
fluids

Article

Anisotropic Wave Turbulence for Reduced
Hydrodynamics with Rotationally Constrained Slow
Inertial Waves
Amrik Sen 1,2

1 Department of Applied Mathematics, University of Colorado, Boulder, CO 80045, USA;
amriksen@gmail.com; Tel.: +1-310-574-6917

2 Tata Institute of Fundamental Research, Hyderabad 500075, India

Academic Editors: Helena Margarida Ramos and Mehrdad Massoudi
Received: 8 March 2017; Accepted: 24 May 2017; Published: 27 May 2017

Abstract: Kinetic equations for rapidly rotating flows are developed in this paper using multiple
scales perturbation theory. The governing equations are an asymptotically reduced set of equations
that are derived from the incompressible Navier-Stokes equations. These equations are applicable
for rapidly rotating flow regimes and are best suited to describe anisotropic dynamics of rotating
flows. The independent variables of these equations inherently reside in a helical wave basis that
is the most suitable basis for inertial waves. A coupled system of equations for the two global
invariants: energy and helicity, is derived by extending a simpler symmetrical system to the more
general non-symmetrical helical case. This approach of deriving the kinetic equations for helicity
follows naturally by exploiting the symmetries in the system and is different from the derivations
presented in an earlier weak wave turbulence approach that uses multiple correlation functions to
account for the asymmetry due to helicity. Stationary solutions, including Kolmogorov solutions,
for the flow invariants are obtained as a scaling law of the anisotropic wave numbers. The scaling
law solutions compare affirmatively with results from recent experimental and simulation data. Thus,
anisotropic wave turbulence of the reduced hydrodynamic system is a weak turbulence model for
strong anisotropy with a dominant k⊥ cascade where the waves aid the turbulent cascade along the
perpendicular modes. The waves also enable an appropriate closure of the kinetic equation through
averaging of their phases.

Keywords: multi-scale perturbation; slow helical waves; slow manifold; rapidly rotating turbulence

1. Introduction

The theory of weak wave dynamics (i.e., the stochastic theory of nonlinear wave interactions)
has been extensively studied since the seminal works of Kadomstev [1], Galeev et al. [2], Zakharov and
Filonenko [3] and more recently reviewed by Zakharov [4], Balk [5], Choi et al. [6] and Nazarenko [7].
This theory remains one of the few areas where a mathematical framework exists with
predictive capabilities for studying the energetics and dynamics associated with fluid turbulence.
In this regard, the theory of weak wave turbulence was further explored in recent papers [8–11] in the
context of unstratified rotating turbulent flows. The theory utilizes the incompressible Euler equation
for inviscid dynamics in an infinite space, in dimensionless form:

(∂t + u · ∇)u +
1
Ro

ẑ× u = − 1
Ro
∇p, ∇ · u = 0. (1)

Here u = (u, v, w) is the three-dimensional velocity field in the Cartesian geometry x = (x, y, z),
p is the pressure field, and ∇ = (∂x, ∂y, ∂z) is the gradient operator. Equation (1) is characterized
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by system rotation 2Ωẑ along with length, advective velocity, time and pressure scales denoted by
L, U, L

U and 2ΩLU, respectively. The Rossby number Ro = U
2ΩL , describing the relative importance

of nonlinear advection to the Coriolis acceleration force, is the sole non-dimensional parameter.
Of particular interest is the regime Ro � 1 for rotationally constrained flows along with the
concomitant viewpoint that the dynamics can be partitioned into fast inertial waves evolving on
the rotational timescale of O((2Ω)−1), and eddies evolving on the advection timescale of O( L

U ).
In nondimensional units these timescales are denoted byO(Ro) andO(1) respectively. In the Cartesian
coordinate system the linear inertial-wave dispersion relation, obtained from Equation (1) for Fourier
plane waves with wavevector k = (kx, ky, kz) and of the form exp{i(k · x−ωkt)}, is given by

ωk = ± 1
Ro

kz√
k2

x + k2
y + k2

z

. (2)

Slow dynamics, to leading order, are geostrophically balanced, i.e.,

ẑ× u ≈ −∇p. (3)

It follows u⊥ ≈ ∇⊥p, with u⊥ = (u, v, 0) and ∇⊥ = (−∂y, ∂x, 0), such that pressure is now
identified as the geostrophic streamfunction. On noting ∇⊥ = (∂x, ∂y, 0) Equation (3) implies that
geostrophic motions are horizontally non-divergent with ∇⊥ · u⊥ ≈ 0. Moreover, such motions
are columnar in nature due to the Taylor-Proudman constraint that enforces axial invariance, i.e.,
∂z(u, p) ≈ 0 [12,13]. Recent work [14,15] has more precisely established this invariance as true
provided kz � O(Ro), thus providing an upper bound to the degree of spatial anisotropy, i.e.,
∂z(u, p) = O(Ro).

Underlying hypotheses for the theory of rotating wave turbulence are: (i) the separation of
inertial and advective timescales, i.e., Ro � 1 and (ii) the non-interaction between geostrophically
balanced and inertial waves dynamics [16]. A necessary criterion for this to occur in Equation (1)
is (|u|, p) = o(Ro−1) which ensures that the nonlinear terms remain small compared to linear
terms. It follows from this bound that wave amplitudes can be large outside the slow manifold.
Within theRo � 1 regime (slow manifold), laboratory experiments [17,18] and sufficiently spatially
resolved simulations [11,19,20] have clearly demonstrated the tendency for the inertial wave spectra
to evolve anisotropically towards a slow manifold associated with axially invariant geostrophic
dynamics (kz = 0). Using wave turbulence theory on Equation (1), Galtier [8] predicts an anisotropic
energy spectrum E(k⊥, kz) ∼ k−5/2

⊥ k−1/2
z and a helicity spectrum H(k⊥, kz) ∼ k−3/2

⊥ k−1/2
z contrary to

predictions of a k−2
⊥ solution for Ek⊥ observed in simulations [21,22]. A critical concern for this

discrepancy is that the uniformity of the asymptotic approach of the weak-wave turbulence theory is
lost as the slow manifold is approached. Notably, as kz → O(Ro), it is found that inertial waves still
exist within the slow manifold and are slow. Such slow waves are not accounted for in weak wave
turbulence literature [8,9].

Spectral power laws for anisotropic wave turbulence in the limit of rapid rotation are obtained
in this manuscript. Specifically, it is found that ek ∼ k−3

⊥ (equivalently, Ek⊥ ∼ k−2
⊥ and Hk⊥ ∼ k−1

⊥ )
and are in agreement with power law solutions obtained numerically and experimentally [17,21–23]
(see Figure 1). These solutions pertain to the slow manifold and hence differ from the power laws
for the isotropic flow regime [24] and those obtained by Galtier [8,9] for the flow state outside the
slow manifold. A schematic picture of the various regimes of rotating turbulence is also provided in
this paper along with the respective power law solutions for each regime. This will serve in broad
understanding of rotating turbulent dynamics and specifically, undergird the importance of anisotropy
in the slow manifold and its influence on spectral power law solutions. It is also demonstrated that
there is, in principle, a simpler approach in obtaining the coupled energy-helicity kinetic equations
using the method of Hamiltonian reduction [25] and symmetries than the more algebraically tedious
correlation calculations in [8,9]. For clarity and for the sake of averting any confusion, it is important
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to note that the derivations of the kinetic equations presented here are not the same as the derivations
in [8,9]. This point is further elaborated in Sections 6.4 and 6.5.

(a)

(b)

Figure 1. Anisotropic energy spectra of rotating helical turbulence simulations published in [21,22].
(a) ek ∼ k−3

⊥ and (b) Ek⊥ ∼ k⊥ek ∼ k−2
⊥ comport with the spectra obtained analytically in the current

article as is explained in later sections. The inertial range in the above plots span roughly over an order
of magnitude in the log scale, i.e., roughly 70 to 90 wave numbers. The line showing the −5/3 slope is
just for reference as is clearly mentioned in [21].
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2. Reduced-Rotating Hydro-Dynamic Equations, R-RHD

We apply a multi-scale perturbation method directly within the slow manifold to a recently
derived set of asymptotically reduced equations for rotationally constrained flows [14,15,26,27].
In what follows, we adopt the nomenclature reduced rotating hydrodynamic (R-RHD) for the reduced
equations describing an unstratified, non-buoyant rotating fluid. We note that R-RHD capture a slow
manifold that is more precisely identified as kz ∼ O(Ro) and contains not only geostrophic columnar
eddies but also anisotropic inertial waves characterized by scales: kz/k⊥ � Ro � 1. The amplitude
of these slow waves evolve on slower advective timescale.

At the outset, for convenience to aid our investigation, we centrally locate some notations and
definitions involving position vector x and wavenumber vector k, in Appendix A.1. The detailed
derivation of R-RHD is provided in [14,15]. To summarize, the asymptotic framework for Equation (1)
is established by assuming the small expansion parameterRo and a multiple-scale expansion in the
axial direction ∂z = ∂z +Ro∂Z with the isotropic scale z = z ∼ (x, y) and the anisotropic columnar
length scale Z = Roz. Fluid variables v = (u, p)T , where T denotes tranpose, are now written as an
asymptotic series in terms of the small parameter,Ro:

v = v0 +Rov1 +Ro2v2 +O(Ro3). (4)

To leading order in Equation (1), we observe a point wise geostrophic balance: ẑ× u0 = −∇p0. It
follows that fluid motions are horizontally non-divergent, i.e., ∇⊥ · u0⊥ = 0, with u0⊥ = ∇⊥ψ

where p0 = ψ is the geostrophic stream function as in the classical theory of quasigeostrophy.
The Taylor-Proudman constraint [28] associated with the geostrophic balance further requires vertical
variations to be negligible on O(1) vertical scales, i.e., ∂zv0 ≡ 0. Importantly, in compliance with
the Taylor-Proudman constraint, the multiple scales approach permits variations of O(Ro−1) on the
Z-scale [14,15]. Hereafter, in the following we set kz = RokZ.

At the next order in Equation (1), the requisite solvability conditions, ensuring non-secular
behavior of v1, lead to the R-RHD equations describing the evolution of unstratified slow
geostrophically balanced motions:

∂tζ + u⊥ · ∇⊥ζ = ∂ZW, (5)

∂tW + u⊥ · ∇⊥W = −∂Zψ. (6)

Here u⊥ = ∇⊥ψ, and ζ := ∇2
⊥ψ and W are the ẑ components of the vorticity and velocity fields.

Akin to classical quasigeostrophic theory, nonlinear vertical advection, W∂Z, is an asymptotically
subdominant process and does not appear. However, unlike quasigeostrophic theory the velocity
field is isotropic in magnitude with |u⊥| ∼ |W|, hence the appearance of a prognostic equation for
W. Physically, the R-RHD (5) and (6) state that unbalanced vertical pressure gradients drive vertical
motions that are materially advected in the horizontal, in turn, vortical stretching due to vertical
gradients in W produce vortical motions. The vertical velocity, W, also generates an ageostrophic
velocity fleld, uag

⊥ , such that incompressibility, ∇⊥ · u
ag
1⊥ + ∂ZW = 0, holds to O(Ro). The R-RHD

remain valid provided (|u⊥|, |W|) = o(Ro−1). Consistent with the Euler Equation (1), the R-RHD also
conserve, in time, the volume-averaged (over a domain B) kinetic energy EV and helicityHV :

EV ≡
1

Vol(B)

∫
u · udV =

1
Vol(B)

1
2

∫ (
|∇⊥ψ|2 + W2

)
dV, (7)

HV ≡
1

Vol(B)

∫
u·∇ × udV = 2

1
Vol(B)

∫
(Wζ) dV. (8)

In what follows, an investigation of wave turbulence will be applied to the R-RHD.
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2.1. Geostrophic Inertial Waves and Eddies

We observe that upon linearization, the R-RHD support slow geostrophically balanced inertial
waves of the form,

Ψ̂
sk
k eiΦ(k,skωk), ωk =

kZ
k⊥

ω1 (9)

with planar phase function Φ(k, skωk) = (k⊥ · x⊥ + kZZ − skωkt) = (k⊥ · x⊥ + kZZ − skωkt),
ω1 ∼ O(1) with dimension of 1

T and can be set to 1 without loss of generality. More explicitly, the phase
function can be split into two terms: eiΦ(k,skωk)) = e−iskωktei(k⊥ ·x⊥+kZZ), the temporal phase factor and
the spatial Fourier basis. The region of validity of R-RHD is kZ ≤ k⊥, of special interest is the limit
kZ � k⊥. When kZ = 0 this expression represents vertically invariant modes with ωk = 0 (i.e., the 2D
modes of turbulent eddies). The circularly polarized wave amplitude vector is

Ψ̂
sk
k e−iskωkt ≡

(
ψ̂

sk
k

Ŵsk
k

)
e−iskωkt =

(
sk/k⊥

1

)
Ĉsk

k , (10)

where sk = ± denotes the handedness, ‘+’ for right-handed circularly polarized waves
(with positive helicity) and ‘−’ for left-handed circularly polarized waves (with negative helicity). Here,

Ĉsk
k is a complex amplitude function Ĉsk

k = ĉsk
k e−iω

sk
k t where ω

sk
k ≡ skωk. The superscriptˆrepresents

Fourier coefficients from the Fourier series expansion of a function. In subsequent sections, we invoke
the infinite box limit (L→ ∞) and switch to Fourier transform variables thusly ĉk →

( L
2π

)2 ĉk ≡ ck and

δ(0) =
( L

2π

)2 (see ch. 5 and 6 in [7]). The power 2 arises from the fact that the analysis is performed in
2D, i.e., x = (x⊥, ẑ), unless otherwise specified.

2.2. Helical Basis for Circularly Polarized Inertial Waves

We note that in wavenumber space the unit vectors (k̂⊥, ẑ, k̂′⊥), with k̂′⊥ = k′⊥/k⊥ and
k̂⊥ = k⊥/k⊥, form a right-handed orthogonal basis. Within the slow manifold, we have k̂′⊥ ↔ k̂′ as
the direction of wave vector and henceforth we will simply call this vector k (see Figure 2). The leading
order velocity field associated with an inertial wave is given by

u = u⊥ + Wẑ

= ∇⊥ψ + Wẑ
Fourier modes−−−−−−−−→

(
ik⊥ψ̂

sk
k k̂⊥ + Ŵsk

k ẑ
)

eiΦ(k,skωk) + c.c.

=
(

Ûsk
k k̂⊥ + Ŵsk

k ẑ
)

eiΦ(k,skωk) + c.c.

= ĉsk
k hsk

k eiΦ(k,skωk) + c.c. (11)

where Ûsk
k := ik⊥ψ̂

sk
k . From (10), Ûsk

k := (Ûsk
k , Ŵsk

k )T = ĉsk
k (isk, 1)T = ĉsk

k hsk
k . Equivalently,

Usk
k := Ûsk

k e−iω
sk
k t = (Ûsk

k , Ŵsk
k )Te−iω

sk
k t = (Û

sk
k , Ŵsk

k )T .

Here
hsk

k := iskk̂⊥ + ẑ (12)

represents the complex helical wave basis (see ref. [29] for details) within the slow manifold
incorporating the leading order incompressibility criteria ∇⊥ · u = 0, i.e., k⊥ · h

sk
k = 0. Notably,
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as with its counterpart that exists outside the slow manifold (ref. Figure 2), this wave basis exhibits the
following property that enables switching across different handedness by a conjugation operation,

h−sk
k = hsk∗

k . (13)

These findings illustrate that the R-RHD are naturally set up in the helical wave coordinate basis.
As stated above in the paragraph following Equation (10), we switch from Fourier series to Fourier
transform in the next section, i.e., e.g., Ûsk

k → Usk
k unless explicitly mentioned. This switch demands a

multiplication by a factor ( L
2π )

d, d = 2 which will be explicitly written in the subsequent sections.

Figure 2. Helical wave basis: (k̂⊥, ̂, k̂′) forms a right-handed coordinate system with 〈k̂′,k̂⊥〉 =
〈k̂′,̂〉 = 0 where ̂ = k′×k⊥

k2
⊥

. The wave propagation direction is given by the wave vector, k̂′ (which

we simply call k in the body of the manuscript). Within the slow manifold where kz = RokZ,
(k̂⊥, ̂, k̂′)→ (k̂⊥, ẑ, k̂′⊥).

3. Dynamical Limits of Turbulence and Multiple Scales Order Parameters

Before we present the derivation of the amplitude and kinetic equations, a note on the time-scales
of the different variables is necessary along with their order of magnitude.

3.1. Time Period of Oscillations of Waves and Amplitudes

First we introduce the scalings typically involved in weak wave turbulence [7] as applied to
rotating turbulence. In terms of the time periods of oscillations, we have

Tf � Tτ � TτNL , (14)

where Tf is the fast inertial wave time period proportional to 1
ω f k

, ω f = ω f k = 2Θkz
k as mentioned

in [8](The subscript f refers to fast waves). Θ is the rotation rate of the system. Tτ sets the time
scale for weak amplitude oscillations. Typically, Tf ∼ O(1), Tτ ∼ O( 1

Ro ) and TτNL ∼ O( 1
Ro2 ) with
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Ro � 1. With these scalings, the wave time period is taken as Tτ = 1
Ro Tf such that ∂

∂Tf
→ ∂

∂Tf
+ 1
Ro

∂
∂Tτ

.
The wave kinetic equations are subsequently derived in an infinite box limit and by taking a large time
limit integration as is explained in detail in [7,8,30].

The R-RHD equations introduced in the previous section eliminate the fast inertial waves with
frequency ω f := 2π

Tf
but retain slow inertial waves with frequency ωs := 2π

Ts
which have the dispersion

relation ωs = ωsk = kZ
k⊥

ω1 given in Equation (9) (The subscript s refers to slow R-RHD waves).
This leads to a slight modification of Equation (14) as Tf � Ts � Tτ � TτNL which we simply write
below as,

Tf � Ts � Tτ , (15)

where now we may have Tf ∼ O(Ro
ε ), Ts ∼ O( 1

ε ) and Tτ ∼ O( 1
ε2 ), ε = kZ

k⊥
� Ro � 1. We have

ωs � ω f indicating the slowness of the R-RHD waves compared with the fast inertial waves in [8].
However, for the multiple scales analysis carried forth in the subsequent sections, we adopt a new set
of slow (or strained) time variables with appropriate order of magnitude as stated below.

3.2. Notations and New Slow Time Variables for the Multiple Scales Derivation Presented in This Paper

For reasons that will soon become clear, we adopt a suitable convention in our multiple scales
approach by introducing new strained time variables τ, ts and t f [31–33] (As an analogy, one may think
of t f as the seconds hand on a clock, ts as the minutes hand on a clock and τ as the hour hand on a
clock. The multiple scales variables τ, ts and t f must not be conflated with the time period variables
Tτ , Ts and Tf as they have a distinct interpretation as stated here). The fast wave time scale is t f ,
the R-RHD slow waves have time scale of ts, while the wave amplitudes introduced in the next section
have the slowest time scale denoted by τ. We fix our analysis by setting the most stretched time scale
to order one and designate it as the slow time. In other words, we set our frame of reference to this
slow time universe. Thus we have the following scale separated temporal variables:

• τ ∼ O(1): slow time scale of weak amplitudes (slowest time scale),
• ts ∼ O( 1

ε ): slow R-RHD wave time scale, and
• t f ∼ O( 1

εRo ): fast inertial wave time scale (filtered out by R-RHD).

Thus with τ = εts, ε = kZ
k⊥
� Ro � 1 defines the magnitude of anisotropy in the flow. The R-RHD

wave time derivative is ∂ts → ∂ts + ε∂τ . The interpretation is as provided in [31–33] and is articulated
as follows. Note that the frame of reference is set to the most slowly elapsing dynamic denoted by τ.
As an example, say ε = 0.01. This means for the dynamic in the frame of reference to elapse by unit
time (τ = 1), the R-RHD waves would have elapsed by 100 units (i.e., ts = 100) and the fast inertial
waves would have elapsed even more rapidly as seen by an observer in the set frame of reference.
We conveniently have the case that within the scope of the amplitude dynamic elapsing at τ, the slow
wave dynamic time scale is already infinitely large. However, recall that the R-RHD have filtered out
the fast inertial waves by applying a method of multiple scales with Ro as the order parameter as
explained in the previous section. This means that from within the frame of reference of the reduced
universe of R-RHD, the fast inertial wave is no more accessible and mathematically this means we
do not need to track the dynamical universe elapsing at the time scale t f . This means that in our
multiple scales analysis we only need to track τ and ts (we simply write t for ts except where we need
to distinguish between ts and t f ) with

τ � t, or equivalently, τ = εt, ε� Ro � 1. (16)

Relation (16) is equivalent to Tτ = 1
ε Ts for the same choice of ε. So in the following we provide

order of magnitude estimates for terms involving the slow inertial R-RHD waves (ω, t) and the
non-linear amplitude time scale (τ ∼ τNL) for non-linear advection in the k⊥ modes. Consequently,
we have ω ≡ ωk = kZ

k⊥
ω1 ∼ O(ε) representing slow (slow in comparison to the fast inertial waves
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that are filtered out by the R-RHD) frequency R-RHD waves with ω1 ∼ O(1). This gives us the
following limits

ωτ ∼ O(ε)� 1, ωt ∼ O(1). (17)

3.3. Definitions of Turbulence Regimes

In what follows, we will generally abbreviate reference to weak wave turbulence applied to
full hydrodynamic equations by Galtier [8] as WT, anisotropic wave turbulence of the reduced
hydrodynamic equations developed here, and that developed for reduced magnetohydrodynamics
(MHD) [7,34], as AT, and critical balance [27] as CB. Moreover, unless otherwise stated, we will
primarily refer to the works by Zakharov et al. [30] and Nazarenko [7] for the section on wave
turbulence closure. The terminology anisotropic wave turbulence for reduced hydrodynamic equations
is borrowed from the MHD literature [7,34] where the model was developed for reduced MHD
equations [7]. This will be explained later in Section 6.2. Based on the order of magnitude scalings
prescribed above, we have the following definitions.

WT: ω f Tτ � 1, ωsTf � 1 .

AT: ω f Tτ � ωsTτ � 1, ωsTf � 1 . In essence, one may envision the AT dynamical regime for

hydrodynamics as a zoomed in version of the WT limit in Galtier [8]. In this paper we investigate
the subtle variations in the flow dynamic at this magnified scale concealed by the treatment in [8].
Further, in this paper, we perform the multiple scales analysis in the anisotropic regime defined
by the order parameter ε = kZ

k⊥
� 1. So the region of validity of AT is also set by the limit where

kZ
k⊥
� Ro � 1.

CB: ω f Tτ ∼ 1 .

As will be shown subsequently, the dynamic and solutions are distinctly different for WT and AT.

4. Wave Amplitude Equations

In the framework of this paper we consider small amplitude dynamics, where smallness of the
amplitude is measured in terms of the extent of anisotropy, i.e., the ratio kZ

k⊥
� 1. However, rotating

fluid motion includes significantly large wave amplitudes of o(Ro−1) outside the slow manifold.
For connectivity and consistency with observed energy spectra as prescribed in this paper, one can
therefore envision the scenario whereby the amplitudes of resonantly cascading inertial waves have
been sufficiently attenuated once the dominant flow dynamics have reached the slow manifold.
We therefore proceed with a multiple scales asymptotic approach in time, where ∂t → ∂t + ε∂τ and

Ψε(x⊥, Z, t, τ) = εΨ1(x⊥, Z, t, τ) + ε2Ψ2(x⊥, Z, t, τ) +O(ε3); (18)

where Ψj, ∀j = 1, 2, 3... is O(1) to ensure consistency of order in the expansion above.
The order parameter 0 < ε � 1 is a measure of the wavefield amplitude and τ = εt denotes

the slow advective timescale for weak amplitude modulations in comparison to the inertial wave
propagation time t. We note that ε∂τ ∼ εu1 · ∇⊥, indicating that τ defines the advective timescale.
This ensures a necessary separation of temporal scales τ and t as explained in [16], thereby allowing
for a multi-scale treatment of the system with distinct dynamics at every order. The choice of an
order parameter, ε proportional to kZ/k⊥ has been mentioned by Nazarenko and Scheckochihin [27]
and serves as a guiding principle for the theory developed here. This way a systematic multi-scale
treatment that captures the anisotropy in the rotating system is developed. A multi-scale approach
exploits the presence of scale separation between slow and fast dynamics. This allows the relevance of
reduced models for understanding the coupling between slow-fast dynamics. The interested reader
is referred to a recent paper by Abramov [35] where a reduced model for multi-scale dynamics is
presented that illustrates the power of multiple scales method in a general setting.
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At O(ε), the leading order solution can be interpreted as a complex field of waves undergoing
resonant interactions on slow inertial timescale. At leading order, O(ε), utilizing Equation (12),
we have that planar inertial waves satisfy

LHUsk
1k = 0, LH ≡

[
−iωsk

k I2 −
kZ
k⊥

J2

]
. (19)

Here J2 =

 0 1
−1 0

 is the Hamiltonian matrix and I2 is the identity matrix. The solution to this

system is the helical base vector Usk
1k ≡ hsk

k . It is important to note that LH being non-Hermitian, an
extended eigen basis, including both the left and right eigenvectors, is required. This extended basis is
the complex helical basis hsk

k introduced earlier in Equation (12). Also of importance to the application
of a solvability condition at higher asymptotic orders is the solution h−sk

k satisfying the adjoint problem
(LH)∗Th−sk

k ≡ h−skT
k LH = 0 and orthogonality condition 〈 1

2 h−sk
k , hsk

k 〉 = 1. Given system (19),
a complex wave field can now be expressed as a superposition of inertial waves and eddies (2D modes)
represented in terms of the helical basis:

U1 = ∑
sk

∫ {
csk

k (τ)hsk
k eiΦ(k,skωk) + c.c.

}
dk. (20)

At O(ε2), the next asymptotic order, we have for each helical mode hsk
k ,

1st term︷ ︸︸ ︷
LHUsk

2k = −

2nd term︷ ︸︸ ︷
∂τcsk

k hsk
k −

3rd term︷ ︸︸ ︷
∑

sp ,sq

∫
k=p+q

p⊥ · q⊥
p⊥

( q⊥
k⊥

U
sp
p U

sq
q

U
sp
p W

sq
q

)
ei((spωpt)+(sqωqt)−(skωkt))dpdq, (21)

where the subscript 1 has been dropped from the right hand side of the above equations. Application of
the solvability condition, 1

2 (h
−sk
k · LHUsk

2k) = 0, for bounded growth in Usk
2k, gives the wave amplitude

equation in terms of the Fourier transform variables over the full k space as follows:

i∂τcsk
k =

1
2 ∑

sp ,sq

∫
V

skspsq
kpq c

sp
p c

sq
q δk,pqeiφ(ω)tdpdq, (22)

where V
skspsq
kpq := p⊥ ·q⊥

p⊥

(
q⊥
k⊥

skspsq + sp

)
is the interaction coefficient. Here φ(ω) = (skωk − spωp −

sqωq). The intermediary steps in the derivation of Equation (22) are given in Appendix A.2.

4.1. Dimensional Consistency of Wave Amplitude Equation (22)

For dimensional analysis, we use M, L, T to represent mass, length and time. Moreover, [·] is used
as the dimensional operator, e.g., [W] denotes the dimension of the variable W. Recall that ck ∼ L2 ĉk
and [ĉk] = [W] = L/T, [V

skspsq
kpq ] = 1/L, [δk,pq] = L2, eiφ(ω)t is dimensionless and [dpdq] = 1/L4 since

we are in 2 dimensions (x⊥, ẑ). Thus, we have [l.h.s.] = 1
T

L3

T = L3

T2 and [r.h.s.] = 1
L

L3

T
L3

T L2 1
L2

1
L2 = L3

T2

(Here l.h.s. and r.h.s. mean the left and right hand sides of the concerned equation respectively).
For sk = +, the sum is actually carried over the combinations given by the set

(sp, sq) = {(+,+), (+,−), (−,+)} as the terms with c−p c−q have null contribution due to the resonance
condition. The converse holds for sk = −. Since Ψ is real valued in the physical space,
the corresponding Fourier coefficients satisfy the symmetry condition ĉsk

−k = ĉsk∗
k and the integration
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over p, q is performed on the positive spectral space. With this physical information, we re-write
Equation (22) in symmetrical form, for sk = +, as follows:

i∂τc+k e−iωkt =
1
2

∫
p,q>0

[
L̃+++

kpq c+p c+q e−i(ωp+ωq)tδk,pq + 2L̃+−+
qpk c−p c+q e−i(ωq−ωp)tδq,pk

]
dpdq

=
∫

p,q>0

[
1
2

L̃+++
kpq c+p c+q e−i(ωp+ωq)tδk,pq − L̃+++

qpk c−p c+q e−i(ωq−ωp)tδq,pk

]
dpdq,

(23)

where the interaction coefficient L̃+++
kpq := 1

2 (V
+++
kpq + V+++

kqp ) = 1
2

p⊥ ·q⊥
k⊥p⊥q⊥

(q⊥ − p⊥)(p⊥ + q⊥ + k⊥)
is clearly symmetric in the second and third arguments, i.e., L̃+++

kpq = L̃+++
kqp by noting that

p⊥ · q⊥ = −q⊥ · p⊥. Likewise, L̃+−+
qpk = 1

2 (V
+−+
qpk + V+−+

qpk ) = −L̃+++
qpk by inspection of the definition

of V
skspsq
kpq . Hereafter, the integration over p, q > 0 is implied. The symmetrization of the nonlinear

form is discussed in detail in ch. 6 of the textbook on wave turbulence by Nazarenko [7].

4.2. Spectral Tensor

Having deduced the wave amplitude equation (23), we now proceed with the primary objective of
finding the functional forms for stationary energy and helicity spectra, often referred to as Kolmogorov
solutions [36]. The relation between energy and helicity in terms of the canonical complex variable,
csk

k can be understood by carefully analyzing the average spectral tensor for a given spectral mode k.
We review some definitions of terms at the outset. Henceforth, we use the symbol Λ := L

2π to
denote the dimensional constant of dimension L. Ensemble average of the squared amplitude function
enables us to estimate the energy spectral density. For a given polarity sk, we have

〈Csk
k Csk′∗

k′ 〉 := esk
k δ(k− k′).

Alternatively, 〈Csk
k Csk′∗

k′ 〉
RPA
= 〈csk

k csk′∗
k′ 〉〈e

−i(ω
sk
k −ω

sk′
k′ )t〉 = 〈csk

k csk′∗
k′ 〉δ

k
k′ = 〈c

sk
k csk∗

k 〉 = esk
k δ(0), where

the infinite box limit entails δ(0) = Λ2 [7]. Here δ(k− k′) ≡ δk,k′ is the Dirac delta function and
δk

k′ is the Kronecker delta function (In this paper, delta function written with arguments both in
the superscript and subscript refers to the Kronecker delta whereas the delta function written with
arguments either all in the subscript or all within parenthesis refers to the Dirac delta. In other words,
δi

j is Kronecker delta whereas δ(x− y) or δx,y refers to Dirac delta). RPA stands for random phase and
amplitude [7]. Thus we have the following relation that is valid when L→ ∞,

esk
k = Λ2〈ĉsk

k ĉsk∗
k 〉 = Λ2 êsk

k (r.h.s. in terms of Fourier coefficients denoted byˆ),

Λ2esk
k = 〈csk

k csk∗
k 〉 (r.h.s. in terms of Fourier transform variables).

(24)

For reference, we list the dimensions of the relevant terms again:

[ĉsk
k ] =

L
T

, [csk
k ] =

L3

T
, [êsk

k ] =
L2

T2 , [esk
k ] =

L4

T2 and δk
k′ (Kronecker delta) is dimensionless.
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The average spectral tensor is defined as follows (see p. 179, Section 5.11 in [37]):

1
2
〈Uk〉 :=

1
2
〈(Uk ⊗U∗k′)〉

=
1
2

 〈 ∑
sk=±

csk
k csk∗

k′ 〉 〈 ∑
sk=±

isk
k⊥
k⊥

csk
k csk∗

k′ 〉

〈 ∑
sk=±

−isk
k⊥
k⊥

csk
k csk∗

k′ 〉 〈 ∑
sk=±

csk
k csk∗

k′ 〉

 δk
k′

=
1
2

(
〈c+k c+∗k′ + c−k c−∗k′ 〉 〈 ik⊥

k⊥
(c+k c+∗k′ − c−k c−∗k′ )〉

〈−ik⊥
k⊥

(c+k c+∗k′ − c−k c−∗k′ )〉 〈c+k c+∗k′ + c−k c−∗k′ 〉

)
δk

k′ (25)

=
1
2

(
〈c+k c+∗k + c−k c−∗k 〉 〈 ik⊥

k⊥
(c+k c+∗k − c−k c−∗k )〉

〈−ik⊥
k⊥

(c+k c+∗k − c−k c−∗k )〉 〈c+k c+∗k + c−k c−∗k 〉

)

=
Λ2

2

 e+k + e−k i h+k +h−k
k⊥

−i h+k +h−k
k⊥

e+k + e−k

 =
Λ2

2

(
ek i hk

k⊥
−i hk

k⊥
ek

)
.

The ensemble averaging of the phase factor results in the appearance of the Kronecker delta
function above. The Kronecker and Dirac delta functions may be interpreted as selector functions,
i.e., f (xi, xj)δ

i
j = f (xi, xi) and

∫
f (x′)δ(x′ − x)dx′ = f (x) respectively. The arguments and results that

follow in the rest of the paper must be interpreted in the statistical sense whereby the ensemble phase
averaging can be regarded as a time averaging operation upon assuming ergodic property of the flow
variables. From the relations in (25), it is clear that the following is true,

e+k + e−k = ek, (26)

e+k − e−k =
hk
k⊥

. (27)

By solving the above equations, we get,

e+k =
1
2

(
ek +

hk
k⊥

)
,

e−k =
1
2

(
ek −

hk
k⊥

)
.

(28)

These expressions are particularly useful in the derivation of the stationary energy and
helicity spectra.

5. Zero Helicity Dynamics

In this section, we analyze the special case of a flow with zero helicity, i.e., hk ≡ 0 for all k
such that e+k = e−k = 1

2 ek. From (25) this imposes the constraint on the complex amplitude functions
c−sk

k = csk∗
k where for sake of brevity we will write c+∗k ≡ c∗k = c−k . This entails a reflection symmetry

of the wave field and a reduction in the Hamiltonian description of the system [25] because a unique
handedness, associated with one of the s variables, now describes the full system as the system described
by s = + and s = − are mirror replicas of one another in the statistical sense. This point is explained
in more detail in Sen [38]. Newell and Rumpf [39] have exploited this reduction and have studied
resonance wave dynamics for the nonlinear Schrödinger’s system.

Now, the inertial waves may be interpreted as occurring in helicity couplets involving h+
k and

h−k = h+∗
k with wavefield given by

U1 =
∫ {(

c+k (τ)h
+
k e−iωkt

)
ei(k⊥ ·x⊥+kZZ) + c.c.

}
dk. (29)
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5.1. The Hamiltonian

The interaction Hamiltonian for the R-RHD can be expressed as a power series of the complex
amplitudes, Ck := cke−iωkt, as follows:

Hint = H(3) + H(4) + · · · . (30)

The H(4) component denotes four-wave resonant interactions which are negligibly small and
therefore not considered. Resonant self-interactions involving quadratic terms, captured by H(2),
evolve on the inertial timescale t and is already accounted for within the operator LH. The full
Hamiltonian is H ≈ H(2)+ H(3) in agreement with the weak wave expansion (18). The wave amplitude
Equation (23) is obtained from the well known Hamilton equation

i∂tCk =
δH
δC∗k

, (31)

where ∂tCk → ∂tCk + ε∂τCk and the three wave interaction Hamiltonian H(3) is as follows [7,30]:

H(3) =
∫ [

L̃+++
kpq C∗kCpCq + c.c.

]
δk,pqdkpq. (32)

At the order of the weak nonlinear interactions, Hamilton’s Equation (31) is identical in form to
Equation (23) where δH(3)

δC∗k
is the r.h.s. of Equation (23) after invoking the aforementioned Hamiltonian

reduction whence c−k = c∗k. Thus the wave amplitude equation of the reduced system (c−k = c∗k) in the
k+ space is

i∂τck =
∫

p,q>0

[
1
2

L̃+++
kpq cpcqei(ωk−ωp−ωq)tδk,pq − L̃+++

qpk c∗pcqei(ωk+ωp−ωq)tδq,pk

]
dpdq. (33)

5.2. Kinetic Equations

By multiplying Equation (33) with c∗k and the complex conjugate of Equation (33) with ck,
subsequently subtracting the latter from the former, followed by ensemble averaging and using
the results from Section 4.2, we obtain an evolution equation for ek ≡ e+k = e−k :

∂τek = =
{

Λ−2
∫

L̃+++
kpq 〈C

∗
kCpCq〉δk,pq − 2L̃+++

qpk 〈C
∗
kC∗pCq〉δq,pkdpdq

}
, (34)

where Λ := L
2π and Ck = cke−iωkt as stated earlier. Henceforth, we simply write L̃kpq for L̃+++

kpq . Here,
=(· · ·) refers to imaginary part of the argument in parenthesis. The triple correlation can be defined
as follows:

〈C∗kCpCq〉 := Jkpq(τ)δk,pq ≡ J∆
kpq(τ), (35)

where the superscript ∆ is a convenient way of writing the Dirac delta function δk,pq. On evaluating
the ensemble average and considering the infinite box limit, we have the following reduction:

〈C∗kCpCq〉
RPA
= 〈c∗kcpcq〉δk

pq
L→∞
= 〈c∗kcpcq〉

δk,pq

Λ2 = Jkpq(τ)δk,pq =⇒ Λ−2〈c∗kcpcq〉 = Jkpq(τ). (36)
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Here δk
pq is the Kronecker delta function that takes the value 1 when k = p + q and 0 otherwise.

The relation (36) implies Λ−2〈C∗kCpCq〉δk,pq = Λ−2〈c∗kcpcq〉δk
pqδk,pq = Jkpqδk

pqδk,pq = Jkpqδk,pq.
Then Equation (34) can be written as

∂τek = =
{∫ [

L̃kpq Jkpqδk,pq − 2L̃qpk Jqpkδq,pk

]
dpdq

}
= =

{∫ [
L̃kpq Jkpqδk,pq − 2L̃pkq Jpkqδp,kq

]
dpdq

}
. (37)

Here we have simply written L̃kpq ≡ L̃+++
kpq and hereafter the superscript +++ will be implied

unless otherwise mentioned. We observe that Equation (37) is not closed in the sense that the left hand
side of the equation is a second order correlation function that is expressed in terms of third order
correlation functions on the right hand side. For Gaussian distributed fields, odd correlators are null.
Hence, we must devise an estimate of Jkpq using a property of the fourth order correlator for Gaussian
statistics as described in the following section.

5.2.1. Closure

In order to close Equation (37), we need to express the triple correlator in terms of second order
correlators. Note that Equation (37) is obtained at O(ε2) as explained in Section 4. An estimate of the
triple correlator in terms of the second order correlator can be obtained at the previous order of the
multiple scales perturbation, i.e., at O(ε), as explained in this section. On applying Wick’s theorem to
the Gaussian distributed wave field, quadruple correlation functions are defined as follows [7,30]:

〈C∗kC∗pCqCm〉 := ekep
[
δk,qδp,m + δk,mδp,q

]
. (38)

The applicability of Wick’s theorem relies on the assumption that the field is Gaussian distributed
and this point is further discussed in Section 6.5. Let us first recall some relevant order of
magnitude for the terms involved in this section. Since φ(ω) := (ωk − ωp − ωq) ∼ O(ε), we take
φ(ω) = εφ1(ω) +O(ε2) where φ1(ω) ∼ O(1) such that φ1(ω)τ ∼ O(1). Also, τ = εt with ε � 1
implies ∂t → ∂t + ε∂τ (The total derivative is given by d

dt = d
dt +

d
dτ

dτ
dt and since τ = εt, we have

dτ
dt = ε). We use the definition of J∆

kpq(τ) in (35) and Equation (33) to write a differential equation
for Jkpq. The solution of this differential equation provides us an estimate of Jkpq at O(ε) to close the
Equation (37) that was derived at O(ε2).

(∂t + ε∂τ)Jkpq(τ)δk,pq = (∂t + ε∂τ)〈c∗kcpcq〉〈eiφ1(ω)τ〉

=⇒ ε∂τ Jkpq(τ)δk,pq = εiφ1(ω)〈c∗kcpcq〉〈eiφ1(ω)τ〉+ ε〈eiφ1(ω)τ〉∂τ〈c∗kcpcq〉

= εiφ1(ω)Jkpqδk,pq + ε〈eiφ1(ω)τ〉∂τ〈c∗kcpcq〉.

The ensemble average of the phase factor can be succinctly captured by the Kronecker delta
(This can be readily checked by assuming ergodicity and computing the ensemble average as a large

time average), which is equal to
δk,pq
Λ2 at the infinite box limit, Λ := L

2π → ∞. Thus at O(ε), for the
triadic wave process, we have(

i∂τ + φ1(ω)

)
Jkpq =

i
Λ2 ∂τ〈c∗kcpcq〉

= L̃kpq(ekep + ekeq − epeq) (using Equation (33) and def. (38) as shown below) (39)

= CJ ( constant in τ).
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The second equality follows from the following calculation. Applying the product rule
of differentiation, we have i

Λ2 ∂τ〈c∗kcpcq〉 = 1
Λ2 〈(i∂τc∗k)cpcq〉 + 1

Λ2 〈c∗k(i∂τcp)cq〉 + 1
Λ2 〈c∗kcp(i∂τcq)〉.

The first term on the r.h.s. is calculated as follows:

1
Λ2 〈(i∂τc∗k)cpcq〉 = −Λ−2

∫ [1
2

L̃kmn〈c∗mc∗ncpcq〉δk
mnδk,mn

−L̃nmk���
���:

0 (Wick’s contraction rule [7])
〈cmc∗ncpcq〉δkn

m δn,mk
]
dmn

= −Λ−2
∫ [1

2
L̃kmn〈c∗mc∗ncpcq〉δk

mnΛ2δk
mn

]
dmn (using δk,mn = Λ2δk

mn) (40)

= −1
2 ∑

m,n>0
L̃kmnemen

[
δm

p δn
q + δm

q δn
p

]
δk

mn (using def. (38), δm,p = Λ2δm
p )

= −L̃kpqepeq, where k = p + q.

Here, the integral is expressed as a sum to make the calculation explicitly clear for the reader. Note
that dimensional consistency demands ∑

m,n
↔ Λ4

∫
dmn where Λ4 appears here because of the relation

δm,pδn,q + δm,qδn,p = Λ4
[

δm
p δn

q + δm
q δn

p

]
in the def. (38). Similarly, 1

Λ2 〈c∗k(i∂τcp)cq〉 = L̃kpqekeq and

1
Λ2 〈c∗kcp(i∂τcq)〉 = L̃kpqekep with k = p + q. Thus follows the second equality in Equation (40).

The r.h.s. of Equaiton (40) is independent of time because we are interested in stationary solutions.
The solution to the differential Equation (40) is

Jkpq(τ) = κeiφ1(ω)τ +
CJ

φ1(ω)
, where κ is a constant. (41)

By taking the limit Tτ → ∞ for ε� 1, ωsTτ ∼ ε 1
ε2 � 1, we have the average of the exponential

term approach zero because 1
2Tτ

∫ Tτ

−Tτ
eiφ1(ω)τdτ

Tτ→∞−−−→ 0 when φ1(ω) 6= 0. Thus in the long time limit,
the estimated average Jkpq is expressed as follows:

Jkpq
Tτ→∞−−−→ Jkpq :=

CJ
φ1(ω)

=
L̃kpq

φ1(ω)
(ekep + ekeq − epeq) (42)

Thus, we have a reasonable estimate for Jkpq in Equation (37) that is obtained as above at O(ε).
Recall that the O(ε) solutions described in Section 4 are the slow R-RHD waves that enable this
closure procedure. We now plug in this estimate Jkpq for Jkpq in Equation (37) to close the kinetic
system. The occurrence of the singularity (φ1(ω) = 0) is averted by circumventing the pole by adding
a small term iε̃ to the denominator. Then we use the identity: ={ 1

φ(ω)+iε̃} = −πδ(φ1(ω)) ≡ −πδ(φ(ω))

(For a function f (x) that is analytic on the upper half of the complex plane, limε̃→0+
∫ ∞
−∞

f (x)
x−x0+iε̃ dx =

P
∫ ∞
−∞

f (x)
x−x0

dx − iπ
∫ ∞
−∞ f (x)δ(x − x0)dx = P

∫ ∞
−∞

f (x)
x−x0

dx − iπ f (x0), where P refers to the principal
value. For the special case when f (x) = 1, the preceding identity is concisely written as

1
x−x0+iε̃ = P 1

x−x0
− iπδ(x− x0) where it is generally understood that the integral is taken over the

domain with ε̃→ 0+. The imaginary part of the l.h.s., thus, yields the delta function term on the r.h.s.
of the identity) and substitute the resulting term for Jkpq in Equation (37) to obtain the closed form of
the kinetic equation:

∂τek = π
∫ [
|L̃kpq|2(epeq − ekep − ekeq)δk,pqδωk ,ωpωq

− 2|L̃pkq|2(ekeq − epek − epeq)δp,kqδωp ,ωkωq

]
dpdq.

(43)
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Recall that δ(φ(ω)) ≡ δωk ,ωpωq because φ(ω) := ωk − ωp − ωq. Equation (43), that describes
the evolution of the energy spectral density, can be rewritten as a single integral with the
interaction operator proportional to the square of L̃kpq by using the Zakharov-Kuznetsov conformal
transformation [30,40].

5.2.2. Dimensional Consistency of the kinetic Equation (43)

In Equation (43), [l.h.s.] = [ ek
τ ] = L4

T3 and [r.h.s] = [L̃2
kpq][ekeq][δk,pq][δωk ,ωpωq ][dpdq] =

1
L2

L8

T4 L2T 1
L4 = L4

T3 . Therefore, the derived kinetic Equation (43) is dimensionally consistent.

5.2.3. Physical Realizability of Spectrum Prescribed by Equation (43) and Comparison with
Quasi-Normal Type Closures

Quasi-Normal family of closures (including modified versions like EDQNM) are well known
statistical closures which are widely used in analytical study of turbulence [41–44]. However, as pointed
out by Orszag [42], the original Quasi-Normal closure results in an unphysical negative energy
spectrum. This issue was shown to be related to the presence of time-history integrals in the evolution
equation of the correlation function. This was corrected in modified versions of the closure, such as
Quasi-Normal Markovian and Eddy Damped Quasi-Normal Markovian (EDQNM) closures [37,42,45].
EDQNM is widely used in turbulence predictions and works well in the absence of waves [46].
However, as shown by Bowman et al. [46], Bowman and Krommes [47] and noted in [48,49], in the
presence of waves, especially Rossby, inertial and drift waves, EDQNM is unphysical in the sense that
the energy spectrum, obtained by performing the closure, becomes negative for dynamically important
Fourier modes (see Figures 1 and 2 in [46] and Figure 1 in [47]). This unphysical energy condition,
in the presence of waves or mode coupling, is shown to stem from the violation of the realizability
criterion <

{
θkpq(t)

}
≥ 0, ∀t ≥ 0. This is because of the application of the fluctuation-dissipation

ansatz that must be invoked in order to capture the two time correlation information within a
single parameter, the triad interaction time θkpq [50]. Conceptually, this loss of realizability can
be checked for a test case by assuming the total damping coefficient to be constant in time but
complex valued (e.g., purely imaginary), whence <

{
θkpq

}
can be shown to be oscillatory about zero.

In fact, Bowman [50] explicitly shows that the realizability condition is violated for an actual stochastic
problem involving three-wave interactions (see ch. III in [50] for details). As a remedy, a realizable
Markovian closure was proposed by Bowman et al. [46], Bowman and Krommes [47], Bowman [50].

In contrast, in this paper, a wave turbulence closure [7,30] is used as explained in Section 5.2.1.
In this context, it is essential to check the physical realizability of the energy spectrum permitted
by the kinetic system derived above. Following the strategy prescribed by Orszag [42] (cf. p. 313,
ch. IV), we envision a scenario where, starting with a positive initial condition for the energy spectrum,
we assume

ek > 0 ∀k− {k∗} and ∀τ ≤ τ∗,

ek∗ > 0 ∀τ < τ∗, and ek∗ = 0 at τ = τ∗.

Here ∀ should be read as for all. The above assumptions mean that physically we have a situation
where the energy in a certain mode k∗ is null at time τ∗. Specifically, note that ek∗ = 0 and ep, eq > 0
at τ = τ∗. The goal is to investigate if the energy becomes negative for this specific wave mode k∗ at
times τ > τ∗. By inspection, it is clear that

∂τek∗

∣∣∣∣
τ=τ∗+

= π
∫ [
|L̃k∗pq|2δk∗ ,pqδωk∗ ,ωpωq + 2|L̃pk∗q|2δp,k∗qδωp ,ωk∗ωq

]
epeqdpdq > 0 (44)

because ep, eq

∣∣∣∣
τ=τ∗

> 0 and the fact that the terms in the square parentheses are positive. The above

inequality is obtained by substituting ek∗ = 0 in the r.h.s. of Equation (43) when evaluated at time τ∗.
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This means that the mode with null energy receives energy from the interacting modes of the triad
and the energy of that mode becomes positive, i.e., the nonlinear transfer to the mode k∗ is positive
and energy is dumped into this mode. The above argument can be extended to any wave mode and
for all times τ > τ∗ in a straight forward manner. Thus, the spectrum prescribed by Equation (43),
and obtained by the wave turbulence closure described in the previous section, is non-negative and
physically realizable. This can be attributed to the absence of any time-history integrals in Equation (43).
In fact, the separation of time scales, captured by relation (15), enables us to take the long time limit and
thereby time dependent oscillatory terms are eliminated as shown in the short paragraph following
Equation (41). It is essential to note that the above inequality does not comport with the stationary
state of the spectrum for the obvious reason that the derivative is non-zero. So the spectrum eventually
adjusts itself to the stationary state permitted by the kinetic system derived earlier and for which the
power law solutions are given in a subsequent section.

5.2.4. Invariants of the Closed Kinetic Equations

It can be shown easily that the total interaction energy given by Equation (43) is conserved, i.e.,
∂t
∫

ekdk = 0 using the result of Appendix A.3. The proof in the appendix is essentially a statement
of conservation of energy in each wave triad. The form of the interaction coefficient ensures the
convergence of the collision integral appearing on the r.h.s. of Equation (43), thereby it meets the
first criteria for the realizability of a Kolmogorov spectrum, i.e., stationary energy spectrum solution
to (43) [36]. This point is elaborated in Section 5.2.6.

5.2.5. Kolmogorov Solution of the Kinetic Equations

The exact steady state solution of the kinetic Equation (43), as power laws, is obtained by assuming
locality of the scale-by-scale energy transfer. This is illustrated in Nazarenko [7], Zakharov et al. [30]
and earlier papers referenced therein.

Owing to the constrain imposed by the AT limit kZ � k⊥, the turbulence cascade under
investigation is in the k⊥ direction and kZ = Br(k0) (i.e., kZ is within a relatively small r vicinity
of k0) serves as a tracking parameter to ensure that we do not violate the condition: kZ

k⊥
� Ro � 1.

The four possible stationary solutions for the anisotropic spectrum, ek ∼ k−xi
Z k−yi

⊥ , ∀kz 6= 0, are listed
as follows [7,30]:

(i) x1 = 1 and y1 = −1 (Rayleigh-Jeans (RJ) spectrum).
(ii) x2 = 1 and y2 = 0.

(iii) x3 = (1 + u) and y3 = (2 + v), where 2u and 2v are respectively the powers of kZ and k⊥ in
|L̃kpq|2. Clearly, in our case, u = 0, v = 1. Thus, x3 = 1 and y3 = 3.

(iv) x4 = 1 and y4 = 7/2. This solution corresponds to the constant flux in the z-component of
the momentum.

Solution (iii), above, corresponds to the only constant energy flux solution, a necessary requirement
of Kolmogorov’s theory and of primary concern in this paper. The constancy of energy flux can be
easily verified by noting that ∂tEk := ∂t(2πk⊥ek) = −∂k⊥Π(k⊥, kZ; t); whereby on integrating with
respect to k⊥ and demanding constant energy flux in the perpendicular direction, we can extract
the aforementioned solution. Here, Π denotes the flux of energy. The direction of the flux can be
ascertained by comparing the power law solutions of the RJ spectrum with that of the constant energy
flux solution, i.e., since −y3 < −y1, the energy cascade is direct and the energy flux is towards smaller
scales ( p. 139 in ref. [7]). Thus, the exact solution for the Kolmogorov-Zakharov-Kuznetsov spectra
with constant energy flux is as follows:

ek = e(k⊥, kZ) ∼ k−3
⊥ k−1

Z . (45)

This result is in agreement with experimental and computational simulations[17,22,23].
Additionally, LaCasce [51] has discussed the observation of a k−3 spectrum in the context of
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barotropic vorticity model using data obtained from several numerical simulations. Moreover, since
limk⊥→∞

∫
ekdk converges for the spectrum (45), the Kolmogorov spectrum obtained above has finite

capacity [7]. The limit k⊥ → ∞ is further discussed in the next section.

5.2.6. Locality of Interactions and Convergence of Collision Integral

As stated in the previous section, the Kolmogorov solutions obtained above are based on the
assumption of locality of interactions. To validate the applicability of the locality assumption, it is
sufficient to comment on the convergence of the collision integral on the r.h.s. of Equation (43) for the
concerned power law solution [7,30,36]. However, analyzing the convergence of the collision integral
is a delicate task [52] and a rigorous commentary is not within the scope of this paper. However, in this
section, we will argue on the convergence of the collision integral given by the r.h.s. of Equation (43)
based on inspection of the terms in the integrand, the surface over which the integration is performed
and numerical integration of the same within the region of validity of the AT limit of R-RHD.

The integral in Equation (43) is in six dimensions, viz.,
∫ ∫ ∫ ∫ ∫ ∫

(· · ·)dpxdpydpZdqxdqydqZ if
we further consider the decomposition of the perpendicular modes, k⊥ = (kx, ky). We have four
delta functions, viz., three over the wave numbers and one over the frequency. Integrating over each
delta function reduces the dimension of integration by one. So by substituting q = ±(k − p) in
the respective integrands, we can completely eliminate integration over the three q wave numbers.
Consequently, re-writing the frequency resonance condition in terms of the substituted expressions for
qZ and q⊥, we finally have a surface integral over px and py dimensions where the surface is defined
by pZ(px, py). This is illustrated concisely as follows.

qi = ±(ki − pi), i = x, y, Z, where + is taken for the first integrand and − for the second.

S : pZ(px, py) =
p⊥kZ

k⊥

(√
(kx − px)2 + (ky − py)2 −

√
k2

x + k2
y

)
(√

(kx − px)2 + (ky − py)2 −
√

p2
x + p2

y

) . (46)

Here S ≡ pZ(px, py) defines the surface over which the integration is carried out when the collision
integral is projected on the (px, py) plane. Interestingly, and conveniently, the surface of integration
turns out to be identical for both the first and second integrands when projected on the (px, py) plane.

By inspection, the surface S is singular at k⊥ = 0 and
(√

(kx − px)2 + (ky − py)2 −
√

p2
x + p2

y

)
= 0.

Clearly, k⊥ = 0 is outside the validity of AT because we must have kZ � k⊥, kZ > 0, so we must
not be concerned about the pole at k⊥ = 0. The second condition requires more careful inspection.
It defines the equation of a plane in the (px, py) coordinates because it can be expressed as

αpx + py =
α2 + 1

2
k, where kx = αky = αk. (47)

Figure 3 illustrates this singular plane on the surface S for two distinct limiting wavenumber
configurations: α = 1 =⇒ px + py = k and α � 1 =⇒ py = k/2 (α � 1 is just the opposite case).
Equation (47) can also be re-written as follows,

(kx px + ky py) =
1
2
(k2

x + k2
y) =⇒ k⊥ · p⊥ =

1
2

k2
⊥, or equivalently, p⊥ =

1
2

k⊥, (48)

This implies that for the first integral corresponding to the collision integral in Equation (43),
we have q⊥ = 1

2 k⊥ because of δk,pq, whence we have p⊥ · q⊥ = 0 and thereby L̃kpq ≡ 0. Similarly
for the second integral we have q⊥ = − 1

2 k⊥ because of δp,kq from which we have k⊥ · q⊥ = 0 and
thereby L̃pkq ≡ 0. This means that the integrand is identically zero on the singular plane on S and
hence the integration along this singularity may be safely circumvented without blow up. Similarly,
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averting pZ = 0 demands kZ 6= 0 (always true) and k⊥ 6= 1
2 p⊥. The latter condition is ensured because

L̃kpq, L̃pkq ≡ 0 when k⊥ = 1
2 p⊥ based on very similar arguments as mentioned above.

There are two other regions in Figure 3 that stand out for inspection, viz., (px, py) = (0, 0) and
kx = px, ky = py for the value of the integrand is high at these points due to the large values of L̃kpq
and L̃pkq. These correspond to p⊥ = 0 and q⊥ = 0 respectively and for reasons discussed above are
outside the region of validity of AT (R-RHD). Hence these points do not contribute to the integral.
In general, the anisotropic limit kZ

k⊥
, pZ

p⊥
, qZ

q⊥
� 1 ensures that the region of integration is typically farther

away from the singular plane defined by (47) where the value of the integrand is diminishingly small
as can be seen from the contour plots in Figure 3. So we know at the very least that we are safe in
terms of blow up of the integrand. However, we must still investigate whether or not the accumulation
of these small values of the integrand increase in an unbounded fashion over a reasonably large
radial wavenumber in the k⊥ plane. In order to check this we resort to numerical evaluation of the
collision integral (The singular points are carefully excluded for they are found to be inconsequential
as discussed above) for a range of perpendicular wave numbers. The general form of the collision
integral in the kinetic Equation (43) upon projection on the (px, py) plane is

I(k⊥, kZ) =
∫∫
S

(
|L̃kp(k−p)|2(epek−p − ekep − ekek−p)− 2|L̃pk(p−k)|2(ekep−k − epek − epep−k)

)
dS

=
∫∫

pZ 6=0,p⊥�0

(
|L̃kp(k−p)|2(epek−p − ekep − ekek−p) (49)

− 2|L̃pk(p−k)|2(ekep−k − epek − epep−k)

)√√√√(∂pZ
∂px

)2

+

(
∂pZ
∂py

)2

+ 1 dpxdpy

The analytic expression for the Jacobian term

√(
∂pZ
∂px

)2

+

(
∂pZ
∂py

)2

+ 1 is too messy to be written

explicitly here but can be inspected symbolically using the computer program attached in the
Appendix A.5. Most importantly, this term shares the location of the poles with that of the surface
S = pZ(px, py). Hence no additional caution is required for this term. Since we are interested in
analyzing the convergence of this integral, we have ignored the constant multiplier on the r.h.s. of
Equation (43). We numerically integrate the function (the integrand in expression (50)) over the surface
S defined by Equation (46) by two different methods, viz., adaptive quadrature method and adaptive Monte
Carlo method. The numerical integration is performed over S by excluding the singular points described
in the previous paragraph as the singularities were either outside the region of validity of AT (R-RHD),
i.e., outside the region where kZ/k⊥ � 1 is true or occurred at points where the integrand is identically
zero. The computer program used to generate the plots in this section is given in Appendix A.5.
By analyzing Figure 4, it is evident that by staying within the region of validity of AT (R-RHD), as has
been elaborated above in this section, the collision integral is convergent. Moreover, it is clear from
the results of the numerical integration that the convergence holds for reasonably large values of k⊥
thereby permitting an energy cascade to develop. Figure 4 shows that the collision integral on the k⊥
plane plateaus away from the boundary of integration (at the boundary, the numerical integration is
less accurate) and is very nearly zero as is expected for a stationary solution.

In this section, we have provided direct evidence of the convergence of the collision integral
I(k⊥, kZ) by numerical computation to validate the applicability of the locality assumption for seeking
the Kolmogorov constant energy flux solution. For a rigorous analysis of convergence of collision
integrals in a three wave system, one may refer to the work by Connaughton [52]. Additionally, it is
important to note that analysis of stability and evolutionary non-locality of concerned spectra subject
to extra perturbative forcing in this anisotropic limit is beyond the scope of the current paper and the
interested reader is referred to the work of Balk and Nazarenko [36] and Nazarenko [7] for details.
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Figure 3. Contour plot showing the surface of integration S : pZ(px, py) of the collision integral
(without the constant π) in Equation (43) projected on the (px, py) plane. Colors represent the value
of the integrand. Figures on the left are in logarithmic scale. (a) and (b) correspond to α = 1, k = 20
while (c) and (d) correspond to α = 0.1, k = 100 with kZ = 1 fixed such that kZ/k⊥ � 1. (e) is top view
of (a). The singular regions are either outside the region of validity of AT (R-RHD) or correspond to
identically null value of the integrand as explained in this section.
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(a)

(b)

Figure 4. Numerical integration of the collision integral in Equation (43) normalized by the constant
π. The plots show I(k⊥, kZ) vs. k⊥ = (kx, ky) for fixed kZ = 1. The integration is computed at the
nodes kx, ky ∈ [10, 150] in intervals of 20. (a) Method: Gauss Kronrod quadrature; (b) method: adaptive
Monte Carlo.

6. Non-Zero Helicity Dynamics: Interplay of Energy and Helicity

In this section, we deduce a general set of coupled equations for the two invariants of the flow.
This is done by formally extending the symmetrical system of the previous section.
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6.1. Coupled Equations for Energy and Helicity

Recall that the assumption, c−k = c∗k ≡ c+∗k implies hk = 0, i.e., 1
2 ek = e+k = e−k . However,

on relaxing such an assumption, a coupled set of equations for energy and helicity may be arrived at
by using Equations (28) in Equation (43) (cf. ek in Equation (43) is actually e+k ≡ e−k ). Thus the closed
form coupled energy-helicity equation becomes,

∂τ

(
ek ±

hk
k⊥

)
=

π

2

∫ [
|L̃kpq|2

{(
ep ±

hp

p⊥

)(
eq ±

hq

q⊥

)
−
(

ek ±
hk
k⊥

)(
ep ±

hp

p⊥

)
−
(

ek ±
hk
k⊥

)(
eq ±

hq

q⊥

)}
δk,pqδωk ,ωpωq − 2|L̃pkq|2

{(
ek ±

hk
k⊥

)(
eq ±

hq

q⊥

)
−
(

ep ±
hp

p⊥

)(
ek ±

hk
k⊥

)
−
(

ep ±
hp

p⊥

)(
eq ±

hq

q⊥

)}
δp,kqδωp ,ωkωq

]
dpdq.

(50)

The individual evolution equation for ek (and hk) follows by adding (and subtracting) the two set
of equations expressed concisely by Equation (50) and is given as follows:

∂τek

=
π

2

∫ [
|L̃kpq|2

{(
epeq +

hphq

p⊥q⊥

)
−
(

ekep +
hkhp

k⊥p⊥

)
−
(

ekeq +
hkhq

k⊥q⊥

)}
δk,pqδωk ,ωpωq

− 2|L̃pkq|2
{(

ekeq +
hkhq

k⊥q⊥

)
−
(

ekep +
hkhp

k⊥p⊥

)
−
(

epeq +
hphq

p⊥q⊥

)}
δp,kqδωp ,ωkωq

]
dpdq,

(51)

and

∂τhk

=
π

2

∫
k⊥

[
|L̃kpq|2

{(
ep

hq

q⊥
+ eq

hq

q⊥

)
−
(

ek
hp

p⊥
+ ep

hk
k⊥

)
−
(

ek
hq

q⊥
+ eq

hk
k⊥

)}
δk,pqδωk ,ωpωq

− 2|L̃pkq|2
{(

ek
hq

q⊥
+ eq

hk
k⊥

)
−
(

ek
hp

p⊥
+ ep

hk
k⊥

)
−
(

ep
hq

q⊥
+ eq

hq

q⊥

)}
δp,kqδωp ,ωkωq

]
dpdq.

(52)

Equations (51) and (52) clearly reveal the coupled dynamics of energy and helicity in a rapidly
rotating fluid flow. The possibility of recovering the total energy and helicity spectrum from the
simpler zero helicity case relies on extending the functional on the right hand side of Equation (43) to
the non-zero helicity case.

In essence, we have taken a special case of the kinetic equations which has the functional form
∂tek = f (k) (think of f (k) as the right hand side of Equation (43)) where hk = 0, and extended it
to the more general case where hk 6= 0. In this general case, the domain of f (k) is still the positive
real line because the inequality |hk| ≤ k⊥ek implies that hk and ek are not independent variables and
ek ± hk

k⊥
≥ 0 is always true. Hence, we have extended the applicability of the kinetic equation from

the simpler symmetric case (where c∗k = c−k because hk = 0) to the more general case with non-trivial
helicity. This way we have circumvented tedious algebraic computations involving multiple correlation
functions (to account for the departure in mirror symmetry in the fully helical case) by first, reducing the
Hamiltonian system by invoking reflection symmetry and then formally extending the symmetrical
system to the more general helical case. The applicability and implication of this procedure is explained
in more details in [38].
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6.2. Generalized Solution of Energy and Helicity Spectra

Note that Equation (28) are consistent with the definitions, ek = e+k + e−k and hk = k⊥(e+k − e−k ).
Clearly, the power law solutions do not change for the non-zero helicity case because the homogeneity
of the interaction coefficient and the linear dispersion relation remains the same. Thus, ek ∼ k−3

⊥ for
hk 6= 0. Dimensional analysis implies, hk ∼ k⊥ek ∼ k−2

⊥ that is consistent with earlier findings based
on numerical simulations [21]. The cylindrically symmetric solutions are:

Ek⊥ = (2πk⊥ek) ∼ k−2
⊥ , and Hk⊥ = (2πk⊥hk) ∼ k−1

⊥ . (53)

The power law solution obtained here pertains to the perpendicular cascade within the
slow manifold, the reader is referred to Bellet et al. [53] for power law solutions of the spectrum
in the axial direction. It is important to note that the solutions given by Equation (53) are different
from the ones discussed in Pouquet and Mininni [24] as the latter assume isotropy in their arguments
to show that the sum of the powers of the wave numbers for Ek and Hk is equal to 4. The solution
set of Galtier [8] belongs to the regime where the effect of fast inertial waves is dominant. In the
recent work of Galtier [9], it has been shown that within the theory developed in the earlier work
of Galtier [8], the power law solutions can be generalized to the empirical form presented in [24].
In contrast, the analysis presented here captures the dynamics in the slow manifold where the flow is
highly anisotropic and the effect of the fast inertial waves is sub-dominant, and accounts for a distinct
separation of temporal scales, t and τ as is necessary [16] and explained in the introductory section
here. In such a regime in the slow manifold that is devoid of fast inertial wave modulation and where
the dynamic is well captured by the R-RHD equations, the stationary power law solutions, that are
entirely dependent on the functional form of the interaction term L̃ and the dispersion relation ωk,
are given by Equation (53) and is in agreement with results from numerical simulations (e.g., the
work of Mininni and Pouquet [21], Teitelbaum and Mininni [22]). It may be interesting to point
out here that an identical k−2

⊥ spectrum for E±⊥ has been reported in the case of anisotropic MHD
turbulence of Alfven waves in the presence of strong external magnetic field (where dominant modes
are kz � k⊥) [7,34,54]. The analytical results for the anisotropic MHD case were developed based on
the reduced MHD model referenced in [7]. Thus it may not be surprising to draw an analogy between
the anisotropic MHD wave turbulence and the anisotropic hydrodynamic case discussed in the current
paper where the strong magnetic field plays the role of rapid rotation, and the polarized Alfven waves
are congruent to the helical inertial waves discussed here (please see the table in Appendix A.4).

The important point to note here is that rotating turbulence encompasses several different and
distinct dynamical regimes, each with distinct set of solutions. Hence, the importance of using reduced
equations for distinct asymptotic limits as has been explained by Nazarenko and Scheckochihin [27]
(see appendix A of [27]). Within such a distinct limit of rapid rotation, the R-RHD equations have
been derived [14,15,26,27] and a multiple scales perturbation method has been applied in this paper
for the asymptotically reduced equations. In the following sections, we attempt to stitch together the
important results of weak and strong turbulence of different dynamical regimes in order to clarify the
picture of turbulent cascade that has evolved based on recent research literature.

6.3. Hierarchy of Slow Manifolds in Anisotropic Wave Turbulence Diverges from the Critical Balance Route
towards Isotropy

The discussion in this section is motivated by the turbulence cascade picture presented by
Nazarenko and Scheckochihin [27]. We modify the turbulent cascade schematic based on the results
presented here.

The critical balance with polarization alignment argument presented by Nazarenko and
Scheckochihin [27] is an attempt to explain the k−2

⊥ energy spectra observed in several numerical
simulations of rotating turbulence [17,21,22,55]. However, as is evident from Figure 5 and the
corresponding sketch in [27], the critical balance with polarization alignment leads to a departure
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from anisotropy and is a path to the recovery of isotropic scales that are prevalent above the Zeeman
wavenumber [23]. It must be emphasized that anisotropy is dominant in rotating turbulent flows.
It is in this light, we believe that the energy spectra k−2

⊥ is obtained for anisotropic wave turbulence
in the regime of R-RHD defined by AT (ω f Tτ � ωsTτ � 1, ωsTf � 1 and kZ � k⊥). In this
anisotropic regime, the slow inertial wave frequency is much smaller than the fast inertial wave
frequency. This solution prevails as the flow traverses a hierarchy of slow manifold regions with
successively decreasing kZ

k⊥
and is the anisotropic wave turbulence solution for the energy spectra

within the slow manifold. In summary, there seems to be a bifurcation of the energy spectral solution
at the critical balance wavenumber (see Figure 5), two distinct spectra evolve, each with a k−2

⊥ energy
spectra: one leading towards the isotropic scale via critical balance and hence falls within the realm of
strong turbulence (Strong wave turbulence is fairly complicated (see secs. 3.2 and 14.6 in [7]) because
the wave amplitudes can be O(1) or higher [56] and the perturbative expansion may not be readily
possible. Its description is incomplete as stated by Nazarenko [7]), and the other towards highly
anisotropic horizontal scales with kZ � k⊥ sustained by small amplitude resonating wave modes.

Figure 5. A sketch of cascade paths for rotating turbulence shows the different flow regimes
and the corresponding energy spectra. Here, ki is the isotropic wavenumber, k⊥c is the classical
critical balance wavenumber, k0 is the injection wavenumber corresponding to an initial wave field.
Three distinct regimes are shown: (i) WT (Galtier) corresponding to the wave-turbulence regime
with ω f Tτ � 1, ω f Ts � 1, (ii) CB w/ pol. (i.e., critical balance with polarization alignment) as
explained in [27] leading towards isotropy, and (iii) AT (R-RHD) corresponding to the anisotropic wave
turbulence dynamics of the R-RHD equations with ω f Tτ � ωsTτ � 1, ωsTf � 1 and kZ � k⊥. As we
move along the horizontal axis from left to right, the flow traverses a hierarchy of slow manifolds with
successively rescaled (decreasing) kZ/k⊥ wave number ratio. Also shown are possible explanation
of 2D-3D coupling by non-resonant interactions. The AT (R-RHD) does not explain inverse cascade
phenomena as the energy flux obtained is direct. Here k0 is the wavenumber corresponding to the
initial condition.
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6.4. Comparison with Weak Turbulence Theory of Galtier

In this section, we contrast the theory presented here with earlier works [8,9]. The main distinctive
features are listed below.

1. The governing equations on which the wave turbulence theory [8,9] is developed are the
Navier-Stokes equations (i.e., Equation (1)). In these equations, the Rossby numberRo appears
explicitly and is used as an order parameter in the perturbation analysis and the fast inertial wave
dynamic is dominant. In contrast, the governing equations for the analysis presented here are the
R-RHD (i.e., Equations (5) and (6)). The asymptotic limit of infinitesimally small Ro is already
accounted for in the multiple scales analysis to derive the R-RHD and hence do not explicitly
appear in the R-RHD equations. This means that the effect of fast inertial waves is sub-dominant
here and the R-RHD equations are hence suitably applicable for the slow manifold dynamics.

2. The dynamical regime where the theory [8,9] is valid is ω f Tτ � 1, ω f Ts � 1. This point has been
elaborated in great detail in the work of Nazarenko and Scheckochihin [27] (see Section 2 in [27]).
The dynamical regime of the R-RHD is ω f Tτ � ωsTτ � 1, ωsTf � 1 and kz � k⊥. It is the
limit in which kz is so small that the turbulent dynamic is populated by slow inertial waves with
dispersion relation ωk =

kZ
k⊥

embodying slow oscillations when kZ
k⊥
� 1 (also see Figure 5 above).

In other words, within the slow manifold, kz is so small that kZ
k⊥
� Ro � 1. The perturbative

analysis presented here is applied to the R-RHD where the smallness (weakness) of the wave
amplitude is measured by ε � 1 and the slow dispersive three wave system undergoes weak
non-linear exchanges at the asymptotic order ε2 as explained earlier in Sections 4 and 5.

3. In wave turbulence theory of Galtier [8] and Galtier [9], the kinetic equations for energy and
helicity are derived by using multiple correlation functions to capture the energetics as well
as the absence of symmetry due to helicity. This makes the calculations tediously lengthy.
In contrast, the derivation for the helicity kinetic equation is presented here as a natural extension
of the symmetrical non-helical system and bypasses the use of calculations using multiple
correlation functions. This simpler approach follows a more general philosophy of Hamiltonian
reduction exploiting symmetries in the system [25] and their natural extension to understanding
asymmetrical phenomena.

4. Finally, the spectral power laws obtained for the energy cascade are distinctly different as
explained concisely in Figure 5.

Despite the fundamental differences in the region of validity of the two theories, they present
a more detailed recipe to better understand turbulent energetics and cascades for rotating flows.
A simple schematic towards this goal is presented in Figure 5 above to highlight the key findings in
this field.

6.5. Comparison with Weak Turbulence Theory of Newell: Cumulant Hierarchy vs. Wave Amplitude Hierarchy

The fundamental difference between the multiple scales perturbation technique employed
in this paper to derive the kinetic equations and the weak wave turbulence theory reviewed by
Newell et. al [39] is explained in the following paragraphs.

Weak turbulence calculations, as reviewed by Newell et. al. [39], are computed by taking
the closure in the limit T → ∞. The third and higher order cumulants survive at the advective
timescale (τNL) in the presence of fast inertial waves. This implies prevalence of non-Gaussian
statistics. This is the reason for writing a hierarchal system for the cumulants in the perturbation
approach, cf. Newell et. al. [39], rather than for the Fourier amplitudes.

The dynamics explained here elapse at the much slower advective time scale (τNL) compared to
the faster wave timescale T → ∞. At this slower time scale, it is assumed that the third (and higher odd)
order cumulants are sub-dominant thereby corroborating the suitability of Gaussian statistics for the
wave field. This aspect is detailed by Nazarenko [7] (see p. 64 in Section 5.6). This justifies the
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applicability of Wick’s theorem in the derivation of the kinetic equations. Consequently, this is also
why we employed a hierarchal expansion for the wave amplitude in Equation (18).

7. Coupling between Wave and 2D Modes Through Non-Resonant Interactions

Neither the theory presented in [8] nor the model presented in this manuscript address the issue
about the possibility of wave modes pumping the 2D modes. Note that L̃kpq = 0 when kZ = 0 because
of the fact that p⊥ = q⊥. Thus, within the framework of purely resonating wave triads, it is not
possible to establish the coupling between wave and purely 2D modes. This should not be surprising
because the theory developed is that of dispersive waves that are in resonance. However, a rather
phenomenological explanation may be insightful for explaining the coupling between wave and 2D
modes, as is presented below.

Suppose that in Equation (22), the triadic resonance condition is modified such that φ(ω) =

skωk − spωp − sqωq = δω � ε, δω 6= 0. This condition represents non-resonant (or near-resonant)
interaction of the three wave modes. For small δω

ε τ, Taylor expansion implies,

ei δω
ε τ ≈ 1 + i

δω

ε
τ + ... (54)

i.e.,

ei δω
ε τ ≈

(
δ

ω
sk
k ,ω

sp
p ω

sq
q

)
δω=0

+ i
δω

ε
τ + ... . (55)

Thus computing the fast time integral after Taylor-expanding the exponential term reveals that the
higher order slow secular terms (cf. presence of τ in the higher order terms) are inherently embedded
in the full system that is not restricted to resonating triadic wave interactions only. These terms account
for the coupling with the 2D modes. This is evident by re-writing Equation (22) with the higher order
terms as follows,

i∂τcsk
k =

1
2 ∑

sp ,sq

∫
V

skspsq
kpq c

sp
p c

sq
q

[
1
T

∫
T

(
δ

ω
sk
k ,ω

sp
p ω

sq
q

)
δω=0︸ ︷︷ ︸

res

+ i
δω

ε
τ + ...dt︸ ︷︷ ︸

non-res

]
δk,pqdpdq. (56)

The slow secular behavior of the non-resonant term (after integration) can be efficiently moderated
by tuning the damping parameter δω. The kinetic equation, that is constructed from the above
amplitude equation as explained before, can then be decomposed into two parts with contributions
from resonating and non-resonating modes considered separately, as follows:

∂τek = Tres(k, τ) + Tnon-res(k, τ), (57)

where T(k, τ) denotes nonlinear transfer of energy to mode k. Thus, retaining only non-resonant
interactions, it is possible to establish the aforementioned coupling in the slow manifold, kZ = 0.
Note that in the case of non-resonant interactions, due to the absence of the frequency delta function,
a stationary Kolmogorov (constant flux) solution cannot be obtained. The reader is also referred to the
works of Janssen [57] and Annenkov and Shrira [58] for a detailed theory of quasi-resonant interactions
in four wave dispersive systems.

8. Conclusions

In conclusion, it is important to emphasize an important point, that of the asymptotic dynamical
regime to which the fluid system belongs. In the context of this paper, we have restricted our analysis
to the highly anisotropic regime of rapid rotation (i.e., infinitesimally small Rossby number) within
the slow manifold where kz is infinitesimally small. It has been shown that the application of a
multiple scales perturbation method within this regime yields a k−3

⊥ law for the anisotropic energy
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spectrum, ek (cf. equivalently a k−2
⊥ spectrum for the cylindrically symmetric spectrum, Ek⊥ ) that is in

agreement with results from experimental and numerical simulations [17,21–23] as has been stated
earlier. An asymptotically reduced system spans a hierarchy of slow manifold regimes and thereby
captures the gradual transfer of energy towards the 2D modes. Interestingly, a similar power law
solution can also be obtained by applying a critical balance phenomenology (where fast inertial wave
time scale balances the nonlinear advection time scale) to the system of rotating turbulence as has
been shown in Nazarenko and Scheckochihin [27]. This is the realm of strong turbulence where the
nonlinear interactions are strong, meaning ω f TτNL ∼ O(1). However, the anisotropic limit of rapidly
rotating turbulence is farther away from modes where critical balance holds, this has been shown
through numerical simulations in Di Leoni et al. [59]. In addition to the discussion in Section 6.3 above,
the reader is referred to [27,38] for a detailed discussion on a wave turbulence and critical balance
schematic of the energy cascade process. It is important to note that in the analysis presented in this
paper, any physical artifact induced by boundary condition is not considered. Interested readers are
referred to the work of [60] that describes discrete boundary effects on wave turbulence formalism.

In summary, we have constructed a multiple scales kinetic model for an asymptotically reduced
set of equations that is valid in the limit of rapid rotation and in the anisotropic slow manifold regime.
Stationary solutions of invariant quantities have been obtained that are consistent with experimental
and simulation data reported in recent work. A coupled set of equations has been derived explaining
the nature of the inter-dynamics of the two global invariants of the system, viz., energy and helicity.
This has been done by extending the symmetrical non-helical system to the more general helical
case where the reflection symmetry is broken. This procedure is novel in the sense that it bypasses
construction of multiple correlation functions to account for the departure in mirror symmetry in the
helical case. This analytical study will serve a useful reference point for theoretical understanding of
atmospheric phenomena of planets that require a better knowledge of anisotropic wave dynamics.
Moreover, detailed understanding of anisotropic multi-scale wave-eddy interactions, along the lines of
the work presented here, will be useful for engineering new parametrization of mesoscale eddy flux in
closure schemes for ocean circulation models [61].
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Appendix A.

Appendix A.1. Notations and Definitions of Wave Vectors and Gradient Operators

x = x⊥ + Zẑ, k = k⊥ + kZ ẑ (58)

x⊥ = (x, y, 0), k⊥ = (kx, ky, 0) (59)

x⊥ = (−y, x, 0), k⊥ = (−ky, kx, 0) (60)

∇⊥ = (∂x, ∂y, 0), ∇⊥ = (−∂y, ∂x, 0) (61)

with |k⊥| = |k⊥| = k⊥ =
√

k2
x + k2

y. Once we introduce the helical basis in Section 2.2, we note that
the position vector and the wave vector will be defined in the appropriate right hand coordinate frame
of the helical basis as follows: (x⊥, ẑ, x′) and (k⊥, ẑ, k′) respectively. Here, prime refers to a vector
antiparallel to the parent vector, i.e., k′ = −k. The superscript prime will be simply dropped when
writing the wave vector.
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Appendix A.2. Derivation of the Amplitude Equation: Supplementary Calculations

Recall from Section 2.1 that the wave field is proportional to terms that evolve at advective time
scale τ and the exponential term that elapses at the inertial time scale t (cf. since the R-RHD limit is
ωτ = τ

t � 1, we chose τ = εt, ε� 1, also t� fast inertial time scale that has been filtered out by the
R-RHD),

Ψ
sk
k eiΦ(k,skωkt) ∼ hsk

k csk
k (τ)︸ ︷︷ ︸

advective scale τ

eiΦ(k,skωkt)︸ ︷︷ ︸
inertial scale t

. (62)

This separation of scales between τ and t (note τ and t are now independent variables)
allows us to average (integrate) out terms varying at the inertial timescale t ∼ O( 1

ε ), unless the
terms are multiplied by terms that are functions of ω ∼ O(ε), and leaves us with terms that
are dependent on the advective scale τ alone. This enables us to write an evolution equation for
the small amplitude of the form ∂τcsk

k (τ) = r.h.s of Equation (22). This is standard procedure in
multi-scale perturbation techniques and the interested reader is referred to texts by Hinch [31], Bender
and Orzag [32], Kevorkian and Cole [33]. To elucidate that the averaging is done over a large time
limit, consider, e.g., ε = 1

1000 , consequently τ = εt = 1
1000 t; this means that for τ to elapse 1 unit, t

must elapse 1000 units, i.e., within the scope of τ, t is already very large. The average of a function, say
f (t) defined over the domain D is given as

favg =
1

size of D

∫
D

f (t)dt =
1
T

∫
T

f (t)dt. (63)

We apply the solvability condition 1
2 (h
−sk
k · LHUsk

2k) = 0 to Equation (21) to obtain the amplitude
equation. The solvability condition involves an inner product (denoted by the operator · above) that
includes a projection onto the helical basis (that we denote by angle brackets here, i.e., 〈 1

2 h−sk
k , ·〉

in wavenumber space) and a time averaging (that we denote by normal integration symbol) as
shown below

1
T

∫
T

〈1
2

h−sk
k , ·〉dt. (64)

We operate each term of Equation (21) with the operator (64) defined above.

1st term: 1
2 (h
−sk
k · LHUsk

2k) := 1
T
∫

T〈
1
2 h−sk

k ,LHUsk
2k〉dt = 1

T
∫

T 0dt = 0. The 0 integrand follows
from application of the solvability criterion which is basically a Fredholm alternative in the context of
the adjoint problem explained in Section 4. This makes the left hand side of Equation (21) null upon
application of the inner product.

2nd term: 1
T
∫

T ∂τcsk
k (τ)〈 1

2 h−sk
k , hsk

k 〉dt = ∂τcsk
k

1
T
∫

T 1dt = ∂τcsk
k (τ). Note that the term ∂τcsk

k (τ)

can be factored out of the integration over t because t and τ are independent variables as has been
explained above. Also note that the integrand is equal to one because we have used the fact that
1
2 〈h
−sk
k , hsk

k 〉 = 1 as has been explained earlier in Section 4.

3rd term: For the third term we interchange the order of integration, i.e., we swap the operations
1
T
∫

T(·)dt and 〈 1
2 hsk

k , ·〉. Note that all terms except the exponential term are functions of τ (and not t)
and hence can be factored out of the integration over t. So we now concentrate only on the averaging
of the exponential term, comprising of the ω terms, as follows. Recall, for sake of brevity, we use
the following notation φ(ω) := (skωk − spωp − sqωq). Now, in the limit of large t ∼ O( 1

ε ) as ε → 0,
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φ(ω) ∼ O(ε) becomes proportionally small thereby φ(ω)t = εφ1(ω) τ
ε = φ1(ω)τ ∼ O(1) in the

leading order approximation. Here φ1(ω) ∼ O(1). This means we have

1
T

∫
T

eiφ(ω)tdt
t→∞, φ(ω)→0−−−−−−−−→ 1

T

∫
T

eiφ1(ω)τdt = eiφ1(ω)τ 1
T

∫
T

dt = eiφ1(ω)τ = eiφ(ω)t. (65)

This may look misleading but note that φ(ω)t remains O(1) and relatively constant even for large
t and hence the exponential term can be factored out of the integral and 1

T
∫
T

dt = 1. All other variables

besides the exponential term that make up the third term of Equation (21) are functions of τ and upon
being operated by 〈 1

2 hsk
k , ·〉 result in the right hand side of Equation (22).

Appendix A.3. Energy Conservation in Wave Triads

First we show that
∫ 1

k2
⊥

epeqδk,pqδωk ,ωpωq dk = 0. To show this, we approximate the delta function

with a limiting exponential function as: δωk ,ωpωq ≈ limσ→0 e−
ωk−ωp−ωq

σ .

∫ 1
k2
⊥

epeqδk,pqδωk ,ωpωq dk

∝
∫

δkz ,pzqz

∫ 1
k2
⊥

δk⊥ ,p⊥q⊥ lim
σ→0

e−
ωk−ωp−ωq

σ dk⊥dkz

=
∫

δkz ,pzqz lim
σ→0

∫ 1
k2
⊥

e
−( kz

k⊥
− pz

p⊥
− qz

q⊥
)σ−1

δk⊥ ,p⊥q⊥dk⊥dkz

=
∫

δkz ,pzqz lim
σ→0

e(
pz
p⊥

+
qz
q⊥

)σ−1
∫ 1

k2
⊥

e
− kz

σk⊥ δk⊥ ,p⊥q⊥dk⊥dkz

= 0.

(66)

The above equation is zero on account of the integral
∫ 1

k2
⊥

e
− kz

σk⊥ δk⊥ ,p⊥q⊥dk⊥ being zero as

shown below. Using integration by parts and the fact that for some arbitrary continuous function

f (x),
∫

f (x)δx−adx = f (a), we have, I =
∫ 1

k2
⊥

e
− kz

σk⊥ δk⊥ ,p⊥q⊥dk⊥ = 1
k2
⊥

∫
e
− kz

σk⊥ δk⊥ ,p⊥q⊥dk⊥ +∫ 2
k3
⊥

e−
kzσ−1

p⊥+q⊥ dk⊥ = 1
k2
⊥

e−σ−1 kz
p⊥+q⊥ − 1

k2
⊥

e−σ−1 kz
p⊥+q⊥ = 0. Next, by following a similar argument it

can be shown that
∫ 1

k2
⊥

ekepδk,pqδωk ,ωpωq dk = 0 and
∫ 1

k2
⊥

ekeqδk,pqδωk ,ωpωq dk = 0.
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Appendix A.4. Summary of Kinetic Wave Turbulence Regimes with Their Dynamical and Physical Properties
and Solutions

Table 1. Kinetic wave turbulence: features and parameters

Reduced HD Reduced MHD Full HD Critical Balance HD
(Current Paper) (Ref. [7,34]) (Ref. [8]) (Ref. [7,27])

name anisotropic wave anisotropic wave weak wave strong wave
of model turbulence (AT) turbulence (AT) turbulence (WT) turbulence (CB)

dynamical strong Θ0 & strong B0 & strong Θ0 waves balance
features strong anisotropy strong anisotropy nonlinearity

waves slow inertial slow Alfven fast inertial fast inertial
waves waves waves waves

anisotropy very very moderate moderate
(smallness of kZ

k⊥
) strong strong to isotropic to isotropic

governing kin. eq. deduced kin. eq. deduced kin. eq. deduced unknown
equation from reduced HD from reduced MHD from full HD

(Navier Stokes)

wave amplitude weak weak weak large
& nonlinearity

order ε = kZ
k⊥
� 1 ε =

c′k
B0
� 1 ε = Ro � 1 —

parameter (also, kZ
k⊥
� Ro) (also, kZ

k⊥
� 1)

Ek⊥ k−2
⊥ k−2

⊥ k−5/2
⊥ k−2

⊥
spectra

HD = Hydrodynamics; MHD = Magneto-hydrodynamics; CB = critical balance;Ro = Rossby number; Θ0 =
strength of external rotation in reduced HD and full HD; B0 = strength of external magnetic field in reduced
MHD; c′k = amplitude fluctuation in reduced MHD; ε = order parameter in the perturbative expansion of the
amplitudes; kin. eq. = kinetic equation.

Appendix A.5. Computer Program Used for the Analysis in Section 5.2.6

The Mathematica code used for the analysis of the convergence of the Collision integral, I(k⊥, kZ),
in Equation (43) is provided below.

(* Definition of terms in the integrand*)
-------------------------------------------
perp[k_] := {First@k, k[[2]], 0}
par[k_] := {-k[[2]], First@k, 0}
norm[k_] := Sqrt[k[[1]]^2 + k[[2]]^2 + k[[3]]^2]
(*Lkpq[k_,p_,q_]:=(par[p].perp[q](perp[q]-perp[p]).(perp[k] + \
perp[q]+perp[p]))/(2*norm@perp@k norm@perp@p norm@perp@q)*)
Lkpq[k_, p_,

q_] := (par[p].perp[q] ( norm@perp@q - norm@perp@p) (
norm@perp@k + norm@perp@p + norm@perp@q))/(2*

norm@perp@k norm@perp@p norm@perp@q)
FullSimplify[Lkpq[{kx, ky, kz}, {px, py, pz}, {qx, qy, qz}]]
alpha0 = 3;
beta0 = 1;
ee[k_, alpha_: alpha0,

beta_: beta0] := (norm@perp@k)^-alpha k[[3]]^-beta

I1b[k_, p_, q_, alpha_: 3, beta_: 1] :=
Lkpq[k, p, q]^2 (ee@p ee@q - ee@k ee@p - ee@k ee@q)
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Simplify[I1b[{kx, ky, kz}, {px, py, pz}, {qx, qy, qz}]]
I2b[{kx_, ky_, kz_}, {px_, py_, pz_}, {qx_, qy_, qz_}] :=
2 I1b[{px, py, pz}, {kx, ky, kz}, {qx, qy, qz}]

I0b[{kx_, ky_, kz_}, {px_, py_, pz_}, {qx_, qy_, qz_}] :=
I1b[{kx, ky, kz}, {px, py, pz}, {qx, qy, qz}] -
I2b[{kx, ky, kz}, {px, py, pz}, {qx, qy, qz}]

(*Define surface of integration*)
-------------------------------------
surfpz[k_,

p_] := (norm@perp[p] k[[3]]/
norm@perp[k]) (Sqrt[(k[[1]] - p[[1]])^2 + (k[[2]] - p[[2]])^2] -
norm@perp[k])/(Sqrt[(k[[1]] - p[[1]])^2 + (k[[2]] - p[[2]])^2] -
norm@perp[p])

surf[{kx_, ky_, kz_}, {px_, py_, pz_}] :=
pz == surfpz[{kx, ky, kz}, {px, py, 0}]

(*Definition of the Jacobian, computing Jacobian*)
-----------------------------------------------------
jaco[{kx_, ky_, kz_}, {px_, py_,

pz_}] := \[Sqrt](1 + D[surfpz[{kx, ky, kz}, {px, py, 0}], px]^2 +
D[surfpz[{kx, ky, kz}, {px, py, 0}], py]^2)

Simplify[jaco[{kx, ky, kz}, {px, py, 0}]]

(*Display surface of integration and value ofsub- integrand*)
-----------------------------------------------------
windowx = -10;
windowy = -10;
With[{kx = 20, ky = 20, kz = 1},
SliceContourPlot3D[
Log@Abs@I0b[{kx, ky, kz}, {px, py, pz}, {kx - px, ky - py,

kz - pz}],
surf[{kx, ky, kz}, {px, py, pz}] == 0, {px, -kx + windowx,
kx - windowx}, {py, -ky + windowy, ky - windowy}, {pz, -4, 4},

ColorFunction -> "Rainbow", PlotLegends -> All,
AxesLabel -> {px, py, "pz"}]]

With[{kx = 20, ky = 20, kz = 1},
SliceContourPlot3D[
I0b[{kx, ky, kz}, {px, py, pz}, {kx - px, ky - py, kz - pz}],
surf[{kx, ky, kz}, {px, py, pz}] == 0, {px, -kx + windowx,
kx - windowx}, {py, -ky + windowy, ky - windowy}, {pz, -4, 4},

ColorFunction -> "Rainbow", PlotLegends -> All,
AxesLabel -> {px, py, "pz"}]]

(*Define the integrand, set it to zero at singular points which are outside
the region of validity of AT (R-RHD)*)
--------------------------------------------------------------------------
tolerance1 = 0.5;
tolerance2 = 0.5;
kz = 1;
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I0bjacos[{kx_, ky_, kz_}, {px_, py_, pz_}] :=
If[
Boole[Abs[Sqrt[(kx - px)^2 + (ky - py)^2] - Sqrt[(px^2 + py^2)]] >

tolerance1]
Boole[
Abs[Sqrt[(kx - px)^2 + (ky - py)^2] - Sqrt[(kx^2 + ky^2)]] >
tolerance2]

Boole[Abs[Sqrt[(px^2 + py^2)]] > tolerance1]
Boole[Abs[Sqrt[(kx - px)^2 + (ky - py)^2]] > tolerance1]
Boole[Abs[kz - surfpz[{kx, ky, kz}, {px, py, 0}]] > tolerance1] ==
0, 0, I0b[{kx, ky, kz}, {px, py,
surfpz[{kx, ky, kz}, {px, py, 0}]}, {kx - px, ky - py,
kz - surfpz[{kx, ky, kz}, {px, py, 0}]}] jacos[{kx, ky, kz}, {px,
py, 0}]]

I0bjacosFULL[{kx_, ky_, kz_}, {px_, py_, pz_}] :=
I0b[{kx, ky, kz}, {px, py,

surfpz[{kx, ky, kz}, {px, py, 0}]}, {kx - px, ky - py,
kz - surfpz[{kx, ky, kz}, {px, py, 0}]}] jacos[{kx, ky, kz}, {px,
py, 0}]

(*Perform the numerical integration and then display*)
-----------------------------------------------------------------------
txy =
Table[NIntegrate[

I0bjacos[{kx, ky, kz}, {px, py, 0}], {px, 10, 150}, {py, 10, 150},
Method -> {"AdaptiveMonteCarlo", "MaxPoints" -> 100000},
WorkingPrecision -> MachinePrecision, MaxRecursion -> 100], {kx,
10, 150, 20}, {ky, 10, 150, 20}]

(*txy = Table[
NIntegrate[
I0bjacos[{kx, ky, kz}, {px, py, 0}], {px, 10, 150}, {py, 10, 150},
Method -> {"GlobalAdaptive", "MaxErrorIncreases" -> 3000},
WorkingPrecision -> MachinePrecision, MaxRecursion -> 30], {kx, 10,
150, 20}, {ky, 10, 150, 20}]*)

ListPlot3D[txy, PlotLegends -> Automatic,
AxesLabel -> {kx, ky, "I(kx,ky)"}, ClippingStyle -> None,
DataRange -> {{10, 150}, {10, 150}}]
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