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Abstract: Penetrative convection due to purely internal heating in a horizontal ferrofluid-saturated
porous layer is examined by performing linear stability analysis. Four different types of heat supply
functions are considered. The Darcy model is used to incorporate the effect of the porous medium.
Numerical solutions are obtained by using the Chebyshev pseudospectral method, and the results are
discussed for all three boundary conditions: when both boundaries are impermeable and conducting;
when both boundaries are conducting with lower boundary impermeable and free upper boundary;
and when both boundaries are impermeable with lower boundary conducting and upper with
constant heat flux. The effect of the Langevin parameter, width of ferrofluid layer, permeability
parameter, and nonlinearity of the fluid magnetization has been observed at the onset of penetrative
convection for water- and ester-based ferrofluids. It is seen that the Langevin parameter, width of
ferrofluid layer, and permeability parameter have stabilizing effects on the onset of convection, while
the nonlinearity of the fluid magnetization advances the onset of convection.
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1. Introduction

Ferrofluids (i.e., fluids which contain stable colloidal suspensions of one-domain particles of
ferromagnetic and ferrimagnetic materials in liquid carriers) belong to a special class of fluid that
exhibit both magnetic and fluid properties [1]. The particles used in ferrofluids are usually made
up of metal materials (ferromagnetic materials) like iron, nickel, cobalt, and also with their oxides
(ferrimagnetic materials) like spinel-type ferrites, magnetite (Fe3O4), etc. [2]. The carrier liquid can
be water, ethylene glycol, oils, etc. However, the choice of metal particles and carrier liquid for the
preparation of a particular ferrofluid depends on the application for which the ferrofluid is prepared.
Ferrofluids can be used as a coolant in thermal management devices (such as in loudspeakers and
transformers as a coolant) and/or as a heat transfer medium in energy conversion systems such as heat
exchangers and processes including boiling [3]. These fluids have been widely used in commercial
applications in many areas such as sealing, damping, heat transfer, bearing, and sensing. The first
developed and commercialized ferrofluid product was a dynamic process seal, which has applications
in areas such as lasers, semiconductor processing, X-ray machines, fiber optics, crystal growing
systems, avionics, and heat treating furnaces [4]. Ferrofluidic exclusion seals help to protect sensitive
environments and critical machinery components, and therefore have important applications in various
industrial areas, including robotics, textiles, computer peripherals, and machine tools. In addition to the
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above-mentioned applications, ferrofluids have been used extensively in bioengineering applications.
The area associated with ferrofluid convection in the presence of an applied magnetic field has attracted
a great amount of attention from many researchers over the past few decades. The primary study of
the generalization of the classical Rayleigh–Bénard convection problem for a ferromagnetic fluid was
conducted by Finlayson [5]. The author investigated the convective instability of a ferromagnetic fluid
for a fluid layer heated from below under the presence of a vertical magnetic field. He analyzed the
instability in the presence and absence of gravity. The results were discussed for both shear-free and
rigid horizontal boundaries under the framework of linear stability theory. Later, a significant amount
of work in this direction was carried out by [6–10]. The study of ferromagnetic convection in a porous
medium also becomes important due to its significance in the emplacement of geophysically-imageable
liquids into particular zones for subsequent imaging, controlled emplacement of liquids, or treatment
of chemicals [11]. Vaidyanathan et al. [12] studied the thermoconvective instability in a ferromagnetic
fluid saturating a porous medium in the presence of a vertical magnetic field. The authors used linear
stability theory and discussed the results graphically as well as numerically for free–free boundary
condition. They also reported in their study that a porous medium of small permeability tends to
stabilize the system. The reader is referred to [13–16] for more related study.

Penetrative convection is usually defined as a type of motion which may occur whenever
convection in a thermally-unstable fluid layer extends from above and below into adjacent stable
layers [17]. This kind of convection is a widely-occurring phenomenon, and commonly occurs in
geophysical and astrophysical flows. Internal heating is one of the most widely employed mechanisms
to characterize this phenomenon. Many systems, such as the Earth’s mantle, radiating atmospheres,
the cores of large main-sequence stars, and nearly any engineered system where chemical and
nuclear reactions take place in a fluid environment have internal sources or sinks of buoyancy [18].
The presence of an internal heat source or sink can give rise to a situation where one part of a layer is
naturally convecting while the other remains stable, and hence allows penetrative convection to occur.
Natural convection driven by internal heating can be seen in a large number of physical phenomena
(for example, in the field of nuclear energy), and plays an important role in applications in nuclear
reactor cores, in post-accident heat removal, etc. This phenomenon also has its importance in the
development of a metal waste from spent nuclear fuel, fire and combustion modeling, and the storage
of spent nuclear fuel [19]. Gasser and Kazimi [20] were the first to study convection in a porous
media due to both internal heating and heating from below by using the method of linear stability of
small disturbance. Later, the problem of penetrative convection due to purely internal heating in a
fluid-saturated porous medium was investigated by Ames and Cobb [21] by applying the methods of
linear stability theory and nonlinear energy theory. In the famous book [22], Straughan investigated
the onset of convection in a fluid layer with a non-uniform heat source. The author considered four
different types of heat supply functions, and discussed the results by obtaining the values of the critical
Rayleigh number of energy theory RaE and the critical Rayleigh number of linear instability theory
RaL. Most recently, Nandal and Mahajan [23] studied the effect of internal heat source on the onset
of convection in a fluid layer saturated porous medium. The authors considered four different types
of internal heat supply functions, and discussed the results for stress-free and isothermal boundary
conditions. Other important studies related to penetrative convection in porous media due to internal
heating include [24–33].

The presence of a uniform heat source (sink) gives rise to a non-uniform temperature gradient,
which induces a variation in the magnetic field. These variations of temperature and magnetic
field play an important role in controlling ferroconvection in many practical applications, such
as in continuous-operation refrigerators. Thus, the study of penetrative convection due to purely
internal heating in ferrofluids becomes important. The effect of a uniform heat source on the onset of
convection in a magnetic fluid layer under the presence of a transverse applied magnetic field was
investigated by Rudraiah and Sekhar [34]. Nanjundappa et al. [35] studied the onset of penetrative
Benard–Marangoni convection in a horizontal ferromagnetic fluid layer heated from below in the
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presence of an internal heat source and a uniform vertical magnetic field. In the context of porous
medium, the problem of penetrative ferroconvection in a porous layer in the presence of a uniform
applied vertical magnetic field was investigated by Nanjundappa et al. [36] by using the internal
heating model and the Brinkman-extended Darcy equation. In addition to these studies, some of the
related works include [37–39]. In recent years, the problem of convection in nanofluids induced by
internal heating has attracted a great amount of attention from many researchers due to its various
industrial and geophysical applications. The effect of an internal heat source in porous medium
saturated by nanofluid was first investigated by Yadav et al. [40]. There are various studies available
in which phenomena associated with the onset of convection in a nanofluid layer induced by purely
internal heating have been investigated under different aspects [41–43].

In this study, penetrative convection due to purely internal heating in a ferrofluid-saturated
porous layer is investigated under the presence of an applied magnetic field. Following Straughan [22],
the following four cases are considered for internal heating: (A) when the heat supply function
is constant; (B) when the heat supply function is increasing across the layer; (C) when the heat
supply function is decreasing across the layer; (D) when the heat supply function heats and cools
the layer non-uniformly. The results are discussed graphically for the boundary condition when
both boundaries are impermeable and conducting (IMPLU & CONLU) [44]. The effects of Langevin
parameter αL, permeability K, the width of ferrofluid layer d, and the nonlinearity of magnetization
M3 are analyzed at the onset of penetrative convection for water- and ester-based ferrofluids. To the
best of our knowledge, this problem has not yet been examined.

2. Formulation

Consider an infinite horizontal layer of incompressible ferrofluid saturating a low permeability
porous medium. The fluid is assumed to occupy the layer z ∈ [0, d] with the gravity g acting along the
vertical axis (z-axis) in the negative direction. A magnetic field, H = Hext

0 k also acts along the vertical
axis from outside the layer, as shown in Figure 1.

Incompressible
ferrofluid saturating

a porous layer

T T 0

axisx 

axisy 

axisz 

z d

0z 

g = (0, 0, -g)

H = (0, 0, H)
Q

T T 0

Figure 1. Geometric configuration of the problem.

The convection is driven due to the presence of an internal heat supply function of strength Q.
The presence of the internal heat generation in the system may be due to the absorption of external
radiation, as well as the heat generation due to a viscous dissipation [38]. The following four different
types of heat supply functions are considered:
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where Q0 is a constant. The current forms for Q(z) are chosen in such a way that the non-dimensional
form of Q(z), say Q∗(z∗), is such that

Q∗average =
∫ 1

0
Q∗(z∗)dz∗ = Q∗(constant)

In case A, Q is constant. For Q0 > 0, Q increases across the layer in case B and decreases across the
layer in case C. In case D, heat supply function Q heats and cools the layer in a non-uniform way [22].

Following [5,36,44] and using the Boussinesq approximation for an incompressible ferrofluid, the
equations of continuity, momentum, temperature, and Maxwell (in the magnetostatic limit) can be
written as

∇ · u = 0. (1)

ρ f

ε

∂u
∂t

=−∇p− µ

K
u + µ0(M ·∇)H − ρ f [1− α(T − T0)]gk, (2)

(ρc)m
∂T
∂t

+ (ρc) f u ·∇T = ∇ · (k1∇T) + Q. (3)

∇ · B = 0, ∇× H = 0, B = µ0(M + H). (4)

where u is the filter velocity, ρ f is the fluid density, ε is the porosity, t is the time, p is the pressure,
µ is the viscosity, K is the medium permeability, µ0 is the magnetic permeability of vacuum, M is the
magnetization, α is the thermal volumetric expansion coefficient, T0 is the reference temperature, (ρc)m

is the effective heat capacity of porous medium, T is the ferrofluid temperature, c f is the ferrofluid
specific heat, k1 is the ferrofluid thermal conductivity, B is the magnetic induction, and µ0 is the
magnetic permeability of the vacuum. We write u = (ϑ, v, w).

At equilibrium, the magnetization is aligned with the stationary magnetic field, and is a function
of magnetic field and temperature. It is assumed to be governed by Langevin formula such as [5]

Meq =
H
H

MsL(αL) =
H
H

Meq(H, T), (5)

where L(αL) = coth(αL)−
1

αL
, αL =

mH
kBT

, here αL, Ms, m and kB are the Langevin parameter, magnetic

saturation, magnetic moment of a single particle, and Boltzmann constant, respectively.
In order to obtain the steady state solution, following Finlayson [5], the magnetization equation

Meq is firstly linearized in the following form

Meq(H, T) =M0 + χ(H − H0)− Km(T − T0);
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here M0 = χ2H0, χ2 is the chord magnetic susceptibility, H0 is the uniform magnetic field of
the ferrofluid layer when placed in an external magnetic field H = Hext

0 k, χ is tangent magnetic

susceptibility, and Km =
χH0

T0
represents a function of temperature and magnetic field. Using the

above expression for Meq, Equation (5) now becomes

Meq =
H
H
[M0 + χ(H − H0)− Km(T − T0)]. (6)

For a different value of αL, the tangent magnetic susceptibility χ and chord magnetic susceptibility
χ2 can be calculated using Langevin Formula (5) as [45]

αL =
mH0

kBT0
=



� 1, χ =
Msm
3kBT0

, χ2 = χ,

' 1, χ =
Msm
kBT0

L′(αL), χ2 =
Ms

T0
L(αL),

� 1, χ =
MskBT0

mH2
0

, χ2 =
Ms

H0
(1− 1

αL
).

The temperature is assumed to take the same values at the boundaries; therefore, the boundary
conditions can be expressed as

w = 0, T = T0 at z = 0 and at z = d. (7)

For the magnetic boundary conditions, the normal component of magnetic induction and the
tangential component of the magnetic field are assumed to be continuous across the boundary.

We introduce the following dimensionless variables:

(x∗, y∗, z∗) =(x, y, z)/d, t∗ = (κ/d2)t, p∗ = (K/µκ)p, (ϑ∗, v∗, w∗) = (ϑ, v, w)d/κ,

T∗ = (T − T0)
ρ f gαKd

µκ
, H∗ = H/H0, M∗ = M/M0

Thus, Equations (1)–(6) take the form (after dropping the superscript *)

∇ · u = 0, (8)

1
Va

∂u
∂t

= −∇p− u + λ1(M ·∇)H − (ρ1 − T)k, (9)

A
∂T
∂t

+ u ·∇T = ∇2T + 2Rv, (10)

χ2∇ ·M +∇ · H = 0, (11)

M =
H
H

(1 + χ)

χ2

{
χ

1 + χ
H − M1

M2
T +

χ2 − χ

1 + χ

}
, (12)
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where λ1 =
µ0M0H0K

κµ
, ρ1 =

gρ f dK
κµ

, A =
(ρc)m

(ρc) f
,

Rv =



Ra, Case A,

Ra
(

1
2
+ z
)

, Case B,

Ra
(

2 +
3z2

2
− 3z

)
, Case C,

Ra (1 + sin2πz + sin4πz) , Case D.

In Equations (9)–(12), the following non-dimensional parameters have been introduced:

Pr =
µ

ρ f κ
, Da =

K
d2 , Va =

ε Pr
Da

, Ra =
ρ f gαQ0Kd3

2µκk1
, M1 =

µ0µκχ2H2
0

(ρ f gαT0)2Kd2(1 + χ)
, M2 =

µ0χH2
0

ρ f gαdT0
.

Here Pr is the Prandtl number, Da is the Darcy number, Va is the Vadasz number, Ra is the internal
Rayleigh number, and M1, M2 are the magnetic parameters.

The boundary conditions (7) in non-dimensional form become

w = 0, T = 0 at z = 0 and at z = 1. (13)

3. The Steady Solution

The set of Equations (9)–(12) possesses a steady-state solution of the form

u = 0, p = pb(z), T = Tb(z), M = Mb(z), H = Hb(z). (14)

Using Equation (14), the set of Equations (9)–(12) becomes

−dpb
dz

+ λ1Mb
dHb
dz

+ Tb − ρ1 = 0, (15)

d2Tb
dz2 + 2Rv = 0, (16)

χ2
dMb
dz

+
dHb
dz

= 0, (17)

Mb =
1 + χ

χ2

{
χ

1 + χ
Hb −

M1

M2
Tb +

χ2 − χ

1 + χ

}
. (18)
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Solving Equations (16)–(18) with the boundary conditions (13), the basic state solutions can be
obtained as follows:

ub = 0, p = pb(z), Tb = RaBs, Hb =

[
1 +

(
M1

M2

)
RaBs

]
k, Mb =

[
1− 1

χ2

(
M1

M2

)
RaBs

]
k, (19)

where Bs =



-z2 + z, Case A,

-
z3

3
− z2

2
+

5
6

z, Case B,

-
z4

4
+ z3 − 2z2 +

5
4

z, Case C,

-z2 + z +
sin2πz

2π2 +
sin4πz

8π2 , Case D.

4. The Linear Stability Problem

The system is now perturbed by considering a small perturbation of amplitude ε′ (0 < ε′ � 1) to
the steady state Equation (14). This gives

u = ub+ε′u′, p = pb + ε′p′, T = Tb + ε′θ′, M = Mb + ε′M ′, H = Hb + ε′H ′.

After substituting the perturbed variables into the set of Equations (9)–(12), linearizing them
about the steady state, dropping primes and collecting the O(ε′) provides

1
Va

∂∇2w
∂t

= −∇2w + (1−M1RaBs
′)∇2

1θ + (M2RaBs
′)

∂∇2
1ψ

∂z
, (20)

A
∂θ

∂t
= −RaBs

′w +∇2θ, (21)

∂2ψ

∂z2 =
M1

M2

∂θ

∂z
−M3∇2

1ψ. (22)

Here M3 =
(1 + χ2)

(1 + χ)
represents the measure of nonlinearity of magnetization. Since ∇× H = 0,

there exists a potential function ψ such that H = ∇ψ. In the above set of Equations (20)–(22),
Equation (20) has been obtained by taking the vertical component of (∇ ×∇×) of the linearized
momentum equation.

The Chebyshev pseudospectral–QZ method is now applied to solve the set of Equations (20)–(22).
In this procedure, to match the domain of Chebyshev pseudospectral–QZ method, the present domain
is re-adjusted from [0, 1] to [−1, 1] by applying a coordinate transformation from z to 2z− 1. In order to
perform the normal mode analysis, all the perturbation quantities w, θ, ψ are assumed in the form

{w, θ, ψ} = {w(z), θ(z), ψ(z)} exp{σt + i(kxx + kyy)}, (23)

where kx and ky are the wave number in x and y directions, respectively.
Substituting (23) into the set of Equations (20)–(22) gives

σ

Va
(4D2 − k2)w(z) = −(4D2 − k2)w− k2(1−M1RaBs

′)θ − k2M2RaBs
′Dψ(z), (24)

Aσθ(z) = −RaBs
′w + (4D2 − k2)θ(z), (25)
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(4D2 − k2M3)ψ(z)−
2M1

M2
Dθ(z) = 0, (26)

where D =
d
dz

and k =
√

k2
x + k2

y is the wave number.
The boundary conditions become

w = θ = 2(1 + χ)Dψ− kψ = 0 at z = −1,
w = θ = 2(1 + χ)Dψ + kψ = 0 at z = +1.

}
(27)

5. Method of Solution

In order to solve the above system of equations, the method and algorithm of Kaloni and Lou [46]
are closely followed. Equations (24)–(26) with the boundary conditions (27) are solved by using the
Chebyshev pseudospectral method [47]. For a given value of the strength of the internal heat source
Q, Langevin parameter αL, wave number k, H0, d, K, and other physical parameters, the system
of equations is solved by using QZ algorithm and EIG function in MATLAB to obtain the leading
eigenvalue σ = σr + iσi. Here the leading eigenvalue is assumed to be the one for which the real part
σr is largest among the whole set of eigenvalues. Thereafter, by adjusting the value of Q with the use
of secant method, that particular value of Q is calculated corresponding to which the real part σr of the
leading eigenvalue σ = σr + iσi approaches zero. This procedure generates only a single point in the
neutral stability curve. In order to obtain the desired neutral stability curve, this procedure is repeated
for different values of the wave number k [48]. The critical value of the strength of the internal heat
source Qc with the critical wave number kc can be characterized as

Qc = min
k

Q (Pr, Le, ......) . (28)

The function FMINBND of MATLAB—which is a combination of golden section and parabolic
method—is used to minimize Equation (28).

To check the validity of our method, we have solved the same problem in the absence of a
magnetic field for Case A by considering IMPLU & CONLU boundary condition. From Table 1 it is
clear that results obtained using the above-mentioned method of solution agree well with the results
given by Nouri-Borujerdi et al. [49] and Nield and Kuznetsov [32].

Table 1. Comparison of critical Rayleigh number Rac and the critical wave number kc for IMPLU &
CONLU boundary condition.

IMPLU & CONLU

Nouri-Borujerdi et al. [49] Nield and Kuznetsov [32] Present Study

kc Rac kc 2Rac kc 2Rac
4.67519 471.3787 4.67519 471.3847 4.67518 471.3846

6. Numerical Results and Discussion

In this section, the numerical results are presented for water- and ester-based ferrofluids. The value
of the permeability parameter K and porosity ε are taken as 2.0 × 10−7 m2 and 0.35, respectively.
The values of the other physical quantities are taken from Kaloni and Lou [46] (Table 1, p. 7) and
Rosensweig [45] (Table 2.4, p. 71). The results are discussed for a 1 mm (0.0001 m) thick layer of ferrofluid.

In order to see the effect of magnetic field, neutral curves associated with three different values of
the Langevin parameter αL are plotted in Figure 2 for four different cases viz. Case A, Case B, Case C,
Case D. The curves are drawn for water- and ester-based ferrofluids by considering the IMPLU & CONLU
boundary condition. It can be seen from the figures that as the value of αL increases, the value of the
internal Rayleigh number Rac also increases. The forces arise due to the presence of an internal heat
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source dominating the magnetic forces that exist because of the presence of an applied magnetic field,
and therefore as the strength of the magnetic field increases, disturbances in the ferrofluid slow down,
leading to the larger value of Rac. Thus, the Langevin parameter delays the onset of convection in all
four cases. It is also observed that the ester-based ferrofluids are more resilient to convection than the
water-based ferrofluids.
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Figure 2. Neutral curves for different values of the Langevin parameter αL for (a) water-based ferrofluid
and (b) ester-based ferrofluid for Case A to Case D. The fixed parameter values are d = 0.001 m,
ε = 0.35, and K = 2.0 × 10−7.

In Figure 3, we have plotted the neutral curves for three different values of the width of ferrofluid
layer d. As d increases, the value of the internal Rayleigh number Rac increases, and the neutral curves
shift upward. A higher value of d suppresses the random motion of particles in a ferrofluid, which
results in the higher value of Rac in all four cases. Thus, the parameter d has a stabilizing effect on
the system.
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Figure 3. Neutral curves for different values of the width of ferrofluid layer d for (a) water-based
ferrofluid and (b) ester-based ferrofluid for Case A to Case D. The fixed parameter values are
αL = 2, ε = 0.35, and K = 2.0 × 10−7.

Figure 4 shows the neutral curves for three different values of the permeability parameter K for
water- and ester-based ferrofluid. The plots indicate that the value of the internal Rayleigh number
Rac increases as the value of K increases. Thus, the permeability parameter K delays the onset of
convection. It can also be seen from the figure that the behavior of the parameter K remains the same
in all four cases.
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Figure 4. Neutral curves for different values of the permeability parameter K for (a) water-based
ferrofluid and (b) ester-based ferrofluid for Case A to Case D. The fixed parameter values are
αL = 2, ε = 0.35, and d = 0.001 m.

In Figure 5, the effect of the nonlinearity of the fluid magnetization is examined at the onset of
penetrative convection in all four cases. The neutral curves show that the value of the internal Rayleigh
number Rac decreases as the value of M3 (the measure of nonlinearity of magnetization) increases.
It is also observed from the figure that as the value of M3 increases, the value of critical wave number
kc decreases. Thus, the parameter M3 advances the onset of convection and also shows its influence
via expansion of the convection cell size. This behavior is exactly the same as reported earlier by
Nanjundappa et al. [38] in the case of uniform heating.
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Figure 5. Neutral curves for different values of the nonlinearity of magnetization parameter M3 for
(a) water-based ferrofluid and (b) ester-based ferrofluid for Case A to Case D. The fixed parameter
values are αL = 2, ε = 0.35, K = 2.0× 10−7, and d = 0.001 m.

We would like to mention here that we have solved the same problem for the combination of other
two boundary conditions viz. when both boundaries are conducting with lower boundary impermeable
and free upper boundary (IMPL, CONLU & FREU); and when both boundaries are impermeable with
lower boundary conducting and upper with constant heat flux (IMPLU, CONL & CHFU) [44]. Since the
results of these boundary conditions are qualitatively the same, all the results are not included in this
work. The boundary conditions in mathematical terms are taken as

2Dw− KLw = 2Dθ− LLθ = 2(1 + χ)Dψ− kψ = 0 at z = −1,

2Dw + KUw = 2Dθ + LUθ = 2(1 + χ)Dψ + kψ = 0 at z = +1.

}

The subscripts L and U refer to lower and upper boundaries, respectively. Here LL, LU are Biot
numbers taking limit value zero for constant heat flux across boundary and infinite at conducting
boundary; the coefficients KL and KU take discrete values, zero for constant pressure at the surface,
and infinite at the impermeable surface.

Table 2 represents the values of the critical wave number kc and the critical internal Rayleigh
number Rac, with variation in the value of αL for three different boundary conditions. Our first
observation from the table is that the value of critical internal Rayleigh number Rac is higher in the
case of IMPLU & CONLU boundaries, and is least in the case of IMPLU , CONL & CHFU boundaries.
Thus, the system is most stable when both boundaries are impermeable and conducting, and least



Fluids 2017, 2, 22 13 of 16

stable when both boundaries are impermeable with lower boundary conducting and upper with
constant heat flux. We have also noticed that in Case A to Case D, the value of the Rac first decreases
as the value of αL increases from 1 to 2 and then it starts increasing with further increase in the value
of αL. This kind of behavior was reported earlier by Kaloni and Lou [46] for the magnetic fluids in a
non-porous medium. It is also observed from the table that for any given value of αL, the value of the
critical internal Rayleigh number Rac is larger in case B, where the heat supply function is increasing,
and Rac is least in case D, where the heat supply function Q heats and cools the layer in a non-uniform
way. A similar behavior was reported by Straughan [22] (p. 92).

Table 2. The values of the critical internal Rayleigh number Rac and the critical wave number kc for
water- and ester-based ferrofluids.

IMPLU & CONLU IMPL, CONLU & FREU IMPLU, CONL & CHFU

Water Ester Water Ester Water Ester

αL kc Rac kc Rac kc Rac kc Rac kc Rac kc Rac

Case A 1 5.37 107.90 5.21 134.62 3.11 67.83 3.01 81.23 2.98 63.95 2.92 77.41
2 5.48 87.39 5.34 111.96 3.20 56.48 3.09 69.89 3.04 53.06 2.97 66.21
4 5.35 108.67 5.19 135.43 3.10 68.07 3.00 81.45 2.98 64.66 2.92 78.11
6 5.17 138.03 5.03 164.86 3.00 82.63 2.91 94.34 2.92 79.39 2.87 91.59
8 5.05 160.66 4.92 185.04 2.93 92.60 2.86 102.08 2.87 89.77 2.83 99.95

10 4.96 177.21 4.85 198.37 2.88 99.17 2.83 106.69 2.85 96.80 2.81 105.05

Case B 1 5.94 111.45 5.75 140.36 3.37 69.67 3.26 84.28 3.21 65.47 3.14 80.03
2 6.08 89.70 5.90 115.79 3.47 57.58 3.35 71.89 3.27 53.94 3.20 67.89
4 5.92 112.27 5.73 141.24 3.36 69.92 3.25 84.52 3.21 66.23 3.14 80.80
6 5.71 144.10 5.53 174.07 3.24 85.84 3.14 99.06 3.14 82.22 3.07 95.88
8 5.55 169.31 5.39 197.34 3.16 97.06 3.08 108.07 3.09 93.81 3.04 105.53

10 5.44 188.22 5.30 213.12 3.11 104.65 3.05 113.56 3.06 101.86 3.02 111.57

Case C 1 4.62 105.71 4.50 129.92 2.81 67.65 2.73 79.79 2.71 64.15 2.67 76.51
2 4.71 86.51 4.60 109.45 2.87 56.97 2.79 69.55 2.76 53.79 2.71 66.26
4 4.60 106.43 4.49 130.63 2.80 67.87 2.72 79.99 2.71 64.80 2.67 77.12
6 4.48 132.94 4.37 156.03 2.71 81.04 2.65 91.12 2.66 78.26 2.62 88.88
8 4.39 152.49 4.30 172.57 2.66 89.66 2.62 97.50 2.63 87.33 2.60 95.83

10 4.33 166.24 4.26 183.06 2.63 95.13 2.59 101.18 2.61 93.24 2.58 99.94

Case D 1 4.25 81.73 4.15 99.47 2.66 55.72 2.59 65.02 2.58 53.04 2.54 62.58
2 4.33 67.36 4.23 84.50 2.72 47.32 2.65 57.21 2.61 44.82 2.57 54.68
4 4.24 82.27 4.14 100.00 2.65 55.92 2.59 65.20 2.58 53.53 2.54 63.03
6 4.12 101.67 4.03 118.06 2.58 65.99 2.53 73.43 2.53 63.89 2.50 71.79
8 4.05 115.59 3.97 129.46 2.54 72.36 2.50 78.00 2.51 70.65 2.48 76.81

10 3.99 125.14 3.93 136.51 2.51 76.32 2.49 80.58 2.49 74.95 2.47 79.70

7. Conclusions

Penetrative convection is studied for a thin layer of ferrofluid saturating a porous medium under
the presence of an applied magnetic field and internal heating. Four different types of heat supply
functions are considered in this study. We used the linear stability theory to examine the onset of
penetrative convection, and the resulting eigenvalue problem is solved by employing the Chebyshev
pseudospectral method. The following conclusions can be drawn from this study:

1. The effect of d, αL, K is to stabilize the system, while the parameter M3 has a destabilizing effect
on the system.

2. The system is most stable for IMPLU & CONLU boundary condition, while it is least stable for
IMPLU , CONL & CHFU boundary condition.

3. The water-based ferrofluids are less stable than the ester-based ferrofluids.
4. The value of Rac is higher in the case when the heat supply function is increasing, while it is the

least in the case when the heat supply function heats and cools the layer in a non-uniform way.
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Abbreviations

The following abbreviations are used in this manuscript:

d Thickness of the ferrofluid layer (m)
g Acceleration due to gravity (m/s2)
H Magnetic field (T)
k Unit vector in the z-direction
k1 Thermal conductivity (W/m K)
K Permeability of porous medium (m2)
M Magnetization (Amp/m)
Ms Magnetic saturation
kB Boltzmann’s constant
p Pressure (Pa)
Q Volumetric heat source of strength (W/m3)
t Time (s)
T Temperature (K )
T0 Temperature at the lower and upper surfaces (K)
u Filtration velocity of the ferrofluid (m/s)
Pr Prandtl number
Da Darcy number
Va Vadasz number
Ra Internal Rayleigh number
M1, M2 Magnetic parameters
M3 Nonlinearity of magnetization

Greek symbols
α Coefficient of thermal expansion (1/K)
αL Langevin parameter
κ Thermal diffusivity (m2/s)
µ Viscosity of ferrofluid (kg/ms)
µ0 Magnetic permeability of vacuum (H/m)
ρ Density (kg/m3)
θ The perturbation in temperature (K)
χ Tangent magnetization susceptibility
χ2 Chord magnetization susceptibility
ε Porosity

Operators

∇2 ∂2

∂x2 +
∂2

∂y2 +
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∂z2

∇ ∂
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∂

∂y
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∂

∂z

∇2
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