous combustion between vapor oxygen and hydrogen. In that case,
only the ideal gas reduction of the ENASG EOS is to be used with variable heat capacities.

8. Conclusions

The Noble–Abel Stiffened-Gas (NASG) equation of state has been extended to variable attractive
and repulsive effects to deal with liquids when large temperature and pressure ranges are under
consideration. The liquid phase is well-described at thermodynamic conditions both near and away
from the saturation ones with a convex formulation. The overall ENASG EOS reduces to the ideal gas
description for both vapor and supercritical phases for the sake of convexity.

The transition from pure fluid to supercritical state is of interest as well, including at high pressures
where the liquid directly transforms to supercritical fluid. The ENASG EOS proposes a solution in
the direction of such transition while remaining convex, an essential property in computational
fluid dynamics.

Two different liquid–gas couples have been addressed, water and oxygen, presenting respectively
triatomic and diatomic molecular fluids. The overall formulation presents good agreement with
experimental data. However, the saturated vapor phase necessarily lacks accuracy near the critical
point as attractive effects are absent.

Those latter ones are nonetheless responsible for conditional convexity, a feature reminiscent of
cubic equations of state.

The Extended NASG (ENASG) equation of state recovers the NASG one when the new introduced
coefficients are set to zero. Its formulation remains quite simple, convex and is beneficial to the
introduction of phase transition solvers such as the ones promoted in Chiapolino et al. [12,13].
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Appendix A. Convexity of the ENASG Formulation

Convexity of the equation of state requires fulfillment of five different conditions
(Godunov et al. [33], Menikoff and Plohr [25] that are analyzed hereafter,
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Combining Equations (20), (21) and (40), the internal energy is expressed as

e(v, s) =q +
(γ− 1)Cvγp∞,0

[
v− b(v)

]
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[
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After some algebraic manipulations, the first partial derivative reads

(
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Analyzing Equations (40) and (A3), it appears that the thermodynamic definition of the pressure is
satisfied, p = −

(
∂e
∂v

)
s
. Continuing the calculations, the second derivative reads

(
∂2e
∂v2
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s

exp
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s−q′′
Cv
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)
.

(A4)

Analyzing Equation (A4), it appears that condition (A1) (a) is satisfied unambiguously if p∞,1 ≤ 0 and
b1 < γ. Equation (A2) is now used and yields the following partial derivative,

(
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. (A5)

Furthermore, manipulating Equation (33), the liquid temperature can be expressed as

T(v, s) =
exp

(
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Analyzing Equations (A5) and (A6), it appears that the thermodynamic definition of the temperature
is satisfied, T =

(
∂e
∂s

)
v
. With the help of Equation (A5), the second partial derivative is expressed as
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Condition (A1) (b) is then satisfied ∀ p∞,1 and b1 6= 1. In addition, from Equation (A3), relation (A1) (c)
transforms to
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Condition (A1) (c) is then unambiguously satisfied and defined if p∞,1 ≤ 0 and b1 6= 1. Besides,
combining Equations (A4), (A7) and (A8) leads to the next relation
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Fluids 2018, 3, 48 30 of 40

Condition (A1) (d) is then satisfied as well if b1 < 1. Finally, from Equation (A4), relation (A1) (e) reads
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(A10)

Analyzing Equation (A10), condition (A1) (e) is satisfied unambiguously if p∞,1 ≤ 0, b1 < γ and
b1 < 1

2 + γ
2 . As γ > 1, the most restrictive condition regarding the covolume remains b1 < 1.

The present formulation is then unambiguously convex if

p∞,1 ≤ 0, p∞,0 ≥ 0 and b1 < 1. (A11)

Appendix B. Maxwell’s Relations

Maxwell’s relations arise from the equality of the mixed partial derivatives of the fundamental
thermodynamic relations [34]. The different functions of common use read
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This section aims at verifying that those fundamental relations are satisfied with the ENASG
formulation. Using Equations (18) and (38), the next relation directly arises,

(
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It is then clear that Maxwell’s relation (A12) (a) is satisfied. Equations (18) and (33) are now used and
lead to

(
∂p
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)

v
=

(γ− 1)Cv
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Consequently, Maxwell’s relation (A12) (b) is also satisfied. This is not surprising as these two
equations, (A12) (a)–(b), are precisely Equations (4) and (23), which are the basis of the theoretical
derivations. Equations (A6) and (40) being now considered, the following partial derivatives are
obtained:
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showing that Maxwell’s relation (A12) (c) is satisfied as well.



Fluids 2018, 3, 48 31 of 40

Let us then analyze the fourth relation. Considering Equation (40), it is noted that v(s, p) can not
be directly formulated unless p∞,1 = 0, which reduces the formulation to the NASG equation of state
with variable covolume. However, the partial derivatives can be directly formulated. Indeed, as the
left-hand side of Equation (A12) (d) considers constant entropy, the following relation can be used:

ds =
(

∂s
∂p

)

T
dp +

(
∂s
∂T

)

p
dT = 0.

Consequently, the partial derivative is found as
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The same reasoning is repeated for
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have been determined previously, Equations (A13) and (35). Equation (A16) then

reads after calculations,
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has also been determined previously, Equation (A15), and thanks to relation (40), the next
derivative arises after some algebraic manipulations
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Equation (A17) then reads after calculations,
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Inserting Equation (18) into (A20), the following result is obtained after some algebraic manipulations,
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Analyzing Equations (A18) and (A21), the last Maxwell’s relation (A12) (d) is satisfied.
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Appendix C. Methodology to Determine the Various Extended NASG (ENASG) Parameters

This section details the procedure used in this work to determine the different ENASG parameters
for liquid and gas phases. Depending on the studied application, the determination of the
corresponding parameters can be different, but the use of the experimental curves is mandatory.

Appendix C.1. Liquid Phase

In this section, let us introduce,

Al = γl p∞,1,l , Bl =
b0,l

1− b1,l
, Cl =

γl p∞,0,l(1− b1,l)

γl − b1,l
. (A22)

In the calculations that follow, these coefficients will be considered as known. Their numerical values
will be addressed later. The liquid coefficients are determined with the help of an experimental
saturation curve. In the following, the least squares method is used with the specific volume,
Equation (18). Searching the optimum γl coefficient, the next relation appears after some algebraic
manipulations, 




Sv1 − (γl − 1)Cv,lSv2 = 0,

Sv1 = ∑N
i=1

(
(vexp,l,i−Bl)Texp,l,i

(1−b1,l)(pexp,l,i+Al Texp,l,i+Cl)

)
,

Sv2 = ∑N
i=1

(
T2

exp,l,i
(1−b1,l)2(pexp,l,i+Al Texp,l,i+Cl)2

)
.

(A23)

In this section, let us introduce the following convention: exp denotes the experimental values and N
the number of experimental points considered. The experimental values of the internal energy are
now used. Combining Equations (18), (20) and (21), the internal energy reads





el(p, T) = Cv,l
p+γl Dl(p,T)+El(p,T)

Fl(p,T) + ql ,

Dl(p, T) = Cl(p+Cl)
(1−b1,l)(p+Al T+Cl)

,

El(p, T) = − Cl b1,l
1−b1,l

+ AlCl T
(1−b1,l)(p+Al T+Cl)

,

Fl(p, T) = p+Al T+Cl
T − Al .

(A24)

A reference state re f is now used to express the liquid reference energy ql . Using (A24), the next relation
arises,

ql = ere f ,l − Cv,l
pre f ,l + γl Dl(pre f ,l , Tre f ,l) + El(pre f ,l , Tre f ,l)

Fl(pre f ,l , Tre f ,l)
. (A25)

Inserting Equation (A25) into (A24), the internal energy transforms to

el(p, T) = ere f ,l + Cv,l

(
p+γl Dl(p,T)+El(p,T)

Fl(p,T) − pre f ,l+γl Dl(pre f ,l ,Tre f ,l)+El(pre f ,l ,Tre f ,l)

Fl(pre f ,l ,Tre f ,l)

)
. (A26)
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The least squares method is now applied to Equation (A26). Searching the optimum Cv,l coefficient,
the following relation appears after some algebraic manipulations,





Se1− Cv,lSe2 + γSe3 − γlCvSe4 − γ2
l Cv,lSe5 = 0,
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(A27)

Equations (A23) and (A27) then create a two-unknown equation system, whose solution provides γl
and Cv,l . An analytical solution is available and reads

γl =
−Sv2Se1+Sv2Se3+Sv1Se4±

√[
Sv2(Se1−Se3)−Sv1Se4

]2

+4(Sv2Se1+Sv1Se2)(Sv2Se3−Sv1Se5)

2Sv2Se3−2Sv1Se5
, (A28)

Cv,l =
Sv1

(γl − 1)Sv2
. (A29)

The expressions of γl and Cv,l are now available. Their numerical values will be determined with
the help of the parameters Al , Bl , Cl and b0,l , b1,l . Those are addressed hereafter. From Equation (17),

the coefficient Al is estimated as Al =
p′∞,c−Cl

Tc
. In this relation, the critical point is used via Tc and p′∞,c

that will be given arbitrary as p′∞,c → 0. However, the coefficients b0,l and b1,l are included in Bl and

Cl . Those are estimated as, b1,l =
bc−bre f ,l
vc−vre f ,l

and b0,l = bre f ,l − b1,lvre f ,l . The reference re f and critical c

states are considered known either by an experimental point or arbitrary.
The coefficient Bl is then known through b0,l , b1,l . The parameter Al depending only on Cl ,

the coefficients γl and Cv,l become consequently, γl = γl(Cl) and Cv,l = Cv,l(Cl). The coefficient
Cl is then the only unknown at this point. To determine the latter, the speed of sound is used with
another reference state denoted 0 (atmospheric conditions). With the help of Equation (42), the next
relation arises,

f (Cl) = −c2
0,l −

Al(Cl)v2
0,l(p0 + Cl)

Cv,l(Cl)
− v2

0,l

(
p0 + Cl[

γl(Cl)− 1
]
Cv,l(Cl)− Al(Cl)

[
v0,l − b(v0,l)

]
)
×

(
Al(Cl)

[
γ(Cl)− 1

]
−
[
γl(Cl)− b1,l

][
γl(Cl)− 1

]
Cv,l(Cl)

v0,l − b(v0,l)

)
,

(A30)

and can be solved with an iterative method. p∞,0,l and p∞,1,l are then determined via Equation (A22),
and the reference internal energy is computed with Equation (A25). The reference entropy is
the only unknown value at this point. The least squares method is used one more time with
Equation (38). Searching the optimum q′l coefficient, the following relation appears after some
algebraic manipulations,
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q′l =
1
N ∑N

i=1

[
sexp,l,i − Cv,l ln




T

γl−b1,l
1−b1,l

exp,l,i

[
pexp,l,i+p′∞(Texp,l,i)

] γl−1
1−b1,l


+

γl p∞,1,l(γl−1)Cv,l Texp,l,i[
1−b1,l

][
pexp,l,i+p′∞(Texp,l,i)

]
]

. (A31)

The different reference state values used for the calculation of the liquid ENASG coefficients are
summarized in Tables A1 and A2. In this work, all experimental data come from the NIST website [35].
For the liquid phase, the saturation (boiling) curve is considered.

Table A1. Reference state values used for the determination of liquid Extended Noble–Abel
Stiffened-Gas (ENASG) coefficients.

Fluid N Tc (K) pc (bar) vc (m3/kg) p′∞,c (Pa) bc (m3/kg) c0 (m/s) p0 (bar) v0 (m3/kg)

H2O 374 646.16 221 0.0025101 0.01 10−6 1552.1 1 0.0010182
O2 101 154.36 50 0.0019522 0.01 10−6 1065.7 1 0.00080871

Table A2. Reference state values used for the determination of liquid ENASG coefficients (continued).

Fluid Tre f (K) pre f (Pa) vre f (m3/kg) ere f (kJ/kg) bre f (m3/kg)

H2O 300.16 3570.2 0.0010035 113.23 0.0009125
O2 70.631 6684.7 0.00080952 −166.823 0.000769

Appendix C.2. Gas Phase

In the present formulation (57), the gas phase is considered as ideal and the different parameters
are determined regardless of the saturation conditions. Only four parameters are required for the gas
phase, Cv, γ, q and q′. The atmospheric conditions are used in this work via the experimental isobar
p0 = 1 bar. According to the experimental data of water and oxygen at such low pressure, there exists
a significant temperature range where the heat capacity (Cv) is quite constant. The parameter Cv is
thereby chosen as a constant, representative of the present thermodynamic conditions.

The parameter γ is then determined as γ =
Cp
Cv

with Cp−Cv = R̂/W according to Mayer’s relation.
In the previous relation, R̂ denotes the universal gas constant and W the molar mass. The values
reported in Tables 1 and 2 are consequently close to the expected triatomic (H2O) and diatomic (O2)
predictions for ideal gases (γ = 1.3079 ' 9/7 and Cv = 1500 J/kg/K ' (7/2)R for water and
γ = 1.3985 ' 1.4 and Cv = 652 J/kg/K ' (5/2)R for oxygen).

A reference point on the present isobar p0 = 1 bar is used to determine the coefficient q,

q = e0 − CvT0. (A32)

In this work, T0 = 393.38 K and e0 = 2537.7 kJ/kg are used for water and T0 = 100.07 K and
e0 = 63.657 kJ/kg for oxygen.

The last coefficient q′g is finally determined with the least squares method, corresponding to the
ideal gas reduction of Equation (A31). The isobar p0 = 1 bar is used one more time with N = 542 points
for water corresponding to the temperature range Texp ∈ [372.76 K–1275 K] and Nexp = 579 points,
Texp ∈ [90.062 K–1000 K] for oxygen.

Note that for the VdW and SRK EOSs, the specific internal energy, enthalpy and entropy require
C(0)

v , q and q′ as well for practical computations. In the present work, C(0)
v,H2O = 1750 J/kg/K,

C(0)
v,O2

= 652 J/kg/K for both VdW and SRK EOSs. qH2O = 1,799,218 J/kg, qO2 = 17,918 J/kg, q′H2O =

−3360 J/kg/K, q′O2
= 2793 J/kg/K for the VdW EOS and qH2O = 1,799,885 J/kg, qO2 = −682 J/kg,

q′H2O = −3360 J/kg/K, q′O2
= 2793 J/kg/K for the SRK EOS.
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Appendix D. Connection Temperature between the ENASG EOS and Ideal Gas Formulation

The different parameters of the quadratic equation (61) are provided hereafter for the specific
volume (v), internal energy (e) and enthalpy (h). The solution of Equation (61) provides the connection
temperature between the ENASG EOS and ideal gas formulation during the liquid-to-supercritical
state transition,





av =
(1− b1,l)γl p∞,1,l(γg − 1)Cv,g

p
,

bv = (1− b1,l)

(
p +

γl p∞,0,l(1− b1,l)

(γl − b1,l)

)
(γg − 1)Cv,g

p
− (γl − 1)Cv,l − γl p∞,1,lb0,l ,

cv = −b0,l

(
p +

γl p∞,0,l(1− b1,l)

(γl − b1,l)

)
,

(A33)





ae = γl p∞,1,l(Cv,l − Cv,g),

be = Cv,l(p + γl p∞,0,l) + γl p∞,1,l(ql − qg)− Cv,g

(
p +

γl p∞,0,l(1− b1,l)

γl − b1,l

)
,

ce = (ql − qg)

(
p +

γl p∞,0,l(1− b1,l)

γl − b1,l

)
,

(A34)





ah = (1− b1,l)γl p∞,1,l(Cv,l − γgCv,g),

bh = γlCv,l p + Cv,l
[
γl p∞,0,l(1− b1,l)− pb1

]
+ γl p∞,1,lb0,l p + γl p∞,1,l(1− b1,l)(ql − qg)

− γgCv,g(1− b1,l)

(
p +

γl p∞,0,l(1− b1,l)

γl − b1,l

)
,

ch =

(
p +

γl p∞,0,l(1− b1,l)

γl − b1,l

) [
pb0,l + (1− b1,l)(ql − qg)

]
.

(A35)

The subscripts l and g denote the liquid and gas phases respectively. Note that the determination
of connection temperature for the entropy requires an iterative method because of the logarithmic
function present in Equation (56).

Appendix E. Toward the Critical Point

Near the critical point, the vapor phase necessarily lacks accuracy with the present ENASG EOS
that is reduced to the ideal gas expression. The reason is linked to the absence of gas attractive effects.
However, the introduction of those latter ones results in conditional convexity. They are thereby
removed in this work. Nevertheless, they also result in much better agreement with experimental data
as illustrated in the following.

Equation (16), recalled hereafter, does consider an attractive term via the parameter d,

p(v, T) =
(γ− 1)CvT

v− b(v)
− p′∞(T)− d

[
v− b(v)

] γ−b1
1−b1

. (A36)

Previously, the coefficient d was set to zero for the sake of convexity and simplicity.

This d/
[
v− b(v)

] γ−b1
1−b1 extra term is reminiscent of cubic EOSs but seems nonetheless essential to

describe dense gases near the critical point. With this parameter, the attractive pressures p∞(T) and
p′∞(T) are no longer required for the gas phase and the thermal equation of state reads

pv(v, T) =
(γv − 1)Cv,vT

v− b0,v
− dv

(v− b0,v)
γv . (A37)

Equation (A37) does not provide an explicit formulation of the specific volume v(p, T). Cubic EOSs
present the same flaw. Note that b(v) = b0 = cst is accurate enough when dealing with gases.
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Following a mathematical procedure based on Maxwell’s relations, similar to the derivations detailed
in the previous sections, the present “alternative” formulation yields





pv(e, v) =
(γv − 1)(e− qv)

v− b0,v
,

ev(p, T) = Cv,vT − dv

(γv − 1)
[
v(p, T)− b0,v

]γv−1 + qv,

hv(p, T) =
p
[
v(p, T)− b0,v

]

γv − 1
+ pv(p, T) + qv,

sv(p, T) = Cv,v ln(T) + (γv − 1)Cv,v ln
[
v(p, T)− b0,v

]
+ q′v,

gv(p, T) =
p
[
v(p, T)− b0,v

]

γv − 1
+ pv(p, T) + qv − Cv,vT

[
(γv − 1) ln

[
v(p, T)− b0,v

]
+ ln(T) +

q′v
Cv,v

]
,

c2
v(p, v) =

γvv2 p
v− b0,v

,

Cp,v(p, T) =
γvCv,v

[
(γv − 1)Cv,vT

[
v(p, T)− b0,v

]γv−1 − dv

]

(γv − 1)Cv,vT
[
v(p, T)− b0,v

]γv−1 − γvdv
.

(A38)

The v subscript denotes here the vapor phase. For the sake of space, the details of calculations
are omitted. This “alternative” formulation respects Maxwell’s relations and is thermodynamically
consistent and convex under condition,

dv <
(γv − 1)Cv,vT(v− b0,v)

γv−1

γv
. (A39)

To represent correctly the physics of attractive terms, dv > 0 must be chosen and condition (A39)
becomes restrictive. The same observation holds for cubic EOSs. It is worth mentioning that despite
this conditional convexity, the speed of sound remains unambiguously positive unlike cubic EOSs and
corresponds to the Noble–Abel (NA) sound speed. Table A3 provides the associated parameters of
this “alternative” but conditionally convex formulation (A38) for water and oxygen. Figures A1 and
A2 display the corresponding results at saturation.

Table A3. Coefficients for water and oxygen for the “alternative” ENASG EOS whose formulation is
summarized in Equation (A38). With such description, the gas attractive effects are taken into account
via the parameter d but result in conditional convexity, Equation (A39). The liquid ENASG EOS is
unchanged, Equation (56).

Coefficients ENASGH2O, Liq ENASGH2O, vap ENASGO2, Liq ENASGO2, vap

γ 1.0178 1.3189 1.033 1.3875
Cv (J/kg/K) 3848 1719 1451 779

b1 −0.5934 0 −0.6661 0
b0 (m3/kg) 1.4905× 10−3 3.3514× 10−4 1.3013× 10−3 0
p∞,1 (Pa/K) − 607,195 0 −405,133 0

p∞,0 (Pa) 396,642,530 0 63,642,939 0
q (J/kg) −1,065,948 1,975,421 −272,675 −1597

q′ (J/kg/K) −20,985 −3131 −3277 2224
d (Pa m3γ/kgγ) 0 41,200 0 2950



Fluids 2018, 3, 48 37 of 40

Fluids 2018, xx, 1 38 of 41

Table A3. Coefficients for water and oxygen for the “alternative” ENASG EOS whose formulation is
summarized in Equation (A38). With such description, the gas attractive effects are taken into account
via the parameter d but result in conditional convexity, Equation (A39). The liquid ENASG EOS is
unchanged, Equation (56).

Coefficients ENASGH2O, Liq ENASGH2O, vap ENASGO2, Liq ENASGO2, vap

γ 1.0178 1.3189 1.033 1.3875
Cv (J/kg/K) 3848 1719 1451 779

b1 −0.5934 0 −0.6661 0
b0 (m3/kg) 1.4905 × 10−3 3.3514 × 10−4 1.3013 × 10−3 0
p∞,1 (Pa/K) − 607,195 0 −405,133 0

p∞,0 (Pa) 396,642,530 0 63,642,939 0
q (J/kg) −1,065,948 1,975,421 −272,675 −1597

q′ (J/kg/K) −20,985 −3131 −3277 2224
d (Pa m3γ/kgγ) 0 41,200 0 2950

50

100

150

200

250

500

1000

1500

2000

2500

3000

0

500

1000

1500

2000

2200

2300

2400

2500

2600

2700

2800

2900

273 300 350 400 450 500 550 600 646

400

600

800

1000

1200

273 300 350 400 450 500 550 600 646

50

100

150

200

250

T (K)T (K)

psat (bar) Lv (kJ/kg)

hl (kJ/kg) hv (kJ/kg)

ρl (kg/m3) ρv (kg/m3)

Figure A1. Comparison between experimental and theoretical saturation curves for liquid l and vapor

v water. Symbols represent experimental data. The thick lines represent the theoretical saturation
curves obtained with the liquid Extended NASG EOS (ENASG) Equation (56) and its “alternative”
but conditionally convex formulation for the vapor phase, Equation (A38). psat denotes the saturation
pressure, Lv the latent heat, h the specific enthalpy and ρ the density.

As seen in Figures A1 and A2, the theoretical saturation pressure, liquid enthalpy, liquid and
vapor specific densities are in very good agreement with experimental saturation data from the

Figure A1. Comparison between experimental and theoretical saturation curves for liquid l and vapor

v water. Symbols represent experimental data. The thick lines represent the theoretical saturation
curves obtained with the liquid Extended NASG EOS (ENASG) Equation (56) and its “alternative” but
conditionally convex formulation for the vapor phase, Equation (A38). psat denotes the saturation
pressure, Lv the latent heat, h the specific enthalpy and ρ the density.

As seen in Figures A1 and A2, the theoretical saturation pressure, liquid enthalpy, liquid and
vapor specific densities are in very good agreement with experimental saturation data from the
lowest temperature available to the critical one. However, the vapor enthalpy seems to present lesser
agreement. It is interesting to note that vapor enthalpy is the only thermodynamic variable that
presents a non-monotonic behavior. However, analyzing the range of variation, it seems that the
theoretical order of magnitude is satisfied. The latent heat, very important during phase transition
(Lv = hv − hl), is also in very good agreement with experimental data. The introduction of the
coefficient d involves a conditional convexity (Equation (A39)) but does illustrate the significance of
the gas attractive effects well.
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Figure A2. Comparison between experimental and theoretical saturation curves for liquid l and vapor

v oxygen. Symbols represent experimental data. The thick lines represent the theoretical saturation
curves obtained with the liquid Extended NASG EOS (ENASG) Equation (56) and its “alternative”
but conditionally convex formulation for the vapor phase, Equation (A38). psat denotes the saturation
pressure, Lv the latent heat, h the specific enthalpy and ρ the density.
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