
fluids

Article

Interaction of the Longwave and Finite-Wavelength
Instability Modes of Convection in a Horizontal Fluid
Layer Confined between Two Fluid-Saturated
Porous Layers

Tatyana P. Lyubimova 1,2,* and Igor D. Muratov 2

1 Computational Fluid Dynamics Laboratory, Institute of Continuous Media Mechanics UB RAS,
Ak. Koroleva str. 1, 614013 Perm, Russia

2 Theoretical Physics Department, Perm State University, Bukireva str. 15, 614990 Perm, Russia;
lyubimovat@mail.ru

* Correspondence: lubimova@psu.ru; Tel.: +7-342-2396646

Received: 2 May 2017; Accepted: 14 July 2017; Published: 16 July 2017

Abstract: The onset of convection in a three-layer system consisting of two fluid-saturated porous
layers separated by a homogeneous fluid layer is studied. It is shown that both a longwave convective
regime developing in the whole system and a finite-wavelength regime of convection concentrated in
the homogeneous fluid layer are possible. Due to the hydraulic resistance of the porous matrix, the
flow intensity in the longwave convective regime is much lower than that in the finite-wavelength
regime. Moreover, it grows at a much slower pace with the increase of the Grashof number. Because
of that, the long-wave convective regime becomes unstable at small supercriticalities and is replaced
by a finite-wavelength regime.

Keywords: thermal convection; porous medium; multilayer system; longwave and finite-wavelength
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1. Introduction

At the onset of convection in layers, the scale of convective cells is usually close to the transversal
size of the channel. The original situation is discussed in Reference [1], where the onset of convection in
a three-layer system consisting of two fluid-saturated porous layers separated by a pure fluid layer is
studied. It was found that, there is a range of parameters where the neutral curves are bimodal, i.e., both,
a longwave convection, taking place mainly in porous medium, and a finite-wavelength convection,
concentrated mainly in a fluid with a characteristic horizontal scale close to the thickness of a layer,
may coexist. Later on, the same phenomena were discovered and analyzed for two-layer systems made
up of a superposed pure fluid layer and a fluid-saturated porous layer [2–6]. In Reference [7], it is
shown that high frequency transversal vibrations cause a stabilizing effect on the disturbances with
any wave numbers, but affects finite-wavelength disturbances much more strongly than longwave
ones. The present work is devoted to the investigation of finite-wavelength and longwave instability
modes interaction in the supercritical parameter range for the three-layer configuration considered
in Reference [1]. The studies of the onset of convection in multi-layer systems consisting of one fluid
layer and two fluid-saturated porous layers are important, due to their application to the directional
solidification of binary alloys where a two-phase porous zone called the mushy zone is formed
between the melt and the crystal. As shown in Reference [8], there are two types of instability in
a two-layer system consisting of the melt zone and the mushy zone: short-wave instability and
long-wave instability.
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2. Governing Equations and Boundary Conditions

The problem of convection in a system which consists of an infinite horizontal layer of
an incompressible viscous fluid with the thickness 2d embedded between two plane layers of
porous medium saturated with the same fluid, each with a thickness of hm, is considered (Figure 1).
The temperature of the external boundaries is fixed, and the temperature of the bottom boundary is
higher than that of the top (heating from below). The origin of the coordinate system is set in the
middle of the fluid layer.
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For the description of convective filtration in a porous medium, we use the Darcy-Boussinesq 
model [10]: 
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Here, v  and u  are the convective flow velocity in fluid and the convective filtration velocity 
in a porous medium, respectively; T  and ϑ  are the temperature deviations in fluid and in the 
porous medium from a constant average temperature; m  is the porosity coefficient; and K  is the 
permeability coefficient of porous medium. Other designations are usual. The quantities marked by 
the index f  concern the fluid, and those marked by the index m  concern the porous medium. 
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Figure 1. Problem configuration.

Equations for thermal buoyancy convection in fluid in the Boussinesq approximation look like [9]:
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For the description of convective filtration in a porous medium, we use the Darcy-Boussinesq
model [10]:
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Here,
→
v and

→
u are the convective flow velocity in fluid and the convective filtration velocity in

a porous medium, respectively; T and ϑ are the temperature deviations in fluid and in the porous
medium from a constant average temperature; m is the porosity coefficient; and K is the permeability
coefficient of porous medium. Other designations are usual. The quantities marked by the index f
concern the fluid, and those marked by the index m concern the porous medium.

Let us discuss the boundary conditions. The external boundaries are considered to be
impenetrable, i.e., the vertical component of convective filtration velocity vanishes at these boundaries.
At the same time the horizontal components of the filtration velocity on the external boundaries are
generally non-zero, such that the filtration of fluid in the porous medium along the impenetrable
boundary is possible. The temperature of the external boundaries is supposed to be fixed. Thus, the
conditions at the external boundaries are as follows:

z = (d + hm) : uz = 0, ϑ = −Θ,
z = −(d + hm) : uz = 0, ϑ = +Θ

(3)

Different types of boundary conditions at the interface of pure fluid and fluid-saturated porous
medium were suggested (see Reference [10]). The conditions proposed by Beavers and Joseph [11]
determine the jump of the tangential components of the velocity at the interface while the normal
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component of the velocity and pressure are assumed to be continuous. The conditions obtained
by Ochoa-Tapia and Whitaker [12,13] by the direct averaging of the Navier–Stokes equations at the
pore-scale level impose the continuity of flow velocities and normal stresses, while the tangential
viscous stresses have a jump across the interface, describing the resistance of the porous matrix
in the boundary layer, which has a thickness to of the order of K1/2. These conditions, as well as
the Beavers-Joseph conditions, include an empirical parameter — the stress jump coefficient. The
influence of the stress jump coefficient on the onset of thermal buoyancy convection in horizontal
stratified fluid/porous layers was studied in Reference [14]. It was shown that the increase of the
stress jump coefficient strongly influences the fluid mode, inducing a more unstable situation at large
wave numbers, whereas the porous mode remains unchanged. In Reference [15], the onset of thermal
buoyancy convection in a system consisting of a fluid layer overlying a homogeneous porous medium
was studied in the framework of the model including the Brinkman term, in a two-domain approach.
A comparison of neutral curves with those obtained in the one-domain approach and in the framework
of the Darcy model with the two-domain approach shows that the inclusion of the Brinkman term
plays a secondary role in the stability results.

At zero value of this parameter, the tangential stress jump condition is reduced to the tangential
stress continuity condition proposed in Reference [1]. In References [16,17], the improvement of the
approach by Ochoa-Tapia and Whitaker was suggested.

In our work, we use the conditions at the interface of pure fluid and fluid-saturated porous
medium suggested by Lyubimov and Muratov in Reference [1], which include the continuity of
temperature, heat flux, normal component of velocity and pressure, and the condition of vanishing of
the tangential components of fluid velocity:

z = ±d : T = ϑ, κ f
∂T
∂z

= κm
∂ϑ

∂z
, vz = uz, Pm = Pf , vx = vy = 0 (4)

The application of the boundary condition vx = vy = 0 is justified by the fact that the velocities of
the convective filtration in a porous medium are generally small because of the small typical values of
the porous medium permeability. In this case, the condition of the normal stress balance is reduced to
pressure continuity. The advantages of the boundary conditions (Equation (4)) are their simplicity and
the fact that they do not include any empirical parameters.

It is possible to show that, just as in the case of a homogeneous fluid, the condition for a conductive
state of fluid in the described system is the linear dependence of temperature on vertical coordinate:

∇T0 = −A f
→
γ

∇ϑ0 = −Am
→
γ

(5)

Then, from the condition of heat flux continuity follows:

κ f A f = κm Am (6)

and the condition: ϑ = Θ at z = −(d + hm) gives:

A f d + Amhm = Θ (7)

Further consideration is limited to the case when the thermal properties of the fluid and the
“skeleton” are identical, that is:

κ f = κm ≡ κ, χ f = χm ≡ χ
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It is convenient to present the condition of pressure continuity on the interface of the porous
medium and fluid in the terms of velocities. Using horizontal projections of momentum and continuity
equations, we obtain this condition in the form:

∆
∂vz

∂z
= − 1

K
∂uz

∂z
(8)

The analysis was restricted to the case of two-dimensional flows. In this case, it is convenient
to introduce the stream function and vorticity for the description of the flow in the fluid layer and
the stream function for the flow in the fluid-saturated porous layers. Equations rewritten in terms of
stream function and vorticity in the dimensionless form are:
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where vx =
∂ψ f
∂z , vz = − ∂ψ f

∂x , ϕ = curly
→
v , ux = ∂ψm

∂z , uz = − ∂ψm
∂x , and the last condition at

z = ±1 is obtained from Equation (8), taking into account the smallness of the Darcy number.
The problem is characterized by four dimensionless parameters: the ratio of the porous

layer thickness to the pure fluid layer thickness, the Darcy number, the Prandtl number, and the
Grashof number:

h =
hm

d
, Da =

K
d2 , Pr =

ν

χ
, Gr =

gβΘd3

ν2

3. Numerical Results

The problem was solved numerically by the finite difference method. The explicit finite difference
scheme of the second order of approximation for spatial variables was used. The grid with the spatial
step h = 1/20 was chosen for the main calculations, after the test calculations confirmed the convergence
of the numerical results with the decrease of h.

As shown in Reference [1], the coexistence of finite-wavelength and longwave instability takes
place at sufficiently large values of h in some range of Da values, which are extended while h increases.

In Figure 2, the neutral curves C(k) where C =
√

Gr are plotted for h = 10 and different values of
Da. It can be seen that at Da = 10−3 and Da = 2 · 10−3 the neutral curves are bimodal; moreover, at
Da = 10−3, the finite-wavelength and longwave minima of the neutral curve correspond to nearly the
same values of the Grashof number (the longwave minimum is just slightly lower).

On the basis of these results, the parameter values h = 10, Da = 10−3, Pr = 1 were chosen for
the nonlinear calculations. The length of the computational domain was found to be equal to 10π, that
is, approximately equal to the wavelength of the most dangerous longwave disturbances.

On the vertical boundaries of the area, the conditions of periodicity were imposed. Such conditions
allow not only longwave solutions but also finite-wavelength ones, with the wavelength equal to
10π/n, where n is an integer value.
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Figure 2. Neutral curves for h = 10 and different values of Da.

As follows from the results of the calculations obtained in the framework of linear theory, critical
values of the Grashof number for disturbances with n = 4, 5, 6, 7 are close to those for longwave
disturbances with n = 1, although they are a little bit higher.

Naturally, it is easier to obtain finite-wavelength solutions in calculations with short computational
domain. However, in this case we lose an opportunity to look after their interaction with longwave
disturbances. As the symmetry of longwave and finite-wavelength solutions is the same, such
an interaction may be sufficiently strong.

The numerical calculations show that, as expected, finite-wavelength stationary solutions describe
the convective flow concentrated mainly in the fluid (Figure 3), and longwave solutions describe the
flow spreading both through the layer of homogeneous fluid and the porous layers (Figure 4).
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The intensity of finite-wavelength solutions near the threshold grows according to the square root
law, i.e., the excitation of short-wave convection occurs through supercritical bifurcation (Figure 5).

The calculations show that in the longwave mode, where the flow covers not only the fluid layer
but also the porous medium, the flow intensity is lower than in the finite-wavelength mode, where
the flow is concentrated in the fluid. This is caused by the hydraulic resistance of the porous medium
skeleton. Moreover, the intensity of longwave solutions grows very slowly with the increase of the
Grashof number. This is why already at small supercriticalities with respect to finite-wavelength
disturbances, the intensity of the latter surpasses the intensity of the longwave solution (Figure 5).
Apparently, the fast loss of stability of the longwave solution is related to this circumstance.
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Let us discuss the interaction of longwave and finite-wavelength disturbances at small
supercriticalities. It turns out that the critical value of the Grashof number for the longwave
instability mode is smaller than that for the finite-wavelength mode. Because of this, at very small
supercriticalities the finite-wavelength disturbances fade and the longwave mode is realized. However,
as the calculations show, as soon as the Grashof number values become higher than the critical value
for finite-wavelength disturbances, the longwave mode loses its stability and the flow is broken
into vortices of the small size: at the Grashof number values larger than 80 after the transient stage,
depending on the initial conditions, a 4, 5, or 6 wave regime is established.

The process of the structure transformation emerges very slowly, so it is possible to observe the
various mixed modes representing the superposition of finite-wavelength and longwave modes. The
example of such a situation is presented in Figure 6.
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Figure 6. Mixed regime: the superposition of finite-wavelength and longwave modes.

In this figure, one of the phases of the long-term transient process of the merging neighboring
cells is shown. As one can see, in the central part of a cavity, two vortices of the same sign gradually
merge into one vortex (by which point the central vortex has already practically disappeared).

In Figure 7, the dependences of the stationary flow intensity on the parameter C (square root of
the Grashof number value) for the disturbances with various values of k are described. On the vertical
axis, the squared maximal value of the stream function in the fluid is plotted.
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Figure 7. The dependences of stationary flow intensity on the parameter C for various values of k:
�—k = 1.0, N—k = 1.2, —k = 0.8, �—k = 1.4.

Critical values of the parameter C, obtained by the extrapolation of the amplitude curves on the
zero value of the stream function, are in good agreement with the results of linear theory [1].

4. Conclusions

The calculations show that the finite-wavelength stationary regimes correspond to the convective
flow concentrated in the fluid layer and the longwave stationary regimes of the flow occupying both
layers. For the parameter values selected for the calculations, the critical value of the Grashof number
for the longwave instability mode is smaller than that for the finite-wavelength mode. Because of
that, at very small supercriticalities the finite-wavelength disturbances fade and the longwave mode is
realized. However, as the calculations show, as soon as the Grashof number values become higher than
the critical value for finite-wavelength disturbances, the longwave mode loses its stability and the flow
is broken into vortices of the small size. In our opinion, the reason for that is the following. Due to
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the hydraulic resistance of the porous matrix, the intensity of flow for the longwave mode is much
lower than that for the finite-wavelength mode. Moreover, it grows very slowly with the increase
of the Grashof number value. Because of that, already at the Rayleigh number value, which is just
slightly higher than the instability threshold to finite-wavelength disturbances, the flow intensity of
the finite-wavelength mode surpasses the intensity of the longwave mode, which results in the fast
loss of stability of the longwave regime.
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