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Abstract: The dynamics of a quasi two-dimensional isotropic droplet in a cholesteric liquid crystal
medium under symmetric shear flow is studied by lattice Boltzmann simulations. We consider
a geometry in which the flow direction is along the axis of the cholesteric, as this setup exhibits
a significant viscoelastic response to external stress. We find that the dynamics depends on the
magnitude of the shear rate, the anchoring strength of the liquid crystal at the droplet interface and
the chirality. While low shear rate and weak interface anchoring the system shows a non-Newtonian
behavior, a Newtonian-like response is observed at high shear rate and strong interface anchoring.
This is investigated both by estimating the secondary flow profile, namely a flow emerging along the
out-of-plane direction (absent in fully-Newtonian fluids, such as water) and by monitoring defect
formation and dynamics, which significantly alter the rheological response of the system.
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1. Introduction

Liquid crystals (LC) are fluids often made up of rod-like molecules that can be arranged in a variety
of equilibrium phases, depending on their geometry and reciprocal interaction [1,2]. Of particular
relevance is the cholesteric phase where the local molecular alignment is captured by a unit magnitude
director field n displaying a natural twist deformation in the direction perpendicular to the molecules.
Such liquid crystals can be found in a wide range of biological systems, such as bacterial flagella [3]
and DNA molecules in solution [4], and have found increasing application in modern display devices,
in which the cholesteric phase results from mixing a nematic liquid crystal (such as E7, Merck KGaA,
Darmstadt, Germany) with a chiral dopant. In recent years, much interest has been focused on the
realization of liquid crystal-particle composites, a new exciting class of soft material with tunable
elastic and electro-optic properties, in which either colloidal particles or droplets of standard fluids are
dispersed in an LC phase [5]. The presence of these inclusions induces a disturbance in the director
orientation, which typically aligns either tangentially or normally to the surface of the particles.
This leads to the formation of a variety of topological defects that mediate long-range anisotropic
particle-particle interactions and stabilize novel ordered structures, such as chain [6,7] and defect
glass [8] in nematics or colloidal crystals [9] and isolated clusters [10] in cholesterics, with potential
use in photonics [11] and in new devices [12].

Recent theoretical and experimental works have investigated the typical defect structures observed
at equilibrium when particles are dispersed in cholesteric liquid crystals (CLC) and have shown that
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these can be controlled by tuning the ratio between the particle size R (typically its radius) and the
cholesteric pitch p. For instance, if strong perpendicular (homeotropic) anchoring is set on the surface of
a spherical colloid, one observes either a planar Saturn ring (a circular defect line of half-integer charge
located around the equator of the particle) if p >> R, or a twisted Saturn rings, wrapping around the
particle, if p < R [13–16]. If, on the other hand, the anchoring is tangential to the surface, the defect
pattern ranges from the “boojum” (two surface defects of integer charge located on opposite sides)
if R/p is small, to its twisted version if R/p is large enough [15]. A further complication arises when,
in place of a solid particle, one considers a deformable liquid droplet. Here, the strength of the interface
anchoring relative to the elasticity of the LC becomes a crucial parameter to control the droplet shape
(in addition to the director pattern near the surface). For instance, one observes either a spherical shape
or a nutshell-like structure if the anchoring strength is respectively weak or strong [17]. So far, most
of the studies have focused on the equilibrium properties of these inclusions [15], and much less is
known when these systems are subject to external perturbations, such as electric and flow fields.

Liquid crystal have long been known as systems that exhibit a rich dynamical response such as
shear banding [18–20] and molecular tumbling [1,21,22] when subject to shear flow [1]. This is due to
the complex coupling between hydrodynamics and the director field (known as backflow), a feature
that is even more relevant in a CLC where the inherent three-dimensional twisted arrangement of the
director field can give rise to striking effects, such as a significant increase in viscosity when subject to a
shear flow in the direction of its helix (permeation) [23–25]. Recent simulations on colloidal dispersions
in CLC report, for instance, a violation of the Stokes law when a single particle is dragged parallel to
the cholesteric helix [13], or an induced rotation, either continuous or stepwise, when two particles,
forming a dimer, are pulled through the cholesteric phase with a constant force along the helical
axis [26].

Here, we present a preliminary study on the effect that an imposed shear flow has on the
rheology of an inverted cholesteric emulsion, described as a single isotropic (liquid crystal) droplet
(in which molecules are randomly oriented) surrounded by a cholesteric liquid crystal. The study
has been carried out by using a lattice Boltzmann approach [27], a method that solves numerically
the Beris–Edwards equations of cholesteric hydrodynamics [28] coexisting with an isotropic phase
and already tested for an inverted nematic emulsion in the presence of an electric field [29] or a shear
flow [17]. The main strength of the algorithm is that backflow effects are automatically included and the
dynamics of topological defects can be easily tracked. By varying the shear rate and the ratio between
the elastic energy scales of the cholesteric in the bulk and at the droplet interface, we show that the
presence of a liquid droplet strongly reduces the secondary flow usually observed in a pure cholesteric
phase. Such an effect has been found more pronounced when strong perpendicular anchoring is set on
the droplet interface and is also confirmed when the chirality degree of the cholesteric is increased,
even though in this case, the system may temporarily enter the blue phase for high shear rates [30].

The paper is organized as follows. In Section 2, we describe the numerical model of a 2D droplet
of isotropic fluid suspended in a CLC, in particular its equilibrium phase behavior, encoded by a
Landau–de Gennes free energy, and its hydrodynamics, captured by the Beris–Edwards equations of
motion for CLCs coupled to Cahn–Hilliard dynamics. In Section 3, we first discuss the equilibrium
properties of a cholesteric sample and then those of a single droplet of Newtonian fluid dispersed
into it, both in the absence of anchoring and with homeotropic anchoring. We next present the main
results of the paper, namely the effect that a symmetric shear flow has on the droplet-CLC system
when different values of interface anchoring and chirality are considered. Finally, the last section is
dedicated to discussing the results and conclusions.

2. Model and Methods

We consider an isolated droplet of a Newtonian isotropic fluid dispersed in a medium of
cholesteric liquid crystal. This setup is usually referred as inverted cholesteric emulsion [7,17,31] to be
distinguished from a direct emulsion, where a liquid crystal droplet is immersed in an isotropic fluid.
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The hydrodynamics of such a system can be described by using an extended version of the Beris–Edwards
theory [28] for chiral fluids, already adopted in previous works on liquid crystals [32–35]. Here, we briefly
recap the model.

The equilibrium properties are captured by a Landau–de Gennes [1] free-energy functional
F =

∫
V f dV+

∫
S fWdS, where the free-energy density f is given by the sum of the following terms:

f = fb f (φ) + flc(φ, Q) + fint(φ, Q), (1)

while the second contribution fW(Q) is added in the presence of a bounding surface. Here, φ(r, t) is a
scalar order parameter related to the concentration of the cholesteric phase relative to the isotropic
phase, while Q(r, t) is a tensor order parameter that, within the Beris–Edwards theory [28], describes
the cholesteric phase. It is defined as Qαβ = q(n̂αn̂β − 1/3δαβ), where n̂(r, t) is the director field
(Greek subscripts denote Cartesian coordinates) describing the local orientation of the molecules
(in the uniaxial approximation n = −n), and q is the local degree of order, proportional to the largest
eigenvalue of Q (0 ≤ q ≤ 2/3). The first term of Equation (1) describes the bulk properties of the
mixture and is given by:

fb f (φ) =
a
4

φ2(φ− φ0)
2 +

Kb f

2
|∇φ|2, (2)

where a and Kb f are two positive phenomenological constants controlling the interface width ∆ of

the droplet, which, for a binary fluid without liquid crystal, goes as ∆ ∼
√

Kb f /a. Equation (2) is
borrowed from binary fluid mixtures and enables the formation of two phases: the isotropic one (inside
the droplet where φ ' 0) and the cholesteric one (outside the droplet where φ ' φ0), separated by an
interface whose energetic cost is gauged by the gradient term. The second term is the cholesteric liquid
crystal free-energy density given by:

flc(φ, Q) = A0

[
1
2

(
1− ζ(φ)

3

)
Q2

αβ −
ζ(φ)

3 QαβQβγQγα +
ζ(φ)

4 (Q2
αβ)

2
]

+K
2 (∂βQαβ)

2 + K
2 (εαδγ∂δQγβ + 2q0Qαβ)

2.
(3)

The terms multiplied by the positive constant A0 stem from a truncated polynomial expansion up
to the fourth order in Q [1] and describe the bulk properties of a uniaxial nematic liquid crystal with
an isotropic-to-nematic transition at ζ(φ) = ζc = 2.7. Here, ζ plays the role of an effective temperature.
For a nematogen without chirality (q0 = 0), the phase is isotropic if ζ(φ) < ζc = 2.7; otherwise,
it is cholesteric. By following previous studies [17,29,36], we set ζ(φ) = ζ0 + ζsφ, where ζ0 and ζs

control the boundary of the coexistence region. The remaining terms of Equation (3), multiplied by
the constant K, take into account the elastic energy due to the local deformations of the cholesteric
arrangement and enter the free energy through first order gradient contributions, except a gradient-free
term included to have a positive elastic free energy. The parameter q0 = 2π/p0 determines the pitch
length p0 of the cholesteric, and εαδγ is the Levi–Civita antisymmetric tensor. Here, we consider the
“one elastic constant” approximation, an approach usually adopted when investigating liquid crystals
as it considerably simplifies theoretical calculations [1]. The energetic cost due to the anchoring of the
liquid crystal at the droplet interface is included through:

fint(φ, Q) = L(∂αφ)Qαβ(∂βφ), (4)

where the constant L controls the strength of the anchoring. If it is negative, the liquid crystals are
homeotropic (perpendicular) to the interface, whereas if positive, the liquid crystal lies tangentially.
Finally, if confining walls are included, a further term needs to be considered in the free energy
functional. For homeotropic anchoring, which is the case considered here, one has:
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fW(Q) =
1
2

W(Qαβ −Q0
αβ)

2, (5)

where W controls the strength of the anchoring at the walls and Q0
αβ sets the preferred configuration of

the tensor order parameter at the surface.
The thermodynamic state of our mixture is specified by two dimensionless quantities, the reduced

temperature and the reduced chirality, given by:

τlc =
27(1− ζ(φ0)/3)

ζ(φ0)
, (6)

κlc =

√
108Kq2

0
A0ζ(φ0)

. (7)

The former multiplies the quadratic terms of the dimensionless bulk free energy and vanishes at
the spinodal point of a nematic, while the latter multiplies the gradient terms and gauges the amount
of twist accumulated in the system [30]. Such parameters have been used, for instance, in [37,38]
for the numerical calculation of the phase diagram of cholesteric liquid crystals. Note, in particular,
that according to Equation (7), the knowledge of q0 is not sufficient information (except if q0 = 0) to
correctly assess the value of the chirality (hence, the phase of the liquid crystal), as this is also affected
by other thermodynamic parameters (A, K and ζ).

The dynamics of the system is governed by a set of balance equations, the first of which is the
equation of the tensor order parameter Q:

(∂t + u · ∇)Q− S(W, Q) = ΓH, (8)

where u is the velocity of the fluid, and the term on the left-hand side is the material derivative,
describing the rate of change of Q advected by the flow. The derivative includes the tensor S(W, Q)

since the order parameter can be rotated and stretched by local velocity gradients Wαβ = ∂βuα and is
given by:

S(W, Q) = (ξD + Ω)(Q + I/3) + (Q + I/3)(ξD−Ω)− 2ξ(Q + I/3)Tr(QW). (9)

Here, D = (W + WT)/2 and Ω = (W−WT)/2 are the symmetric and antisymmetric parts of the
velocity gradient tensor, Tr denotes the tensorial trace and I is the unit matrix. The constant ξ depends
on the molecular details of the liquid crystal and controls the dynamics of the director field under shear
flow. Indeed, after imposing a homogeneous shear on a nematic liquid crystal, at steady state, the
director will align along the flow gradient at an angle θ fulfilling the relation ξ cos(2θ) = (3q)/(2 + q).
Real solutions are obtained when ξ ≥ 0.6. Throughout our simulations, we have set ξ = 0.6. Finally,
on the right-hand side of Equation (8), Γ is the collective rotational diffusion constant and H is the
molecular field given by:

H = − δF
δQ

+
I
3

Tr
δF
δQ

. (10)

The time evolution of the concentration field φ(r, t) is governed by a convection-diffusion equation:

∂tφ + ∂α(φuα) = ∇
(

M∇ δF
δφ

)
, (11)

where M is the mobility and µ = δF/δφ is the chemical potential, while the force balance is ensured
by the incompressible Navier–Stokes equation,
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∇ · u = 0, (12)

ρ(∂t + uβ∂β)uα = ∂βσtotal
αβ , (13)

where the total stress tensor σtotal
αβ is the sum of four contributions:

σtotal
αβ = −ρT + σvisc

αβ + σlc
αβ + σs

αβ. (14)

The first term ρT is the ideal background pressure, and T is the temperature. The second one is
the viscous stress tensor:

σvisc
αβ = η(∂αuβ + ∂βuα), (15)

where η is the isotropic shear viscosity. The third one is the elastic stress due to the liquid
crystalline order:

σlc
αβ = K

2 (∇Q)2δαβ − ξHαγ

(
Qγβ +

1
3 δγβ

)
− ξ

(
Qαγ + 1

3 δαγ

)
Hγβ

+2ξ
(

Qαβ − 1
3 δαβ

)
QγµHγµ + Qαν Hνβ − HανQνβ,

(16)

and the last term is the interfacial stress between the isotropic and liquid crystal phase:

σs
αβ = −

(
δF
δφ

φ−F
)

δαβ −
δF

δ(∂βφ)
∂αφ− δF

δ(∂βQγµ)
∂αQγµ. (17)

The total isotropic pressure of the system is the sum of the ideal background pressure ρT plus the
isotropic term of Equation (16) (constant in our simulations, except nearby the defects and close to
the droplet interface where it augments) and of Equation (17). Both σlc

αβ and σs
αβ take into account the

non-Newtonian fluid effects. In fact, if Q = 0, they reduce, respectively, to the scalar pressure and to
the interfacial stress of a binary Newtonian fluid mixture.

Equations (8) and (11)–(13) are solved numerically by means of a hybrid lattice Boltzmann
method [36,39], which uses a combination of a standard lattice Boltzmann approach to solve the
Navier–Stokes and the continuity equation and a finite-difference scheme to solve Equations (8) and (11).

All simulations are performed on a quasi-two-dimensional rectangular box of size
Lx = 1× Ly = 300× Lz = 100 in which the cholesteric liquid crystal and the droplet are embedded.
We choose a longer size along the y-direction in order to minimize the interference between periodic
images of the droplet moving with the flow when a shear flow is applied. The droplet, in particular,
is modeled as a circular isotropic (liquid-crystalline) region with radius R = 32 lattice sites, initially
placed at the center of the sample and surrounded by the liquid crystal phase. This quasi-2D setup is
chosen to allow an out-of-plane component of the vector fields along the x-direction that accommodates
the three-dimensional twisted arrangement of the cholesteric and, in the presence of a shear flow,
captures the secondary flow appearing perpendicular to the direction of the shearing, along the
x-direction. The entire system is periodic along the y-direction and is sandwiched between two flat
walls parallel to the xy-plane and lying at z = 0 and z = Lz. The walls can be either at rest or moving
along the y-direction with velocity −uw and uw (with uw > 0) at z = 0 and z = Lz, respectively.
There, we impose neutral wetting conditions (i.e., a · ∇φ = 0, where a is a unit vector perpendicular to
the wall) for the concentration, no-slip conditions (the fluid moves with the same velocity of the walls)
for the fluid velocity and homeotropic conditions (i.e., the director is perpendicular to the walls) for
the liquid crystal order parameter.
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Initial conditions of φ and Q in the bulk are as follows. They are both set to zero inside the droplet,
while outside, φ is fixed to a constant value (φ0 ' 2), and the components of Q are given by:

Qxx = (c0 − c1/2) cos(2q0y) + c1/2, (18)

Qyy = −2c1, (19)

Qxz = −(c0 − c1/2) sin(2q0y), (20)

Qxy = Qyz = 0, (21)

where c0 = 0.546, c1 = 0.272, to accommodate a cholesteric liquid crystal with the helical axis parallel
to the y-direction. Such components stem from assuming that the ground state of the director field is
given by n̂(y) = cos(q0y)ex + sin(q0y)ez, where eα is a unit vector oriented along the Cartesian axis.
The parameter q0 = 2π/p0 controls the number N of π twists that the liquid crystal displays in a cell
of length Ly. Indeed, one can define p0 in terms of the linear size Ly, as p0 = 2Ly/N, to compare the
pitch length with the cell size.

Starting from these initial conditions, the system is first allowed to relax to its equilibrium state,
and afterwards, both walls are sheared along opposite directions at constant speed. Typical parameters
used in our simulations are a = 7× 10−2, Kb f = 0.14, M = 5× 10−2, Γ = 1, A0 = 0.1, K = 0.1,
η = 0.38, L = −0.04 and W = 0.4. Finally, one has to choose the values of τlc and κlc in order to have
the cholesteric phase outside the droplet [37,38]. We set τlc = 0 (i.e., ζ(φ0) = 3) and q0 (which controls
the chirality κlc; see Equation (7)) equal to π/150 or π/75, in order to have N = 2 or N = 4 on a lattice
of linear size Ly = 300. If, for instance, q0 = π/75, one has κlc ' 0.25, well inside the cholesteric phase
according to the phase diagram of [37,38].

In order to map such numerical values to typical physical ones, we consider a droplet of size
1–10 µm immersed in a cholesteric liquid crystal of elastic constant roughly 10 pN and a viscosity
of 1 Poise. This corresponds to a lattice space ∆x = 10−7 m, and the time step is ∆t = 10−8 s
(they are both equal to one in our simulations). Finally, the anchoring coefficient L correspond to
values 10−6Jm−2 [29,40].

3. Results

We investigate the physics of two different systems, one in which the sole cholesteric liquid
crystal is sandwiched between flat walls and the other one in which an isotropic droplet is dispersed
inside it. We initially study their equilibrium properties, in particular when homeotropic anchoring
of the director is set both at the walls and at the droplet interface and for two different values of the
cholesteric pitch. Afterwards, the dynamic response under different shear rates (only in the flow
aligning regime) and interface anchoring are studied.

3.1. Equilibrium Properties

We first consider a CLC initialized in a quasi-two-dimensional rectangular box of size
Ly = 300× Lz = 100 with walls at rest. In Figure 1a,d, we show the equilibrium configurations
of the director field (obtained after t ' 105 time steps, when the free-energy is at its minimum value)
of the cholesteric phase for N = 2 (a) and N = 4 (d) and with strong homeotropic anchoring on
both walls. In both cases, the cholesteric axis lies along the y-direction. One can clearly distinguish
regions where the director displays a local nematic-like order (with orientation almost entirely along
the z-direction, forced by the anchoring at the walls) from regions where it flips in the third direction
(i.e., along the x-axis). Due to the interplay between the orientation of the cholesteric phase near the
walls and the imposed perpendicular anchoring, topological defects emerge. Although in cholesterics,
four different types of defects may occur [36,41,42], here we observe λ±m and τ±m disclination defects
(m is the topological charge, an integer or semi-integer number). While in λ defects, the director field is
continuous (it is the local cholesteric pitch axis, winding around the defect, that is discontinuous) and
flips into the third dimension at the λ line, τ defects are true disclinations as the director drops down at
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the defect core. Note that in Figure 1a,d, those pinned at the walls are τ disclinations (of charge −1/2),
which sustain a λ+1-charge region, where the director field flips into the third dimension. Changing the
chirality also affects their position; indeed, when N = 4, τ disclinations appear closer to the boundaries,
and λ-charge regions are longer and narrower than those observed when N = 2. It important to
stress that, while it is easy to track numerically the location of τ disclination defects (for instance, by
computing the local orientational order at each point), it is more difficult to resolve the correct position
of λ defects, as the radius of their core is usually comparable with the helix pitch p, and only a limited
number of lattice points can be used to calculate its extension. This is why we prefer indicating regions
containing λ defects (either of charge ±1 or couple of charge ±1/2) also as λ-charge regions.

The presence of an isotropic droplet in the center of the cell substantially modifies the equilibrium
configuration of the cholesteric. In the absence (or for very weak values) of interface anchoring and
with N = 2 (Figure 1b), the droplet removes the λ-charge region and the two τ disclinations in the
center of the box, leaving the rest of the cholesteric almost unaltered. If, on the other hand N = 4,
the two τ disclinations in the center of the box survive (as they are closer to the walls), and the λ-charge
region is simply covered by the droplet (Figure 1e). If strong homeotropic anchoring is imposed at
the droplet interface (Figure 1c–f), two fully in-plane topological defects of charge −1/2 emerge on
opposite sides of the droplet and located along the equatorial line. Such strong anchoring importantly
alters the liquid crystal orientation in the surroundings of the droplet, favoring the formation of a
pronounced splay deformation.

A suitable quantity to measure the strength of the interface anchoring relative to the bulk elastic
deformation is the dimensionless number Λ = FintR/ΣK, where Fint =

∫
V fintdV and Σ is the

perimeter of the droplet. For a droplet of size 1-10 µm, Λ usually ranges from 10−2–103. If Λ� 1, the
anchoring is weak, and no large deformations are observed in the surroundings of the droplet (as in
Figure 1b–e, where Λ ' 0), whereas if Λ ∼ 1, the anchoring is considered strong, and large distortions
of the director with topological defects are found (see Figure 1c–f, where Λ ' 2.88).

(a) (d)

(b) (e)

(c) (f)

Figure 1. (a–d) Equilibrium configurations of the director field of a cholesteric liquid crystal in a cell of
size Ly = 300 and Lz = 100 lattice units, for N = 2 (a) and N = 4 (d) π-twists of the helical axis. In both
cases, homeotropic anchoring is set at the walls. A λ+1-charge region is highlighted by a continuous
line in (a). (b–f) Equilibrium configurations of an isotropic droplet surrounded by a cholesteric liquid
crystal. The radius of the droplet is R = 32 lattice units and the cholesteric pitch has N = 2 (b,c) and
N = 4 (e,f) π-twists. While in (b,e) the interface anchoring is L = 0, in (c,f), L = −0.04 to enforce
homeotropic anchoring. The color map represents the largest eigenvalue of the Q tensor and ranges
from zero (black) to '0.33 (yellow). τ disclinations are highlighted by blue-red spots as the scalar order
parameter drops down, while it is approximately constant in the rest of the cholesteric.
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3.2. Cholesteric Liquid Crystal under Shear

By starting from the equilibrated configurations previously described, we now study the rheology
of such systems when a symmetric shear flow is imposed. We move top and bottom walls along
the y-axis with velocity uw (top) and −uw (bottom). This sets a shear rate γ̇ = 2uw/Lz (measured in
∆t−1 in simulation units) and a shear flow along the y-direction. We first consider the homogeneous
case in which no droplets are present. In Figure 2a–c, we show the steady state configurations of the
director field for N = 2 and N = 4 and for a relatively weak shear rate (γ̇ = 6× 10−5, i.e., uw = 0.003).
With respect to the equilibrium state, the cholesteric layers are tilted along the direction imposed
by the shear flow, while τ disclinations, still pinned at the walls, sustain S-shaped λ-charge regions.
The primary flow uy (measured at y = Ly/2) is approximately Newtonian for N = 2, while it
gets weakly sigmoidal N = 4 (Figure 2b), an effect due to the larger resistance to overcome elastic
deformations encountered by the flow when higher values of q0 are considered. Note that, as reported
in [25], a more flattened velocity profile (in which uy is zero almost everywhere along the z-direction)
could be achieved if larger values of Lz and shorter values of Ly are considered. As expected, unlike
the case of a binary fluid mixture without liquid crystal (i.e., when Q = 0), a secondary flow ux

emerges due to the action of the director field on the velocity field along the x-direction (Figure 2d),
stronger in the center of the sample (where it attains its larger value), but smaller than the primary
flow, and zero near the walls. Its negative sign is due to the handedness of the initial configuration of
the liquid crystal. Note that the presence of a secondary flow is a signature of the permeation, i.e., a
significant increase in the viscosity (calculated as ηyz = σtotal

yz /∂zuy [25]) of the cholesteric liquid crystal
observed when it is subject to a flow in the direction of its helix (i.e., perpendicular to the director
field) [1,23,25,43]. Our simulations show, for instance, that, if N = 4, ηyz attains a maximum at ∼ 0.65
for γ̇ = 6× 10−5 (in the center of the sample) and at ∼ 1.4 for γ̇ = 8× 10−5. Such values are higher
than the isotropic viscosity η = 0.38.

(a)

(b)

(c)

(d)

Figure 2. (a–c) Steady-state configurations of the director field for N = 2 (a) and N = 4 (c) observed
when a relatively weak symmetric shear flow (γ̇ = 6× 10−5) is applied. (b–d) Profiles of the velocity
field uy (primary flow) and ux (secondary flow) taken at y = Ly/2 for a binary fluid (Q = 0) (red) and
a cholesteric liquid crystal with N = 2 (green) and N = 4 (blue).

A well-established result of the rheology of liquid crystals is that if the shear rate is increased,
the temperature at which the cholesteric-nematic transition occurs actually diminishes [18,25].
While we confirm this result, we also find that the transition depends on the pitch length, namely N. In
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order to better appreciate it, in Figure 3, we show two dynamic configurations of the director field and
of the corresponding velocity field for N = 4 and γ̇ = 2× 10−4 (uw = 0.01), in a full three-dimensional
box of size Lx = 5, Ly = 300, Lz = 100. While if N = 2 (and for the same shear rate), the cholesteric
is already in the nematic state (not shown), if N = 4, the system exhibits a more complex dynamics,
in which double-twist cylinders (one of them is highlighted with a black dotted square in Figure 3a)
periodically form and get destroyed by the fluid flow. Afterwards, the cholesteric arrangement is
temporarily restored (Figure 3c) and disrupted again. The presence of double twist cylinders indicates
that, within a range of values of the shear rate, the cholesteric-nematic transition is replaced by the
cholesteric-blue phase, one for high values of N (namely for a higher chirality). Interestingly, during
the blue-phase-like regime, topological defects at the walls acquire a positive charge (they are now
actually τ1/2 disclinations, indicated by red cylinders in Figure 3a), while the topological charge of the
λ region (highlighted by a green circle in Figure 3a) switches to −1. The velocity field shows large
vortices in the surroundings of such defects (Figure 3b), while far from them, it has the typical structure
of sheared systems (such as in Figure 3d), i.e., a bidirectional flow, strong near the walls and much
weaker in the middle of the cell.

(a) (c)

(b) (d)

z

yx

yx

z

Figure 3. (a–c) Dynamic configurations of the director field observed when a symmetric shear rate
γ̇ = 2× 10−4 is applied to a cholesteric sample with N = 4 in a 3D system of size Lx = 5, Ly = 300 and
Lz = 100. Here, ta < tc, where ta and tc indicate the simulation times of (a,c), respectively. Red columns
indicate regions where the scalar order parameter drops down and where τ1/2 disclinations form.
The green circle indicates a λ−1-charge region, whereas the black dotted square a double twist cylinder.
In (b,d) the velocity fields corresponding to panels (a,c), respectively, are shown. The color of the
arrows ranges from u = 0.01 (at the walls) to u ' 10−5 in the middle of the cell.

3.3. Isotropic Droplet in the Cholesteric Phase under Shear

We now describe the rheological properties of a system in which an isotropic droplet is included
in the cholesteric phase. We consider low/moderate values of shear rate, comparable to those used for
the cholesteric cell without droplet. This also ensures that the system remains firmly in the cholesteric
phase, and finite size effects due to periodic boundary conditions and artificial interactions between
droplet mirror images should also be minimized. Two dimensionless numbers useful to quantify the
effects of the shear flow on the droplet are the capillary number Ca and the deformation parameter D.
The former is defined as Ca = Rγ̇ηΣ

FKb f
(where FKb f =

∫
V dV(Kb f /2)|∇φ|2) and measures the strength of

viscous forces relative to the surface tension mediated by the constant Kb f , while the latter is defined
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as D = a−b
a+b [44] (where a and b are the major and the minor axis of an elliptical droplet) and quantifies

the droplet deformation under shear. If low or moderate shear flows are considered, Ca is expected to
be ∼0.01, while D between zero (no deformation) and 0.1 (weak/moderate deformation).

We first consider the case with N = 2. In Figure 4a–d, we show two configurations of the director
field for Λ ∼ 0 (a) and Λ ∼ 1 (d) under shear flow with γ̇ = 6× 10−5 (uw = 0.003). The starting
equilibrium states are those shown in Figure 1b,c, respectively. While if Λ ∼ 0, the director field in the
bulk of the cell is almost everywhere tilted along the direction imposed by the shear flow (except where
it flips in the x-direction), with Λ ∼ 1, this occurs only far from the droplet as the two defects near
the droplet interface foster the formation of large splay distortions. Note that such defects, although
still on opposite sides of the droplet as in Figure 1c, have been dragged by the fluid flow around the
interface in a clockwise direction. While in this case, the droplet has slightly moved from its initial
position rightwards and then has gotten stuck in the steady state with ycm not changing, if Λ ∼ 0, it
has acquired a persistent unidirectional motion rightwards for the lower shear rate (see Figure 4b,
where the y-position of the center of mass of the droplet is plotted). When increasing the shear rate,
ycm reaches a steady value. This unidirectional motion occurs as the center of mass of the droplet shifts
slightly upwards with respect to its initial position z = Lz/2, enough to move the droplet where the
flow (in the upper part of the lattice) can drag it rightwards. The symmetric case, in which the droplet
is dragged leftwards, would occur if its barycenter were shifted downwards. The deformation D
(see Figure 4e) is only weakly affected by the value of Λ, while the droplet becomes more elliptical
when increasing the shear rate. More important, instead, is the effect that the inclusion of a droplet
has on the fluid flow profile. Unlike the case of the pure cholesteric cell, here the primary flow (uy)
flattens at zero at the center of the sample with an effective shear rate smaller than the imposed one,
and the secondary flow (ux) is almost one order of magnitude lower than that of the cholesteric cell.
However, while it increases by augmenting Ca if Λ ∼ 0, it is strongly reduced if Λ ∼ 1. The former
occurs as, despite an increase in the shear rate, the liquid crystal is still firmly in the cholesteric phase
where the secondary flow is expected to be relevant. The latter instead is due to the strong anchoring
of the director at the droplet interface and at the walls, a constraint that forces the director to remain
fully in the two-dimensional yz-plane.

We now briefly turn to discuss the physics observed when N = 4. While for a low/moderate
shear rate, the droplet undergoes weak deformations, overall analogous to those shown for N = 2,
for higher values, it is generally more difficult to achieve a stationary state, as the large number of
topological defects favors the formation of intense flows, which significantly affect the liquid crystal
orientation (through the backflow effect). Despite this limitation, it is interesting to track the secondary
flow by varying the shear rate (even out of the cholesteric phase) and the interface anchoring strength
in order to assess how the rheological response is affected by the chirality. In Figure 5, we show
the secondary flow profiles taken at three different positions (namely at y = Ly/4, Ly/2 and 3Ly/4)
at late times, to give a uniform view of the behavior even in regions where the droplet is absent.
As long as Λ and Ca are relatively weak (Λ ∼ 0, Ca ∼ 0.016), ux attains values comparable to those
observed in a sample of cholesteric and almost one order of magnitude higher than those obtained for
N = 2, suggesting that increasing the chirality essentially favors a non-Newtonian response of the
fluid. In these cases, the droplet achieves a stationary value for ycm (without any appreciable motion)
with a deformation overall comparable to that seen for N = 2. Interestingly though, increasing both
the shear rate and interface anchoring strength leads to a drastic reduction of the secondary flow as,
on the one hand, the cholesteric order is gradually destroyed in favor of a nematic-like one (where
there is no secondary flow) and, on the other hand, the strong interface anchoring impedes the director
field to acquire an out-of-plane component (as seen when N = 2).
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. (a–d) Two late-time configurations of the director field and of the largest eigenvalue of Q
observed when a symmetric shear rate γ̇ = 6× 10−5 (uw = 0.003, Ca ∼ 0.016) is applied to a cholesteric
sample with N = 2 for Λ ∼ 0 (a) and Λ ∼ 1 (d). Red spots indicate the position of topological defects.
Those near the walls are τ−1/2 disclinations, while the ones close to the droplet interface are in-plane
defects of topological charge −1/2. In (b,d) the y-coordinate of the center of mass of the droplet
and the deformation parameter D are shown for different values of Λ and shear rates γ̇ = 6× 10−5

(Ca ∼ 0.016) and γ̇ = 10−4 (Ca ∼ 0.026). Finally in (c,f) the primary flow (uy) and the secondary flow
(ux), measured at y = Ly/2, are shown for the same values of Λ and shear rate at late times.

(a) (b) (c)

Figure 5. Secondary flow (ux) measured at y = Ly/4 (a), Ly/2 (b) and 3/4Ly (c) for two values
of interface anchoring strength (Λ ∼ 0 and ∼ 1) and for Ca = 0.016, 0.026 and 0.05 when N = 4.
While |ux| is high for Λ ∼ 0 and for low values of Ca, it diminishes by increasing the shear rate, and it
is almost absent for strong interface anchoring.
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4. Conclusions

To summarize, we have studied, by numerical simulations, the rheological response of an inverted
cholesteric droplet sandwiched between two planar walls under a symmetric shear flow. We have
shown that the dynamics is affected by the shear rate, the strength of the interface anchoring and
the chirality of the cholesteric. In particular, the presence of a relatively intense secondary flow
(emerging out of the plane of the cholesteric) suggests that the system is essentially non-Newtonian,
an effect generally weakened if an isotropic droplet is included and further reduced if strong interface
anchoring is imposed.

If the droplet is absent, a moderate shear flow drives the sample towards a steady state in
which the director field is almost everywhere tilted along the direction imposed by the shear itself,
except in regions where the S-like λ-charge region is sustained by τ disclinations pinned at the walls.
Importantly, increasing the chirality favors a non-Newtonian response of the cholesteric witnessed by
a sustained secondary flow. On the other hand, augmenting the shear-rate determines a decrease of the
transition temperature, which leads the system to either the nematic state or, if the chirality is higher,
to a blue-phase-like state. The dynamics is significantly different if an isotropic droplet is embedded in
the sample. If the interface anchoring is weak, we generally find a reduction of the secondary flow
with respect to the droplet-free cholesteric sample, an effect even more pronounced if the interface
anchoring is strong. We ascribe the latter effect to the resistance encountered by the flow to overcome a
larger elastic deformation of the director field, in particular near the droplet interface where two fully
in-plane topological defects form. These results are overall confirmed when the chirality is increased,
although here an intense secondary flow, comparable to that observed in the droplet-free sample,
is found for the low shear-rate and weak anchoring. This highlights the fact that the rheological
response displayed by an inverted cholesteric droplet has a complex landscape where a key role is
played by at least three quantities: shear rate, elasticity and chirality.

Our results represent a first step in the study of the rheology of an inverted cholesteric droplet
and is of possible interest for designing CLC-based devices built from an emulsion. This opens up
several directions for future research. It would be worth investigating the case in which tangential
anchoring is considered (both at the droplet interface and at the walls) in a cholesteric sample whose
axis is perpendicular to the walls. Besides yielding to the formation of different topological defects
(such as a twisted Saturn ring in 3D), such a configuration is expected to display a rich dynamical
behavior like that observed with homeotropic interface anchoring, which strongly depend on the
cholesteric pitch (or the chirality). This can pave the way to extend the study to include several
droplets, either in a monodisperse setup or in the more intriguing polydisperse one where different
droplet interface anchoring sets may be considered. One can envisage, for instance, the design of a
new soft material made of highly-packed isotropic droplets, the resistance to deformation of which
could be sustained by the liquid crystal dispersed in between. Finally, although three-dimensional
simulations can be computationally demanding, it would be surely of great interest to investigate the
physics of more realistic systems in order, for instance, to minimize finite size effects. However, we
note that quasi-two-dimensional liquid crystal devices could be experimentally realized, such as that
described in [45], where a smectic-C film surrounding droplets, obtained by nucleation, is proposed.
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