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Abstract: We numerically and analytically study the flow and nematic order parameter profiles in a
microfluidic channel, within the Beris–Edwards theory for nematodynamics, with two different types
of boundary conditions—strong anchoring/Dirichlet conditions and mixed boundary conditions for
the nematic order parameter. We primarily study the effects of the pressure gradient, the effects of
the material constants and viscosities modelled by a parameter L2 and the nematic elastic constant L∗,
along with the effects of the choice of the boundary condition. We study continuous and discontinuous
solution profiles for the nematic director and these discontinuous solutions have a domain wall
structure, with a layered structure that offers new possibilities. Our main results concern the onset of
flow reversal as a function of L∗ and L2, including the identification of certain parameter regimes with
zero net flow rate. These results are of value in tuning microfluidic geometries, boundary conditions
and choosing liquid crystalline materials for desired flow properties.

Keywords: nematic liquid crystal; Beris–Edwards; flow hydrodynamics; asymptotic analysis

1. Introduction

Nematic liquid crystals are classical examples of partially ordered complex liquids for which
the constituent molecules have translational freedom but exhibit a degree of long-range orientational
ordering or certain preferred directions of averaged molecular alignment, that vary in space and
time [1]. The nematic hydrodynamics is particularly rich because of the intrinsic coupling between
fluid motion and nematic molecular orientations i.e., the fluid motion influences the nematic
orientational ordering and equally, the inhomogeneities in the orientational ordering have a kick-back
effect on the fluid flow, a phenomenon known as “backflow” [2]. Backflow has no counterpart in
conventional isotropic Newtonian fluids. Consequently, nematics can offer unusual mechanical and
rheological properties compared to their Newtonian counterparts, such as complex wetting transitions,
surface effects and stable topological defects. Backflow is of fundamental scientific interest and equally,
has practical consequences on switching rates of liquid crystal display devices and their refresh
times [3,4].

There are two popular hydrodynamic theories for nematic liquid crystals in the literature—the
Ericksen–Leslie theory [5,6] and the Beris–Edwards model [7]. In the Ericksen–Leslie framework,
we have two variables—the flow field and the nematic director, which is interpreted as the direction of
preferred averaged molecular alignment in space. The typical mathematical framework comprises
the incompressibility constraint and evolution equations for the flow field and the nematic director.
The evolution equations for the flow field and the nematic director are intrinsically coupled with new
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anisotropic stresses, compared to the isotropic Newtonian counterpart, and the solution landscapes
depend on flow parameters (such as the pressure gradient) and nematic parameters (nematic material
constants, temperature, boundary conditions for the nematic director and nematic viscosities) [8].
The Ericksen–Leslie theory for nematodynamics is based on the premise that the nematic is purely
uniaxial, with one single distinguished direction of orientational ordering, referred to as “director”,
with a constant degree of orientational order. As said before, the director is interpreted as the
single preferred direction of molecular alignment in the sense that all directions perpendicular to
the director are physically equivalent. Hence, the Ericksen–Leslie theory is hugely successful for
modelling situations that are expected to have a uniform degree of nematic ordering; this usually
holds for defect-free situations or for certain choices of material constants that promote perfect
nematic ordering such as the vanishing elastic constant limit of the Landau-de Gennes theory studied
in [9]. However, the Ericksen–Leslie theory cannot capture sharp variations in the degree of nematic
ordering, complicated topological defects and biaxiality, for which there is a primary and secondary
direction of preferred molecular alignment, since the Ericksen–Leslie theory only has two dependent
variables. The Beris–Edwards theory is more general than the Ericksen–Leslie since it employs the
Landau-de Gennes Q-tensor order parameter to describe the nematic orientational ordering. The
Landau-de Gennes Q-tensor order parameter is a symmetric, traceless 3× 3 matrix that contains
information about the preferred directions of nematic molecular alignment and the degree of ordering
about these directions within its eigenvectors and eigenvalues respectively [9–11]. The Landau-de
Gennes Q-tensor can capture both uniaxial and biaxial states, along with variable orientational order
and is hence better suited to capture finer structural details and topological defects. The evolution
equations for the flow field and the Q-tensor are again coupled through “coupling stresses”. A detailed
discussion of the Beris–Edwards model and its connections to closely related models can be found in
the literature [12–14].

We work in a reduced Beris–Edwards framework to model a microfluidic channel, with an
applied pressure gradient to induce fluid flow, and different types of boundary conditions for a
reduced Q-tensor on the channel walls with the usual no-slip boundary conditions for the flow field.
We use a reduced Q-tensor, which only has two degrees of freedom, in contrast to the usual five
degrees of freedom in a three-dimensional approach. This reduced approach has been successfully
used for severely confined systems elsewhere [15,16] and can be related to the usual Landau-de
Gennes Q-tensor explicitly [17]. In particular, we model the microfluidic channel as a two-dimensional
domain and this reduced approach is successful in capturing the in-plane system characteristics.
The two degrees of freedom of the reduced Q-tensor are an angle θ that describes the preferred
in-plane alignment of the nematic molecules or the direction of the nematic director n in the plane,
and a scalar order parameter s, that is a measure of the degree of orientational order about the
director n. We note that the Ericksen–Leslie framework does not include the order parameter s.
The Beris–Edwards system can be recast as a coupled system for s, θ and the flow field parameterised
by u (since we assume unidirectional channel flow). We study the effects of certain key variables on
the long-time or equilibrium profiles for s, θ and u. Namely, we look at the effects of the pressure
gradient px, the nematic elastic constant, the nematic material constants and viscosities (modelled
by L2) and the anchoring conditions for θ (modelled by either the winding number ω or the surface
anchoring coefficient B). For small L2, the evolution equation for the flow field effectively reduces
to the Navier–Stokes equation and we recover the usual Poiseuille flow. However, the flow field
does influence the θ profiles in this regime and we carry out some explicit analysis to compute the s
and θ profiles in this limit, for both small and large L∗. The analysis captures both continuous and
discontinuous solution profiles for θ; the discontinuous profiles are featured by domain walls with
layered structures such that θ jumps abruptly across an interface. Again, the discontinuous solutions
cannot be captured by the Ericksen–Leslie approach. The discontinuous solutions are the analogue of
the well studied “order-reconstruction” solutions [18], with the novel feature of flow effects. For small
px, the flow is negligible as expected. The most interesting regime is when px and L2 are of comparable
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magnitude and there is two-way coupling between the flow and nematic order, where the effects
of backflow are most pronounced. We expect the asymptotic analysis in this paper to be useful for
subsequent detailed analysis of the Beris–Edwards system in this interesting regime.

There is a large body of existing literature on the Ericksen–Leslie theory and the Beris–Edwards
theory. For example, an extensive review of existence and regularity results in the Ericksen–Leslie
framework can be found in [19]. In [20], the authors use perturbation methods in the Ericksen–Leslie
framework to study the effects of backflow on defect dynamics. In parallel, there are several papers
that focus on the role of backflow in the hydrodynamics of defects, in the Beris–Edwards framework,
see for example [12,21,22]. In recent years, there are rigorous existence and regularity results for the
Beris–Edwards framework too [11,14,23] and numerical simulations for microfluidic set-ups in [24,25].
The various dynamical theories of nematic liquid crystals and the key results are surveyed in [26] and
in [27]; the authors rigorously derive the Ericksen–Leslie equations from the Beris–Edwards model.
In [28], the authors use a lattice-Boltzmann algorithm to study nematodynamics in a microfluidic
channel, in the Beris–Edwards framework, with both Dirichlet and mixed boundary conditions on the
channel walls. The emphasis is on the flow rate as a function of the applied pressure gradient and the
qualitative effects of the boundary conditions on the director profiles. Our setting is similar but not the
same as in [28]. For example, our Dirichlet conditions are inhomogeneous i.e., different fixed boundary
conditions on the two bounding surfaces, whereas the authors employ the same Dirichlet condition on
both surfaces in [28]. A large part of the elegant asymptotics in [28] is carried out in the L∗ → 0 limit,
for which we expect a uniform degree of nematic order or s ≈ 1 almost everywhere. This limit cannot
capture the discontinuous solutions for θ described above. Importantly, our emphasis is on “flow
reversal" as a function of the pressure gradient, the material and temperature-dependent parameter L2

and the re-scaled elastic constant L∗ and this is not addressed in [28]. In fact, flow reversal or flow in
the direction of increasing pressure gradient is a distinct manifestation of backflow, only observable
for L2 large enough; this warrants further study in the future.

Our main findings can be summarised as follows.

(a) We compute a phase plane in terms of L∗ and L2, for a fixed px, which demarcates regions of
fluid flow in the direction of decreasing pressure from regions of fluid flow in the direction of
increasing pressure and this flow reversal is a clear manifestation of backflow.

(b) We compute the total flow rates in different parameter regimes. In particular, we show that
backflow can be attained for a window of values of L∗ i.e., L∗crit,1 < L∗ < L∗crit,2 and these critical
values depend on px, L2, the boundary conditions and other material parameters.

(c) We study two different kinds of boundary conditions for θ—Dirichlet and mixed boundary
conditions. The mixed boundary conditions are phrased in terms of an anchoring coefficient B
on the bottom surface and accompanied by a Dirichlet condition on the top surface. The mixed
boundary conditions offer greater scope for tuning the solution landscape.

(d) We perform some investigations on how we can choose a suitable initial condition to attain the
discontinuous solution for θ at long times, and this may be useful for studying multistability in
such model settings.

The paper is organised as follows. In Section 2, we present the governing equations, the boundary
conditions and the initial conditions. In Section 3, we present our results on the effects of px, L2,
ω and L∗. In Section 4, we perform the explicit analysis in the small L2 limit and in Section 5, we give
some conclusions.

2. Theory

We study spatio-temporal pattern formation in a long microfluidic channel

Ω =
{
(x, y) ∈ R2;−H < x < H;−L < y < L

}
(1)
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where L/H � 1, filled with nematic liquid crystals under the action of a pressure gradient applied
at the end x = −H in the x direction. This pressure gradient naturally induces a fluid flow and we
assume a unidirectional channel flow in the x-direction. There are two main macroscopic variables of
interest: the flow field u = (u (x, y, t) , 0, 0), where t is time, and the nematic order parameter, which is
a measure of the nematic ordering. We work in a reduced two-dimensional Landau-de Gennes
framework, similar to the setting in [15,16] for which the nematic order parameter q is a symmetric,
traceless 2× 2 matrix, with two degrees of freedom. Equivalently, we can write q = s (n

⊗
n− I/2)

where I is the 2D identity matrix, with s =
√

2 |q| being the scalar order parameter and n = (cos θ, sin θ)

being the two-dimensional director. The general Landau-de Gennes nematic order parameter, Q, is a
symmetric, traceless 3× 3 matrix with five degrees of freedom but for severely confined systems,
where the vertical z-dimension is much smaller than the lateral dimensions; it is reasonable to assume
that structural details are independent of the z-coordinate and we can relate the reduced tensor, q in
this paper to the full Landau-de Gennes Q tensor as has been done in [17]. A reduced approach,
such as the one employed in this paper and others, is analytically and computationally more efficient
and is a physically relevant approach for severely confined systems.

We work within the standard and powerful Beris–Edwards theoretical framework for
nematodynamics [24]. There are three governing equations: the incompressibility constraint, an evolution
equation for the flow field, which is essentially the Navier–Stokes equation with an additional stress (σ)
due to the nematic ordering and an evolution equation for q, which has an additional stress induced by
the fluid vorticity. The governing partial differential equations are given below.

∇ · u = 0, ρ
Du
Dt

= −∇p +∇ ·
[
µ
(
∇u + (∇u)′

)
+ σ

]
, (2)

where D
Dt = ∂

∂t + u · ∇ is the material derivative, ρ and µ are the density and viscosity of the fluid
medium, p is the hydrodynamic pressure, u is the fluid velocity, and prime ′ denotes the transpose.
The nematic stress (σ) is [9,24,29]

σ = qh− hq, and h = κ∇2q + aq− c | q |2 q, (3)

where s =
√

2|q| is the scalar order parameter, h is the molecular field, κ is the nematic elastic
constant and a and c are parameters related to the temperature and material properties. We work
with temperatures below the nematic–isotropic transition temperature and hence we take a > 0.
The evolution equation for the q tensor is given by [11,29]

Dq
Dt

= qξ − ξq +
1
γ

h, (4)

where γ is the rotational diffusion constant [10,21] and ξ is the anti-symmetric part of the velocity gradient
tensor. We can also identify q with a two-dimensional vector: q = (q11, q22) where q11 = s

2 cos 2θ;
q12 = s

2 sin 2θ.
We assume that all quantities of interest only depend on y i.e., we work in a reduced

one-dimensional setting, which is a physically relevant setting for very long channels with small
height. Equations (2) and (4) can be recast in terms of the order parameter (s) and the director angle (θ)
in one spatial dimension as

∂s
∂t
− κ

γ
syy = −4κs

γ
θ2

y −
s
γ

( c
2

s2 − a
)

, (5)

∂θ

∂t
− κ

γ
θyy = −uy +

2κ

sγ

(
syθy

)
, (6)

ρ
∂u
∂t
− µuyy = −px + κ

(
s2θy

)
yy

. (7)
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Using the following scalings,

y = Lỹ, t =
γL2

κ
t̃, s = s̃

√
2a
c

, u =
κ

γL
ũ, px =

µκ

γL3 p̃x, (8)

Equations (5)–(7) can be non-dimensionalised as

s̃t̃ − s̃ỹỹ = −4s̃θ2
ỹ −

s̃
L∗
(

s̃2 − 1
)

, (9)

θt̃ − θỹỹ = −ũỹ +
2
s̃

s̃ỹθỹ, (10)

L1ũt̃ − ũỹỹ = − p̃x + L2

(
s̃2θỹ

)
ỹỹ

, (11)

where

L∗ =
κ

aL2 , L1 =
ρκ

µγ
, L2 =

2aγ

cµ
, (12)

and L is the half-height of the channel. Physically, L∗ is the scaled elastic constant. The parameter
L1 = Re/Er∗ where Re is the Reynolds number and Er∗ = u0Lγ/κ is analogous to the Ericksen number
(Er = u0Lµ/κ) in terms of the rotational diffusion constant, γ, rather than the viscosity µ. It can also
be interpreted as the ratio of the inertial to rotational forces. The parameter L2 = (2a/c) (Er∗/Er)
is the product of ratio of the temperature and material constants and the ratio of the rotational to
momentum diffusion.

The boundary conditions for s̃ and ũ are

s̃(−1, t̃) = s̃ (1, t̃) = 1, (13)

ũ (−1, t̃) = ũ (1, t̃) = 0. (14)

This simply means that we assume the nematic molecules are perfectly ordered at ỹ = ±1 and we
impose the typical no-slip boundary conditions on ỹ = ±1. For the nematic director, we look at two
different cases: (i) symmetric Dirichlet conditions for θ on ỹ = ±1 consistent with strong anchoring
and in the spirit of [8], (ii) a Neumann-type boundary condition modelling weak anchoring on ỹ = −1
accompanied by a Dirichlet condition on y = 1 as shown below.

Symmetric: θ (−1, t̃) = −ωπ and θ (1, t̃) = ωπ, (15)

Asymmetric: Bθỹ (−1, t̃)− sin [2θ (−1, t̃)] = 0 and θ (1, t̃) = ωπ, (16)

where

ω =
θ(1, t̃)− θ(−1, t̃)

2π
(17)

is the winding number and B is a rescaled anchoring strength (see Figure 1 for a sketch of these
configurations). It is worth pointing out that positive B models tangential or planar boundary
conditions on the bottom substrate i.e., it originates from a surface energy of the form

∫
A sin2 θ

that is minimised by either θ = 0 or θ = π, for a positive anchoring coefficient A that measures the
strength of the anchoring and we integrate over the surface ỹ = −1. The initial conditions for the
system above Equations (9)–(11) are given by
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s̃ (ỹ, 0) = 1, (18)

θ (ỹ, 0) =
1
2
(ỹ− 1) [ωπ − θ(−1, 0)] + ωπ, (19)

ũ (ỹ, 0) = − p̃x

2

(
1− ỹ2

)
, (20)

where θ (−1, 0) is the root of the equation Bθ (−1, 0)− sin [2θ (−1, 0)] = 0 for the asymmetric case.

Fluid flow

ỹ−1 +1

(a)

Fluid flow

ỹ−1 +1

(b)

Figure 1. Schematic of the director orientation in equilibrium when applying (a) symmetric anchoring
conditions Equation (15) and (b) asymmetric anchoring conditions Equation (16).

We will often make comparisons between situations with no flow to situations with fluid flow.
In the no-flow case, we simply set ũ(ỹ, t̃) = 0 in Equations (9) and (10) and analyse the resulting system

s̃t̃ − s̃ỹỹ = −4s̃θ2
ỹ −

s̃
L∗
(

s̃2 − 1
)

, (21)

θt̃ − θỹỹ =
2
s̃

s̃ỹθỹ, (22)

with the same boundary (Equations (13), (15) and (16)) and initial conditions (Equations (18) and (19)).

3. Results

The numerical computations are carried out using the finite-element-based commercial package
COMSOL v5.2 [30]. Recent numerical work shows that the system (9)–(11) subject to the boundary
conditions (13), (14) and either (15) or (16) along with initial conditions (18)–(20) has multiple solutions,
which can be interpreted as multiple steady-state solutions or locally stable states for the long-time
dynamics. Hence, our numerical results are not exhaustive but serve to illustrate interesting solutions
that can be attained under certain model situations, particularly with reference to flow-reversal
solutions for the velocity profiles.

3.1. Comparison of the Flow and No–Flow Situation

We neglect time dependence or transient dynamics in this section and focus on the long-time
equilibrium profiles of s̃, ũ and θ in this section. We fix the parameters L∗ = 10−3 and L1 = 10−6, which
are physically relevant values from the typical values of material constants reported in the literature and
investigate the effects of the parameters, p̃x and L2 on the solution profiles for Equations (9)–(11) [9,24].
The results are presented in Figures 2 and 3 where we plot the no-flow profiles for s̃ and θ for
reference and then compare these profiles to the distorted profiles with a non-zero pressure gradient
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p̃x. In Figure 2, we study the effect of the ratio p̃x/L2 on the spatial profiles of s̃, ũ and θ with the
symmetric Dirichlet boundary conditions, (Equation (15)). Here, the solution profiles are symmetric
around ỹ = 0 due to the imposed symmetry of the boundary conditions. For L2/| p̃x| � 1, it is
relatively straightforward to see that the flow profile is simply the parabolic Poiseuille form. We
confirm this observation in Section 4, where we determine the precise form of ũ, along with s̃ and θ,
via a systematic asymptotic analysis of the set-up in the limit L2/| p̃x| � 1. For very small values of
p̃x, the flow is weak as expected. In Figure 3, we do the same for asymmetric boundary conditions
(Equation (16)). Naturally, the profiles of θ are not symmetric around ỹ = 0 in this case. The asymmetric
behaviour in θ is weak, but more pronounced for larger values of L2. The profiles of s̃ and ũ are largely
unaffected by the asymmetric boundary conditions for θ, at least for the parameter values employed in
this section.

ỹ

θ/
ω

π

(a)

ỹ

s̃

(b)

ỹ

ũ

(c)

Figure 2. The effect of the fluid flow on (a) the director orientation (θ), (b) the order parameter (s̃),
and (c) the velocity (ũ), at equilibrium, for the case of symmetric boundary condition (Equation (15)).
The values of the parameters used are ω = 1/2, L∗ = 10−3 and L1 = 10−6. (Here, and elsewhere, we
plot the profiles at t̃ = 10, after which time we find the solutions have relaxed to a steady state from the
initial configuration, Equations (18)–(20).) Analytic solutions are given in Sections 4 and 4.1.

ỹ

θ/
ω

π

(a)

ỹ

s̃

(b)

ỹ

ũ

(c)

Figure 3. The effect of the fluid flow on (a) the director orientation (θ), (b) the order parameter (s̃), and
(c) the velocity ũ, at equilibrium (t̃ = 10), for the case of asymmetric boundary condition (Equation (16)).
The values of the parameters used are B = 1/3, ω = 1/2, L∗ = 10−3 and L1 = 10−6.

Further, we can also compute the total fluid flow rate

∫ 1

−1
ũ dỹ, (23)

as well as the wall shear stress,

τ̃w =

[
∂ũ
∂ỹ

]
ỹ=−1

, (24)
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which is related to the skin friction coefficient, Cs, by

Cs =
2τw

ρu2
0
=

2τ̃w

L1Er∗2
. (25)

The skin friction coefficient represents the friction drag exerted by the wall, which resists the
fluid movement.

In Figure 4, we plot the total volumetric flow rate as a function of L2 for two different values of
p̃x = ±1, Dirichlet conditions on ỹ = ±1 and two different values of B. The results suggest that, for
L2 ≥ 1, the net flow rate is greater for p̃x = −1 compared to p̃x = 1. This is the richest regime where
both the pressure gradient and the liquid crystal parameter L2 influence fluid flow and it would be
interesting to investigate how px and L2 couple together in fluid flow profiles. Moreover, the effect of
the wall-alignment constant B on the flow properties can be inferred from Figure 4. This suggests that
by altering the wall-anchoring properties (manifested through B) one can manipulate the flow rate
and the skin-friction losses. For example, positive B corresponds to preferred tangential anchoring
on ỹ = −1 and negative B indicates preferred normal/homeotropic boundary conditions on ỹ = −1.
Since θ = π

2 on ỹ = 1 (ω = 1
2 ), we have homeotropic boundary conditions on ỹ = 1. These results

suggest that the net flow rate and the wall shear stress are enhanced by Dirichlet conditions or mixed
tangential conditions on ỹ = −1 along with normal boundary conditions on ỹ = 1. We emphasise that
the wall shear stress τ̃w is computed on ỹ = −1 where the mixed boundary condition is imposed and
the other boundary wall will have a different magnitude (or even direction) of τ̃w associated with it.

L2

∫ 1 −1ũ
d

ỹ
/ ∫

1 −
1

ũ∣ ∣ L 2
=

0
d

ỹ

(a)

L2

τ̃ w

(b)

Figure 4. Plot of (a) the total volumetric flow rate and (b) the wall shear stress (which relates to the skin
friction coefficient through Equation (25)) as a function of L2 for different values of the constant B in the
symmetric (Dirichlet) case, Equation (15), and the asymmetric case, Equation (16), for θ. The total flow
rate is scaled with the equivalent Poiseuille flow rate for a Newtonian fluid,

∫ 1
−1 ũ|L2=0 dỹ = −2p̃x/3.

The solid and the dotted lines correspond to the negative and positive values of p̃x respectively.
The values of the parameters used are | p̃x| = 1, ω = 1/2, L∗ = 10−3 and L1 = 10−6 � 1.

A phase-space plot of the parameters that correspond to net zero flow rate is shown in Figure 5,
also demonstrating the effect of the wall anchoring conditions. For illustrative purposes, we take
p̃x = 1. The combination of parameters in the region below the curves in Figure 5 corresponds to fluid
flow in the direction of decreasing hydrodynamic pressure, while the region above the curves is in
the direction of increasing hydrodynamic pressure, which is a manifestation of backflow. A similar
situation, in which a net zero fluid flow rate can be observed, is in electro-osmotic flows, for a critical
electrical field strength that exactly balances the hydrodynamic driving pressure [31]. The results in
Figure 5 provide quantitative estimates for the onset of flow reversal for a specific choice of parameters.
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A more exhaustive study on these lines can predict the onset of flow reversal for experimentally
relevant or applications-oriented modelling scenarios and flow reversal or tunable flow directions offer
new possibilities for topological defects and transport phenomena in microfluidic channels. We do not
explore this further in this manuscript.

L2

L∗

Flow in the direction of
decreasing hydrodynamic
pressure

Backflow

Figure 5. Phase space plot of the parameters (L∗ and L2) for no overall mass flow rate. Here p̃x > 0.
The curve (solid) corresponding to B = 1/3 is for the asymmetric boundary condition (Equation (16)).
The dotted curve is for the case of the symmetric (Dirichlet) boundary condition (Equation (15)).
The values of the parameters used are p̃x = 1, ω = 1/2 and L1 = 10−6.

3.2. Effect of the Winding Number ω

The impact of the winding number ω on the long-time profiles for the symmetric (Equation (15))
and asymmetric case (using Equation (16)) respectively, are shown in Figures 6 and 7 for L∗ = 10−3.
As ω increases, the energetic penalties for distortions in θ increases (this can be seen by re-scaling
θ = ωθ̃ in Equation (9)), so the long-time θ-profiles become more linear as ω increases. The gradient
θỹ is usually maximum in magnitude at ỹ = 0 and consequently, s̃ is a minimum at ỹ = 0 since the
energetic penalty is proportional to s̃2. Further, the minimum value of s̃ decreases as ω increases,
again for similar reasons in the sense that the order decreases to compensate for more distortion in the
θ profiles. It is interesting that the total flow rate decreases as ω increases since the flow meets greater
resistance from the increasingly distorted θ profiles. It seems difficult to extract this behaviour from a
simple analysis of the governing partial differential equations.

ỹ

θ/
ω

π

(a)

@
@@R

Increasing ω

ỹ

s̃

(b)
�
�
�
�
�
��

Increasing ω

ỹ

ũ

(c)

�
�
�
�
��

Increasing ω

Figure 6. The effect of the winding number ω on (a) the director orientation (θ), (b) the order parameter
(s̃) and (c) the velocity (ũ), at equilibrium (t̃ = 10). In this case, we have considered the symmetric
boundary condition in θ (Equation (15)). The values of the parameters used are L∗ = 10−3, p̃x = −10,
L2 = 1, and L1 = 10−6. The legends of all the sub-figures are the same as in (a).



Fluids 2018, 3, 39 10 of 17

ỹ

θ/
ω

π

(a)

@
@@R

Increasing ω

ỹ

s̃

(b)
�
�
�
�
�
��

Increasing ω

ỹ

ũ

(c)

�
�
�
���

Increasing ω

Figure 7. The effect of the winding number ω on (a) the director orientation (θ), (b) the order parameter
(s̃) and (c) the velocity (ũ), at equilibrium (t̃ = 10). In this case, we have considered the asymmetric
boundary condition in θ (Equation (16)). The values of the parameters used are B = 1/3, L∗ = 10−3,
p̃x = −10, L2 = 1, and L1 = 10−6. The legends of all the sub-figures are the same as in (a).

3.3. Effect of the Parameter L∗

The regime of small L∗ is well understood in the no-flow case. Here, s̃ is approximately unity
everywhere and θ is linear with Dirichlet boundary conditions without flow. When a pressure gradient
is imposed, one can perform heuristic calculations to predict that the flow profile is approximately
parabolic for small L2, as in Figures 8c and 9c. (See Section 4 for a more detailed analysis). In the case
of symmetric Dirichlet boundary conditions, as L∗ becomes larger, θ becomes approximately constant
everywhere except for a jump at ỹ = 0 to enable the boundary conditions to be satisfied. This can be
seen from Equation (9) that as L∗ increases, θỹ tends to zero almost everywhere and there is reduced
energetic penalty associated with deviations from s̃ = 1. In fact, s̃ = 0 when θ has a jump discontinuity,
to regularise the solution. This is referred to as order reconstruction in the liquid-crystal literature when
the system interpolates between two fixed boundary conditions by not rotating the eigenframe but by
switching the leading eigenvalue at the centre of the cell. However, whilst the order-reconstruction
phenomenon is relatively well understood without flow effects, it is far less studied with flow effects.
We make certain observations here. For the parameter choices in Figures 8, the θ profile switches from
a continuous solution to a discontinuous solution at ỹ = 0 at L∗ ≈ 0.1. This has a very interesting effect
on the flow profile (see Figure 8c) in the sense that there is a distinct region in the channel interior
where ũ < 0 for L∗ = 0.1 and the flow field has a cusp-like minimum at ỹ = 0. For larger values of L∗,
when the system has settled into the order-reconstruction regime, the flow profiles are less surprising
and have the usual parabolic-like form. We point out that θ is not a constant on either side of the jump
discontinuity for order reconstruction with flow, in contrast to order reconstruction without flow. The
qualitative features are unchanged with asymmetric boundary conditions, see the results in Figure 9c.

For a select range of values of L∗, both the continuous and discontinuous solutions for θ are
attainable, with the state achieved dependent on the initial condition. We analyse this further in
Section 3.5.

There is evidence that the local fluid flow switches direction (at least locally) for certain choices of
L∗ and we have investigated the impact of L∗ on the net fluid flow rate, as shown in Figure 10. As we
have seen in Figure 5, for a given L2 large enough, there exists a critical L∗ (L∗crit,1) for which there is
zero net flow. However, here we find that there is a second critical L∗ (L∗crit,2), beyond which the flow
switches back to the direction of the decreasing pressure. The critical scaled elastic constants L∗crit,1
and L∗crit,2 have almost the same values for both the symmetric and asymmetric boundary conditions,
for the parameter choices in Figure 10. The critical values are relatively large however, and hence
unlikely to be attained in most applications.
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ũ̃u
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Figure 8. The effect of the parameter L∗ on (a) the director orientation (θ), (b) the order parameter (s̃)
and (c) the velocity (ũ), at equilibrium (t̃ = 10), in the case of the symmetric boundary conditions for
θ (Equation (15)). The values of the parameters used are ω = 1/2, L2 = 1, p̃x = −10 and L1 = 10−6.
The legends of all the sub-figures are the same as in (a).

ỹ

θ/
ω

π

(a)

ỹ
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(b)

ỹ

ũ

(c)

Figure 9. The effect of the parameter L∗ on (a) the director orientation (θ), (b) the order parameter (s̃)
and (c) the velocity (ũ), at equilibrium (t̃ = 10), in the case of the asymmetric boundary conditions
for θ (Equation (16)). The values of the parameters used are ω = 1/2, B = 1/3, L2 = 1, p̃x = −10 and
L1 = 10−6. The legends of all the sub-figures are the same as in (a).

L∗

∫ 1 −1ũ
d

ỹ
/ ∫

1 −
1

ũ∣ ∣ L 2
=

0
d

ỹ

L∗crit,1 L∗crit,2

Asymmetric
Symmetric

Figure 10. The effect of the parameter L∗ on the net fluid flow rate at equilibrium (t̃ = 10), for the
asymmetric (Equation (16)) and symmetric case (Equation (15)). The values of the parameters used are
B = 1/3, ω = 1/2, L2 = 1, p̃x = −10 and L1 = 10−6. The total flow rate is scaled with the equivalent
Poiseuille flow rate,

∫ 1
−1 ũ|L2,L1=0 dỹ = −2p̃x/3.

3.4. Dynamic Evolution of the Spatial Profiles

We briefly examine the dynamic evolution of the director profile, order parameter and the fluid
flow profiles in Figure 11 (symmetric case) and Figure 12 (asymmetric case). We note that, even though
L1 � 1 in our simulations, the velocity is time dependent because s̃ and θ are time dependent.
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The dynamics are not particularly interesting for this choice of parameters but illustrate how s̃ assumes
a U-shaped profile with a shallow minimum as θ evolves from the perfectly linear initial condition,
under the effect of flow. The initial flow profile is Poiseuille and the nematic effects suppress the flow
profile and distort the parabolic shape.

ỹ

θ/
ω

π

(a)

@
@@I

Increasing t̃

ỹ

s̃

(b)

?
Increasing t̃

ỹ

ũ

(c)

�
�
�
��
Increasing t̃

Figure 11. The dynamic evolution of (a) the director orientation (θ), (b) the order parameter (s̃) and
(c) the velocity profile (ũ) for the symmetric case (Equation 15). The values of the parameters used
are ω = 1/2, L∗ = 10−3, L2 = 10, p̃x = −10 and L1 = 10−6. The legends of all the sub-figures are the
same as in (a).

ỹ

θ/
ω

π

(a)

@
@@I

Increasing t̃

ỹ

s̃

(b)

?
Increasing t̃

ỹ

ũ

(c)

�
�
�
��
Increasing t̃

Figure 12. The dynamic evolution of (a) the director orientation (θ), (b) the order parameter (s̃) and
(c) the velocity profile (ũ) for the asymmetric case (Equation (16)). The values of the parameters used
are B = 1/3, ω = 1/2, L∗ = 10−3, L2 = 10, p̃x = −10 and L1 = 10−6. The profiles of θ are asymmetric
(around ỹ = 0) because of the inhomogeneity in the θ boundary conditions (Equation (16)). The legends
of all the sub-figures are the same as in (a).

3.5. Effect of the Initial Condition

Next, we make some preliminary comments on the effect of the initial condition on the equilibrium
solution. As noted in Section 3.3, as we increase the parameter L∗, the θ solution transitions from a
continuous to a discontinuous profile, at a critical value of L∗ referred to as L∗switch. This motivates the
question of whether, by an appropriate choice of initial condition, there are parameter regimes that
admit multiple steady-state solutions with a basin of attraction.

In Figure 13, we consider a specific case of no fluid flow and symmetric Dirichlet boundary
conditions in θ (Equation (15)) and show that the system can indeed exist in multiple steady states.
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ỹ

θ/
ω

π
(a)

ỹ

s̃

(b)

Figure 13. Equilibrium profiles of (a) the director orientation, θ and (b) the order parameter s̃ for two
different initial conditions for s̃ and a linear initial profile for θ, without any fluid flow. The blue curves
are the equilibrium profiles for θ and s̃ for s̃(ỹ, 0) = ỹ2 and the green curves are the equilibrium profiles
for s̃(ỹ, 0) = 1. We have considered the symmetric condition for θ given by Equation (15). The values
of the parameters used are ω = 1/2 and L∗ = 0.03.

We find that there is a window of values of L∗ < L∗switch ≈ 0.0335 for ω = 1/2 (and L∗switch
decreases as we increase ω) for which a continuous and discontinuous steady-state solution can be
achieved, depending on the initial conditions, indicating that multiple steady states may only be
possible in some parameter regimes. The continuous solution is stable in this parameter regime and
the discontinuous solution is unstable with respect to perturbations near the centre of the cell. This is
consistent with theoretical work in the field. The order-reconstruction or discontinuous solution exists
for all values of L∗, for our choice of symmetric Dirichlet conditions, with no flow. It is the unique
solution for suitably large L∗ and unstable for suitably small L∗ [18]. However, the instability only
manifests in certain directions, so that, for an appropriate choice of initial condition, we can recover the
discontinuous solution for smaller values of L∗. As L∗ increases, we recover the order-reconstruction or
discontinuous solution for all initial conditions. These results are promising in the context of bistable
devices, particularly if the order-reconstruction or discontinuous solution can be “stabilised” by an
appropriate control and we have two stable solutions—the continuous and the discontinuous solution
for small values of L∗.

4. Steady-State Analysis

In this section, we analytically study the system Equations (9)–(11) in steady state. We assume
that L2/| p̃x| � 1 so that the flow affects the nematic orientational ordering but not vice versa, and that
a uniform pressure gradient p̃x̃ = −G is applied. In particular, this regime does not capture backflow
where the nematic order affects fluid flow.

We integrate Equation (11) with respect to ỹ twice and apply boundary conditions (14) to give the
following leading-order Poiseuille-type solution for ũ,

ũ = −G
2

(
ỹ2 − 1

)
. (26)

Substituting Equation (26) into Equation ((10)) and rearranging we obtain(
s̃2θỹ

)
ỹ
= −Gỹs̃2. (27)

We are thus left to solve Equations (9) and (27), subject to Equation (13), and either Equation (15) or
Equation (16).

The numerics have uncovered the possibility for two types of steady solution: continuous or
discontinuous solutions in θ. We will study each of these in turn in the following subsections.
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4.1. Continuous Solutions in θ

We first study the symmetric strong-anchoring regime or Dirichlet boundary conditions for θ.
Integrating Equation (27) with respect to ỹ twice and applying the boundary conditions (15) gives an
explicit expression for θ in terms of s̃:

θ = −G
∫ ỹ

0

dη

s̃(η)2

∫ η

0
ζ s̃(ζ)2 dζ + c1

∫ ỹ

0

dη

s̃(η)2 , (28)

where

c1 =

ωπ + G
∫ 1

0

dη

s̃(η)2

∫ η

0
ζ s̃(ζ)2 dζ∫ 1

0

dη

s(η)2

. (29)

Substituting for θỹ in Equation (9) using Equation (28), we obtain the integro-differential equation for s̃,

s̃ỹỹ = 4s̃
(
−G

s̃2

∫ ỹ

0
ηs̃(η)2 dη +

c1

s̃2

)2
+

s̃
L∗

(s̃2 − 1). (30)

This must be solved subject to the boundary conditions (13). An analogous procedure follows for the
asymmetric anchoring conditions (Equation (16)), but we do not present the details here.

Small-L∗ Limit

It is observed that continuous solutions are stable for L∗ � 1. We thus explore the system in this
reduced regime. In this case, the leading-order solution in L∗ to Equation (30) can immediately be seen
to be s̃ = 1. As a result, Equation (28) yields the corresponding leading-order solution for θ,

θ = −Gỹ3

6
+

(
ωπ +

G
6

)
ỹ. (31)

A similar method in the asymmetric case, Equation (16), yields the leading-order solution

θ = −G
6
(y3 − 1) + c2(y− 1) + ωπ, (32)

with c2 satisfying the transcendental equation(
G
2
+ c2

)
B = sin

[
2G
3
− 4c2 + 2ωπ

]
. (33)

We note also that in the small-L∗ limit, we may relax the assumption that L2 is small. In this case, the
flow profile is still parabolic to leading order, but is given by

ũ = − G
2(1− L2)

(
ỹ2 − 1

)
. (34)

We recall that L2 > 0 is positive since we are working with low temperatures, so a > 0.
Negative values of L2 describe higher temperatures for which s̃ ≈ 1 does not hold. We also note
that the flow profiles in the preceding section do not agree with the perfectly parabolic profile
described above. This is largely because L∗ is not sufficiently small in the simulations for the sake of
computational efficiency.
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4.2. Discontinuous Solutions in θ

We now study the case to allow for discontinuities in θ. On physical grounds, s̃ = 0 vanishes at
such discontinuities to "regularise" the discontinuities. While such point discontinuities may appear
anywhere within the domain, for illustrative purposes we consider the case where a single point
discontinuity in θ is present, at ỹ = 0. We focus on the symmetric strong-anchoring regime, but again
note that similar methods apply to the asymmetric boundary conditions. We solve in the domain
0 < ỹ ≤ 1 and replace the boundary conditions (Equations (13) and (15)) with

s̃(0, t̃) = 0, s̃ (1, t̃) = 1, (35)

θỹ(0+, t̃) = finite, θ(1, t̃) = ωπ. (36)

Since L2 � 1, the velocity profile is not influenced by the discontinuities and is still given by
Equation (26).

Integrating Equation (27) and applying the modified boundary conditions, we find that θ is now
given by

θ = ωπ + G
∫ 1

ỹ

dη

s̃(η)2

∫ η

0
ζ s̃(ζ)2 dζ. (37)

Substituting for θ in Equation (37) into Equation (9) yields

s̃ỹỹ =
4G2

s̃3

(∫ ỹ

0
ηs̃(η)2 dη

)2
+

s̃
L∗

(s̃2 − 1), (38)

subject to Equation (35).
When there is no external flow, p̃x = G = 0 and Equation (37) gives simply θ = ωπ. The solution

for s̃ is then given implicitly from Equation (30) as

ỹ =
√

2L∗
∫ s̃

0

dη√
η4 − 2η2 + c3

, (39)

where c3 is given by

√
2L∗

∫ 1

0

dη√
η4 − 2η2 + c3

= 1, (40)

for a given L∗. Note that, equivalently, Equation (40) could be viewed as providing explicitly the value
of L∗ corresponding to a particular chosen value of c3. The solution for −1 ≤ ỹ < 0 is found by an odd
reflection of the solution in 0 < ỹ ≤ 1.

When the pressure gradient G � 1, the system possesses a distinguished limit when
L∗ = O(1/G2). (Note we assume that L2 � G so that the second term on the right-hand side of
Equation (11) can still be ignored). In this relatively simple case, the equations are amenable to
asymptotic analysis, and we are able to write the solution for s̃ and θ explicitly as

s̃ = ỹ +
G2ỹ
168

(ỹ6 − 1) +
ỹ

20L∗
(ỹ4 − 1)− ỹ

6L∗
(ỹ2 − 1) + O(G4), (41)

θ = ωπ +
G
12

(
ỹ3 − 1

)
+ O(G2). (42)

5. Conclusions

In this paper, we investigate the nematic order parameter (captured by the director orientation
θ and the order parameter s̃) and flow profiles in a one-dimensional microfluidic channel, with



Fluids 2018, 3, 39 16 of 17

Dirichlet boundary conditions and mixed boundary conditions for θ, as a function of the pressure
gradient, the boundary conditions themselves (in terms of winding number ω and a measure of the
anchoring strength B), the nematic elastic constant (L∗) and the scaled viscosities (L2) in a reduced
Beris–Edwards setting. For small L2, we can analyse the system and obtain at least semi-explicit
solutions for the nematic order parameter and the flow profile, both with and without an applied
pressure gradient. We consider continuous and discontinuous profiles for θ separately, again including
the effect of the pressure gradient. In the discontinuous case, θ is effectively piecewise constant
(without flow) for such solutions and discontinuities in θ are regularised by isotropic points with s̃ = 0.
We can analytically construct solutions with multiple discontinuities although we suspect that these
solutions lose stability with respect to higher-dimensional perturbations. The analytical results set
the scene for some interesting control problems on how to stabilise discontinuous solutions for small
L∗ and these discontinuous solutions could offer interesting examples of domain walls with s̃ = 0 in
three dimensions.

Our most interesting observations include the onset of flow reversal in these model microfluidic
systems. We compute specific criteria for flow reversal (flow in the direction of the pressure gradient)
as a function of L∗ and L2 and in particular, based on the results in Figure 10, we expect the curve
in Figure 5 to fold back on itself, so that for a given L2 large enough, flow reversal only occurs
for a certain range of values L∗ and not in the entire region above the dotted and solid curves in
Figure 5. The observed flow reversal is a distinct manifestation of backflow and only occurs for large
enough L2. We plan to investigate discontinuous order-reconstruction solutions in the presence of
flow and backflow in microfluidic channels as a function of temperature (treating a as a parameter or
accounting for cases when L2 changes sign), geometrical dimensions and the anchoring coefficient B
in subsequent work.
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