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Abstract: The stability of the thermal convection in a fluid-saturated rotating anisotropic porous
material is investigated. We take into account the rotation of a layer of saturated porous medium
about an axis orthogonal to the planes bounding the layer. The permeability is allowed to be
an anisotropic tensor. In particular, we restrict our attention to the case where the permeability in
the vertical direction is different to that in the horizontal plane. The linear instability and nonlinear
stability analysis, in the case where the inertial term vanishes, are performed. It is shown, by using
an energy method, that the nonlinear critical Rayleigh numbers coincide with those of the linear
analysis. The results reveal that the system becomes more stable when the rotation is present.
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1. Introduction

Thermal convection in a rotating porous medium is an active topic of research since it has
many applications including geophysics, chemical engineering, food process industry, binary alloy
solidification, cooling of electronics equipment, solidification and centrifugal casting of metals and
rotating machinery (see e.g., Vadasz [1], Vadasz [2], Vadasz and Govender [3], Govender [4] Nield and
Bejan [5], Ingham and Pop [6], and the references therein). Indeed, thermal convection involving the
rotation of the layer of saturated porous medium is a subject receiving attention and is being studied
extensively by many researchers, such as Vadasz [1,7–9]. In particular, he investigated the effect of
the Coriolis force on thermal convection when the Darcy model is extended by including the time-
derivative term in the momentum equation [9]. A comprehensive review of thermal convection in
a rotating porous medium are given by Vadasz [10]. Palm and Tyvand [11] showed that the results of
thermal instability in a rotating porous layer are equivalent to those of non-rotating anisotropic porous
media. Vadasz and Govender [3] also considered the influence of gravity and centrifugal forces on the
onset of convection in a rotating porous layer. Straughan [12] presented an analysis of the nonlinear
stability problem for convection in a rotating isotropic porous medium. He showed that the global
nonlinear stability boundary is exactly the same as the linear instability.

It is important to note that the above-mentioned studies considered assumed saturated that the
porous medium is isotropic. However, the effect of anisotropy combined with the rotation effect on
thermal instability has been the contribution of Alex and Patil [18], who investigated thermal instability
subject to the centrifugal acceleration and the anisotropy effect as in the case of both the Darcy and
Brinkman models. Govender [4] considered the Vadasz paper 1994 [7] but included the anisotropy
effects for both permeability and thermal diffusivity. Later, Malashetty and Swamy [19] also performed
linear instability and weakly nonlinear theory to investigate the anisotropy effects on the onset of
convection in a rotating porous medium. They found that increasing an anisotropy parameter for both
permeability and thermal diffusivity leads to advancing oscillatory convection. The same authors
in [20] employed linear instability theory to investigate the effect of both thermal modulation and
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rotation on the onset of the stationary convection. Govender and Vadasz [21] also deal with the effect
that thermal diffusivity and permeability anisotropy have on the thermal convection in a rotating
porous medium with a thermal non-equilibrium model.

Recently, Vanishree and Siddheshwar [22] performed linear instability for an anisotropic porous
medium with a temperature dependent viscosity. They also found that the onset of convection in
a rotating porous medium is qualitatively similar to that in a non-rotating one. Additionally, the linear
instability and nonlinear stability in an anisotropic porous medium were adopted by Kumar and
Bhadauria [23] who considered viscoelastic fluid in a rotating anisotropic porous medium. Saravanan
and Brindha [24] deal with the onset of centrifugal convection in the Brinkman model, and Gaikwad
and Begum [25] considered the onset of double-diffusive reaction convection in an anisotropic
porous medium.

In this article, we consider that the system of equations is essentially the same as that given in
Vadasz [9], but we allow for the symmetric permeability tensor to be anisotropic. In particular,
we consider the case where the permeability in the vertical direction is different to that in
the horizontal plane. In fact, we consider the case of the inverse of the permeability tensor
M = diag {1/kx, 1/kx, 1/kz}. The goal of this article is to investigate the effect of anisotropy
with rotation on the stability thresholds using linear instability and nonlinear stability methods.
Here, we will ignore the inertia term in the momentum equation. More precisely, we consider cases
where the values of Vadasz number tend to be large [9]. We show that the critical Rayleigh number of
the linear theory is the same as the critical Rayleigh number of the nonlinear theory. We observe that
energy methods are very much in vogue in the current hydrodynamical stability literature cf. Rionero
[13], Capone and Rionero [14], Hill and Carr [15,16], and Hill and Malashetty [17].

2. Governing Equations

Consider a layer of porous medium heated from below and bounded by two horizontal planes
z = 0 and z = d, with gravity acting in the vertical direction of the z-axis. We assume that
an incompressible Newtonian fluid saturates the porous layer and occupies the spatial domain{
(x, y) ∈ R2} × {z ∈ (0, d)}. Furthermore, we suppose that the layer rotates about the z-axis.

The Boussineq approximation is assumed to be valid.
The governing equations incorporating fluid inertia for thermal convection in an anisotropic

rotating porous media of Darcy type may be written as, cf. Malashetty, and Swamy [19],

a0vj,t = − p,j − µMijvi,+gρ0αTk j − 2
ϕ (Ω× v)j (1)

vi,i = 0, (2)

T,t + viT,i = κ∆T. (3)

Here, v, t, p, T are the velocity field, time, pressure, and temperature, respectively, and µ, κ,
g, α, ρ0, ϕ are dynamic viscosity, thermal diffusivity, gravity, thermal expansion coefficient of the
fluid, constant density coefficient, and porosity, respectively, and Ω is the angular velocity vector
with k = (0, 0, 1), a0 = â/ϕ is an inertia coefficient, â is constant and ϕ is porosity. Standard indicial
notation is employed throughout.

The inverse of the permeability tensor is assumed to be of the form

Mij = diag {1/kx, 1/kx, 1/kz} ,

where kx, kz are constants. The boundary conditions for the problem are

n · v = 0 , on z = 0, d ,

T = TL, z = 0, T = TU , z = d,
(4)
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where TL, TU are constants with TL > TU , and n is the unit outward normal to the boundary,
so n = (0, 0, 1) on z = d and n = (0, 0,−1) on z = 0.

When no motion occurs and the temperature gradient is constant throughout the layer, the basic
steady state solution (v̄, p̄, T̄) whose stability is under investigation is

v̄i ≡ 0, T̄ = −βz + TL,

p̄ = p0 − gρ0z− 1
2

αβgρ0z2,
(5)

with p0 is the pressure at the surface z = 0, β = (TL − TU)/d .
Letting vi = v̄i + ui, T = T̄ + ϑ, p̄ = p̄ + π, the nonlinear perturbation equations arising from

Equations (1)–(3), are

a0uj,t = − π,j − µMijui + k jgρ0αϑ− 2
ϕ
(Ω× u)j,

ui,i = 0,

ϑ,t + uiϑ,i = βw + κ∆ϑ,

(6)

where w = u3.
The perturbation equations are non-dimensionalised with the following scalings as follows:

xi = dx∗i , ui = Uu∗i , t = T t∗, π = Pπ∗, ϑ = T#ϑ∗,

U =
κ

d
, T =

d2

κ
, P =

dµU
kx

, T# = U

√
d2βµ

κρ0gαkx
,

V̂a =
ϕPr
âDa

, R =

√
d2ρ0gαβkx

µκ
, T̃ =

2Ωkx

µϕ
,

where Ra = R2 is the Rayleigh number, Ta = T̃2 is the Taylor number, V̂a is the Vadasz number, and Pr
is the Prandtl number, with Da = kx/d2 being the Darcy number.

Omitting all stars, the nonlinear non-dimensional perturbation equations are

1
V̂a

ui,t = − π,i + Rkiϑ− T̃(k× u)i −mijuj,

ui,i = 0,

ϑ,t + uiϑ,i = Rw + ∆ϑ.

(7)

Here, mij = diag {1, 1, ξ}, where ξ = kx/kz is the anisotropy parameter.
The corresponding boundary conditions are

niui = ϑ = 0, z = 0, 1, (8)

with {ui, ϑ, π} satisfying a plane tiling periodicity in (x, y).

3. The Principle of Exchange of Stabilities Ignoring Inertia Term

As stated in the Vadasz paper [9], the values of Vadasz for many porous media applications in
a real life are large. To this end, we let V̂a → ∞ in the Equation (7) be

− π,i + Rkiϑ− T̃(k× u)i −mijuj = 0, (9a)

ui,i = 0, (9b)

ϑ,t + uiϑ,i = Rw + ∆ϑ. (9c)
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We now take curl of Equation (9a) and curlcurl of the same equation to find

R(ϑ,yδi1 − ϑ,xδi2) + T̃
∂ui
∂z
− εijkmkquq,j = 0, (10)

and
mir∆ur −mjrur,ji + T̃

∂ωi
∂z

= R(ki ∆∗ ϑ− ϑ,xzδi1 − ϑ,yzδi2), (11)

where ∆∗ = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian operator, and ωi is the vorticity.
Upon taking the third component of the foregoing equations, we obtain

m3r∆ur −mjrur,j3 + T̃ω3,z = R ∆∗ ϑ, (12a)

T̃w,z − ε3jkmkquq,j = 0, (12b)

ϑ,t + uiϑ,i = Rw + ∆ϑ. (12c)

We now consider the linearised Equation of (12) by removing the nonlinear term of Equation (12c),
and therefore we seek for solutions of the form

u (x, t) = u (x) eσt, ϑ (x, t) = ϑ (x) eσt.

By substituting into Equation (12) and removal of exponential parts, we have to solve the system

m3r∆ur −mjrur,j3 + T̃ω3,z = R ∆∗ ϑ, (13a)

T̃w,z − ε3jkmkquq,j = 0, (13b)

σϑ = Rw + ∆ϑ. (13c)

The corresponding boundary conditions are

w = ϑ = 0, z = 0, 1. (14)

In order to show that σ ∈ R, and that the principle of exchange of stabilities holds, we consider
a three-dimensional periodic cell V for solution to Equation (13) and assume momentarily that σ, ui,
and ϑ are complex. Then, we multiply Equation (13a) by w∗ (the complex conjugate of w)and integrate
over V to obtain ∫

V

(
m3r∆ur −mjrur,j3

)
w∗dV +

∫
V

T̃ω3,zw∗dV =
∫

V
R ∆∗ ϑw∗dV, (15)

since mij = diag {1, 1, ξ}, so one may rewrite the first term in Equation (15) as shown below

m3r∆ur −mjrur,j3 = m33∆u3 −m11u1,13 −m22u2,23 −m33u3,33

= ξ(u3,11 + u3,22 + u3,33)− u1,13 − u2,23 − ξu3,33

= ξ(u3,11 + u3,22)− (u1,1 + u2,2),3 .

Recalling u1,1 + u2,2 = −u3,3, we have

m3r∆ur −mjrur,j3 = ξ ∆∗ w + w,zz. (16)

Making use of Equation (13b)

T̃w,z = ε3jkmkquq,j

= ε321m11u1,2 + ε312m22u2,1 (17)

= −u,y + v,x.
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Furthermore, we now make use of vorticity equation

ωi = ∇× ui = εijkuk,j ≡
(
w,y − v,z, u,z − w,x, v,x − u,y

)
, (18)

and so
ω3 = v,x − u,y. (19)

Then, we form the combination of Equations (17) and (19) to find

ω3 = T̃w,z. (20)

After differentiating Equation (20) with respect to z and expressing w,zz = ∆w− ∆∗ w, we employ
the results and Equation (16) into Equation (15) to obtain∫

V

(
1 + T̃2

)
∆ww∗dV −

∫
V

(
1− ξ + T̃2

)
∆∗ ww∗dV =

∫
V

R ∆∗ ϑw∗dV,

and hence we arrive at

−
(

1 + T̃2
)
‖∇w‖2 +

(
1− ξ + T̃2

)
‖∇∗ w‖2 = − R(∇∗ w,∇∗ ϑ), (21)

where ∇∗ ≡ (∂/∂x, ∂/∂y, 0), (., .) and ‖.‖ denote the inner product and norm on the complex Hilbert
space L2(V).

By applying the horizontal Laplacian operator ∆∗ to Equation (13c), multiplying by ϑ∗

(the complex conjugate of ϑ) and again integrating, we find

σ ‖∇∗ ϑ‖2 = R(∇∗ w,∇∗ ϑ) + ‖∇∗∇ϑ‖2 . (22)

Next, the addition of Equations (21) and (22) yields

σ ‖∇∗ ϑ‖2 =
(

1 + T̃2
)
‖∇w‖2 −

(
1− ξ + T̃2

)
‖∇∗ w‖2 + ‖∇∗∇ϑ‖2 . (23)

Since σ = σr + iσi, the equating the imaginary parts of Equation (23) yields

σi ‖∇∗ ϑ‖2 = 0.

Thus, σi = 0 and so σ ∈ R, which implies that the linearized Equation (13) satisfy the strong
principle of exchange of stabilities. As such, the instability set in as stationary convection.

4. Linear Instability Analysis

In this section, we seek to find the critical Rayleigh number of linear theory and we follow
the work of Chandrasekhar [26]. To this end, we set σ = 0 into Equation (13). We further employ
Equation (16), and the governing system can be reduced to

ξ ∆∗ w + w,zz + T̃ω3,z = R ∆∗ ϑ, (24a)

ω3,z − T̃w,zz = 0, (24b)

Rw + ∆ϑ = 0, (24c)

where Equation (20) has been differentiated with respect to z.
We now eliminate ω3,z from Equation (24a,b), and therefore system (24) can be written as follows:

ξ ∆∗ w +
(

1 + T̃2
)

w,zz = R ∆∗ ϑ,

Rw + ∆ϑ = 0.
(25)
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To proceed, we assume a normal mode representation for w, and ϑ of the form

ϑ = Θ(z) f (x, y), w = W(z) f (x, y),

where f (x, y) is the horizontal planform that satisfies ∆∗ f = −a2 f , a being a wave number.
With D = d/dz, we arrive at the following system[

(1 + T̃2)D2 − ξa2
]

W = − a2RΘ, (26a)(
D2 − a2

)
Θ = − RW. (26b)

The corresponding boundary conditions are

W = Θ = 0, z = 0, 1. (27)

The variable Θ is eliminated from Equation (26) to yield the fourth order differential equation[
(1 + T̃2)(D2 − a2)D2 − ξa2(D2 − a2)

]
W = a2R2W. (28)

In view of the boundary conditions (27) and from Equation (26a), we obtain

D2W = 0, z = 0, 1.

Applying these boundary conditions to Equation (28), it turns out that

D4W = 0, z = 0, 1. (29)

Further differentiation of Equation (28) yields

D(2n)W = 0, on z = 0, 1, for n = 0, 1, 2, ...

Thus, we may select W = sin nπz, for n ∈ N. Upon substituting in Equation (28), we have[
(1 + T̃2)(n2π2 + a2)n2π2 + ξa2(n2π2 + a2)

]
= a2R2,

which leads to

R2
L =

(
1 + T̃2)π2n2Λn

a2 + ξΛn, (30)

where Λn = n2π2 + a2. Minimizing over n yields n = 1. Then, differentiating R2 with respect to a2

yields the stationary convection boundary

R2
L(sc) = π2

(√
ξ +

√
1 + T̃2

)2
, (31)

and the corresponding critical wave number aL(c) is given by

a2
L(c) = π2

√
1 + T̃2

ξ
. (32)

It is worth observing that as T̃2 = 0, and ξ = 1, we recover the result for the isotropic problem [27]

a2
L(c) = π2 , R2

L(sc) = 4π2.
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5. Nonlinear Stability Analysis

In this section, we commence with the derivation of further boundary conditions that will be
used to continue with the nonlinear stability analysis. To obtain these, we observe from Equations
(10) and (18),

ω1 = (1− ξ)w,y + T̃u,z + Rϑ,y, ω2 = (ξ − 1)w,x + T̃v,z − Rϑ,x. (33)

One may then deduce from the boundary conditions (14),

ω1 = T̃u,z, ω2 = T̃v,z, z = 0, 1. (34)

In addition, from Equation (18), we also find on the boundaries

ω1 = − v,z, ω2 = u,z, z = 0, 1. (35)

One may then deduce from Equations (34) and (35),

u,z = v,z = 0, z = 0, 1, (36)

and hence
ω1 = ω2 = 0, z = 0, 1. (37)

Furthermore, we find from Equations (19) and (20) that

T̃w,zz = v,xz − u,yz. (38)

It follows from Equation (36) that

w,zz = 0, z = 0, 1. (39)

Since w ≡ ϑ ≡ 0 on z = 0, 1, we obtain from Equation (9c)

ϑ,zz = 0, z = 0, 1. (40)

Then differentiating Equation (9c) 2n times with respect to z, we find

ϑ
(2n)
,t +

2n

∑
s=0

(
2n
s

)
u(s)

i ϑ
(2n−s)
,i = Rw(2n) + ∆ϑ(2n),

where we have used the General Leibniz Rule.
Furthermore, we may rewrite the foregoing equation as shown below:

ϑ
(2n)
,t +

2n

∑
s=0

(
2n
s

) [
u(s)ϑ

(2n−s)
,x + v(s)ϑ(2n−s)

,y + w(s)ϑ(2n−s+1)
]

= Rw(2n) + ∆∗ ϑ(2n) + ϑ(2n+2).

Now, upon setting n = 1, we have

ϑ
(2)
,t +

2

∑
s=0

(
2
s

) [
u(s)ϑ

(2−s)
,x + v(s)ϑ(2−s)

,y + w(s)ϑ(3−s)
]

= Rw(2) + ∆∗ ϑ(2) + ϑ(4). (41)
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Thus, employing Equations (14), (36), (39) and (40) yields

ϑ(4) = 0, z = 0, 1. (42)

We next differentiate Equation (33), an even number of times with respect to z, to find

ω1,zz = T̃u,zzz, ω2,zz = T̃v,zzz, z = 0, 1. (43)

In addition, we also differentiate Equation (35) an even number of times with respect to z, we have

ω1,zz = − v,zzz, ω2,zz = u,zzz, z = 0, 1. (44)

Therefore, from Equations (43) and (44), we obtain

u,zzz = 0, v,zzz = 0, z = 0, 1. (45)

By further differentiation of Equation (38) an even number of times with respect to z, we find

w(4) = 0, z = 0, 1. (46)

The above process may be repeated to derive the general boundary conditions

w(2n) = 0, ϑ(2n) = 0, z = 0, 1, for n ∈ N, (47)

which hold for the solution of the nonlinear problem.
We aim now to study nonlinear energy stability and find a stability threshold. Again, we let V be

a periodic cell for a disturbance to Equation (9), and let ‖.‖ and (., .) be the norm and inner product on
L2(V). The energy identities are derived by multiplying the vertical component of Equation (11) by w,
upon use of Equations (16) and (20) with i = 3, and also use some integrations by parts, with the aid
of boundary conditions, one may show that

ξ ‖∇∗ w‖2 +
(

1 + T̃2
)
‖w,z‖2 = R (∇∗ ϑ,∇∗ w) . (48)

Next, multiply Equation (9c) by ϑ and integrate over V to find

1
2

d
dt
‖ϑ‖2 = R (w, ϑ)− ‖∇ϑ‖2 . (49)

By adding λ (48) to (49), for λ > 0 a parameter to be chosen, we may derive an energy identity
of form

dE
dt

= RI − D, (50)

where

E(t) =
1
2
‖ϑ‖2 , (51)

I = (w, ϑ) + λ (∇∗ ϑ,∇∗ w) , (52)

D = ‖∇ϑ‖2 + λ
(

ξ ‖∇∗ w‖2 +
(
1 + T̃2) ‖w,z‖2

)
. (53)

Define RE by
1

RE
= max

H

I
D

, (54)

whereH is the space of admissible functions given by
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H = {ui , ϑ|ui ∈ L2(V), ϑ ∈ H1(V), ui,i = 0, ui, ϑ are periodic in x, y}.

Therefore, from Equation (50), we deduce

dE
dt
≤ −D

(
RE − R

RE

)
. (55)

Then, from the Poincaré’s inequality on D, we have

D ≥ π2 ‖ϑ‖2 .

Provided R < RE, put c = 1− R/RE > 0 and then, from Equation (55), we have

dE
dt
≤ −2π2cE(t).

This yields
E(t) ≤ E(0)e−2π2ct.

Thus, E(t) tends to 0 as t→ ∞ at least exponentially. Therefore, ‖ϑ(t)‖ → 0 at least exponentially.
To obtain the decay of u, we multiply Equation (9) by ui and integrate over V to obtain(

mijuj, ui
)
= R (ϑ, w) . (56)

We may observe that (
mijuj, ui

)
≥ µ̂ ‖u‖2 ,

where
µ̂ = min {1, ξ} .

From Equation (56), it now follows that

µ̂ ‖u‖2 ≤ R (ϑ, w) ,

and then with use of the arithmetic geometric mean inequality, one shows

µ̂ ‖u‖2 ≤ R
2α̂
‖ϑ‖2 +

Rα̂

2
‖w‖2

≤ R
2α̂
‖ϑ‖2 +

Rα̂

2
‖u‖2 ,

for α̂ > 0 to be chosen.
If we now pick α̂ = µ̂/R, then we show

0 < ‖u‖2 ≤ R2

µ̂2 ‖ϑ‖
2 ,

which implies ‖u‖2 must also decay at least exponentially. Hence, the global nonlinear stability
criterion is determined by Equation (54).

In order to determine RE, we have to derive the Euler–Lagrange equations and maximise in the
coupling parameter λ. To do this, we must find the stationary point of I/D, by using the calculus of the
variations technique, the Euler–Lagrange equations arising from Equation (54) are determined from

REδI − δD = 0, (57)

for all hi ∈ H, and η ∈ H. We have that
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δD =
d
dε

∫
V

[
(∇ (ϑ + ηε))2 + λξ (∇∗ (w + h3ε))2 + λ

(
1 + T̃2

)
(w,z + h3,zε)2

]
dV

∣∣∣∣∣∣
ε=0

,

=
∫
V

[
2∇ (ϑ + ηε)∇η + 2λξ∇∗ (w + h3ε)∇∗ h3 + 2λ

(
1 + T̃2

)
(w,z + h3,zε) h3,z

]
dV

∣∣∣∣∣∣
ε=0

,

and

δI =
d
dε

∫
V

[
(w + εh3) (ϑ + εη) + λ∇∗ (ϑ + ηε)∇∗ (w + h3ε)− (ui,i + εhi,i)π(x)

]
dV

∣∣∣∣∣∣
ε=0

,

=
∫
V

[
(w + εh3) η + h3 (ϑ + εη) + λ∇∗ (ϑ + ηε)∇∗ h3 +∇∗ (w + h3ε)∇∗ η − hi,iπ(x)

]
dV

∣∣∣∣∣∣
ε=0

,

where we have included the constraint ui,i = 0 by way of a Lagrange multiplier 2π(x), and ε is
a positive constant.

Furthermore, after some integrations by parts and using the boundary conditions, we find that

δD =
∫
V

[
−2η∆ϑ + 2λh3

(
−ξ ∆∗ w−

(
1 + T̃2

)
w,zz

)]
dV,

δI =
∫
V

[η (w− λ ∆∗ w) + hi (δi3 (ϑ− λ ∆∗ ϑ)− π,i)]dV.

Since hi and η were chosen arbitrary functions, from Equation (57), we obtain the Euler–Lagrange
equations

RE (ϑ− λ ∆∗ ϑ) + 2λ
(
ξ ∆∗ w +

(
1 + T̃2)w,zz

)
= π,i, (58)

RE (w− λ ∆∗ w) + 2∆ϑ = 0, (59)

where π(x) is now a Lagrange multiplier. Applying the horizontal Laplacian operator to Equation
(58), we obtain

RE (λ ∆∗−1)∆∗ ϑ− 2λ ∆∗
(
ξ ∆∗ w +

(
1 + T̃2)w,zz

)
= 0, (60)

RE (w− λ ∆∗ w) + 2∆ϑ = 0. (61)

We again use a normal mode representation, as for the linear stability analysis, ϑ = Θ(z) f (x, y),
w = W(z) f (x, y). This leaves us to solve the eigenvalue problem

RE

(
1 + λa2

)
Θ + 2λ

[(
1 + T̃2

)
D2 − ξa2

]
W = 0,

RE

(
1 + λa2

)
W + 2

(
D2 − a2

)
Θ = 0.

(62)

This system would have to be solved for RE subject to the boundary conditions Equation (27).
Furthermore, we observe that W and Θ satisfy the boundary conditions

W(2n) = 0, Θ(2n) = 0, z = 0, 1, f or n ∈ N. (63)
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By eliminating Θ, we obtain a fourth order equation in W,

4λ
(

1 + T̃2
) (

D2 − a2
)

D2W − 4λξa2
(

D2 − a2
)

W = R2
E

(
1 + λa2

)2
W. (64)

Hence, W(z) may be written in the form

W = sin nπz, n = 1, 2, · · · .

After some calculations, following the method in Section 4, one may find

R2
E = 4λ

π2n2 (1 + T̃2) (π2n2 + a2)+ ξa2 (π2n2 + a2)
(1 + λa2)

2 . (65)

For any fixed wave number a2, the minimum with respect to n2 of R2
E
(
a2, n2) is obtained for

n = 1. Then,

R2
E = 4λ

π2 (1 + T̃2) (π2 + a2)+ ξa2 (π2 + a2)
(1 + λa2)

2 . (66)

Let us now select λ = 1/a2, and then

R2
E =

π2 (π2 + a2) (1 + T̃2)
a2 + ξ

(
π2 + a2

)
. (67)

This is exactly the same Equation (30) with n = 1 for linear instability problem. This is, in a sense,
the best possible threshold for the onset of linear unconditional stability. Thus, the minimum of
R2

E with respect to a2 is identical to the minimum of R2
L with respect to a2, and hence no subcritical

instabilities can arise. This result is undoubtedly due to the fact that the operator attached to the linear
theory is symmetric in this case (see Straughan [27] and Falsaperla et al. [28]).

6. Numerical Results

The aim of this paper was to investigate how the inclusion of the Taylor number T̃2 affects the
thermal instability threshold in an anisotropic porous medium. The results of different values of the
anisotropy parameter ξ and the Taylor number T̃2 are presented in Tables 1 and 2, and are presented
graphically in Figures 1–3.

Table 1 and Figure 1 present the values of R2
L(sc) = Rc, the critical Rayleigh number for both the

onset of linear instability and for the nonlinear stability. This shows that the effect of increasing the
Taylor number T̃2 always results in an increase in the critical Rayleigh number Rc, so that rotation
stabilizes the system. Furthermore, the effect of increasing the anisotropy parameter ξ is seen also to
increase the critical Rayleigh number Rc. This means that, when the rate of rotation and ξ increase,
the stability becomes more pronounced, i.e., Rc increases. For example, for ξ = 3 and T̃2 = 5, we see
from Table 1 that the critical Rayleigh number is Rc = 172.573, whereas, when ξ = 10 and T̃2 = 25,
the critical Rayleigh number is Rc = 673.591.

From Figure 3, it is evident that, when there is no rotation, T̃2 = 0, the instability curve starts at
Rc = 4π2 when ξ = 1 and increases when rotation is included. Note that the critical Rayleigh number
Rc became significantly higher at T̃2 = 100, which leads to stabilize the system. One can see that,
when ξ increases to ξ = 5 in case T̃2 = 0, the instability curve starts at Rc = 103.356. This means that
the effect of increasing the anisotropy parameter is to delay the onset of convection in a fluid layer.
Again, we observe that increasing the Taylor number T̃2 leads to an increase in the critical Rayleigh
number Rc. Thus, an increase in the anisotropy parameter ξ in the vertical direction with an increase
in the Taylor number T̃2 has the effect of stabilizing the system. We can, therefore, conclude that the
effect of rotation is to enhance the stability of the system. In addition, these results are reinforcing the
fact that the linear instability analysis is accurately capturing the physics of the onset of convection.
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Table 2 and Figure 2 present the values of aL(c) = ac, the critical wave number for both the
onset of linear instability and for the nonlinear stability. It can be observed that, for a fixed value
of the anisotropy parameter ξ, the effect of increasing the Taylor number T̃2 is to increase the wave
number. For example, for ξ = 3 and T̃2 = 5, we see from Table 2 that the critical wave number is
ac = 3.736, whereas, when T̃2 = 25 for the same anisotropy parameter ξ = 3, the critical wave number
is ac = 5.390. It is also observed that increasing the anisotropy parameter ξ had the effect of decreasing
the value of the wave number. However, as soon as the value of the Taylor number T̃2 increases,
one can observe the critical wave number also increases, which corresponds to the narrower convection
cells. These results indicate the effect of incorporating rotation in an anisotropic porous medium.

Ta=5

 Ta=10

Ta=15

 Ta=20

 Ta=25

1 2 3 4 5 6 7 8 9 10 11

100

200

300

400

500

600

700

R
c

Figure 1. Critical Rayleigh number Rc as function of ξ, for T̃2 = 5 increasing to T̃2 = 25.
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Figure 2. Critical wave number ac as function of ξ, for T̃2 = 5 increasing to T̃2 = 25.
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Figure 3. Critical Rayleigh number Rc as function of Ta, for ξ = 1, 5.

Table 1. Critical values of Rayleigh number Rc, vs. ξ, for T̃2 = 5, 10, 15, 20, 25.

Rc

ξ T̃2 = 0 T̃2 = 5 T̃2 = 10 T̃2 = 15 T̃2 = 20 T̃2 = 25 T̃2 = 100

1 39.478 117.438 183.903 246.740 307.588 367.130 1205.076
2 57.524 147.335 220.890 289.315 354.926 418.690 1297.116
3 73.668 172.573 251.568 324.280 393.546 460.550 1370.037
4 88.826 195.398 278.979 355.306 427.653 497.389 1433.062
5 103.356 216.682 304.304 383.815 458.876 531.019 1489.762
6 117.438 236.871 328.145 410.535 488.051 562.370 1541.969
7 131.182 256.230 350.864 435.901 515.674 591.993 1590.772
8 144.657 274.932 372.693 460.194 542.068 620.249 1636.881
9 157.914 293.097 393.795 483.611 567.457 647.388 1680.786
10 170.987 310.813 414.288 506.293 592.006 673.591 1722.848

Table 2. Critical values of wave number ac, vs. ξ, for T̃2 = 0, 5, 10, 15, 20, 25, 100.

ac

ξ T̃2 = 0 T̃2 = 5 T̃2 = 10 T̃2 = 15 T̃2 = 20 T̃2 = 25 T̃2 = 100

1 3.142 4.917 5.721 6.283 6.725 7.094 9.959
2 2.642 4.135 4.811 5.284 5.655 5.965 8.375
3 2.387 3.736 4.347 4.774 5.110 5.390 7.567
4 2.221 3.477 4.046 4.443 4.755 5.016 7.042
5 2.101 3.288 3.826 4.202 4.497 4.744 6.660
6 2.007 3.142 3.656 4.015 4.297 4.533 6.363
7 1.931 3.023 3.517 3.863 4.135 4.361 6.123
8 1.868 2.924 3.402 3.736 3.999 4.218 5.922
9 1.814 2.839 3.303 3.628 3.883 4.096 5.750
10 1.767 2.765 3.217 3.533 3.782 3.989 5.601
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7. Conclusions

In this article, we investigated the combined effects of the Taylor number T̃2 and the anisotropy
parameter ξ on the stability threshold for the thermal convection problem. We have studied a model of
the thermal convection in a fluid saturated rotating anisotropic Darcy medium allowing the Vadasz
number V̂a to be infinite. The validity of the linear instability is tested and the nonlinear analysis has
performed to confirm the validity of linear instability. Our analysis emphasized that the subcritical
instabilities are not possible when the inertia term is neglected and hence the linear instability analysis
is accurately capturing the physics of the onset of convection. These results showed that the effect of
rotation is to enhance the stability of the system.
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