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Abstract: Liquid crystal flexoelectric actuation uses an imposed electric field to create membrane
bending, this phenomenon is found in outer hair cells (OHC) located in the inner ear, whose role is to
amplify sound through the generation of mechanical power. Oscillations in the OHC membranes
create periodic viscoelastic flows in the contacting fluid media. A key objective of this work on
flexoelectric actuation relevant to OHC is to find the relations and impact of the electro-mechanical
properties of the membrane, the rheological properties of the viscoelastic media, and the frequency
response of the generated mechanical power output. The model developed and used in this work
is based on the integration of: (i) the flexoelectric membrane shape equation applied to a circular
membrane attached to the inner surface of a circular capillary, and (ii) the coupled capillary flow
of contacting viscoelastic phases, which are characterized by the Jeffreys constitutive equation with
different material conditions. The membrane flexoelectric oscillations drive periodic viscoelastic
capillary flows, as in OHCs. By applying the Fourier transform formalism to the governing equations
and assuming small Mach numbers, analytical equations for the transfer function, associated to
the average curvature, and for the volumetric rate flow as a function of the electrical field were
found, and these equations can be expressed as a third-order differential equation which depends
on the material properties of the system. When the inertial mechanisms are considered, the power
spectrum shows several resonance peaks in the average membrane curvature and volumetric flow
rate. When the inertia is neglected, the system follows a non-monotonic behavior in the power
spectrum. This behavior is associated with the solvent contributions related to the retardation-Jeffreys
mechanisms. The specific membrane-viscoelastic fluid properties that control the power response
spectrum are identified. The present theory, model, and computations contribute to the evolving
fundamental understanding of biological shape actuation through electromechanical couplings.

Keywords: flexoelectric membrane actuation; flexoelectric-driven viscoelastic capillary flow;
rheological transfer function in outer hair cells; electromotility; Fourier formalism; Jeffreys
constitutive equation

1. Introduction

Liquid crystals are multifunctional materials which form part of many biological material
processes, such as sensor and actuator devices, natural super fibers, membranes, films, and drops [1–3].
Other remarkable properties, such as film formation and surface pattern, can be found in biological
plywoods, beetles’ cuticle [1–4], and cholesteric film formation flows of collagen solutions [3,4].
This paper presents the theory and simulation of a physiological actuator device whose functioning
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hinges on unique electro-mechanical properties of mesophases and is a prototypical example of
responsive self-organizing materials [1,2,5–9].

The functioning of outer hair cells (OHC) in the inner ear involves electric-field driven
periodic curvature oscillations of liquid crystal (LC) elastic membranes that impart, by bending
and oscillating [9], momentum and flow to the contacting bulk viscoelastic fluids [10]. This important
phenomenon has been studied with several mechanical and mathematical modelling approaches using
different constitutive equations [11–17]. The electric field actuation of the liquid crystal membrane
is known as flexoelectricity [7–9] and it was studied and developed by Petrov and co-workers [6–8].
The key role of OHC is sound amplification in the presence of bulk viscous dissipation and energy
storage in the elastic flexoelectric membrane [10–14]. Hence, the full description and understanding
of OHC functioning has to include the frequency response of flexoelectric membranes embedded in
viscous and viscoelastic media due to an oscillating electric E field [11,15]. The input oscillating E
field, through the electromechanical flexoelectric effect, produces curvature oscillations in the elastic
membrane that comprises the OHC surrounded by viscoelastic media [9,10,15]. In turn, the oscillating
elastic membrane displaces the contacting viscoelastic liquids through the mechanical visco-elastic
and dissipation mechanisms [10,15]. The combined effect that allows the electro-mechanical energy
conversion is based on the integration of the flexoelectric effect (E field imposed on flexoelectric
membrane) and the mechanical effect (membrane elasticity plus viscoelastic bulk fluid flow) [10,15].

A great deal of analytical approaches have been employed in order to simulate the changes
in the average membrane curvature of a flexoelectric membrane as a function of the electrical
field [9–13]. Ricently Aguilar-Gutierrez et al. [14], studied the curvature dissipation for liquid surfaces
and mebranes from a generalized Boussiness-Scriven surface approach [14]. Rabbits et al. [15]
developed a model based on a mixture-composite constitutive model. Their results show that the
peak power efficiency is likely tunned to a specific frequency that depends on OHC length. Moreover,
this tuning may contribute to the frequency selectivity of the cochlea [15]. Other appraoches have
employed electromecanical models with focus on hearing, composite membranes and isolated cochlear
outer hair cells [16–18]. From a mechanical-transduction point of view, some researchers have
used voltage and tension-dependent mathematical models to describe lipid mobility in the outer
hair cell plasma membrane, bending models with emphasis in cell electromotility, and genetics of
the auditory hair cells [19–21]. Some other electromechanical and rheological models have been
proposed, which include electromagnetic mechanisms, the viscoelastic-relaxation dynamical response
of the curvature through different rheological tests, including oscillatory and creep flow [22–24].
From an electromechanical point of view, the reverse transduction, negative membrane capacitance,
frequency response, and resonance curvature of these physical models [25–28], play an important role
in the audition mechanisms of the cochlea and the energy output from the outer hair cells [25–28].
Other authors have focused in the description of the mammalian cochlear hair cells through power
generation [29], splay, energy, current noise spectrum, viscous fluid loss mechanisms, noise spectrum,
stress of the membrane capacitance, and hair bundle motility [30–33].

In this context, we have developed several mathematical approaches to describe the flexoelectric
membrane curvature through liquid crystal theory [1–3,6–8] and electrorheological models with
emphasis in Outer Hair Cells (OHC) device modeling [9–14].

We would like to emphasize that “one of the main issues in this area is to find the monotonically
and non-monotonic power dissipation in the system” induced by the changes in the curvature as
a consequence of the imposed electrical field [10,12]; this power dissipation is characterized by
a spectrum that depends on the electric field frequency and its specific features, such as resonant and
antiresonance peaks, are the key issue of this this paper [10,12].

In order to include the physical nature of the fluids, several constitutive equations have been
employed [9–14], from Euler (inviscid fluid) [9] to Maxwell constitutive equations [10], which have
led to the governing ordinary differential equations that describe the changes in the curvature as
a function of the electrical field [9–12]. Depending on the rheological equation of state, the shape of
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the power resonance can display several resonance curves in the regime of small inertia [12] and zero
inertia (Deborah number equal to zero) [10,12]. These resonance curves can be described in terms of
linear ordinary differential equations, whose order (n) is defined by the total viscosity operator in the
system [10,12]. For example, in the case of Euler and Newton fluids (n = 0), the power dissipation in
the contacting bulk phases does not show resonance behavior [9], but when the physical nature of
the fluids is viscoelastic (Maxwell, n = 2), the system shows a resonance behavior as a function of the
frequency [10,12].

The originality of this research consists of a critical and significant generalization of the
above-mentioned works, including:

(a) The mathematical formulation developed here can be applied for any linear viscoelastic
constitutive equation including fracctional linear operators;

(b) The viscosity operator choosen to characterize the rheology and the transfer momentum
of the membrane into the viscoelastic liquid phases is the sum of a solvent and polymer
contributions. When the solvent viscosities are zero, the system reduces to a previous model
recently published [9,14]; and

(c) The effects of the solvent and polymer mechanisms induce a resonance and anti-resonance
behavior (maximum and minimum), and the order of the electro-rheological model is three,
whereas when the order of the dynamical equation is even, the system does not show
a non-monotonic behavior. This new odd-even effect narrows down possible models from
the outset.

In general, the shape of the power resonance as well as the monotonical and non-monotonical
behavior depend on the order of the ODE that describes the average membrane curvature as a function
of the applied electrical field and the Deborah number [14], which can be more properly interpreted as
a reduced Mach number associated with the membrane speed propagation in the viscoelastic media.
From extensive analysis based on an increasing order in classical viscoelastic models, it is found that:
(i) for zero Mach numbers the power shows resonance behavior in the classical viscoelastic models
(Maxwell, Jeffrey’s, and Burger’s models), meanwhile the non-monotonical behavior is displayed
in the Jeffrey’s model (3ODE); (ii) when the inertia is included Ma 6= 0, the system shows several
resonance peaks, while at Ma >> 1 the system does not show any resonance peak at all. These generic
findings narrow the range of relevant rheological conditions and rheological models, and allows us to
establish connections between device output and material properties [9–14].

The three key issues to address in this energy conversion device are:

(i) The magnitude of the power P associated with the average curvature or volumetric rate flow
delivered to the contacting of viscoelastic Jeffrey’s fluids from the imposed oscillating electric
field E;

(ii) The minimum complexity of the Non-Newtonian model necessary to give the non-monotonically
behavior in the power spectrum; and

(iii) The necessary material conditions to have a well-localized maximum and minimum resonant
power peak (in the spectrum of power dissipation) as physiologically required [25,32].

As a partial summary, both the direct and converse membrane flexoelectric effects are
sensor-actuator properties when membrane curvature and polarization are coupled as in nematic
liquid crystals [1–3,6–8]. Membrane flexoelectricity due to its inherent sensor-actuator capabilities is
an area of current interest in medicine, soft matter and biological materials [33–38].
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The specific objectives of this paper are:

(1) Deriving a third-order dynamic linear model for a flexoelectric membrane attached to a capillary
tube that contains Jeffrey’s viscoelastic fluids and is subjected to a fluctuating small amplitude
electric field of arbitrary frequency.

(2) Computing the frequency response of the electrorheological device taking into account the
viscoelastic nature of the contacting fluids;

(3) Using the modeling results to characterize the non-monotonic power spectrum associated to the
role of membrane flexo-electricity and contacting fluid viscoelasticity of the device; and

(4) Identifying the material properties that lead to electromechanical conversion relevant to
functioning of OHC.

To avoid repetition of lengthy derivations the reader is referred to [10,12]. In [10] we describe the
fluid viscoelasticity with a Maxwell fluid model, neglect momentum inertia (zero Deborah number:
De = 0), and formulate the model in the time domain. In [12] we extend the previous Maxwell model
with the inertial mechanisms (Deborah number: De 6= 0) and using the Fourier formalism two power
resonance power peaks were found [12] (see Appendices of ref. [12]). These two early works do not
show a minimum in the power spectrum [10,12], such as other mathematical approaches [15]. In this
research, we model the system in the frequency domain, including momentum inertia, and develop
a generic approach that can be used in the future with any linear and fractional viscoelastic constitutive
equation, as required by experimental results [15]. The new approach is novel and significant because
we extend the power spectrum with a well localized maximum and minimum, i.e., a non-monotonically
behavior found in biological systems such as outer hair cell [15] (see Figure 7 of ref. [15]). This paper
is organized as shown in Figure 1. Section 2 introduces the generic features of the dimensionless
governing electro-rheological model of the electric field responsive membrane embedded in Jeffrey’s
viscoelastic fluids. Dimensionless numbers and characteristic modes. The governing equation is
based on the integration of: (i) the flexoelectric membrane shape equation applied to a circular
membrane attached to the inner surface of a circular capillary; and (ii) the capillary flow of the
contacting viscoelastic phases. Section 3 presents the characteristic spectrum of the power output as
a function of the Mach number and dimensionless numbers associated to the flexo-electric, viscoelastic
and elastic mechanisms of the system. Section 4 presents selected representative numerical results
of the device (small and zero Mach numerical values). Section 5 deals with the discussion of the
numerical predictions, Biological applications, dominat mechanisms, and resonance conditions,
respectively. The conclusions and future work are discussed in the last part of this research (Section 6).
Appendices A and B show scaling, dimensionless numbers, and some mathematical derivations of the
power dissipation for the 3OD (third-order ordinary differential equation) model.
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Figure 1. Flow chart of the paper’s organization. Ma denotes the Mach number.

2. Mechanical Balance Equations

The physical setup and geometry of the flexoelectric membrane tethered to a capillary tube
containing two viscoelastic fluids is defined in Figure 2.

A capillary tube of radius “a” contains an edge-fixed flexoelectric membrane located at z = 0.
Above and below the membrane there are two Jeffrey’s viscoelastic incompressible fluids with column
heights z = L, solvent viscosities {ηsb, ηst}, polymer viscosities {ηpb, ηpt}, relaxation times {λb, λt},
and densities {ρb, ρt}. The total viscosity, relaxation and Jeffreys times can be expressed:

ηi =
(
ηsi + ηpi

)
; λi = ηi/Gi =

(
ηsi + ηpi

)
/Gi; λJi =

(
ηsi/ηsi + ηpi

)
λi

i = {t, p}; t : top, b : bottom

The pressures at the top of the upper layer and at the bottom of the lower layers are equal
to a constant p (z = 0) = p (z = L) = p0. By imposing a fluctuating electrical field E(t) in the
bottom, the membrane oscillates and displaces the upper and lower incompressible viscoelastic
fluids; we emphasize that the Poiseuille flow is only generated by the flexoelectric effect of the
membrane caused by the imposed E(t) field, and body forces are neglected (null gravitational
mechanisms) [9,10,12].

The membranodynamic system contains the following primitive materials properties:

(i) fluids viscoelastic properties {ηb, λb, λJb,ηt, λt, λJt}; (ii) membrane elasticity properties:{γo, kc,
¯
kc};

(iii) geometry of the pipe and the membrane {a, L;=}; and (iv) flexoelectric force: {cf, E0}. The elastic



Fluids 2018, 3, 35 6 of 28

moduli of the viscoelastic fluids are: Gi =ηi/λi; i = t, b. These parameters can be estimated from
rheological and membrane experiments in steady and unsteady state [9,10] (and references therein).
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Figure 2. Schematic of the geometry and operation of flexoelectric mechanics, defined in a capillary
geometry of radius r = a, and axial length L. The input E field distorts the initially flat circular membrane
into a spherical cap of radius R and height h. The flexoelectric actuation creates a capillary viscoelastic
flow in the contacting top (t) and bottom (b) fluids of viscosities {ηt,ηb}, relaxation times {λt, λb},
retardation times {λJt, λJb} and fluid densities {ρt, ρb}. Adapted from references [10,12], where M was

defined as: M =

(
2γo +

(
2kc+

¯
kc

)
=
)

/4L.

2.1. Dimensionless Governing Equations

The coupled governing device equations are the dimensionless shape model, which is a force
balance between the electrical field, pressure balance, and elastic storage membrane [9,10,12].
The second equationis is the pressure balance with emerges of the momentum equation (Equation (2a))
and the total temporal viscosity operator, which is the sum of the top and bottom liquid viscoelastic
phases [12], which can be extended by any linear and non-linear viscoelastic equation [9,12]. In order to
simplify the problem, dimensionless variables are used in the main equations to obtain dimensionless
groups that facilitate the physical interpretation (see Appendix A). The dimensionless shape equation
is given by:

a∗0E(t) =
1
4

∆p(t)
L

+ MH(t) =
1
4

∆p(t)
L

+
1− k

k
H(t); (1a)

M =
1− k

k
(1b)

The pressure balance and the time viscosity operator are given by:

∆p
L

(t) =
{
(η(Dt))

1
r

∂

∂r
r

∂

∂r
−Ma2Dt

}
Vz(r, t); (2a)

η(Dt) = ηt(Dt) + ηb(Dt) (2b)
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In Equation (2), the Mach Ma and flexoelectric a∗0 numbers are given by:

Ma =
a/(λt+λb)√

(Gt+Gb)/(ρt + ρb)
; (3a)

a∗0 =
cf=E0a/4L

Gt+Gb
(3b)

The parameters and scaling details of Equations (1)–(3) are given in Appendix A. Equation (2a)
is the z component of the momentum equation, which is a balance between the pressure gradient,
and viscous and inertia mechanisms. The total viscosity operator given in Equation (2b) is completely
general and can be used with any viscoelastic and fracctional viscoelastic model (See Table 1).
Notice that Dt is a time differential operator which is defined by Dt = ∂/∂t. In particular, in this
research the Jeffreys viscosity model will be used, in order to obtain a third-order ODE that will
describe the physics in this system. Combining Equations (1)–(3), the dynamical expression in terms of
the Mach number is given by:

{(
1
r

∂

∂r
r
)

∂

∂r
+ β

2
}

Vz(r, t) =
a∗0E(t)−

(
k−1 − 1

)
H(t)

η(Dt)
; (4a)

β
2
= − Ma2

η(Dt)
Dt (4b)

where the parameter β is the inverse of a characteristic length associated to the Mach number divided
by the viscosity and multiplied by the time differential operator related to the inertia mechanisms.
The solution of Equation (4) was already obtained in [12] for a Maxwell fluid (see Appendix B of
reference [12]). Assuming non-slip conditions, i.e., Vz(r = 1, t) = 0 and that the system must be
bounded at r = 0, the dimensionless non-homogeneous parametric Bessel differential equation is
obtained. Once the velocity profile is obtained, the volumetric flow can be easily obtained using the
Bessel function properties (see Appendix B of reference [12]). The dimensionless volumetric flow
Q induced by the oscillations of the membrane in the viscoelastic phases, can be calculated from
an integration in cylindrical coordinates:

Table 1. Different time viscoelastic operator.

Constitutive Equation Mach Number Lineal Viscosity Operator Mathematical Approach Ref.

Maxwell fluid
without inertia Ma = 0 η(Dt) =

ηt
1+λtDt

+ ηb
1+λbDt

Second order
differential Equation [10,12]

Jeffreys fluid
without inertia Ma = 0 η(Dt) = ηt

1+λJtDt

1+λtDt
+ ηb

1+λJbDt

1+λbDt

Third order
differential Equation Present Model

Q(t) =
1∫

0

Vz(r, t)rdr = −
a∗0E(t)−

(
k−1 − 1

)
H(t)

8Π(Dt)
; (5a)

Π(Dt) =
Ma2Dt/8

1− 2
J1(β)/β

J0(β)

(5b)

In Equation (5) the following property of the Bessel functions was used: xn+1Jn(x) = d[x
J1(x)]/dx = x J0(x); and Π(Dt) can be interpreted as inertia-viscous non-linear differential operator
Π(Dt), and the parameter β was defined in Equation (4b). In the next step, the definition of the
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dimensionless volumetric flow is applied as the negative of the average membrane curvature time
derivative [9,10,12], i.e.,:

Q(t) = −2−1DtH(t) (6)

Combining Equations (5) and (6) gives:

Oα(t) =

(
H(t) : α = 0
Q(t) : α = 1

)
= Rα(Dt)E(t); α = 0, 1 (7)

Equation (7) is the general non-linear dynamical expression and can be expressed in terms of
an Input (electrical field E) and Output functions (average membrane curvature H or the volumetric
flow rate Q). The corresponding transfer functions R1(Dt) and R2(Dt) are given by:

R0(Dt) =
a∗0

Π(Dt)Dt + k−1 − 1
; (8a)

R1(Dt) = −
1
2

a∗0

Π(Dt) +
(

k−1 − 1
)α∫

0
dt

(8b)

Equations (7) and (8) are non-linear differential equations that describe the relationship between
the volumetric flow rate or the average membrane curvature and the electrical field E. In Equation
(8b) it was assumed that the average membrane curvature is zero at time t = 0. On the other hand,
Equation (8a) represents the dynamic evolution of the input (electrical field) and the output (average
membrane curvature), and Equation (8b) is the transfer function of the (electrical field) and the output
(volumetric flow rate), respectively. Notice both of them are regulated by the flexoelectric mechanisms
through the dimensionless number a∗0 asociated to the flexoelectric and viscoelastic mechanism through
the time viscosity operator. Finally, both Equations (7) and (8) are the main model formulation results
of this work.

2.2. Jeffrey’s Third-Order Ordinary Differential Equations

If the Bessel functions of the viscous-inertia defined in the operator Π(Dt) of Equation (8) are
developed in a Mach (Ma << 1), number power series (see Appendix B of [12]), the inertia-viscous
operator Π(Dt) is the sum of the total viscosity, i.e., Π(Dt)

∼= η(Dt) = ηt(Dt) + ηb(Dt). In order to
characterize the rheology and flow, the Jeffrey’s viscosity operator was used (Table 1), which is the
minimum model to obtain the non-monotonically behavior in the power spectrum, and is given by:

η(Dt) = ηt(Dt) + ηb(Dt) =
Ση +

(
λtλb + ΣληJ

)
Dt + ΣηJλtλbD2

t2

1 + Dt + λtλbD2
t2

(9)

Once Equation (9) is substituted into Equations (8), and using the linear relation Equation (7),
the following third-order differential equation in terms of an input variable {E(t)} and output variables
{H(t), Q(t)} is obtained:

L3
Oα

{
Oα(t)

}
= a∗0

1− k
k

(
−1

2

)α
L3

Iα

{
E(t)

}
; (10a)

Oα(t) =

(
H(t) : α = 0
Q(t) : α = 1

)
(10b)

The output and input linear operators are given by the following differential operators:

L3
Oα

= b∗3D3
t︸ ︷︷ ︸

Retardation

+ b∗2D2
t︸ ︷︷ ︸

Inertia

+ b∗1D1
t︸ ︷︷ ︸

Viscous−Bulk

+ b∗0︸︷︷︸
Elastic−Membrane

; (11a)
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L3
Iα

= a∗2D2+α
t2+α︸ ︷︷ ︸

Inertia

+ a∗1D1+α
t1+α︸ ︷︷ ︸

Viscous−Bulk

+ Dαtα︸︷︷︸
Elastic−Membrane

(11b)

The dimensionless coefficients of Equations (9)–(11) are given by:

Jeffrey′s Model :



a∗0 = cf=/4L
Gt+Gb , a∗1 = 1, a∗2 = λtλb

b∗0 = 1, b∗1 = 1 +
(

1−k
k

)
Ση, b∗2 = λtλb

k + 1−k
k ΣληJ

, b∗3 = 1−k
k λtλbΣηJ

ΣηJ = ηJt + ηJb = GtλJt + GbλJb = rtGtλt+rbGbλb = rtηt+rbηb
ΣληJ = λtηJt + λbηJb = λtGtλJt + λbGbλJb = rtλtηt+rbλbηb

ri = ηsi/
(
ηsi + ηpi

)
; i = {t, p}

(12)

The first term on the left hand side of Equation (11a) describes the retardation forces, the second
and third terms are associated with inertia and viscous mechanisms, respectively; and the last one
with the membrano-elastic mechanisms. The right-hand side describes the temporal evolution of the
input driven force associated with flexo-electric mechanisms and the memory through the material
parameters of the particular constitutive equation used in the system. A Newtonian model was
obtained in [9], a Maxwell second-order electro-rheological model was previously obtained in [10,12]
using different mathematical approaches, and this Maxwell model was extended by taking into account
the inertial mechanisms of the momentum fluids and finally non-linear extension (Newtonian) of these
models was studied with a pertubation technique in terms of the Deborah number [9,10,12].

2.2.1. Dimensionless Numbers

The governing Equations (11) and (12) contain seven dimensionless numbers:{
a∗0 , λtλb, k, Ma, Ση, ΣηJ , ΣληJ

}
(13)

which are associated with the following mechanisms: (i) Memory
(
λtλb

)
: product of the viscoelastic

dimensionless times λt, and λb, where λt + λb = 1. This number λtλb defines the elastic asymmetry
of the fluids. When λtλb << 1 (highly asymmetric case) one of the fluids is nearly inelastic,
and when λtλb = 1/4 (highly symmetric case) both fluids are equally elastic; (ii) Bulk Viscosity(
Ση = ηt + ηb = Gtλt + Gbλb

)
: total viscosity in the system, where the elastic dimensionless

moduli satisfy Gt + Gb = 1. The numerical value of this number is controlled by the product
between the two dimensionless Maxwell time numbers, i.e., Ση= Ση

(
λtλb

)
. This dimensionless

number is bounded by the maximum and minimum values of the Maxwell relaxation times,
i.e.,

{
λt, λb

}
= Σηmin ≤ Ση= Ση

(
λtλb

)
≤ Σηmax =

{
λt, λb

}
; (iii) The third group, ΣηJ = ηJt + ηJb

can be interpreted as a bulk viscosity weighted by the ratio between the solvent and total
viscosity (solvent + polymer contributions). This dimensionless number is bounded by the following
inequality:

{
rtλt, rbλb

}
= Σηmin ≤ ΣηJ= ΣηJ

(
λtλb

)
≤ Σηmax =

{
rtλt, rbλb

}
; (iv) The fourth group is

a bulk retardation viscosity weighted by the viscoelastic relaxation times, i.e., ΣληJ = λtηJt + λbηJb
can be interpreted as a bulk viscosity weighted by the product between the solvent ratio
ri = ηsi/

(
ηsi + ηpi

)
; i = {t, p} and the Maxwell relaxation times

(
λt, λb = 1− λt

)
. The maxima

and minima values of this group are given by:{
rtλ

2
t , rbλ

2
b

}
= ΣληJmin ≤ ΣληJ

= ΣληJ

(
λtλb

)
≤ ΣληJmax =

{
rtλ

2
t , rbλ

2
b

}
(v) Elastic ratio (k): dimensionless ratio between the membrane and the total system elasticity,

0< =
(
1 + 1/M

)−1
< 1. A floppy (soft) and stiff (rigid) membrane corresponds to k << 1 and k ∼= 1,

respectively. The elastic ratio, k = k
(
M
)

is determined by the dimensionless elastic membrane
modulus; (IV–V); (vi) The Mach number Ma is a ratio between the two velocities associated to
viscoelasticity and bulk elastic forces and it is a measure of the inertia mechanism in the system;
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and finally (vii) the flexoelectric number a∗0 is the dimensionless conversion of electric to bulk elastic
energy or, equivalently, the static transfer function at zero frequency.

2.2.2. Response Mode Classification

It was demonstrated for a Maxwell fluid [10,12], that the important resonant characteristics are
dominated by four dimensionless numbers

{
λtλb, Ση, k, a∗0 ; a∗0 = k

}
. In the extended Jeffrey’s model

(Equations (11)–(13)) additional numbers are obtained by including inertial and solvent mechanisms{
Ma, ΣηJ , ΣληJ

}
which can be interpreted as small perturbations to the previous Maxwell model [10,12].

According to the magnitudes of the main dimensionless numbers
{
λtλb, Ση, k, a∗0

}
, six case scenarios

are possible i.e., the memory symmetry can be high (HS) or low (LS), the total viscosity high (HV),
medium (MV), or low (LV), and the membrane can be floppy (FM) or stiff (SM), and these are
summarized in Table 2 [10,12]. The third and fourth columns are the contributions of the Jeffrey’s
retardation mechanisms

{
ΣηJ , ΣληJ

}
, which are zero for the Maxwell model. For example, the first row

{LS, LV, FM} corresponds to low symmetry, low viscosity, and floppy membrane [10,12]. This effective
mode classification narrows the parametric envelope of biological significance. The specific numerical
values in Table 2 are selected to be characteristic of each mode; the last two columns are bulk retardation
and weighted retardation viscosity, respectively, which will be defined in the next section.

The six modes can be represented by the vertices of a prismatic 3D material space figure
shown in Figure 3, spanned by fluid memory, membrane elasticity, and total fluid viscosity{
λtλb, Ση, k; k = a∗0

}
respectively.
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II
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I
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Jeffreys

IIII

V

Solvent effects

Maxwell Jeffreys

Figure 3. Prismatic material space for the six possible modes of Equation (16), shown in Table 1.
The vertical axis is the memory, the horizontal is the elasticity ratio k, and the axis out of the page
plane is the total viscosity. The six vertices correspond to the six modes in Table 2. Below the prism,
the horizontal arrow shows the range of the dimensional numbers: (i) memory λtλb, (ii) Maxwell
relaxation numbers

{
λt, λb

}
, (iii) total bulk viscosity Ση = Ση

(
λtλb

)
, (iv) Bulk retardation viscosity

ΣηJ
, and (v) bulk weighted retardation viscosity ΣληJ

. The triangle in the upper right corner describes
the material line that contains the modes corresponding to a small elasticity ratio where the power
dissipation is different form zero. The line I–III shows the material conditions where the model displays
a monotonical behavior (mode III) and non-monotonical solvent behavior (mode I).
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These dimensionless numbers are completely determined by the numerical value of the memory
number λtλb and solvent and viscosities ratio through ri = 0. For example, in the case of the
asymmetric case, given a small value of the memory number, i.e., λtλb = ε << 1, the respective
minimum and maximum values of the Maxwell relaxation times are

(
λt = ε << 1, λb = 1− ε ∼= 1

)
,

the corresponding minimum and maximum values for the total bulk viscosity, bulk retardation
viscosity, and weighted retardation viscosity are given by: Ση ∈ (ε, 1− ε); ΣηJ ∈ (εrt, rb(1− ε)) and
the last one is ΣληJ

∈
(
ε2rt, rb

(
1− ε2)). For the symmetric case, the value of the memory number

is λtλb = 1/4. Here, the Maxwell relaxation times are equal, i.e., λt = λb = 1/2, the bulk viscosity
is fixed at Ση = 1/2 [10,12], and the values of the retardation bulk and average bulk viscosities can
be chosen from the following ranges, ΣηJ ∈ (εrt, rb)/2 and ΣληJ

∈ (εrt, rb)/4. The corresponding
minimum and maximum values of the total bulk-viscosity (triangle) turn out to be a crucial material
parameter in the energy conversion device. Finally, in this work we focus on the zone where the
maximum and minimum of the Jeffrey’s model is found, and it is localized between modes I and
III in the parametric 3D space, shown in Figure 3. The other modes, do not display resonance and
antiresonance behavior [10,12].

Table 2. Response modes I and III of the flexoelectric-viscoelastic device.

Material Conditions Maxwell Jeffrey’s

System’s Modes λtλb Ση = Ση

(
λtλb

)
k = ε

ΣηJ
= ΣηJ

(
λtλb

)
λJi = riλi

ri = ηsi/ηsi + ηpi

ΣληJ
= ΣληJ

(
λJtλJb

)
λJi = riλi

ri = ηsi/ηsi + ηpi

I
{LS, LV, FM} ε ε k = ε rtε < ΣηJ

< rb rtε
2 < ΣληJ

< rb

III
{LS, HV, FM} ε 1− ε k = ε rtε < ΣηJ

< rb rtε
2 < ΣληJ

< rb

The numerical value of ε = 10−4 and the polymer ratio ri ∈ (0, 1): i = {t, b} and the value of k = a∗0 = ε.

3. Power Dissipation

The average power delivered to the viscoelastic fluids P(ω) by the oscillating membrane is the
period average of the product of the input force Re

[
I(t,ω)

]
and the real part of the output Re

[
Oα(t,ω)

]
associated to the average membrane curvature or volumetric flow [9,10,12]:

Pα(ω) =
〈
Re
[
I(t,ω)

]
· Re

[
Oα(t,ω)

]〉
;α = {0, 1} (14)

The power dissipation of the system can be calculated trough the transfer function of the average
membrane curvature R0(ω), or in terms of volumetric transfer function, R1(ω):

〈p(ω)〉 = 1
2
(
Re[R1(ω)]

)
=

1
2

∣∣ωIm[R0(ω)]/2
∣∣ (15)

In order to compute Equation (15), the complex inertia-viscous function must be choosen from
Table 1. Herrera-Valencia and Rey (2015) [12] use the Maxwell model and the properties of the power
series up to the first sixth terms considereing the real and imaginary parts [12]. In this research,
we consider all the terms of the dimesnionless parametric Bessel functions.
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Inertialess Mechanisms: Ma << 1

In the case of small Mach number (Ma→0), the viscoelastic inertial mechanisms can be neglected
and the power dissipation Pα(ω), α = 0, 1 is given by the following analytical expression:

Pα(ω) = 1
2 a∗0

1−k
k

(b∗1−1)ω2+

(
(1−kb∗1)b

∗
2+(1−k)ΣληJ

b∗1−b∗3

)
ω4+

(
kb∗2−(1−k)ΣληJ

)
b∗3ω

6

(1−b∗2ω
2)

2
+ω2(b∗1−b∗3ω

2)
2 (16)

The third terms of the numerator of Equation (16), can be rewritten in the following form:(
kb∗2 − (1− k)ΣληJ

)
b∗3 = a∗2b∗3 =

(
λtλb

)2
(

k−1 − 1
)

ΣηJ =
(
λtλb

)2
(

k−1 − 1
)
(rtηt + rbηb) (17)

Equation (17) can be expressed in the following form:(
λtλb

)2
(

k−1 − 1
)(

rtGtλt + rb
(
1−Gt

)
λb
)

(18)

If λtλb = ε = 10−4, the value of the dimensionless Maxwell times are:
{
λt = ε, λb = 1− ε

}
and

the value of the elastic ratio is k = ε, Gt = 1, and Equation (18) takes the form:(
λtλb

)2
(

k−1
)

minΣηJ
∼=
(
λtλb

)2
(

k−1ε
)

rt = ε2
(
ηst/ηst + ηpt

)
∼= ε2

(
k−1ε

) ηst
ηpt

<< 1 (19)

In Equation (19), the viscosities of the solvent and the polymer must be controlled, and the
simplest power equation is:

Pα(ω) ' 1
2

a∗0
1− k

k

(b∗1 − 1)ω2 +
(
(1− kb∗1)b

∗
2 + (1− k)ΣληJ

b∗1 − b∗3
)
ω4(

1− b∗2ω
2)2

+ω2(b∗1 − b∗3ω
2)2 (20)

When b∗3 → 0 we find a well-defined maximum resonance power dissipation peak in contrast
with the Maxwell power dissipation found in a previous model [10,12].

Lim b∗3 → 0
b∗1 → 1/k

Pα(ω)→ 1
2

a∗0
1− k

k
(b∗1 − 1)ω2(

1− b∗2ω
2)2

+ (ωb∗1)
2

(21)

It is important to note that Equation (20) contains two resonance frequencies. This is a consequence
of the solvent mechanisms. When the retardation mechanism goes to zero (b∗3 = 0), the system reduces
to the Maxwell model previously reported [10,12] and the system is governed by Equation (21) with
a single resonance frequency. The Maxwell model displays a single resonance peak [10,12] and does
not display a monotonic behavior as the Jeffrey’s model does.

4. Results

4.1. Numerical Results

In this section, we characterize the power dissipation, and the inertia and viscoelastic mechanism
are evaluated from Equations (15), (16), (20) and (21). In Figure 4a,b different resonance plots using
two Ma numbers are displayed. All the numerical values of the dimensionless number correspond to
the first and third modes (see Table 2).
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Figure 4. Power dissipation of the membrane curvature vs dimensionless frequency for different
inertial conditions. Figure 4 (a,b) show the effect of two Mach number conditions: (a) Ma = 0.1,
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numerical Jeffrey’s viscosities are approximately of the same order of magnitude.

4.2. Inertia-Viscoelastic Mechanisms: Ma 6= 0

Figure 5 shows the classical resonance plots of a mechanical system similar to previous reports [12].
The effect of the resonance behavior is clearly seen through the different resonance peaks shown in
Figure 5a. Here Ma = 0.1, whose value represents the viscoelastic mechanisms dominating over
the inertia processes. In a previous work using up to six terms of the Bessel function expansions,
the system displays only two resonance peaks [12], whereas when all the terms are considered in the
transfer function, the system displays several resonance peaks, as shown in Figure 4a. With the inertial
processes, the power peaks decrease, as is shown in Figure 4b. The resonance behavior is a consequence
of a ratio between two Bessel functions, one of first-order and the other of zero-order, and the material
properties trough the characteristic dimensionless numbers [12]. Physically, the membrane transports
momentum to the viscoelastic phases associated to the viscous dissipation. The resonance peaks
appear at constant intervals, but the maximum of the peak attenuates rapidly as the dimensionless
frequency increases. Figure 5b shows the average membrane curvature power dissipation as a function
of the dimensionless frequency. The net effect of the increase in the inertial processes is to shift the
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resonance curves to lower values of the dimensionless frequency, with a drastic decrease of the value of
the resonance peaks in the power dissipation associated to the membrane. There is also an attenuation
mechanism similar to that observed in Figure 5a. The last case, corresponding to Ma = 10, is not
presented here since there is no resonance behavior in the equivalent system.

4.3. Small Mach Number: Ma << 1

In this section, the power spectrum in the case of a small Mach number, i.e., when the inertia
mechanisms are smaller in comparison with viscoelastic forces is shown. In this case, the starting point
of the numerical results come from Equations (16), (20), and (21). The numerical values correspond to
the first and third modes of Table 2. In Figure 5, the effect of the power dissipation vs. the dimensionless
frequency as a function of the retardation mechanism through the dimensionless numbers

{
ΣηJ , ΣληJ

}
for four particular cases corresponding to the modes {I, III} of Table 2, is shown. The mathematical
and physical power predictions of the Maxwell and Jeffrey’s constitutive equations are summarized in
Table 3.

Table 3. Summary of the Maxwell and Jeffrey’s models’ power dissipation.

Model and Mode Fixed Dimensionless Numbers Viscosities Material Conditions Material Conditions Mathematical Description

Maxwell First Mode MI

λtλb = ε

k = ε << 1
a∗0 = k
ε = 10−4

Ση = (Ση)min = ε

ΣληJ
= ΣηJ

= 0

ε = 1× 10−4

1. Low symmetry
2. Small bulk viscosity
3. Floppy membrane
4. Flexoelectric mechanism of
the order of LS.
5. Jeffrey’s bulk viscosities
are zero

1. Constant behavior
2. Monotonically
increasing behavior
3. Plateau at high frequencies
Non Resonance Peak

Maxwell Third Mode MIII

λtλb = ε

k = ε << 1
a∗0 = k
ε = 10−4

Ση = (Ση)max = 1− ε
ΣληJ

= ΣηJ
= 0

ε = 1× 10−4

1. Low symmetry
2. Large bulk viscosity
3. Floppy membrane
4. Flexoelectric mechanism of
the order of LS.
5. Jeffrey’s bulk viscosities
are zero

Resonance Peak

Jeffreys First Mode JI

λtλb = ε = 1× 10−4

k = ε << 1
a∗0 = k

Ση = (Ση)min = ε

ΣληJ
≈ ΣηJ

' ε
ε = 1× 10−4

1. Low symmetry
2. Small bulk viscosity
3. Floppy membrane
4. Jeffrey’s viscosities of the
same order of the minimum
bulk viscosity.

Non-monotonically behavior
Maximum and Minimum

Jeffreys Third Mode JIII

λtλb = ε = 1× 10−4

k = ε << 1
a∗0 = k

Ση = (Ση)max = 1− ε
ΣληJ

∼= ΣηJ
= ε

1. Low symmetry
2. Small bulk viscosity
3. Floppy membrane
4. Flexoelectric mechanism of
the order of LS.
5. Jeffrey’s bulk viscosities are
different from zero.

1. Constant behavior
2. Monotonically
increasing behavior
3. Plateau at high frequencies
Non Resonance Peak

In all cases contained in Table 3, at lower values of the dimensionless frequency, the value of
the power dissipation is close to zero. However, for a critical value of the dimensionless frequencies
the system shows a monotonically-increasing behavior followed b: (i) a plateau; (ii) a resonance
peak; or (iii) a non-monotonic behavior. The non-monotonic behavior of the power dissipation
(maximum and minimum) can be obtained by moving the system from point JI through the following
parametric material’s conditions: (i) large asymmetry between the viscoelastic phases (one of them
is weakly elastic and the other one completely viscoelastic); (ii) minimum total bulk viscosity, i.e.,
min{Ση} = ε = 10−4; (iii) small elasticity k << 1, i.e., the elasticity of the membrane is small in
comparison with the total bulk elasticity in the system ΣG; (iv) and the flexoelectric mechanisms
are of the same order as the elastic ratio, i.e., a∗0 = k << 1. The mathematical condition to reach
the maximum and minimum is given when the maximum values of the retardation mechanisms are
equal to the minimum value of the total bulk viscosity, i.e., max

{
ΣληJ

}
= max

{
ΣηJ

}
∼= min{Ση}.

Physically, the bulk viscosities must satisfy the following inequality: ΣληJ ≤ ΣηJ ≤ Ση. The bulk
viscosity can be larger (close to unit) and smaller or equal to the minimum value of the relaxation
times product, i.e., Σηmin = min

{
λt, λb

}
' ε. The largest asymmetry of the viscoelastic phases implies

that the value of the Maxwell times λtλb is equal to a small parameter (epsilon), i.e., λtλb = ε, so
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the minimum and maximum values of the product of the viscoelastic Maxwell times are given by:
λtλb = ε⇒ min

{
λtλb

}
= ε, max

{
λtλb

}
= 1− ε , so the new Jeffrey’s viscosities

{
ΣληJ , ΣηJ

}
satisfy

the next inequality:
εrtηt + (1− ε)rbηb= ΣληJ ≤ ΣηJ= rtηt+rbηb (22)

In order to have the monotonic behavior of the power dissipation, both Jeffrey’s solvent and
polymer viscosities must be essentially the same. The only possibility to have this mathematical
condition is that one of the solvent viscosities of the Jeffrey’s model must be negligible in comparison
with the other solvent viscosity associated to the other phase, so the inequality is given by:

rbηb
∼= εrtηt + (1− ε)rbηb = ΣληJ ≤ ΣηJ= rtηt+rbηb

∼= rbηb (23)

The only possibility to fulfill the equality (Equation (23)) is when the product between the viscosity
ratio rt value becomes very small. Physically, the above condition implies that the solvent and polymer
viscosities play an important role in the dynamical behavior of the Jeffrey’s model. As a first partial
conclusion, in the Maxwell model (2ODE) the resonance behavior is reached in the third mode [10,12],
whereas in the Jeffress model (3ODE), the resonance behavior with the maximum and minimum is
reached in mode I.

For the fourth curves showed in Figure 5, the power dissipation is negligible at low frequencies up
to a critical dimensionless frequency where the power dissipation shows a monotonically-increasing
behavior until a maximum, followed by a decreasing behavior, followed by a plateau zone at
intermediate frequencies. For a second critical value of the dimensionless frequency, the system
experinces a monotonically-increasing behavior followed by a second plateau at high frequencies,
whose value depends on the elastic properties of the membrane. It is important to note that, when the
retardation viscosities satisfy the following inequality ΣληJ < ΣηJ 6= 0, the value of the power
dissipation plateau at high dimensionless frequency is greater than the local maximum and its value
depends on the elastic dimensionless ratio and the retardation viscosity. Notice that when the values
of the retardation viscosities are of the same order, i.e., ΣληJ

∼= ΣηJ the numerical value of the local
maximum power dissipation and the plateau at high dimensionless frequency are of the same order.
The retardation mechanisms play an important role in the description of the non-monotonically
behavior described by other authors with different electro-mechanical approaches [15].Fluids 2018, 3, x FOR PEER REVIEW  17 of 30 
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Figure 5. (a) Power as a function of the dimensionless frequency for the four cases depicted in Table 2.
The maximum and minimum are clearly seen in simulation J1 (first mode). The cases M1 and J2 show
a similar monotonically-increasing behavior followed by a plateau. The last case, M2, shows a typical
resonance curve in mode III. (b) Power resonances for the Maxwell and Jeffrey’s models corresponding
to the first and third modes of Table 3.

In Figure 6, the power dissipation as a function of the dimensionless frequency is displayed for
the Jeffreys model using Equations (20) and (21) as a function of the elastic mechanism. In the inset,
the results for the Maxwell model are shown [10,12]. For a critical value of the resonance frequency
the Jeffrey’s model displays a well-localized resonance behavior, which is a decreasing function of the
elastic dimensionless number k. The maximum amplitude of the power is related to the high fluid
asymmetry λtλb << 1 (essentially a viscous liquid and a viscoelastic liquid), large viscosity Ση → 1
(maximum dissipation), small elastic ratio k << 1 and high retardation fluids asymmetry, ΣληJ

∼= ΣηJ ,
which basically means that one of the retardation times is smaller in comparison to the other one.
This fact arises because the retardation mechanisms are not independent of the Maxwell relaxation
times and are linked by a ratio between the solvent and polymer viscosity of the Jeffrey’s model. For the
Maxwell model, a resonance behavior was found, where the value of the peak amplitude is determined
by the elastic ratio [10,12]: ppeak = k(1− k)/2. This equation shows a quadratic dependence with the
elastic ratio and its maximum value of the power peak dissipation is obtained for k = 1/2 and it is
given by ppeak−max(k = 1/2) = 1/8 [25,32]. However, there is a difference in the frequency “width”
of the power pulse, with wider pulses for lower k values.
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Figure 6. (a) Power dissipation as a function of the dimensionless frequency for different values of
the elastic ratio k and the dimensionless Jeffreys viscosities. Here the Mach number is zero. Figure 7a
instead of Figure 6a (Maxwell model). In (b) the Jeffreys model for two different Jeffrey´s viscosities
material conditions. The other material parameters used in the simulaion are the same as in Figure 7a.

Figure 7 shows the power dissipation vs. the dimensionless frequency as a function of the elastic
ratio k, for two different cases of the retardation numbers: (a) ΣληJ

= ΣηJ and (b) ΣληJ
< ΣηJ . The main

effect of the retardation mechanism is to shift the resonance peak to higher values of the dimensionless
frequencies and increase the power peak maximum.
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5. Discussion

5.1. Biological Applications

As demonstrated elsewhere [1–3,6–10,18–21], a key biological feature is the shape and location
of the power amplification pulse [18–21]. In our flexoelectric model, the non-monotonic behavior
of the power associated with its maximum (resonance) and minimum (anti-resonance) emerges
under the following material conditions: (i) asymmetric of the phases λtλb = ε << 1, (ii) small
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bulk-viscous mechanism min{Ση} = ε, (iii) small elastic ratio k << 1 and, (iv) the retardation
mechanism are almost equal and their values are close to the minimum value of the bulk viscosity,
i.e., max

{
ΣληJ

}
∼= min

{
ΣηJ

}
= ε << 1. The above material conditions imply that the ratio between

the solvent and polymer viscosities in one of the viscoelastic phases must be of the order of the
main value of the bulk viscosity i.e., rb = ηsb/ηsb + ηpb = ε. Physically, the system decreases the
dissipation mechanism until its minimum value is reached and the retardation mechanics maximizes
it. Rabbits et al. [15] employed an electromechanical system in which the non-monotonically
behavior depends on the material properties in the system and the length of the Outer Hair
Cells (see [15], Figure 7). In our 3ODE membratodynamic model the geometry and flexoelectric
properties are contained in the dimensionless number a∗0 which is of the order of the elastic ratio k,
i.e., a∗0 = k << 1 [10,12].

5.2. Material Properties and Resonance Conditions

The resonant and anti-resonant behaviors of the power dissipation are characterizing aspects
of the OHC cells [15]. The material parameters of importance are: (i) Maxwell relaxation times; (ii)
bulk elasticity of the viscoelastic phases; (iii) polymer viscosities; (iv) elastic membrane energy;
and (v) solvent viscosities. The specific ways to adapt these parameters are by changing the
concentration and the molecular weight distribution of dissolved polymer chains [10,12]. To have
the non-monotonic behavior (maximum and minimum) and the power amplitude, one of the liquid
phases must be weakly elastic and the other one completely viscoelastic (phase asymmetry) [10,12].
To shift the position of the localized power plateau and width of the power plateau, the elasticity of
the membrane with respect to the bulk (viscoelastic phases) must be tuned (see Figure 7a,b). To widen
the power plateau, the Maxwell relaxation times, elasticity of the membrane, and viscoelastic phases
must be modified [10,12]. Combining the results from Figures 5–7 we can arrive at a complementary
qualitative picture of power delivery for the Jeffreys and Maxwell model as a function of the membrane
stiffness through the elastic ratio k (Figure 8a,b).
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Figure 8. (a) Schematic viscoelastic mechanisms as a function of the elastic ratio k, for the Jeffrey’s (top)
and Maxwell (bottom) models, respectively. The four quadrants in each case represent performance
conditions most likely to be relevant to biological flexoelectric membranes. In (b) a qualitative schematic
of the material conditions for resonance is shown. For the Maxwell system one of the viscoelastic
phases must be almost inelastic, whereas in the Jeffreys system one of the viscoelastic phases must be
almost a Maxwell-like fluid.

6. Conclusions

In this paper we explored the dynamics of the actuation flexoelectric mode [1,2,6–8]. Using the
flexoelectric shape equation in conjunction with a viscoelastic capillary flow model for the contacting
phases, a new average curvature dynamic was obtained (Equations (12) and (13)). The third-order
model for the electric field (input) and curvature or volumetric flow (output) is given by a balance
of retardation, inertial, viscous, and elastic effects, originating from the flexoelectric membrane
and the viscoelastic Jeffreys fluids (solvent and polymer mechanisms). Moreover, this new model
(3ODE) can be interpreted as the sum of a second-order ordinary differential equation plus a small
perturbation, which it is associated with retardation mechanisms. These third-order models are
well known and they are associated to the jerk-force mechanism (timed derivative of acceleration)
in ODEs, chaotic systems, and classic Newtonian mechanics [34]. When the retardation mechanisms
are zero, i.e., λJi = 0; i = {t, b}, the previous Maxwell model is recovered with inertial and inertialess
mechanisms [10,12]. Using dimensionless variables, and taking into account the inertia mechanisms in
the system, the physics can be described with seven dimensionless numbers (Equations (11) and (21)).
These dimensionless numbers are associated with the inertia, retardation, memory, viscous, elastic
membrane, and flexoelectric mechanisms. A thorough parametric study was performed to identify
the conditions that lead to the appearance of a maximum (resonance behavior) or a minimum
(anti-resonance behavior) in the power spectrum (Table 3). The maximum and minimum are found in
mode I (Figure 5), when the system presents a: (i) large asymmetry between the viscoelastic phases
(one on phases is weakly elastic and the other one completely viscoelastic); (ii) minimum total bulk
viscosity; (iii) small elasticity; and (iv) the flexoelectric mechanisms are of the order of the elasticity
of the membrane [10,12]. The mathematical condition to reach the maximum and minimum are
given when the maximum values of the retardation mechanisms are equal to the minimum value
of the dissipation energy, i.e., max

{
ΣληJ

}
∼= max

{
ΣηJ

}
' min{Ση} = ε = 10−4. The above

mathematical condition implies that the solvent and polymer viscosities play an important role in
the resonance and anti-resonance behaviour (Figure 6a,b). Physically, this means that in order to
get a non-monotonically increasing behavior, a contrast in the liquid phases is necessary with one
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of them being weakly elastic and the other one being highly viscoelastic (Equations (22) and (23)).
For example, if one of the viscoelastic phases is characterized by the Jeffrey’s or Maxwell model,
the other one must be represented by the Maxwell or the Newtonian constitutive equation, respectively.
It is important to note that the Maxwell and Jeffrey’s times are not independent and they satisfy
a linear relation, whose slope is given by a ratio between the solvent viscosity and the polymer
contribution to the bulk viscosity (Section 2). The non-monotonically behaviour has been reported
using a mechano-electrical model as a consequence of the outer hair cell length [15] (see [15], Figure 7b).
In constrast, the lector-rheological model used here, showed that the solvent and the polymer
mechanisms induced a similar non-monotonic behaviour in the power dissipation as a function of the
applied electrical field. Here, the maximum and minimum is controlled by coupling effects between
the solvent and the polymer contributions of the liquid viscoelastic phases (Figure 6a). The numerical
values of maximum and minimum is controlled by the elastic ratio k and the flexoelectric mechanisms
trough the flexoelectric number a∗0 . Notice that in order to have the maximum and minimum in
the system, the flexoelectric number a∗0 must be of the same order as k, i.e., a∗0 = k (Figure 6b).
When the asymmetry of the viscoelastic phases increases, the power peak and the resonance width
decrease and increase, respectively. These effects are shown in Figures 6 and 7 and summarized in
Table 3. Furthermore, optimization of the power device can be obtained by minimizing the stored
elastic membrane energy and maximizing the power dissipation. This was discussed in previous
works [9,10,12]. In addition, when one of the solvent contributions is small in comparison with
the other solvent phase, a close expression for the power dissipation is found (small Mach number,
Ma << 1, Equations (16), (20) and (21)).

Physically, the dissipation dominates over the elastic storage membrane mechanisms in the
resonance behavior [9,10,12,15]. The effect of the resonance behavior through the Mach number is
to display more resonant peaks which can be associated to biological processes (see the Deborah
number in [10,12]). The inclusion of new rheological parameters through higher models can be done
by changing the Jeffrey’s viscosity operator given in Table 1.

The merits of this research is to extend the previous theory [1,2,6–10,12], for any particular linear
or fractional viscoelastic constitutive equation, through the generalized viscosity differential operator
given in Table 1.

In particular, the Jeffreys viscosity function was chosen to include the solvent and polymer
mechanisms. When the inertia is included in the system through the Mach number several resonance
peaks are found, which, from a biological point of view, could be relevant (Figure 4). In the
inertialess regime (Ma = 0), a third-order differential equation (3ODE) was found (Equations (10)–(12)).
This electro-rheological model led to a non-monotonically decreasing behavior, which is directly related
to the new viscosities associated with the retardation mechanisms, which are linked by the solvent
and polymer contributions. Lastly, a qualitative evaluation of the present model predictions based
on a non-monotonically power profile, indicates that the Helfrich-Flexoelectric-Jeffrey’s fluid model
possesses the necessary physics to qualitatively capture the electro-mechanical power conversion
phenomena. Future extensions include higher-order and fractional viscoelastic models, non-linear
viscoelasticity, and mass transfer induced by shear forces [35,36]. Heat dissipation and non-linear
effects due to high frequencies, compressible systems (density as a function of the pressure drop),
and others diseases which can affect the hearing system (hypercholesterolemia, hyperglycemia,
genetic problems, etc.) lie outside of the scope of the present research [37–41]. A posible path
to continue this research is to exted it to new models in the regime of nonlinear viscoelasticity
(large deformations). The nonlinearity induced by large deformations can be explored with two
approaches. The nonlinearity comes from the flexoelectric membrane or can be induced through
the viscoelastic liquid phases. These new approaches must be explored through analytical and
numerical algoritms and can be a starting point of new reaserch. The present theory, model, and
computations contribute to the evolving fundamental understanding of biological shape actuation
through electromechanical couplings [1–4,9–12,35–37] involving liquid crystallinity.
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Notation

Variables
a Radius of the capillary (m)
{E, E0} Electrical field magnitude, and electrical amplitude of the applied electrical field (NC−1)
Gt Elastic moduli at top (Pa)
Gb Elastic moduli bottom (Pa)
H(t) Average membrane curvature (m−1)
J0 Bessel function of the first kind to zeroth order{

kc, kc

}
Membrane bending rigidity and torsion elastic moduli (J)

L Axial length (m)
M Elastic-membrane parameter (Pa)
p Pressure (Pa)
p0 Constant pressure (Pa)
P Power (J/s)
Q Volumetric flow (m3/s)
R Radius of the spherical cap (m)
t Time variable (s)
Y0 Bessel function of the second kind to zeroth order
Greek Letters
{ηt, ηb} Viscosities fluids at top and bottom (Pa·s)
{ηst, ηsb} Polymer solvent viscosities at top and bottom (Pa·s)
{λt, λb} Relaxation Maxwell times at top and bottom (s)
{λJt, λJb} Retardation Jeffreys times at top and bottom (s)
{ρt, ρb} Densities of the liquids at top and bottom (kg/m3)
γ0 interfacial tension (Pa)
Dimensionless Letters
E Electricla field
H Average membrane curvature
I Input force
M Elastic Membrane
Oα Output variable
ppeak Viscoelastic power peak
ppeak−max Maximum viscoelastic power peak
p(ω) Viscoelastic power dissipation
Q Volumetric flow
r Radial coordinate

ri = ηsi/
(
ηsi + ηpi

)
Elastic ratio

Rα Alpha average trasfer function
R0 Membrana average trasfer function
R1 Volumetric flow transfer function
t Proces time
Vz Axial velocity



Fluids 2018, 3, 35 23 of 28

Dimensionless Greek Letters
β Inverse of characteristic length
∆p(t) Pressure difference
ε small parameter
λtλb Memory of the viscoelastic phases{

Σηmin, Σηmax
}

Minima and maxima total viscosities
ω Dimensionless frequency
Π(Di) Viscous inertia time operator
Dimensionless Coefficients
a2

* Input inertia
a1

* Input viscous
a0

* input flexo-electric
b2

* Output inertia
b1

* Output viscous
b0

* Output elasticity
Dimensionless Numbers
De Deborah
k Elastic ratio
Ma Mach
Dimensionless Greek Numbers
λtλb Memory of the viscoelastic phases
Ση Total bulk viscosity
ΣληJ Weigted Jeffreys viscosity
ΣηJ Total, Jeffreys viscosity
Dimensionless Operators
Dt Time diferential
D2

t2 Second time differential
D3

t Third time differential
L3

Oα
Output third order linear

L3
Iα

Input third order linear
Dimensionless Greek Operators
η(Dt) Total viscosity
ηt(Dt) Top viscosity
ηb(Dt) Bottom viscosity
Other Symbols
Re Real parto f a complex functio
Im Imaginary parto f a complex fluid
Exp[iωt] Complex exponencial Sine and Cosine functions
|·| Absolute value
6= Different of zero
= Geometric factor (1/m2)
{>,<} Greater and less than
⇒ Imply that
{>>,<<} Much greater and much less than one
π Pi constant
|·| Absolute value
{≈,∼=} Approximately, Approximately equal
Mathematical Properties
d[x J1(x)]/dx = x J0(x) Spatial derivate of a Bessell function
Subscripts
{b, t} Refers to the bottom and the top fluids
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Abbreviators
3OD Third order differential equation
LC Liquid crystal
NLC Nematic liquid crystal
OHC Outer hair cell
{LS, LV, FM} Low symmetry, Low viscosity and Floppy membrane
{LS, LV, SM} Low symmetry, Low viscosity and Stiffness membrane
{LS, HV, FM} Low symmetry, Low viscosity and Floppy Membrane
{LS, HV, SM} Low symmetry, Low viscosity and Stiffness Membrane
{HS, IV, FM} High symmetry, Intermediate viscosity and Floppy membrane
{HS, IV, SM} High symmetry, Intermediate viscosity and Stiffness membrane
MI Maxwell model at first mode
MIII Maxwell model at third mode
JI Jeffreys model at first mode
JIII Jeffreys model at third mode

Appendix A

In order to non-dimensionalize Equations (8)–(11) the following dimensionless variables are
defined for the electrical field, curvature, time, frequency, viscoelastic properties, pressure difference,
beta parameter, and viscous-inertia function respectively:

E =
E
E0

(A1)

H = aH (A2)

r =
r
a

(A3)

z =
z
a

(A4)

t =
t

Σλ
(A5)

ω = Σλω (A6)

Gi =
Gi

ΣG
; i = {t, b} (A7)

λi =
λi

Σλ
; i = {t, b} (A8)

M =
M
ΣG

(A9)

Q =
Q

πa3/Σλ
(A10)

Y =
Y

cf=E0πa3/Σλ
; Y = {p, Em} (A11)

∆p =
∆p

cf=E0
(A12)

β = βa (A13)

Π∗ =
Π

ΣGΣλ
(A14)

In Equations (A1)–(A10), the characteristic macroscopic electric field, membrane average
curvature, radial and axial coordinates, processing time, frequency, bulk fluid elasticity, viscoelastic
Maxwell properties in the bottom and the top fluids, Membrane elastic force, volumetric flow, power
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dissipation, pressure, elastic storage energy, beta parameter and viscosity inertia function are given by:
(i) the amplitude of the external electrical field; (ii) the radius of the pipe; (iii) the sum of the viscoelastic
times in the bottom and the top fluids; (iv) the sum of the elastic moduli in the bottom and the top fluids;
(v) the electric charge; and (vi) the shape factor area. Notice that for Equations (A1)–(A10) the following
restrictions are satisfied: Xb +Xt = 1; X = {G, λ}. The power dissipation and elastic membrane energy
are scaled by the characteristic power energy Ec = cf=E0πa3/Σλ. This characteristic energy is related
to geometrical characteristic and electrical and viscoelastic processes. The pressure change is scaled
by the characteristic ∆pc = cf=E0, the beta parameter β is scaled by the characteristic radial length
associated with the radius of the pipe “a”. Finally, the viscous-inertia function Π is scaled by the
product between the bulk fluid elasticity and the sum of the Maxwell viscoelastic times. The selection of
these characteristic times allows the comparison with the other internal (inertial, viscoelastic, structure,
and rupture times associated with the flow properties), and external characteristic time (frequency).

Appendix B

In this appendix, the power spectrum is deduced. The ordinary differential equation that describes
the evolution of the average membrane curvature as a function of time is given by:{

b∗3D3
t3+b∗2D2

t2 + b∗1Dt + 1
}

H(t) = a∗0
1− k

k

{
a∗2D2

t2 + Dt + 1
}

E(t) (A15)

In order to find the power spectrum, the electric field is setup to this harmonic function:

E(t) = cos(ωt) (A16)

The response of the membrane average dimensionless curvature H(t; w) to the oscillating electric
field can be separated in two moduli Hio(w) and Hoi(w), respectively:

H(t;ω) = Hio(ω)cos(ωt) + Hoi(ω)sin(ωt) (A17)

The volumetric rate flow is given by: Q = −2−1dH(t;ω)/dt:

Q(t) = −1
2
ωHoi(ω) cos(ωt) +

1
2
ωHio(ω) sin(ωt) = Qio cos(ωt) + Qoi sin(ωt) (A18)

The relationship of the membrane curvature and the volumetric flow rate is given by:

Qio(ω) = −1
2
ωHoi(ω); Qoi(ω) =

1
2
ωHio(ω) (A19)

The power spectrum dissipation is given by integral average of the volumetric flow and the
electrical field and can be calculated through the following form:

〈p(ω)〉 = 1
T

T∫
0

p(ω)dt =
ω

2π

2π/ω∫
0

E(t)Q(t)dt =
1
2

Qio(ω) =
1
2

(
−1

2
ωHOi(ω)

)
(A20)

Thus, the power dissipation for the equivalent systems are the same. The transfer function for the
input electrical field and the output average membrane curvature is given by:

R0 =
H(t)
E(t)

= a∗0
1− k

k

a∗2D2
t2 + D1

t1 + 1

b∗3D3
t3+b∗2D2

t2 + b∗1Dt + 1
(A21)
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Applying the Fourier formalism to the transfer function:

R0(ω) = Re[R0(ω)] + iIm[R0(ω)] =
Ĥ(ω)

Ê(ω)
= a∗0

1− k
k

1− a∗2ω
2 + iω

1− b∗2ω
2 +

(
b∗1ω−b∗3ω

3)i (A22)

Multiplying by the complex conjugate and splitting the real and imaginary parts, we have:

R0(ω) = a∗0
1−k

k
(1−a∗2ω

2)(1−b∗2ω
2)+ω2(b∗1−b∗3ω

2)

(1−b∗2ω
2)

2
+(b∗1ω−b∗3ω

3)
2 +ia∗0

1−k
k ω

(1−b∗2ω
2)−(1−a∗2ω

2)(b∗1ω−b∗3ω
3)

(1−b∗2ω
2)

2
+(b∗1ω−b∗3ω

3)
2 (A23)

After some straightforward algebraic manipulations, the relationship between the curvature
module and the transfer function is found: (i) Re[R0(ω)] = Hio(ω), (ii) −Im[R0(ω)] = Hoi(ω)

Re[R0(ω)] = a∗0
1−k

k

1+
(

b∗1−(1+k)b∗2+(1−k)ΣληJ

)
ω2+

((
kb∗2−(1−k)ΣληJ

)
b∗2−b∗3

)
ω4

(1−b∗2ω
2)

2
+ω2(b∗1−b∗3ω

2)
2 (A24)

−Im[R0(ω)] = a∗0
1−k

k

(b∗1−1)ω+

(
(1−kb∗1)b

∗
2+(1−k)ΣληJ

b∗1−b∗3

)
ω3+

(
kb∗2−(1−k)ΣληJ

)
b∗3ω

5

(1−b∗2ω
2)

2
+ω2(b∗1−b∗3ω

2)
2 (A25)

Thus, the oscillatory transient response of the average membrane curvature is given by:

H(t;ω) = Re[R0(ω)]cos(ωt) + (−Im[R0(ω)])sin(ωt) (A26)

Finally, the average power can be expressed in terms of the transfer function:

〈p(ω)〉 = 1
2
(Re[R1(ω)]) =

1
2
(ωIm[R0(ω)]/2) (A27)
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