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Abstract: In this paper we discuss the deformation of a flexible fiber clamped to a spherical body
and immersed in a flow of fluid moving with a speed ranging between 0 and 50 cm/s by means of
three dimensional numerical simulation developed in COMSOL . The effects of flow speed and initial
configuration angle of the fiber relative to the flow are analyzed. A rigorous analysis of the numerical
procedure is performed and our code is benchmarked against well established cases. The flow
velocity and pressure are used to compute drag forces upon the fiber. Of particular interest is the
behavior of these forces as a function of the flow speed and fiber orientation. The Vogel exponents,
which characterize the rate of bending of a fiber in a flow, are found for the various configurations
examined here and seem to display interesting variations. These exponents are then compared with
our previously studied two-dimensional models.

Keywords: Fluid-Solid Interactions (FSI); 3D numerical simulations; fibers bending in flow;
Computational Fluid Dynamics (CFD)

1. Introduction

The subject of fluid structure interaction (FSI) is very complex and involves the coupled interaction
of fluid flows with solid bodies, rigid and elastic. In this paper we analyze a simple version of
such a problem by investigating the forces upon flexible fibers attached to a basal body and held
in different configurations. This three dimensional investigation was conducted at low Reynolds
numbers (between 0 and 9000) and is an extension of our previous two-dimensional study [1].

While our study remains at a more fundamental level, applications for this problem are plentiful.
The modeling of unmanned air vehicles (UAV), for instance, is a very important and well studied FSI
problem corresponding to aerodynamic flows. One key objective in these problems is the optimal
design of the aircraft (rigid-body) through minimization of the forces acting on it. Additionally,
FSI has several medical applications; numerical studies have been done to analyze airflow in human
vocal folds. Specifically, the modeling of the interaction between air and vocal chords when talking
is important planning vocal surgeries, and in voice rehab. Understanding the dynamics of elastic
structures and their interaction with fluids can greatly advance the medical industry [2,3].

The terminal configuration, including velocity and orientation, of a rigid body in a fluid flow
is a well studied problem for over a century and continues to be explored (see for instance, [4–10]).
The classical problem of the terminal orientation of a body itself is a difficult problem which is
compounded by the addition of flexibility [11–16]. The current paper is a part of our ongoing
contribution to the broader subject of terminal configurations in fluid-solid interaction and aims
to extend the results of our previous work [1]. Experimental and numerical studies have revealed
that deformable bodies in a flow reconfigure their orientations in order to reduce drag. An important
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metric for the bending behavior is the drag exponent or “Vogel exponent” [17,18] which indicates the
rate at which drag force on the body varies with the velocity, given by the expression FD ∝ Uα where
α ≈ 4/3 according to previous studies. The current paper considers flexible fibers, attached to a basal
body, submerged in a flow with speeds 0–50 cm/s. The effect of fiber length and orientation, upon the
bending behavior are examined.

The paper is structured as follows. In Section 2 we describe the numerical setup we use for
our analysis. As part of this setup, we first perform a benchmark of the methods we use to make
sure they can reproduce classical results (Section 2.2.1). We choose a simplified three dimensional
problem—the flow around a ball-and use the drag coefficient to gauge our numerical calculations.
We then perform a convergence study to determine the optimal mesh density that will be used in the
main study (Section 2.2.2). In Section 3 we describe the results of our analysis of the ball and fiber
system and offer conclusions and plans for future work in Section 4.

2. Three Dimensional Numerical Simulations

In this section we describe the numerical setup we use in our analysis. The system under
investigation is the ball-fiber system shown in Figure 1 where the ball is rigid and the fiber is flexible.
This system is placed at the center of a box-like domain containing the fluid, as shown in Figure 1.

Figure 1. The geometry of the problem and meshing in the domain and around the ball-fiber system.

Fluid flows in the channel and interacts with the ball and fiber system. The elastic fiber
bends under the load and, at small Reynolds numbers, it reaches a final/equilibrium configuration.
We simulate numerically this interaction and bending, and perform measurements of the drag force
and final bending angle of the fiber. In the following sections we describe the numerical approach we
use for these simulations.

2.1. Governing Equations

Navier-Stokes and linear elasticity equations model the structural deformation of flexible fibers in
a flow. In a three dimensional setup, we model the steady-state solution of the problem, since we are
strictly concerned with the steady drag force and final bending angle of the fiber. We are, therefore,
considering the following system of equations:

ρ f (u · ∇u)− µ∇ · (∇u +∇Tu) +∇p = f (1)

∇ · u = 0 (2)

−∇ · σ = Fv (3)

where u is the incompressible fluid velocity field, T is time, ρ f is the density of the fluid, ρs is the
density of the solid, µ is the dynamic viscosity, f is the external volume force on the fluid and Fv is the
force per unit volume on the fiber. At the channel inlet, the flow is taken to be fully developed and
parabolic while at the chancel outlet, zero pressure conditions are imposed. The Cauchy stress tensor
for the solid material, σ, is given by [19]
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σ =
1

det(F)
FS FT (4)

where F = (I +∇us), S = S0 + C : (ε− ε0) and ε = 1
2
(
∇us +∇uT

s
)
. Here us, C, S, S0, ε and ε0 stand

for the displacement of the fiber, stiffness tensor, stress tensor, initial stress tensor, strain tensor and
initial strain tensor, respectively and : represents the double dot product between the two tensors [20].
In the special case of a homogeneous isotropic media, like the one considered in our study, σ reduces
to the simple form

σij = Kδijεkk + 2µs

(
εij −

1
3

δijεkk

)
(5)

where K is the bulk modulus and µs is the shear modulus of the material.

2.2. Numerical Setup

We use COMSOL for our numerical simulations. This multiphysics software uses a fluid-structure
interaction module which includes laminar flow and structural mechanics governing both
Navier-Stokes and linear elasticity equations. More specifically, COMSOL uses the finite element
method to solve the equations. For choice of finite element basis functions we use P1 + P1 (linear
velocity and pressure elements) with consistent stabilization [21]. The discretization of the displacement
field for the solid is given by quadratic elements. We used the arbitrary Lagrangian-Eulerian (ALE)
technique [21] to describe the deforming geometry (moving mesh) with Winslow smoothing [22].
A fully-coupled solver is used with Newton’s method for the nonlinear solver and MUMPS for the
direct linear solver. We first benchmark the code using the classical problem of the flow around a sphere.
Then we run convergence tests on the ball and fiber system to ensure the method is converging.
The following sections describe these preliminary tests.

2.2.1. Flow Around a Sphere

Three dimensional flow around a sphere was used as a benchmark for the main model [23]. We are
primarily concerned with choosing the numerical parameters (e.g., finite element mesh density) which
result in accurate solutions to the Navier-Stokes Equations. Our study analyzes mesh elements ranging
from 5000 to 310,000 and determines the optimal mesh for the ball and fiber model. The primary source
of comparison was the total drag force on the sphere which is described mathematically through the
well-known formula

FD =
1
2

ρπR2CDU2 (6)

where FD, ρ, R, CD, U are the drag force, density of the fluid, radius of the sphere, drag coefficient, and
terminal velocity, respectively. The drag coefficients of many objects have been both experimentally
and numerically computed. The theoretical drag curve indicates how the increase in Reynolds number
affects the drag coefficient [24,25]. As a balance between computational time and velocity, parameters
were chosen for a Reynolds number of 15,000. For stability, we chose the velocity to be slightly higher
than the maximum velocity used in the ball and fiber experiment.

For this comparison of drag coefficients we used µ = 10−3 Pa· s, U = 0.75 m/s, and
ρ = 1000 kg/m3. The radius of the ball is r = 0.01 m. Here the diameter of the sphere was used
as the characteristic length L = 0.02 m. We first calculate the drag coefficients for a fixed Reynolds
number based on formulas reported in the literature [24,26–28]. We then compute the relative error in
drag coefficients using the formula ∣∣∣∣CD − C̃D

C̃D
× 100

∣∣∣∣ (7)

where CD and C̃D represent the drag coefficients computed in this paper and the papers cited above
respectively. The relative error is then plotted as a function of mesh density in Figure 2.
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Figure 2. Relative error for drag coefficients for varying number of mesh elements computed using
formulas in Cheng [24], Clift and Gauvin [26], Clift et al. [26], Mikhailov [27], Turton and Levenspiel [28].

In Table 1 we give further numerical details for the relative error with respect to the formula given
by Mikhailov [27].

Table 1. Numerical values of the relative error for drag coefficients with respect to Mikhailov [27].

Mesh Number of Elements CD Relative Error

5847 0.473984641 1.97127
11,771 0.477832654 2.79912
26,030 0.496393657 6.79226
50,843 0.48586821 4.52786

155,780 0.469231214 0.94864
309,889 0.465496378 0.14514

The results of this section show that the numerical method we use can accurately reproduce
results published in the literature for the classical flow past a sphere problem. This motivates the use
of this numerical procedure for the main focus of this paper, the ball and fiber system.

2.2.2. Convergence Study for Ball and Fiber System

This section describes the convergence study performed for optimal choice of mesh density for
the ball and fiber system. Three settings governed the meshing of the fluid environment: (1) A master
size defining global properties; (2) free tetrahedral meshing for the flow domain without the fiber;
and (3) free tetrahedral meshing for only the sphere and fiber. We choose a ”custom” mesh with the
parameters detailed in Table 2.

Table 2. Custom mesh parameters chosen for Master size in mesh.

Element Size Parameters Value

Maximum element size 0.00824 [m]
Minimum element size 0.001 [m]

Maximum element growth rate 1.13
Resolution of curvature 0.5

Resolution of narrow regions 0.8

According to [29], to increase performance, it is desirable to: (i) lower the minimum element size
and the resolution of curvature; (ii) raise the resolution of narrow regions and increase the maximum
element growth rate. This explains the use of certain parameters in the custom mesh given in Figure 2.
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The mesh governing the ball and fiber is chosen using the predefined “extra fine” setting in COMSOL.
This gives a good refinement near the object to ensure that sharp corners are taken into account. We ran
a mesh study on the size of the mesh in the flow domain without the ball and fiber. This parameter
sweep runs through four predefined settings with the number of elements ranging from 21,000 to
74,000. Table 3 shows us the measured drag at a maximum velocity of 0.4510 m/s run for each setting
of mesh densities. We also calculated the relative error using the formula

|(Fi+1
D − Fi

D)|
|Fi

D|
(8)

and the results are included in the third column in Table 3.

Table 3. Mesh Study for ball and fiber.

Mesh Elements FD Relative Error

21,617 0.02097 0.0605
31,004 0.0221 0.0134
48,493 0.02251 0.0068
73,857 0.02282 0.00071022

Based on these results we select the number of mesh points 48,493 as our optimal choice for
the mesh.

2.2.3. Parametric Study

After the preliminary numerical tests, we perform our simulations of the ball and fiber immersed
in a flow of water with the parameters described below. Based on the benchmark and convergence
studies performed in the previous sections, we choose P1 + P1 for the discretization of velocity
elements and 48,493 mesh points for the algorithm. The system of Equations (1)–(3) are solved with
the following boundary conditions: (i) the no-slip boundary conditions are imposed on all faces of the
flow domain and on all boundaries of the ball and fiber; (ii) zero pressure conditions are held at the
outlet; (iii) the sphere is fixed, while the fiber is free to bend; (iv) the tip of the fiber has an imposed
boundary load given by

σ · n = Fv (9)

where Fv is force per unit volume on the fiber.
The fiber is considered to be linearly elastic with isotropic material properties E = 8× 106 Pa,

ν = 0.33 and ρ = 7850 kg/m3 being the Young’s modulus, Poisson’s ratio, and density, respectively.
Two different angles were computed for flow speeds ranging from 0.009 m/s to 0.4510 m/s,
chosen based on the two-dimensional simulations and physical experiments reported in our earlier
study [1]. Simulations were conducted for both 2 cm and 4 cm fibers.

3. Results

In this section, we describe the numerical solutions generated with COMSOL. Additionally,
we discuss similar results to the two-dimensional simulations performed in [1] such as deformation
angles, drag and Vogel exponents. The change in the drag force on the ball and fiber system with the
flow speed is depicted in Figure 3.
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(a) (b)

Figure 3. These plots show the change of drag force as a function of velocity and are computed for
angles of 45◦ (©) and 90◦ (�) for fibers of lenghts (a) 2 cm and (b) 4 cm.

The graphs show the change in the drag force for fibers of lengths 2 and 4 cm respectively.
We notice that an increase in fiber length leads to a significant increase in drag force. The red lines in
the figure represent exponential least squares fits, i.e.,

FD = CDUα. (10)

The drag coefficients and Vogel exponents [17], α, for the parameter range examined in this study
are summarized in Table 4. We can see from this table that the Vogel exponents are much closer to the
standard inertial drag model with α = 2. The flexible body appears to be much stiffer, and bends less
due to the properties of the solid such as the bulk modulus.

Table 4. Summary of least squares fit of Drag to Velocity.

Fiber Length 2 cm 2 cm 4 cm 4 cm

Angle 45 deg 90 deg 45 deg 90 deg
CD 0.1092 0.0838 0.1231 0.08825
α 1.984 1.98 1.977 1.966

We also examined the average bending behavior of the fibers by computing the deflection angle
of the line connecting the points of suspension and free ends of the fiber. Spherical coordinates are
used as the reference frame. The Cauchy number (Ca), defines the ratio of inertial to elastic forces

in the system and is given by Ca = ρU2

K where ρ is the density of the fluid, U is the characteristic
velocity and K is the bulk modulus of the fiber which is taken to be 4 GPa (based on our previous
experiments with Nylon fibers). Gosselin et al. [13] note that the drag on a flexible rectangular plate
can be seen to depend on an appropriate scaling of Ca, defined by C̃a = CD · Ca (where CD is the
drag coefficient) such that for 1 < C̃a < 10 the flexible plate transitions to a reconfigured state. As in
our previous studies, we use a simple rescaling of the Cauchy number, C̃a = 10−12 × Ca to bring
it to the same scale as in previous work. The initial coordinates (xi, yi, zi) were calculated using
the coordinates of the center of the sphere. That is, for the 90 degree case, we have xi = xsphere,
yi = ysphere, and zi = zsphere + rsphere. For the 45 degree case a geometrical argument was used to
deduce xi = xsphere + rsphere cos(45◦), yi = ysphere, and zi = zsphere + rsphere sin(45◦). The coordinates of
the tip of the fiber, denoted (x f , y f , z f ) were measured using an averaging probe around the boundary
representing the tip of the fiber. Our coordinate system is denoted by (r, ϕ, θ), where ϕ is the measure
of the angle from the vertical and θ is the measure of the angle in the xy plane. Typically, the bending
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in the zx direction, ϕ, is that being compared to the 2-dimensional results. Here θ = tan−1(4y
4x ) and

ϕ = cos−1(4z
r ), where r =

√
4x2 +4y2 +4z2.

We can see from Figure 4 that an increase in fiber length corresponds to an increase in bending.
Furthermore, for higher Ca, the difference between the deformation angles among varying fiber
lengths increases. For Ca of approximately 50, the difference between the 4 cm and 2 cm fibers in initial
configuration of 45 degrees is around 1.5◦. Additionally, the difference in the 90 degree case seems
more significant. The difference among fiber lengths seem to vary about 3◦ in this case. If we compare
among the two images we see that, qualitatively, the different configuration angles produce similar
deformation. Although, the difference is subtle, it appears that the 90 degree configuration changes
with modified Cauchy number at a faster rate. The fiber represented here is merely a prototype to
model different scenarios, in which bending may be more prominent. For example, the hair that lines
the skin is much thinner than the fiber used, and thus has different structural properties. We expect
that these type of fibers should bend more. For the two-dimensional study, we used a fiber of different
length and resulted in significant bending [1].

(a) (b)
Figure 4. The ϕ Deformation is considered to be measured in the ZX plane (up and down). These angles
are measured for (a) 45◦ and (b) 90◦ configuration angles for fiber lengths of 2 cm (�) and 4 cm (�).

One main goal in computations is to reduce the dimensionality of the problem to make the
modeling easier. It is important to check the validity of this reduction, however. In this section we
compare the simulations in two and three dimensions. The results of the two-dimensional simulations
were reported in our previous paper [1]. In the two-dimensional experiments, we see the Vogel
exponents to be significantly smaller than those of the three dimensional problem, for the same
geometric setup and parameter values. In 2-D we see Vogel exponents ranging from 1.1 to 1.4, however,
in 3-D we see that the Vogel exponents follow closer to the exponents of a rigid body. Specifically,
we have found that the exponents range from 1.96 to 1.99.

The deformation in the zx plane was measured (ϕ) in both two and three dimensions. We found
no significant percentage increase in bending between the slowest flow speed of u = 0.009 m/s and
fastest flow speed of u = 0.4510 m/s. We measured the initial configurations of 90◦ and 45◦ for
both the 2 cm and 4 cm fibers. For the 2 cm fiber the percentage increase in bending is rather small.
Specifically, for 90◦ we see an increase of about 0.5% in 2-D versus an increase of approximately 0.14%
for 3-D. The 45◦ initial configuration shows an percentage increase of approximately 0.19% for the 2-D
fiber versus an increase of approximately 0.06% for the 3-D fiber.

The 4 cm fiber bends much more, but shows no significant difference between two and three
dimensions. For the initial configuration of 45◦ we have an percentage increase of about 4.7% for 2-D
fiber and 0.95% for 3-D fiber. For the initial configuration of 90◦ we see an increase of approximately
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1.61% for the 2-D fiber and 0.49% for the 3-D fiber. More accurate calculations and relative percentage
differences are seen in Tables 5 and 6.

Table 5. Percentage increase in 2 cm fiber length bending at u = 0.4510 m/s relative to u = 0.009 m/s
for initial configurations of 90◦ and 45◦ for both 2-D and 3-D simulations.

Angle 2D % 3D %

90◦ 0.50908 0.147211349
45◦ 0.19281 0.064313345

Table 6. Percentage increase in 4 cm fiber length bending at u = 0.4510 m/s relative to u = 0.009 m/s
for initial configurations of 90◦ and 45◦ for both 2-D and 3-D simulations.

Angle 2D % 3D %

90◦ 4.66557 0.946241708
45◦ 1.61049 0.492157133

4. Conclusions

In summary, this paper examines the configurations of flexible fibers in a flow field by means of
a three dimensional numerical simulation using COMSOL. Our investigations reveal that the length
and initial orientation of the fiber can cause significant changes to the reconfiguration patterns and
forces experienced. The Vogel exponents are also computed and in three dimensions, are seen to be
much higher than the values obtained by us previously in the two dimensional study [1] and those
obtained in the literature. This apparent discrepancy may be attributed to the relatively low flow
speeds and high stiffness of the fiber employed in the current calculations which were chosen to
match our previous two-dimensional work. A more thorough study of the effect of stiffness, geometric
variations of the basal body, initial configuration of the fiber and flow speed will be conducted in the
future; in particular, we plan to investigate the flapping regime of the fiber in three dimensions.
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