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Abstract: The mass and momentum transfer phenomena in a compressible fluid represented by
the Navier—Stokes equations are shown to convert into the Schrodinger equation for quantum
mechanics. The complete Navier—Stokes equations render into an extended generalized version of
Schrodinger equation. These results complement the Madelung’s (Zeitschrift fiir Physik 40 (3—4),
pp. 322-326, 1926-1927) derivations that show how Schrodinger’s equation in quantum mechanics
can be converted into the Euler equations for irrotational compressible flow. The theoretical results
presented here join the classical Madelung paper to suggest the possibility that quantum effects
at sub-atomic levels deal with a compressible fluid susceptible to wave propagation, rather than a
particle. The link between such a fluid and the “quantum particle” is under current investigation.
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1. Introduction

(A large number of references presented in this paper are originally published in the German
language. For readers not familiar with, or not fluent in German, such references are always followed
by associated references of the same papers translated into English.)

Quantum theory governs all phenomena at the sub-atomic scale. It evolved into a probabilistic
theory, and its weird effects were over the years a matter of fascination, and its interpretations a matter
of much controversy. While the quantitative results were never disputed, their physical interpretation
caused an overwhelming debate between the leading 20th century scientists. Following Bohm [1],
Griffiths [2], and Bowman [3] the kernel of quantum mechanics is the Schrédinger wave equation [4-8].
Born [9] introduced a statistical interpretation to the wave-function appearing in the Schrodinger
equation to Erwin Schroédinger’s explicit disapproval [4-8] and annoyance, who preferred the wave
field interpretation. Eventually the statistical approach was entrenched in quantum mechanics not
only as a technical means of providing answers and solutions to sub-atomic phenomena but as a
“complete” interpretation of the physical “reality” following Bohr’s and Heisenberg’s “Copenhagen
Interpretation” that became main stream Physics. The latter was challenged not only by Schrodinger
but also by a large group of physicists led by Albert Einstein who claimed that the quantum mechanical
description of the physical reality cannot be considered complete, as shown in their famous EPR paper
Einstein, Podolsky and Rosen [10]. They concluded their derivations by stating that “While we
have thus shown that the wave function does not provide a complete description of the physical
reality, we left open the question of whether or not such a description exists. We believe, however,
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that such a theory is possible.” Einstein did not object to the probabilistic description of sub-atomic
phenomena in quantum mechanics. However, he believed that this probabilistic representation was a
technique used to overcome the practical difficulties of dealing with a more complicated underlying
physical reality, much in the same way he suggested earlier to deal with Brownian motion [11,12].
Niels Bohr led another group of physicists including Werner Heisenberg, Max Born, Wolfgang Pauli
and others that believed in the probabilistic interpretation of sub-atomic phenomena as being complete.
Bohr’s answer [13] to the EPR paper [10] was linked to the fact that the finite interaction between an
object and the measuring device “entails —because of the impossibility of controlling the reaction of the
object on the measuring instruments . .. —the necessity of a final renunciation of the classical ideal of causality
and a radical revision of our attitude towards the problem of physical reality” [13]. The latter is linked to the
concept of “complementarity” [13].

Madelung [14,15] showed that the Schrédinger equation could be rendered into an equation
very similar to the Euler equations and applicable to potential flow. Sonego [16] attempted to
provide an interpretation of the “hydrodynamical formalism of quantum mechanics” that is consistent with
the probabilistic Copenhagen interpretation and therefore negating the possibility of physical fluid
dynamical meanings of the Madelung variables. Takabayasi [17,18] presented the Madelung equations
as an ensemble of trajectories. Wilhelm [19] investigated the hydrodynamic formulation of quantum
mechanics with emphasis “on the physical peculiarities appearing in the hydrodynamic picture.” Sorokin [20]
further investigated the Madelung transformations for vortex flows of a perfect fluid. Broadbridge [21]
extended the scalar wave function in the Schrodinger equation to a vector potential by using the
Helmholtz decomposition of the Madelung fluid that included a solenoidal component. All these
studies focused on starting from the Schrodinger equation and leading to the Madelung form of Euler
equations for potential flow that was analyzed further. The present paper starts from the Navier-Stokes
equations and shows how the latter convert into a generalized form of Schrodinger equation.

2. Problem Formulation and the Madelung Transformation

The Schrodinger equation is a linear partial differential equation that has the form
o

ih—

oy 1)
ot 2m +V ()

where 1 is the complex wave function, and x = x& + y&y + z&; is the position vector in Cartesian
coordinates, t is time, V (x) is a potential function due to conservative forces, m is the quantum particle
mass considered constant, /i = /27t is the reduced Plank’s constant, and i = y/—1. The solution to the
Schrodinger equation depends on the imposed potential V' (x) but generally has a wave solution that
in the one dimensional finite space takes the form

¥ (x,1) = D) Cay (x) exp (—iE,;t) )
n=1
where
Co = fcb,’: (x) W, (x) dx 3)

where ¢;; is the complex conjugate of ¢,,, P, (x) = [P (x,1)],_o = P (x,0) is the initial condition for the
wave function, and E, is the total energy associated with mode (quantum number) n. The solution (2)
to the Schrodinger equation for the complex wave-function 1 leads to the superposition of an infinite
number of modes, while Born [9] interpretation implies that

b
f Pp*dx = [probability to find a particle in the interval between a and b| 4)
a
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where * is the complex conjugate of 1. Whatever the interpretation, the experimental fact still
shows that the wave-function collapses upon observation, i.e., as soon as experimental observation
(e.g., measurement) is undertaken the wave-function collapses from the superposition of an infinite
number of modes, as presented in Equation (2), to one single mode. This is also referred to as “the
reduction of the wave packet, i.e., the wave packet given by the infinite series” e.g., (2), “is reduced to a single
term” [10].

Madelung [14,15] showed that the Schrodinger equation could be rendered into an equation very
similar to the Euler equations and applicable to potential flow. Starting from Schrodinger Equation (1)
one may represent the (complex) wave function in the form

¥ (x, ) = R (x, t) exp [;s (x,t)] ®)
and upon substituting (5) into (1) and using the notation
N P hp* P
_ R2 _ *¥.0 _ _ 47 ) o = — _4i_-x _x
p =R =Yp*;S§ ZZIH(U)*)’U VS 12¢V<1I)* 6)
one obtains the following set of equations
ap B
§+V'(Pv)—0 @)
2 (,1)2
v h? v (p )

This is the Madelung transformation that renders the Schrodinger equation complex scalar
variable 1V (x, t) into two real variables, one scalar and the other a vector, i.e., p(x,t) and v (x, ),
respectively. Equations (7) and (8) are very similar with the Euler equations for compressible
potential flow

op —
55 PV (pr) =0 v
%Hv.v)v:‘évwv[g(ég'x)] o

where v is the fluid’s velocity vector, p is the fluid’s mass density, p is the fluid’s pressure, and g is
the acceleration due to gravity. Note that V (& - x) = &, where &g is a unit vector in the direction of
the acceleration due to gravity, and x = x&x + y&y + z&; is the position vector in Cartesian coordinates.
The definition of v = VS from (6) makes this analogy applicable for potential flow only, quite a severe
limitation. It is also difficult to relate the potentials in Equation (8) to specific terms in Equation (10),
while the pressure gradient can be associated with one component of the potential function V in
Equation (8). The other components are potentials from other conservative forces such as Coulomb’s
electrostatic force or similar, that can be added as body forces on the right-hand-side of Equation (10).
Alternatively the pressure gradient can be associated with the gradient term in Equation (8), suggesting
a relationship between the density and pressure.

3. Rendering the Transformation of the Navier—Stokes Equations via Helmholtz Decomposition

3.1. Navier-Stokes Equations

A generalized form of Navier-Stokes equations applicable to compressible fluids subject to
pressure forces per unit volume, proportional to Vp, body forces per unit volume, B, deviatoric
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stresses, T, and other dissipative forces per unit volume (e.g., Larmor radiation), D, can be presented

in the following form

op _
ov
p[at+(v.v)v]zvpV~ﬂg+B+D (12)

where v is the fluid’s velocity vector, p is the fluid’s mass density, and p is the fluid’s pressure, T is the

deviatoric stress tensor, B represents all body forces per unit volume including gravity, electromagnetic
forces, buoyancy, etc., and D accounting for all dissipative forces (e.g., Larmor radiation) other than
viscous forces, the latter forming part of the deviatoric stress tensor. In other words considering M
body forces and N dissipative forces other than the viscous one, leads to

M M

B=) Bi=p) b=pb (13)
i=1 i=1
N N

D=)Di=p) di=pd (14)
i=1 i=1

where p is fluid’s mass density and b; is a specific body force (i.e., force per unit mass), e.g., in the case
of gravity when the body force is By = pgé, in [N/m?] the specific gravity force is bg = gég in [N/kg].
Similarly d; is a specific dissipative force (i.e., force per unit mass) in [N/kg].

One may use the following identity [22]

(v-V)v=%V(v-v)—vx(va) (15)

into (10) and divide the whole equation by p to yield

v 1 1 1
GtV (@0 ox(Vxo) = —oVp— V.tibid (16)

In what follows we will use the following identity

P 1 p
Vi=)=-Vp-5V 17
(p> o P2 VP 17)
and therefore .
P P
-Vp=V (-] +5Vp. 18
o' F (p> o2 P (18)

Similarly, since usually all body forces are derived from a potential, if the total body force has a
potential Vg, i.e.,

B=-VVp (19)
Then B 1
b=—=—-VV3 (20)
P P
and similarly to (18)
o v (1)« vy o
p p p

and when substituted into (20) it produces

bo_v (VB) _VBy, (22)
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which upon substitution of (18) and (22) into (16) yields
ov 1 . p 1 VB VB
E—FEV(U v)—vx (Vxv)= V(p) pZVp pV T V(p) pZVp—i—d. (23)

By introducing the notation (for m = const. )
Vi
u0=7,‘V=m?,’O‘=fV-T (24)

into (23) produces the equation

dv 1 1 1 |4
54— EV(v-v) - ZLX_(_\V,_ﬂ =—VUo—mVV—p<Uo+m>Vp—U+d (25)

rotational
inertial part

irrotational
inertial part

where the rotational and irrotational components of the inertial terms are identified.

3.2. Helmholtz Decomposition

Introducing the Helmholtz decomposition for v in the form
v=—-Ve+Vxx (26)

where ¢ is a scalar potential defined up to an arbitrary constant (i.e., one may add any arbitrary
constant Cy to ¢ without altering the value of v), and x is a vector potential defined up to a gradient
of an arbitrary function (i.e., one may add a gradient of any arbitrary function f (x,y, z) to x without
altering the value of v because V x V f = 0 identically, [22]). The special case when x = 0 was used
by Madelung [14,15], which led to rendering the Schrédinger equation into the Euler equations for
potential irrotational flow, or back. In this paper an attempt is made to generalize the latter and remove
the potential flow restriction, start with the general Navier—Stokes equations and obtain a modified
version of the Schrodinger equation.

Then, applying the Helmholtz decomposition to the continuity Equation (11) by replacing v with
the right hand side of Equation (26) leads to

o _

37 V-(pVe)+(Vp) (Vxx)=0 (27)

where use has been made of the fact that V - (V x x) = 0, due to the identity that the divergence of any
curl of a vector function vanishes [22]. Applying the Helmholtz decomposition (26) to the momentum
Equation (25) by replacing v with the right hand side of Equation (26) yields

1 1
v ~GE 5 (V) (Vo) + 5 (Vxx) (Vxx) = (Vo) - (Vxx) + Uy + 3V | =
irrotational (28)

| inertial part |
—Z(VxX) — (Vo) X (VX VxX) + (Vxx) X (VX Vxx) =3 (Uy+ L) Vp—o+d

Q)|

rotational
inertial part
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where use has been made of the identity V x (V¢) = 0 from [22], and we moved all the terms that
can be placed under a common V operator to the left hand side, and the rest to the right hand side.
The terms under the gradient operator can be regarded as conservative terms, while the terms on the
right hand side can be regarded as “apparently non-conservative terms” (a.n.c.t.), although we do not
exclude the possibility that upon a further more detailed analysis it may turn out that these terms may
have conservative components. Let us use for simplicity the notation for the right hand side of (28)

anct. =—% (Vxx)— (Vo) x (VxVxx)+(Vx  x)x(VxVxx)-—

%(UOJF%)VD*O'er (29)

simplifying the presentation of (28) in the form

V[ -02 4 2 (V) (Vo) + 5 (Vxx)-(V xX) ~ (Vo) -(Vx0) + Up + -V | =amet.  (30)

.

irrotational

inertial part

Applying now on Equation (30) the inverse gradient operator V! defined by Equation (53) in
Appendix A produces the following equation

_29 Loy (Vo) + % (V xx) - (V xx) = (Vo) - (V x x) + Uy + %v ~vl(anct) (1)

4. Inverse Madelung Transformation and the Extended Schrédinger Equation

Introducing the following notation that represents the inverse Madelung transformation

_ S _h. (¥
¢ =- —12mln (11’*) (32)
p=R>=ypyp* (33)
and 2 w2
R
h=-35.2T71 (34)

where R and S are the radius and phase-related variables in the polar representation of the complex
wave function 1 in Equation (5), and m = const. This inverse transformation followed by the adopted
procedure will render the scalar and vector variables of density p and velocity v, respectively, from
the continuity and momentum equations into the complex scalar wave function 1 of the Schrodinger
equation. Substituting this inverse transformation (32), (33) and (34) into the continuity Equation (27)
and the momentum Equation (31) yields for the continuity equation

0R

2R0t

+%V-(R2VS)+2RVR-(VX)<):O. (35)

By using the first identity proven in Appendix A, Equation (56) into Equation (35) and dividing
the whole equation by 2R produces the result
OR

ﬁ,_%[RVZS-kZ(VR)-(VS)]—VR-(Vxx). (36)
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For the momentum equation after applying the transformation (32) and (33), assuming that

U, = Uj, and multiplying the whole equation by m one obtains
%=—ﬁkvawva-#%@]wvamvxm—v—%wxmva@+mv4@nmg (37)

The next step is combining the continuity (36) and momentum (37) equations, by multiplying
Equation (36) by (i hexp [iS/h]) and (37) by (—Rexp [iS/h]), where i = +/—1, which leads to the
following two equations

icOR ih
o dgOR_1h ig 2 . _
ihetS o = —— of [Rv S+2(VR)-(VS)+2mVR- (V xx)] (38)
i 2 i 2
~RefS4E — — L ReiS [% — % (VS)- (vs)]+ | )
Re#® (VS)-(V xx)+ RefSV + = Rei® (V xx)-(Vxx)+mReiS V1 (anct)
Introducing now the complex notation definition that combines the two equations
P = Rexp <;Ls> — Imp = InR + %s (40)
produces the identity
109 olmp dInR  i0S 18R idS
bot = ot ~ ot Thot Rat "ot @
Substituting (40) into (38) and (39) yields
L YIR  ihy ’
i = =5 R[RV S+2(VR)-(VS) +2mVR (Vxx)] (42)
S — 2 [VZR— R (vs)- (VS)] (V) (Vxx) + bV 42 (Vxx) (Vxx)+
PYm V! (anct)
(43)

Adding (42) to (43)

b [9R - 28] -
~E% | VPR - B (VS)-(VS)+ fRVES +i2 (VR)- (VS) +iZLVR- (V xx) |+ (44
Y (VS) - (Vxx)+bV+p 2 (Vxx)-(Vxx)+bmV~!(anct)

and using the second identity Equation (61) proven in Appendix A, and Equation (41), while using
1/i h = —i/h, transforms Equation (44) into

.0 2
ih f" =V +pV-
ot 2m
Schrodinger Equation Terms (45)

i BTR- (Vx50 40 (V5)- (V5 X) + b 0 (Vx3)- (V xxX) +bm ¥ (anct)

_

Additional Terms
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To remove the explicit appearance of R and S in the additional terms of Equation (45) we can
represent the first two additional terms as follows

—ihw%-(vxxnw(vsy(vw):—imp[vanR)—%vs]-(va)
— —ilip |V (InR) + { VS| - (V x x) = 6)
iV IR+ §5| - (V xx) =~ il (VIn) - (V x X) = ~ii (Vi) - (V x X)

(40)

producing the final form of the extended Schrodinger equation

(a) ®) (o)

.0 2 r 1 r
lha;f = _zimvzll’ + V= ik (V) - (V xx)+ 0 % (Vxx)-(Vxx)+dmV ! (anct) (47)
Schrodinger Equation Terms Additional Terms

The first three terms in the equation represent the original Schrodinger equation, while the
additional terms labeled (a), (b) and (c), are the result of converting the complete Navier-Stokes
equations leading to an extended form of Schrédinger equation.

5. Results and Discussion

We shall be attempting now to identify these additional terms by seeking their origin.
Term (a) can be tracked down to the fluid “compressibility” in the continuity equation, i.e., from
the term (see Equation (27))

V-(pVxx)=pV-(Vxx)+(Vp) (Vxx)=(Vp) (Vxx) (48)
AR ———

=0

and more accurately it results from the combination of fluid’s compressibility and rotationality, i.e., the
fact that Vp # 0 and (V x ) # 0, combined with a rotational term from the momentum equation, part
of the contribution of the vector potential to the kinetic energy. It is a nonlinear term in 1, transforming
the extended Schrodinger equation into a nonlinear equation even before considering contributions
from the momentum equation via the other additional terms.

Term (b) is linked to the contribution of the vector potential of v from Equation (26), i.e., (V x x)
to the kinetic energy, which can be observed when presenting the latter in the form

Imo-v=1Im(-Vo+Vxx) - (-Veo+Vxx)=

1 (V) (Vo) + gm(Vx ) (V xx)—  m(Ve)-(V xx) 9)
_—

part of term (a) contribution

term (b) contribution

Term (c) is a combination of terms that were apparently non-conservative. Its specific term-by-term
representation by using its definition from (29) takes the following form

Vo anct)= &V 1V xx) =V [(Ve) x (Vx Vxx)]+V(Vxx)x(VxVxx)]-
v [ (U + %) Vo] -V lo+ v1d (50)
Quantum theory does not usually include dissipating effects in its treatment of sub-atomic
phenomena. Therefore, these apparently non-conservative terms which by their nature lead to
dissipative effects are obviously excluded from the quantum mechanics description and consequently
are absent from the original Schrodinger equation. Further analysis may lead to additional
simplifications in the presentation of these apparently non-conservative terms lumped together in
term (c).
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The main result derived in this paper is the fact that the Navier-Stokes equations for a
compressible fluid were shown to render into an extended generalized version of the Schrodinger
equation, where the first three terms are identical to the original Schrodinger equation from quantum
mechanics. No assumptions of potential flow were necessary. The latter are required when converting
the Schrodinger equation into the Euler equations for a compressible fluid.

6. Conclusions

The fact that Navier-Stokes equations for compressible flow can be rendered into an extended
generalized version of Schrodinger equation applicable to sub-atomic phenomena in quantum
mechanics suggests the possibility that quantum effects at sub-atomic levels deal with a compressible
fluid susceptible to wave propagation, rather than a particle. The link between such a fluid and the
quantum “particle” is under current investigation. It therefore indicates that the EPR [10] conclusion
that a “theory providing a complete description of the physical reality might be possible” cannot be
excluded. However, such a theory has not yet been developed.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

EPR Einstein, Podolsky, and Rosen paper [10]
Appendix A Appendix A: Definition of the Inverse Gradient Operator

The gradient operator is defined in Cartesian coordinates in the form

8, (51)

szgé,ﬂr fytéy+ fe, (52)

Then, one may define the inverse gradient operator for Cartesian coordinates in the form

vl= fdx & + jdyéy- + sz &, (53)

where the dots (-) represent the scalar product, and operating (A3) on (A2) yields

V- ivf= de<7> & ex+de(af)é -8y + [ dz (%)éZ'éZ:

F() dx+ (&) dy+ () ] jaf - (54)

producing the result
Vivfi=f (55)

and proving that indeed the V! defined by Equation (A3) is the inverse of a gradient operator.
The operator V! when operating on a vector yields a scalar result.
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Appendix A Appendix B: The First Identity

In this appendix the proof of the following identity is provided
v (R2 vs) R [R V25 +2(VR) - (VS)] (56)
Proof: Using the following vector operators identity [22] applicable to any scalar U and vector A
V- (UA)=VU-A+UV-A (57)

and setting
U = R*andA = VS (58)

one obtains after substituting (B3) into (B2) the following result

V- (R2VS) = VR2.VS+R2V.VS =

2R (VR)-(VS) + R?V25 = R[RV?S+2(VR) - (VS)] 9
Appendix A Appendix C: The Second Identity
In this appendix the proof of the following identity is provided
2 ig 2 R i 2 .2
Vo =eh VR—ﬁ(VS)-(VS)—k%RV S+zﬁ(VR)-(VS) (60)
Where )
¥ = Rexp (%s) (61)
Proof: , , , ,
V2 = V2|Rel$| = V-V [RelS| = V- [RVelS + i VR -
VR }ehSVS + el VR| = V- [ef¥ (;RVS + VR) | =
elS |} (RVS)+ VR|+ [Vels|- (JRVS + VR)
I y . (62)
el | V- (RVS)+ V2R | + felSVS - (} RVS + VR) =
el {§ [RV2S+ VR- VS| + V2R + VS (RVS) + VS VR} =
ehs [vZR — R (VS)-(VS) + iRV2S +i2 (VR)- (VS)]
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