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Abstract: The present study reported of the numerical investigation of a high-speed wet steam flow
through an asymmetric nozzle. The spontaneous non-equilibrium homogeneous condensation of
wet steam was numerically modeled based on the classical nucleation theory and droplet growth
rate equation combined with the field conservations within the computational fluid dynamics (CFD)
code of ANSYS Fluent 13.0. The equations describing droplet formations and interphase change
were solved sequentially after solving the main flow conservation equations. The calculations were
carried out assuming the flow two-dimensional, compressible, turbulent, and viscous. The SST k-ω
model was used for modeling the turbulence within an unstructured mesh solver. The validation of
numerical model was accomplished, and the results showed a good agreement between the numerical
simulation and experimental data. The effect of spontaneous non-equilibrium condensation on the jet
and shock structures was revealed, and the condensation shown a great influence on the jet structure.
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1. Introduction

Phase transfer of steam from the gaseous to the liquid phase occurs close to equilibrium conditions
only if the cooling rate is very small. Non-equilibrium condensation arises in transonic/supersonic
flows with a high cooling rate. This means that the time scale of flow is faster than the time scale of
the phase transfer. In that situation, the release of latent heat occurs nearly instantaneous and leads a
significant alternation of the flowfield because this heat is taken over by the surrounding vapor phase.
As phase change affects the flow features, many numerical works have been conducted to model the
non-equilibrium condensation phenomena in high-speed flows [1–7]. Consequently, many researchers
have investigated the same condensation phenomena experimentally [8–12].

Modeling of wet steam flow is of practical importance in a number of engineering fields, such as
transonic/supersonic nozzles, low-pressure steam turbines. Non-equilibrium condensation not only
takes place in the transonic/supersonic flow fields, but also in other gaseous flows, such as in the flow
of exhaust gas caused by the combustion of hydrocarbon fuels. It is noted that the non-equilibrium
condensation in the exhaust gas flows through the nozzle of an airplane may lead a condensation shock
behind the airplane traveling at a transonic/supersonic speed. The flow with the non-equilibrium
condensation may have quite different features from that of without condensation. So far, no work has
been reported on the non-equilibrium condensation in the exhaust gas flows through a supersonic
nozzle. Moreover, a detailed investigation on the non-equilibrium condensation in the exhaust gas
flows through the supersonic asymmetric nozzle, who are widely used in the aerospace industry,
is necessary to perform proper design. In the present paper, the non-equilibrium condensation model
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for pure steam flow was used to replicate the water-vapor condensation in the flow of exhaust gas
containing water-vapors. The asymmetric nozzle geometry of Zudov and Lokotoko [13] was used
to simulate the present two-phase flow phenomena. The numerical results were compared with the
experimental data and with the other computational results. The commercial computational fluid
dynamics (CFD) code of ANSYS Fluent 13.0 (ANSYS, Pittsburgh, PA, USA) was used to solve the
compressible Navier-Stokes equations with the SST k-ω turbulence model. The wet steam model was
employed to investigate the effect of condensation on the flow features.

2. Computational Methodologies

The Eulerian–Eulerian approach was adopted for modeling the wet steam flow. The two phases
in condensing wet steam flow, namely vapor and liquid, are treated as a single fluid with the combined
transport equations; this is known as the ‘pseudo-fluid’ approach. Assumptions made in this model
are the velocity slip between the droplets and that the gaseous-phase is negligible, the interactions
between droplets are neglected, the volume occupied by droplets is negligibly small, the mass fraction
of the condensed phase β (also known as wetness factor) is small (β < 0.2), the heat exchange between
the liquid phase and solid boundary is not taken into account. Under these assumptions, the mixture
density ρ can be related to the vapor density ρv by the following equation:

ρ =
ρV

(1− β)
(1)

In addition, the temperature and pressure of the mixture will be equivalent to the temperature
and pressure of the vapor-phase.

2.1. Governing Equations

The mixture flow is governed by the compressible Navier-Stokes equations given in vector form
as shown below:

∂W
∂Q

∂

∂t

∫
V

QdV +
∮
[F−G] · dA =

∫
V

HdV (2)

where the vectors W, Q, F, and G are defined as:

W =


ρ

ρu
ρv
ρE

, Q =


p
u
v
T

, F =


ρv

ρvu + pî
ρvv + pĵ
ρvE + pv

, G =


0

τxi
τyi

τijvj + q

 (3)

The vector H contains the source terms of the body forces and energy sources. Here ρ, v, E, and
p are the density, velocity, total energy per unit mass, and the pressure of the fluid, respectively. τ is
the viscous stress tensor, and q is the heat flux. The total energy E is related to the total enthalpy H by
E = H − p/ρ where, H = h + |v|2/2.

The Jacobian matrix ∂W/∂Q in Equation (2) is replaced with the preconditioning matrix Γ for
transforming the system into the conservation form, and the matrix Γ is given by:

Γ =


Θ 0 0 ρT

Θu ρ 0 ρTu
Θv 0 ρ ρTu

ΘH − δ ρu ρv ρT H + ρCp

 (4)

where:

ρT =
∂ρ

∂T

∣∣∣∣
p

(5)
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and the parameter Θ is given by:

Θ =

(
1

U2
r
− ρT

ρCp

)
(6)

The reference velocity Ur is chosen locally such that the eigenvalues of the system remain
well-conditioned with respect to the convective and diffusive time scales [14].

In the wet steam model, two additional transport equations are needed to be solved [15]. The first
transport equation governs the mass fraction of the condensed liquid phase (β):

∂ρβ

∂t
+

∂

∂xi
(ρuiβ) = Γ (7)

where Γ is the mass generation rate due to the condensation and evaporation. The second transport
equation models the evolution of the number density of the droplets per unit volume (η):

∂ρη

∂t
+

∂

∂xi
(ρuiη) = ρI (8)

where I is the nucleation rate (number of new droplets per unit volume per second).

2.2. Phase Change Model

The assumptions suggested to the phase change model are, the homogeneous condensation, the
droplet growth is based on the average representative mean radii, the droplet surrounding is the
infinite vapor space, spherical droplets, and the heat capacity of the droplet is neglected compared
with the latent heat released in the condensation.

In the classical nucleation theory, the mass generation rate Γ during non-equilibrium condensation
process is given by the sum of a mass increase due to the nucleation (the formation of critically sized
droplets) and also due to the growth/demise of these droplets [15]. Therefore, Γ is written as:

Γ =
4
3

πρl I r∗3 + 4πρlη r2 ∂r
∂t

(9)

where r is the average radius of the droplet, and r∗ is the Kelvin-Helmholtz critical droplet radius,
above which the droplet will grow and below which the droplet will evaporate. An expression for r∗ is
given by [16]:

r∗ =
2σ

ρl RT ln S
(10)

where σ is the liquid surface tension, ρl is the condensed liquid density, and S is the supersaturation
ratio defined as the ratio of the vapor pressure to the equilibrium saturation pressure.

The condensation process involves two mechanisms, the transfer of mass from the vapor to the
droplets and the transfer of heat from the droplets to the vapor in the form of latent heat. This energy
transfer relation can be written as [15]:

dr
dt

=
P

hlvρl
√

2πRT
γ + 1

2γ
Cp(T0 − T) (11)

The classical homogeneous nucleation theory describes the formation of a liquid phase in the form
of droplets from a supersaturated phase in the absence of impurities or foreign particles. The nucleation
rate described by the steady-state classical homogeneous nucleation theory [16] and corrected for
non-isothermal effects is given by:

I =
qc

(1 + θ)

(
ρv

2

ρl

)√
2σ

Mm3π
e
− ( 4π r∗2σ

3kbT )
(12)
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where qc is the condensation coefficient which is usually considered as unity, kb is the Boltzmann
constant, Mm is the mass of one water molecule, ρv is the vapor density at temperature T and θ is the
non-isothermal correction factor.

2.3. Equation of State

Consistent with the expressions used for calculating the thermodynamic properties of the steam,
the equation of state which relates the pressure to the vapor density and the temperature adopted for
the vapor phase is [17]:

p = ρvRT
(

1 + Bρv + Cρ2
v

)
(13)

where B and C are the second and the third virial coefficients given by the following empirical functions:

B = a1(1 + ζ/α)−1 + a2eζ
(

1− e−ζ
)5/2

+ a3ζ (14)

where B is given in m3/kg, ζ = 1500/T with T in Kelvin, α = 10000.0, a1 = 0.0015, a2 = −0.000942,
and a3 = −0.0004882.

C = a(ζ − ζ0) e−αζ + b (15)

where C is given in m6/kg2, ζ = T/647.286, ζ0 = 0.8978, α = 11.16, a = 1.772, and b = 1.5 × 10−6.
The mixture properties are related to the vapor and liquid properties via the wetness factor using

the following mixing law:
ϕm = ϕl β + (1− β) ϕv (16)

where ϕ represents any of the thermodynamics properties.

2.4. Turbulence Model

The SST k-ω model, a two equation eddy-viscosity (shear stress transport) turbulence
model [18–20], was employed in the present computation to model the turbulence. This turbulence
model is an effective blend of the robust and accurate formulation of the Wilcox’s k-ω model in
the near-wall region with the free-stream independence of the k-ε model in the far field. A more
comprehensive description of the theory and its application to turbulence can be found in [18–21].

2.5. Numerical Methods

The numerical scheme employed simulating the system of governing equations is the
density-based solver within the commercial CFD code of ANSYS Fluent 13.0 [21]. The governing
equations were discretized in the finite volume form on quadratic type elements using cell-vertex
storage. A fully implicit method was implemented on the present spatial domain. The convective
fluxes were formulated using the Roe’s flux difference splitting scheme [22], and the third-order
accuracy of this scheme was conceived from the original MUSCL [23] finite volume scheme that
is a blend of the central differencing and the second-order upwind schemes, in which the physical
domain is subdivided into the numerical cells, and the integral equations were applied to each cell.
Second-order central difference scheme was used for the viscous terms. The first-order upwind scheme
was used for the transport equations in the wet steam model.

2.6. Computational Conditions

The geometric details of the asymmetric nozzle used in the present work is shown in Figure 1.
The nominal height of nozzle throat is D = 14 mm (characteristics length), and the distance between the
nozzle lower and upper ends is 60 mm. To ensure the computational domain independent solutions,
the downstream domain after the upper end was extended to the distance of 50D and 13D in the
x- and y-directions, respectively. The calculation area was meshed with structured quadratic type
mesh elements using ICEM 13.0. The grids were densely clustered in the boundary layers in order to
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provide more reasonable predictions. The fineness of the computational grids was examined to ensure
that the obtained solutions were independent of the grids employed. The resulting number of grids
applied is 220 × 120 in the nozzle and 70 × 220 in the plume region.

The numerical works were done under two initial conditions (ICs). In first case, the inlet total
pressure and total temperature are p0 = 7 bar and T0 = 436–476 K, respectively, while in the second
case, they are p0 = 32 bar and T0 = 510–544 K, respectively. The initial total temperatures, in both cases,
were varied to investigate the effect of superheat. The boundary conditions used were the inlet total
pressure and outlet static pressure at the upstream and downstream of the computational domain,
respectively. Adiabatic and no-slip boundary conditions were applied on the solid surfaces.

A solution convergence was obtained when the residuals for each of the conserved variables were
reduced below the order of magnitude six. Another convergence criterion was to check the conserved
quantities directly through the computational boundaries. The net mass flux was investigated when
there was an applicable imbalance through the computational boundaries.
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3. Results and Discussion

3.1. Computational Fluid Dynamics (CFD) Code Validation

To validate the numerical work, the test case considered a supersonic wet steam flow through
a Barschdorff nozzle [24]. This nozzle is an arc nozzle with a critical throat height of 60 mm and
with a radius of wall curvature of 584 mm. The simulation was performed to the nozzle with the
inlet total pressure of p0 = 0.0785 MPa and total temperature of T0 = 380.55 K. The numerical results
were compared with the experimental data [24] and with Heiler’s calculation [25]. The obtained
centerline pressure distribution presented in Figure 2 shows a good agreement with the experimental
measurements and with the numerical results. The steam expands isentropically in the converging
portion of the nozzle. In the diverging section, the steam undergoes a rapid expansion that leads to
an occurrence of spontaneous non-equilibrium condensation. The heat released by the spontaneous
condensation of wet steam slows down the flow and results in a pressure jump that is called the
condensation shock.
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3.2. Wet Steam Flow in the Asymmetric Nozzle

As we know, the distribution of pressures is strongly depended on the nozzle inlet total pressure
p0, and this fact can be numerically confirmed from the survey of static pressures, and the predicted
data along the measured lines (dashed lines) are plotted in Figure 3a,b. The pressures under each
operating condition shows a unique characteristic, and the pressure field shows a characteristics of
quasi-periodic structure. This is due to the presence of shock cells. The length of the shock cell increases
with the increase of inlet total pressure. It is found that the non-equilibrium condensation of wet steam
influences the pressure field. In both cases, the length of the shock cell increases under the wet steam
flow condition.
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Figure 4a,b show the typical iso-density contours of dry air flow in the asymmetric nozzle at
p0 = 7 bar, T0 = 436 K and p0 = 32 bar, T0 = 510 K, respectively. At p0 = 7 bar in Figure 4a, the flow
is under-expanded after the nozzle throat, and the oblique shock creates the consecutive shock cells.
The flow is found to detach from the nozzle upper wall and reattached again at an axial location of
x/D = 4. A small circulation, as shown in Figure 5a, is found near the upper wall in this flow-separation
region (in the range of x/D = 0 to 4). When the nozzle inlet total pressure is increased to p0 = 32 bar,
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as shown in Figure 4b, the length of the shock cells is found to increase, and the shock cells are extended
to the downstream.
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wet-steam flow.

Typical iso-density contours of the wet steam flow in the asymmetric nozzle at p0 = 7 bar,
T0 = 436 K and p0 = 32 bar, T0 = 510 K are shown in Figure 6a,b, respectively. The length of shock
cells in both cases increase due to the spontaneous of non-equilibrium condensation of wet steam.
The heating of surrounding gas by the release of latent heat of condensation results in the formation of
condensation shocks. The flow tends to expand outwards in order to adjust with the condensation
shock. A quantitative evidence about that phenomenon is presented in Figure 7. The predicted results
of configuration of shock cell lower boundary is presented in the figure. The location of shock cell
boundary is defined by the largest value of density gradient (dρ/dy) on an arbitrary cross-section
normal to the x-axis. The expansion of the shock cell reduces the length of flow-separation region near
the upper wall of the nozzle, as shown in Figure 5b. The length of shock cell increases by 80.4% and
29.4% at p0 = 7 bar and p0 = 32 bar, respectively. As the latent heat releases into the gaseous phase
by the wet steam condensation, the temperature of gaseous phase increases and so does of the total
temperature, as shown in Figure 8.
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(b) p0 = 32 bar, T0 = 510 K.

Figure 9a,b shows the typical contours of nucleation rate of wet steam flow at p0 = 7 bar, T0 = 436 K
and p0 = 32 bar, T0 = 510 K, respectively. While the corresponding typical contours of liquid mass
fractions are illustrated in Figure 10a,b. The computational conditions are given on these figures.
As seen from Figures 9 and 10, the condensate nuclei in both cases start generating from the upstream
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of the nozzle throat and reach the maximum at the onset of condensation. In the present study, the dry
steam enters the nozzle, and the averaged liquid mass fractions leaving the nozzle, i.e., at an axial
location downstream of the nozzle upper end are 0.072 and 0.1 for the inlet conditions of p0 = 7 bar,
T0 = 436 K and p0 = 32 bar, T0 = 510 K, respectively. As seen from these figures, the liquid mass fraction
begins to increase at the onset of condensation, and it distributes over the expansion region of the
flow field.
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During the simulation of wet steam flow in the asymmetric nozzle at p0 = 7 bar, the inlet total
temperature T0 is changed between 436 K and 476 K, while the temperature is varied between
510 K and 544 K for the nozzle flow at 32 bar to investigate the effect of steam superheat on the
occurrence of non-equilibrium condensation. The results are presented in Figure 11a,b. In these
figures, dotted and solid lines represent the liquid mass fraction and nucleation rate, respectively.
The first point of temperature (465 K and 510 K), in both cases, represents the corresponding saturation
temperature. The distributions of liquid mass fraction and nucleation rate indicate that the increase of
inlet total temperature delays the occurrence of non-equilibrium condensation, and the point of onset
of condensation moves to the downstream with the inlet total temperature. Moreover, the average
liquid mass fraction at a given pressure decreases with the increase of the inlet total temperature.
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Figure 11. Distributions of liquid mass fraction and nucleation rate in wet steam flow. (a) p0 = 7 bar;
and (b) p0 = 32 bar.

4. Conclusions

This numerical work was performed to analyze the steam condensing flow in an asymmetric
nozzle. The classical nucleation theory and the equation of droplet growth rate within the
Eulerian–Eulerian approach were employed to model the spontaneous non-equilibrium homogeneous
condensation of wet-steam flow. The influence of thermal parameter on the changes of onset of
condensation was investigated by examining the nucleation region and liquid droplet growth. The rise
in steam temperature at the nozzle inlet delayed the point of condensation. The length of shock cells
was increased due to the effect of spontaneous non-equilibrium condensation of steam. The release of
latent heat into the gaseous phase by the steam condensation increased the temperature of the gaseous
phase, which results in the increase of total temperature of the flow.
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