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Abstract: In this report, we present several results in the theory of α-models of turbulence with
improved accuracy that have been developed in recent years. The α-models considered herein are
the Leray-α model, the zeroth Approximate Deconvolution Model (ADM) turbulence model, the
modified Leray-α and the Navier–Stokes-α model. For all of the models from above, the accuracy is
limited to α2 in smooth flow regions. Better accuracy requires decreasing the filter radius α, which,
in turn, requires a smaller mesh width that will lead in the end to a higher computational cost. Instead,
one can use approximate deconvolution (without decreasing the mesh size) to attain better accuracy.
Such deconvolution methods have been considered recently in many studies that show the efficiency
of this approach. For smooth flows, periodic boundary conditions and van Cittert deconvolution
operator of order N, the expected accuracy is α2N+2. In a bounded domain, such results are valid only
in case special conditions are satisfied. In more general conditions, the author has recently proved
that, in the case of the ADM, the expected accuracy of the finite element method with Taylor–Hood
elements and Crank–Nicolson time stepping method is ∆t2 + h2 + KNα2, where the constant K < 1
depends on the ratio α/h, which is assumed constant. In this study, we present the extension of the
result to the rest of the models.

Keywords: large eddy simulation; turbulence; approximate deconvolution; discrete Stokes filter;
finite element method

1. Introduction

At a high Reynolds number, turbulence is not efficient to simulate using the Navier–Stokes
equations because they require a very fine mesh and a high computational cost [1]. Therefore, in
practical applications, reduced order turbulence models, such as the α-models of turbulence discussed
herein, have to be used.

The α-models of turbulence are regularizations of the Navier–Stokes equations (NSE) whose goal
is to allow stable computations on coarser grids than NSE. They are given by

wt + N(w)− ν∆w +∇p = f in Ω,
∇ ·w = 0 in Ω,

w(x, 0) = w0(x) in Ω.
(1)

Here, the nonlinearity N is N(w) = w · ∇w in the Leray-α model [2], N(w) = w · ∇w in the
case of the modified Leray-α model [3], N(w) = w · ∇w in the case of the zeroth Approximate
Deconvolution Model (ADM) model [4] (here, the ADM is formulated as in [5]), and N(w) = (∇×
w)×w in the case of the Navier–Stokes-α model.

In the above formula, the average w is the solution of the BVP [6]

w− α2∆w +∇p = w in Ω,
w = w on ∂Ω.

(2)
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The study of α-model of turbulence started with the work of Leray who introduced the Leray-α
model in [7,8] (with the filter defined as the convolution with the Gaussian) and later studied in [2,9,10].
The other three models have been introduced and studied in papers such as [3,4,11–20].

One property that all four models have in common is that their accuracy ||uNSE −wα−model || is
limited to O(α2) for smooth flows. In practice, this may lead to over-diffusivity and a lack of accuracy
that requires smaller filter radius α and, as a consequence, a smaller mesh size that in turn causes
higher computational costs. One way to correct this deficiency is to use an approximate deconvolution
operator D having the approximation property u ≈ Du. One example of such deconvolution operator
is the van Cittert deconvolution operator that approximates u by DNu defined as

DN :=
N

∑
n=0

(I − G)n , N = 0, 1, 2, . . . . (3)

For N = 0, 1, 2, the velocity field u will be approximated by

u ≈ u N = 0
u ≈ 2u− u N = 1
u ≈ 3u− 3u + u N = 2

(4)

The finite element analysis of the van Cittert deconvolution method has been studied in [21].
The α-models enhanced using approximate deconvolution become

wt + DN(w)− ν∆w +∇p = f in Ω,
∇ ·w = 0 in Ω,

w(x, 0) = w0(x) in Ω,
(5)

where the nonlinearity DN is DN(w) = Dw · ∇w in the Leray-deconvolution model,
DN(w) = w · ∇Dw in the case of the modified Leray-deconvolution model, DN(w) = Dw · ∇Dw in
the case of the ADM model (formulated as in [21]) and DN(w) = (∇×w)× Dw in the case of the
enhanced Navier–Stokes-α model.

The Leray-deconvolution model has been introduced in [11] and later studied numerically in [22].
The ADM model (together with its zeroth version) has been introduced and studied in [13,14,23] and later
studied in [20,24–29] (see also the monograph [30]). The deconvolution-enhanced Navier–Stokes-α model
has been introduced and studied in [19] and also investigated numerically in [31–33]. To the author’s
knowledge, the modified Leray-deconvolution model has not been studied so far.

Most of the analysis for the deconvolution-enhanced α-models has been carried out in the context
of van Cittert deconvolution. For periodic boundary conditions and assuming a smooth NSE solution,
the modeling error is

||uNSE −w||L∞(L2) + ||uNSE −w||L2(H1) = O(α2N+2) (6)

where w is the solution of the deconvolution enhanced Leray-α or the ADM or the deconvolution
enhanced Navier–Stokes-α model [5,11,19,24,34]. Here, N is the order of the van Cittert deconvolution
operator DN . In a bounded domain, such estimates are valid only if special boundary conditions are
satisfied by the exact NSE solution u [35].

The finite element analysis has been carried out for the Leray-deconvolution and the
deconvolution enhanced Navier–Stokes-α in [19,22] with Crank–Nicolson time discretization and
P2/P1 elements and the main error estimate is

||uNSE −wh||L∞(L2) + ||uNSE −wh||L2(H1) = O(∆t2 + h2 + α2N+2) (7)
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in the case of periodic boundary conditions. Here, the filter radius α satisfies α = O(h). In the above
formula, the term α2N+2 is induced by the deconvolution modeling. The case N = 0 corresponds to
the classical α turbulence models. In the case of a bounded domain, the formula above is no longer
valid [35], and one can only prove that, for all N, the error satisfies

||uNSE −wh||L∞(L2) + ||uNSE −wh||L2(H1) = O(∆t2 + h2 + α2) (8)

Recently, in [29], the following estimate has been proved for the ADM:

||uNSE −wh||L∞(L2) + ||uNSE −wh||L2(H1) = O(∆t2 + h2 + KNα2) (9)

In the above estimate, N is the order of the van Cittert deconvolution operator and K < 1 is
a constant that only depends on the ratio α/h (which is assumed constant) and the sequence of
quasiuniform meshes used in the computation. The term KNα2 is due to the deconvolution and it can
be made small by increasing N and decreasing the ratio α/h [21]. This estimate supports the claim that
high order deconvolution operators indeed improve accuracy, a behavior that has been observed in
the numerical tests in [22,29].

We believe that this is the general behavior of deconvolution enhanced α-models of turbulence
in case the van Cittert deconvolution procedure is used. Using similar techniques such as those
in [29], similar estimates can be obtained for the Leray-deconvolution model, the Navier–Stokes α

deconvolution model and the modified Leray-α deconvolution model.

2. Mathematical Context

The mathematical notations and concepts are similar to the ones used in [19,22,29]. Ω ⊂ Rd,
d = 2, 3, is regular, bounded, polyhedral domain and ‖·‖ and (·, ·) is the L2(Ω) norm and inner
product. Lebesgue spaces and their norms are denoted by Lp(Ω), ‖ · ‖Lp . We use standard notations
for the Lebesque and Sobolev spaces and their norms.

In the variational problem, we use the functional spaces [36]:

Velocity Space− X := [H1
0(Ω)]d

Pressure Space−Q := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω q dx = 0

}
Divergence− free Space−V :=

{
v ∈ X :

∫
Ω q∇ · v dx = 0, ∀ q ∈ Q

} (10)

The finite element analysis is carried out on a family of triangulations (Th)h on Ω that are
quasiuniform [37]. We also consider an inf-sup stable pair of finite elements (Xh, Qh) where Xh ⊂ X,
Qh ⊂ Q, which are assumed to satisfy [37]:

‖u− Iuh‖ ≤ Chk+1‖u‖k+1, u ∈ Hk+1(Ω)d

‖u− Iuh‖1 ≤ Chk‖u‖k+1, u ∈ Hk+1(Ω)d

‖p− Iph‖ ≤ Chk‖p‖k, p ∈ Hk(Ω)

(11)

where Iuh ∈ Xh is an interpolant of u and Iph ∈ Qh is an interpolant of p.
The discretely divergence-free space Vh is

Vh := {v ∈ Xh : (q,∇ · v) = 0, ∀q ∈ Qh} (12)

We assume that Vh satisfies the first two approximation properties in the inequalities (11) above if
u ∈ V.

We let tn = n∆t, tn+1/2 = (n + 1/2)∆t, T := NT∆t. Here, ∆t is the chosen time step, NT is
the number of time steps, and T is the final time. We will also use the notations vn = v(n∆t) and
vn+1/2 = (vn + vn+1)/2 for a function v.

We will assume that the L2 projection operator onto Vh denoted by PVh : L2(Ω)→ Vh ⊂ L2(Ω) is
H1 stable. The analysis also use the inverse inequality [37]:



Fluids 2017, 2, 58 4 of 13

Lemma 1.
||∇vh|| ≤

CT
h
||vh||, ∀vh ∈ Xh (13)

The constant CT does not depend on h.

Definition 1. [30] The discrete Stokes operator Ah : Vh → Vh satisfies (Ahv, vh) = (∇v,∇vh) for any
vh ∈ Vh.

One may easily show that Ah is a bijective, self-adjoint, positive operator with respect to the inner
products (·, ·) and (∇·,∇·) on Vh.

The eigenvalues of Ah are denoted by λ1 < λ2 < . . . < λM.
One may show using the inverse inequality (13) that

λM ≤
C2
T

h2 , ||Ahv|| ≤ CT
h
||∇v||, ||Ahv|| ≤

C2
T

h2 ||v|| (14)

for v ∈ Vh.

Definition 2. (Discrete Stokes average [30]) For given α > 0, we let G : Vh → Vh,

Gv = vh = (I + α2 Ah)
−1v (15)

When v ∈ X, we set vh := GPVh v.

Theorem 1. [29] Due to the spectral mapping theorem, the eigenvalues of the discrete Stokes filter G are
1

1 + α2λi
, i = 1, 2, ..., M, and they satisfy

1

1 + C2
T

α2

h2

≤ 1
1 + α2λM

<
1

1 + α2λ2
< . . . <

1
1 + α2λ1

< 1 (16)

Therefore, ||vh|| ≤ ||v||, ||∇vh|| ≤ ||∇v|| for all v ∈ Vh.

One may also notice that the largest eigenvalue of I − G is bounded by

K =
C2
T

α2

h2

1 + C2
T

α2

h2

< 1 (17)

Therefore,
||I − G|| ≤ K (18)

Definition 3. [30] The N-th order discrete van Cittert deconvolution operator DN : Vh → Vh is given by:

DN :=
N

∑
n=0

(I − G)n , N = 0, 1, 2, . . . . (19)

Several properties of DN that can be found in [30] are listed below. DN is self-adjoint, positive with
respect to the inner products (·, ·) and (∇·,∇·). DNG = I − (I − G)N+1; therefore, the eigenvalues of

DNG are 1−
(

α2λi
1 + α2λi

)N+1

, i = 1 . . . M, and can be bounded as [29]:
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1−

 C2
T

α2

h2

1 + C2
T

α2

h2


N+1

< 1−
(

α2λM

1 + α2λM

)N+1

< . . . < 1−
(

α2λ1

1 + α2λ1

)N+1

< 1 (20)

Following [19], we define two norms on Vh

||v||E := (v, DNGv)1/2, ||v||ε := (∇v,∇DNGv)1/2 (21)

Using inequalities (20), it follows that, see also for more details [29],

√
1− KN+1||v|| ≤ ||v||E ≤ ||v||√
1− KN+1||∇v|| ≤ ||v||ε ≤ ||∇v||

(22)

and
||DNGv|| ≤ ||v||E, ||∇DNGv|| ≤ ||v||ε, ∀v ∈ Vh
||DNGPVh v|| ≤ ||v||, ||∇DNGPVh v|| ≤ C||∇v||, ∀v ∈ X

(23)

We will also use the next estimate of the discrete deconvolution error v− DNvh that has been
obtained in [21].

Theorem 2. [21] If v ∈ Hk+1(Ω) ∩V, k ≥ 1 and α = O(h), then

||v− DNvh|| ≤ C(h2KN ||∆v||+ hk+1|v|k+1)

||∇v−∇DNvh|| ≤ C(hKN ||∆v||+ hk|v|k+1)
(24)

Here, N is the order of the discrete deconvolution operator and K < 1 has been previously defined in (17).

Proof. We recall the main ideas of the proof presented in [21]. First, we split the error ||v− DNvh||
using the triangle inequality

||v− DNvh|| ≤ ||v− PVh v||+ ||PVh v− DNvh|| (25)

The term ||v − PVh v|| is bounded by Chk+1|v|k+1 due to the approximation properties of Vh.
It remains then to estimate ||PVh v− DNvh||. Since DNG = I − (I − G)N+1, this term is written as

||PVh v− DNvh|| = ||(I − G)N+1PVh v|| (26)

It follows that

[||PVh v− DNvh|| ≤ ||I − G||N ||(I − G)PVh v|| ≤ KNα2||Ahvh|| (27)

The discrete Laplacian ||Ahvh|| can be estimated as

||Ahvh|| = ||AhPVh vh|| ≤ C||AhPVh v|| ≤ C||∆v|| (28)

The last inequality from above can be found in [38]. It follows that

||PVh v− DNvh|| ≤ CKNα2||∆v|| (29)

This proves the first inequality in inequalities (24).
The second inequality in inequalities (24) is immediatelly proved using the same arguments

combined with inverse inequalities.
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3. Numerical Scheme for the α-Models of Turbulence

In our analysis b∗(·, ·, ·) : X× X× X → IR will denote the standard skew-symmetrized trilinear
form [36]:

b∗(u, v, w) :=
1
2
(u · ∇v, w) − 1

2
(u · ∇w, v) (30)

One can show that the trilinear form satisfies [39]:

|b∗(u, v, w)|+ |b∗(v, u, w)| ≤ C||u|| (||v||L∞ + ||∇v||L3) ||∇w|| (31)

It follows then using inequalities (35) and (36) in [38] that

|b∗(u, v, w)|+ |b∗(v, u, w)| ≤ C||u|| ||Ahv|| ||∇w|| (32)

for u, w ∈ X, v ∈ Vh.
In the case of the Navier–Stokes in rotational form, the trilinear form is

b̃(u, v, w) = ((∇× v)× u, w) (33)

For body force f ∈ L2((0, T], X) and initial velocity u0 ∈ X, the discrete solution wn+1
h ∈ Vh of the

accuracy enhanced α model of turbulence at step n + 1 for n = 0, 1, 2, ..., NT − 1 satisfies:

(
wn+1

h −wn
h

∆t
, v) + B(wn+1/2

h , v)− (pn+1/2
h ,∇ · v)

+ ν(∇wn+1/2
h ,∇v) = (f((n + 1/2)∆t), v), ∀v ∈ Xh

(q,∇ ·wn+1
h ) = 0 , ∀q ∈ Ph

(w0
h, v) = (w0, v) , ∀v ∈ Xh

(34)

where

B(wn+1/2
h , v) = b∗(DNwn+1/2

h

h
, wn+1/2

h , v), Leray-deconvolution model [22],

B(wn+1/2
h , v) = b∗(wn+1/2

h , DNwn+1/2
h

h
, v), modified Leray-deconvolution model,

B(wn+1/2
h , v) = b∗(DNwn+1/2

h

h
, DNwn+1/2

h

h
, v), ADM [5,29],

B(wn+1/2
h , v) = b̃(DNwn+1/2

h

h
, wn+1/2

h , v), NS-α deconvolution model [19].

(35)

Thorough the analysis, we assume that α/h is constant.

Lemma 2. (Stability) A finite element solution wn+1
h of the model (34) exists at each time step n = 0, . . . NT − 1

and satisfies the stability estimate

sup
0≤n<NT

||wn+1
h ||2 + ∆t ν ∑NT−1

n=0 ||∇wn+1/2
h ||2

≤ C

(
∆t
ν

NT−1
∑

n=0
|| f (tn+1/2)||2−1 + ||w0||2

) (36)

where C does not depend on h, α (but it depends on α/h).

Proof. The Leray-deconvolution model case has been studied (for a slightly different filter operator,
but the argument is still valid) in [22]. The NS-α-deconvolution case in [19]. The modified
Leray-deconvolution case can be proved using arguments similar to the NS α-deconvolution (since it
requires a similar multiplier to cancel the nonlinearity).
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The ADM case has been studied in [29] and shares great similarity with the stability proofs for the
Leray-deconvolution and the NS-α-deconvolution models mentioned previously. We outline the ideas
from [29] here.

To prove the existence of a discrete solution un+1
h ∈ Vh, we consider the operator L : Vh → Vh,

Lϕ = ψ such that ϕ, ψ satisfy the equality

2(ψ, v)E + ∆tν(ψ, v)ε = 2(un
h , v)E − ∆tb∗(DN ϕh, DN ϕh, DNGv)

+∆t(f(tn+1/2), DNGv) ∀v ∈ Vh
(37)

We notice that, if ϕ is a fixed point of L, then un+1
h = 2ϕ− un

h is a solution of the ADM model (34).
In order to find a fixed point of ϕ, we apply the Leray–Schauder fixed point theorem. To show

that L is a compact operator, we notice that it is the composition of a continuous, linear operator
T : Vh → Vh, Tζ = ψ, where

2(ψ, v)E + ∆tν(ψ, v)ε = (ζ, v) ∀v ∈ Vh (38)

and a nonlinear, continuous and bounded operator N : Vh → Vh, Nϕ = ζ, where

(ζ, v) = 2(un
h , v)E − ∆tb∗(DN ϕh, DN ϕh, DNGv) + ∆t(f(tn+1/2), DNGv) ∀v ∈ Vh (39)

To show that N is bounded and continuous, we use the equivalence of all norms on the finite
element space Vh, similar to the proof in [19].

It remains only to show that the set

{ϕ ∈ Vh|ϕ = λLϕ for some λ ∈ [0, 1)} (40)

is bounded in the L2 norm independent of λ.
Assume ϕ = λLϕ ∈ Vh, i.e.,

2(ϕ, v)E + ∆tν(ϕ, v)ε = λ(2(un
h , v)E − ∆tb∗(DN ϕh, DN ϕh, DNGv)

+∆t(f(tn+1/2), DNGv)) ∀v ∈ Vh
(41)

and set v = ϕ, cancel the nonlinearity and get

2||ϕ||2E + ∆tν||ϕ||2ε = λ(2(un
h , ϕ)E + ∆t(f(tn+1/2), DNGϕ)) ∀v ∈ Vh (42)

Next, using the standard Cauchy–Schwartz and Yound inequalities on the right terms, we get that

||ϕ||2E + ∆tν||ϕ||2ε ≤ C(||∆tν−1f(tn+1/2)||2∗ + ||un
h ||

2
E) (43)

Therefore, by the Leray–Schauder Theorem, it follows that the operator L has a fixed point
ϕ = un+1/2

h and the discrete solution un+1
h of the ADM system exists.

To obtain the stability estimate from above, we set DNun+1/2
h

h
as a test function in the ADM

model (34) and the nonlinear term will vanish:

1
2∆t
||(un+1

h ||2E − ||un
h ||

2
E) + ν||un+1/2

h ||2ε = (f(tn+1/2), DNGun+1/2
h )) (44)

Using the standard Cauchy–Schwartz and Young inequalities on the right term, we get

1
∆t
||(un+1

h ||2E − ||un
h ||

2
E) + ν||un+1/2

h ||2ε ≤ Cν−1||f(tn+1/2)||2∗ (45)
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Summing up from n = 0 to n = NT − 1, we get the required inequality

sup
0≤n<NT

||wn+1
h ||2E + ∆t ν ∑NT−1

n=0 ||∇wn+1/2
h ||2ε

≤ C

(
∆t
ν

NT−1
∑

n=0
|| f (tn+1/2)||2−1 + ||w0||2E

) (46)

Here, C = C(Ω).
The norms || · ||E, || · ||ε can be replaced by the standard L2, respectively H1 norm via the

inequality (22), and this will add a dependence of C on K, (see inequality 17), i.e., on the ratio
α/h.

The convergence of the discrete solution wh of the enhanced α-model (34) to the NSE exact
solution u is stated in the next theorem.

Theorem 3. We let (u,p) be a smooth strong solution of the NSE and wn
h , n = 1...NT be the discrete solution

of (34). We assume α/h is constant and w0 = u0. Then, if ∆t is picked small enough, there holds

sup
0≤n<NT

||un+1 −wn+1
h ||2 + ∆t ν ∑NT−1

n=0 ||∇un+1/2 −∇wn+1/2
h ||2

≤ C
(

h2k + ∆t4 + K2Nα4
) (47)

where C is a constant that does not depend on h, α (though it depends on α/h) and K is given in inequality (17) .

Remark 1. The proof uses the discrete Gronwall’s inequality [38], which requires that ∆t satisfies ∆t =

O((ν−3|||∇u|||∞,0 + 1)−1).

Proof. The convergence proof for the Leray-deconvolution model is done in [22] and for the NS-α
deconvolution model in [19], but the two proofs do not use the improved deconvolution error
estimate (24) and the error is proved to be in the bounded domain case on the order of

O
(

h2k + ∆t4 + α4
)

(48)

In the two proofs in [19,22], one bounds

sup
0≤n<NT

||un+1 −wn+1
h ||2 + ∆t ν ∑NT−1

n=0 ||∇un+1/2 −∇wn+1/2
h ||2 (49)

by several terms which can be left unchanged herein and also by the modelling error ( the Intp term
in [22], the Interp term in [19]), which itself contains several terms that can be left unchanged but also
a term that is bounded by the deconvolution error ||un+1/2 − DNun+1/2||. Applying the improved
deconvolution estimate (24) provides the improved K2Nα4 instead of α4.

The proof of the above result for the ADM is done in [29]. We outline here the main ideas of
the proof presented in [29], which are very similar to the ones in [22] except that the nonlinearity is
handled differently.

Similar to [19,22], the NSE is written in the form

(
un+1 − un

∆t
, v) + b∗(DNun+1/2h

, DNun+1/2h
, v) + ν(∇un+1/2,∇v)

−(pn+1/2,∇ · v) = (f((n + 1/2)∆t), v)− Interp(u, p, n, v) ∀v ∈ Xh

(50)
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where

Interp(u, p, n, v) = (ut(tn+1/2)− un+1 − un

∆t
, v) + b∗(u, u, v)

−b∗(DNun+1/2h
, DNun+1/2h

, v) + ν(∇u(tn+1/2)−∇un+1/2,∇v)
+(p(tn+1/2)− pn+1/2,∇ · v)

(51)

Next, one derives the error equation for en+1 = un+1 − un+1
h by subtracting (34) from (50).

We let Un+1 ∈ Vh be the L2 projection of un+1 onto Vh, split the error as en+1 = (un+1 − Un+1)−

(un+1
h −Un+1) := ηn+1− ϕn+1

h and set v = DN ϕn+1/2
h

h
in the error equation. Upon rearranging terms,

we obtain

1
2
(||ϕn+1

h ||2E − ||ϕn
h ||

2
E + ν∆t||ϕn+1/2

h ||2ε = (ηn+1 − ηn, DN ϕn+1/2
h

h
)+

ν∆t(∇ηn+1/2,∇DN ϕn+1/2
h

h
)− ∆tb∗(DNηn+1/2h

, DNun+1/2h
, DN ϕn+1/2

h

h
)

+∆tb∗(DN ϕn+1/2
h

h
, DNun+1/2h

, DN ϕn+1/2
h

h
)

−∆tb∗(DNun+1/2
h

h
, DNηn+1/2h

, DN ϕn+1/2
h

h
)

+∆t(pn+1/2,∇ · DN ϕn+1/2
h

h
) + ∆tInterp(u, p, n, DN ϕn+1/2

h

h
)

(52)

On the right side, all above terms excepting the two trilinear terms appearing in the interpolating
term (51) will be estimated exactly as in [22]. In all of these terms, wherever needed (to get rid of
DNG terms and switch to the norms || · ||E, || · ||ε) to keep the arguments similar to the ones in [22],
inequalities (23) will be used.

The two trilinear terms in Interp that are treated differently compared to [22] take the form

b∗(un+1/2, un+1/2, DN ϕn+1/2
h

h
)− b∗(DNun+1/2h

, DNun+1/2h
, DN ϕn+1/2

h

h
) =

b∗(un+1/2 − DNun+1/2h
, un+1/2, DN ϕn+1/2

h

h
)

+b∗(DNun+1/2h
, un+1/2 − DNun+1/2h

, DN ϕn+1/2
h

h
)

(53)

The first term on the right side above is estimated similar to inequality 3.26 in [22]:

|b∗(un+1/2 − DNun+1/2h
, un+1/2, DN ϕn+1/2

h

h
)|

≤ ν

24
||ϕn+1/2

h ||2ε + Cν−1||un+1/2 − DNun+1/2h
||2

(54)

For the second term, we first use the inequality (32) to get

|b∗(DNun+1/2h
, un+1/2 − DNun+1/2h

, DN ϕn+1/2
h

h
)|

≤ C||un+1/2 − DNun+1/2h
||||AhDNun+1/2h

||||∇DN ϕn+1/2
h

h
||

(55)

Using again the argument in inequality (28) to estimate the middle term and Young’s inequality,
we get further

C||un+1/2 − DNun+1/2h
||||AhDNun+1/2h

||||∇DN ϕn+1/2
h

h
||

≤ C||un+1/2 − DNun+1/2h
||||∆un+1/2||||ϕn+1/2

h ||ε
≤ Cν−1||un+1/2 − DNun+1/2h

||2 + ν

24
||ϕn+1/2

h ||2ε

(56)

Therefore, both trilinear terms have been bounded by the deconvolution error and some terms
that will eventually be hidden on the left side of Equation (52). The proof continues as in [22] by
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applying the discrete Gronwall’s inequality. The application of the Gronwall’s inequality conditions
the time-step to satisfy ∆t ≤ C(ν−3|||∇u|||∞,0 + 1)−1.

For the modified Leray-deconvolution model, the proof follows the steps outlined above down to
equality (53) which, in the case of the ML-α, will take the form

b∗(un+1/2, un+1/2, DN ϕn+1/2
h

h
)− b∗(un+1/2, DNun+1/2h

, DN ϕn+1/2
h

h
) =

b∗(un+1/2, un+1/2 − DNun+1/2h
, DN ϕn+1/2

h

h
)

(57)

which is further estimated as in inequality (54) from above. From here on, the proof proceeds as in the
ADM case.

4. A Numerical Experiment

In this section, we verify the theoretical convergence rates on a 2d NSE problem from [29] with
exact solution

u1(x, y, t) = sin(2πy)e−4νπ2t

u2(x, y, t) = sin(πx)e−νπ2t

p(x, y, t) = 0
(58)

therefore, f = ( f1, f2) is equal to

f1(x, y, t) = 2πcos(2πy)sin(πx)e−5νπ2t

f2(x, y, t) = πcos(πx)sin(2πy)e−5νπ2t (59)

Herein, we check the Leray-deconvolution model with N = 0, 1 (thus suplementing the numerical
results presented in [22]) and the modified Leray-deconvolution model with N = 0, 1. The ADM with
N = 0, 1 has been checked in this problem in [29] on a slightly different mesh and is therefore omitted
here. The NS-α deconvolution model has been checked numerically in [19].

The scope of the test is to verify the convergence rates and also to check numerically that, as N
increases, the corresponding model enters the predicted convergent regime faster.

The test is carried out with the FreeFEM++ package [40]. The computational domain is the unit
square Ω = (0, 1)× (0, 1). The kinematic viscosity is set equal to ν = 1.0 and the final time T is set
equal to T = 0.1. An initial mesh M0 is generated with five even nodes on the edges x = 0, x = 1, 4
even nodes on y = 0 and 6 even nodes on y = 1. Then, the edges are succesivelly halved to generate
the computational meshes M1, M2, . . . , M5, see Figure 1. For the space discretization, we use P2/P1
Taylor–Hood finite elements. In our computation, we set the filter radius α equal to the mesh size h,
i.e., α = h.

(a) sM0 (b) M1 (c) M2 (d) M3

Figure 1. The initial mesh (a) M0 and and the first three level meshes (b) M1, (c)M2, (d)M3.
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First, we solve the Leray-deconvolution and modified Leray-deconvolution with N = 0, 1 on M1

with ∆t = 1/80 and eight iterations. When solving the next mesh M2, the time step ∆t is halved and
we double the number of time iterations. We keep applying this procedure up to the last mesh M5.

To stabilize pressure, the model and the filter equation are augmented with an L2 pressure
stabilization term with parameter 10−9. The resulting algebraic system corresponding to the discrete
model is solved using a fixed point iteration until the L∞ norm of two successive iterates is less than
10−12. The rate presented in the Tables 1–4 is computed as the log2 of the quotient of two successive
errors. The theoretical rate in the L∞(L2) and L2(H1) norms for the Leray-deconvolution and modified
Leray-deconvolution models is 2 and is confirmed by this numerical test. Moreover, the predicted
convergent regime is reached faster for N = 1.

Table 1. L∞(L2) and L2(H1) errors and rates for the the Leray-α model. The final time is T = 0.1.
The predicted rate order is 2.

Level Nr Iter ∆t h L∞(L2) Error L2(H1) Error

M1 8 1/80 0.198493 0.00349919 rate 0.00635556 rate
M2 16 1/160 0.0992465 0.000966758 1.85 0.0017491 1.86
M3 32 1/320 0.0496232 0.000267232 1.85 0.000472424 1.88
M4 64 1/640 0.0248116 6.78601× 10−5 1.97 0.000118784 1.99
M5 128 1/1280 0.0124058 1.68665× 10−5 2.00 2.9308× 10−5 2.01

Table 2. L∞(L2) and L2(H1) errors and rates for the Leray-deconvolution model with N = 1. The final
time is T = 0.1. The predicted rate order is 2.

Level Nr Iter ∆t h L∞(L2) Error L2(H1) Error

M1 8 1/80 0.198493 0.00321879 rate 0.00599466 rate
M2 16 1/160 0.0992465 0.000735394 2.12 0.00131779 2.18
M3 32 1/320 0.0496232 0.000174567 2.07 0.000291998 2.17
M4 64 1/640 0.0248116 4.29922× 10−5 2.02 6.89069× 10−5 2.08
M5 128 1/1280 0.0124058 1.07004× 10−5 2.00 1.67512× 10−5 2.04

Table 3. L∞(L2) and L2(H1) errors and rates for the modified Leray-α model. The final time is T = 0.1.
The predicted rate order is 2.

Level Nr Iter ∆t h L∞(L2) Error L2(H1) Error

M1 8 1/80 0.198493 0.0059773 rate 0.00995501 rate
M2 16 1/160 0.0992465 0.00259845 1.20 0.00434837 1.19
M3 32 1/320 0.0496232 0.000900568 1.52 0.00149832 1.53
M4 64 1/640 0.0248116 0.000257406 1.80 0.000427468 1.80
M5 128 1/1280 0.0124058 6.76934× 10−5 1.92 0.000112259 1.92

Table 4. L∞(L2) and L2(H1) errors and rates for the modified Leray-deconvolution model with N = 1.
The final time is T = 0.1. The predicted rate order is 2.

Level Nr Iter ∆t h L∞(L2) Error L2(H1) Error

M1 8 1/80 0.198493 0.00453629 rate 0.00788281 rate
M2 16 1/160 0.0992465 0.00111931 2.01 0.00198618 1.98
M3 32 1/320 0.0496232 0.000209968 2.41 0.000373953 2.40
M4 64 1/640 0.0248116 4.41691× 10−5 2.24 7.65631× 10−5 2.28
M5 128 1/1280 0.0124058 1.06889× 10−5 2.04 1.80013× 10−5 2.08
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5. Conclusions

This report presents some results on the theory of α models of turbulence that have been obtained
in recent years. They show that the accuracy of these models can be improved using higher order
approximate deconvolution operators. Some numerical tests are also presented to support the
theoretical results. The technique to estimate the deconvolution error can be used in the larger
context of models using approximate deconvolution such as the time-relaxation model investigated
in [41] or for other models, such as the MHD, that have been recently investigated using approximate
deconvolution methods.
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