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Abstract: A rigorous derivation of the macroscopic governing equations for convective flow in a
nanofluid saturated metal foam has been conducted using the volume averaging theory originally
developed for analyzing heat and fluid flow in porous media. The nanoparticle conservation
equation at a pore scale based on the Buongiorno model has been integrated over a local
control volume together with the equations of continuity, Navier–Stokes and energy conservation.
The unknown terms resulting from the volume averaging procedure were modeled mathematically
to obtain a closed set of volume averaged versions of the governing equations. This set of the
volume averaged governing equations was analytically solved to find the velocity, temperature
and nanoparticle distributions and heat transfer characteristics resulting from both thermal and
nanoparticle mechanical dispersions in a nanofluid saturated metal foam. Eventually, the analysis
revealed that an unconventionally high level of the heat transfer rate (about 80 times as high as the
case of base fluid convection without a metal foam) can be attained by combination of metal foam
and nanofluid.
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1. Introduction

Recent advances of manufacturing technologies have made metal foams commercially
available [1–3]. Naturally, they acquire high specific surface, high thermal conductivity and
comparatively high permeability. Thus, metal foams are great candidates for efficient heat exchangers
because they possess high interstitial heat transfer between the metal and passing fluid, while a
pressure drop is only moderate due to a high permeability.

On the other hand, nanofluids, namely, fluids containing thermally conducting submicron solid
particles, are known to have great potential as a high-energy carrier. Larger-sized particles cause
numerous problems such as abrasion, clogging and high pressure loss, whereas these nanoparticles
such as titania, alumina and copper oxide can stably be suspended within the fluids without causing
settling out of suspension. A number of investigations on nanofluids were carried out for the past
decade, in order to study their great potential as a high-energy carrier as well as their promising feature
of high effective thermal conductivity (e.g., [4–10]). Thus, combination of metal foams and nanofluids,
namely, nanofluid saturated metal foams may bring us to a new generation of high performance
heat exchangers.

A set of volume averaged transport equations appropriate for convection in nanofluid saturated
metal foams was obtained by Sakai et al. [11], on the assumption that local thermal equilibrium holds
between fluid and metal phases, in which the volume averaged fluid temperature is assumed equal to
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that of metal temperature. In reality, the local thermal equilibrium assumption may fail, because the
thermal conductivity of metal conducting heat from the wall is much higher than that of nanofluid.

Kuwahara et al. [12] carried out an elegant analysis to obtain a set of exact solutions for the case
of forced convection in a channel filled with a fluid saturated metal foam. They demonstrated that
forced convection in a channel subject to constant wall heat flux must be treated using a thermal
non-equilibrium model, for the fluid and solid phases within the channel are never at thermal
equilibrium. Yang et al. [13] faithfully followed their work, and compared the set of exact solutions
based on local thermal equilibrium against that based on local thermal non-equilibrium models for the
case of tube flows. Eventually, they concluded that substantial errors result from the assumption of
local thermal equilibrium for the case of constant heat flux.

These theoretical investigations reveal that the local thermal equilibrium assumption is not valid
within in a metal foam and a local thermal non-equilibrium model must be introduced with an
interstitial heat transfer model between nanofluid and metal phases.

Yang and Nakayama [14] and Yang et al. [15] pointed out another important feature associated with
mechanical mixing within the metal foam, namely, dispersion. The mechanical mixing in heat transfer
resulting from porous matrices is termed as thermal dispersion, whereas, in this study, mechanical
dispersion in nanoparticles transport is referred to as “nanoparticle mechanical dispersion”, i.e.,
macroscopic dispersion resulting from porous matrices (It should not be confused with “nanoparticle
dispersion” meaning particles dispersed in the base fluid, i.e., microscopic dispersion).

In what follows, an appropriate set of volume averaged transport equations for convection
in nanofluid saturated metal foams is derived, exploiting a volume averaging theory [16], and
allowing that nanofluid temperature and metal temperature differ from each other, i.e., local thermal
non-equilibrium model. Microscopic transport equations, which are based on the Buongiorno
model [17] for convective heat transfer in nanofluids, are modified so as to account for the effects of
nanoparticle volume fraction distributions on the conservation equations of continuity, momentum and
energy. Subsequently, they are integrated within a local averaging volume, to obtain an appropriate
set of governing equations in terms of volume averaged dependent variables [18–21]. The various
terms associated with interfacial surface integrals [22] and spatial correlations of spatial deviations are
subsequently modeled mathematically using the volume averaged dependent variables.

A microscopic analysis (i.e., pore scale analysis) will also be conducted in order to investigate
possible functional forms for describing longitudinal and transverse and thermal dispersion
components in a nanofluid saturated metal foam. Furthermore, nanoparticle mechanical dispersion
(i.e., macroscopic dispersion resulting from porous matrices) will be treated microscopically for the
first time, and will be modeled mathematically, considering a pore scale conduit. The analysis reveals
that the longitudinal particle mechanical dispersion works either to suppress or to enhance effective
diffusion. It depends on the sign of the local phase temperature difference. The transverse counterpart,
on the other hand, turns out to be insignificant and therefore can be neglected. Moreover, heat transfer
performance evaluation under equal pumping power has been made for the case of forced convective
heat transfer in a nanofluid saturated metal foam. The present study reveals that an unconventionally
high level of the heat transfer rate (about 80 times more than the case of base fluid convection without
a metal foam) is possible by combining metal foam with nanofluid.

2. Modified Buongiorno Equations for Nanofluids

Buongiorno [17] carried out a magnitude analysis on the transport equations, assuming dilute
mixture, incompressible flow, no chemical reactions, negligible viscous dissipation, negligible external
forces, negligible radiative heat transfer, and local thermal equilibrium between nanoparticles and
base fluid. Obviously, local thermal equilibrium holds between the nanoparticles and the base fluid,
because the size of nanoparticles is so small that nanoparticle temperature changes in an instant to be
at thermal equilibrium with that of surrounding base fluid. As demonstrated by Yang et al. [23], the
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two-component mixture model proposed by Buongiorno may be modified to account for nanofluid
density variation in mass, momentum and energy conservations as
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where ρ, c, µ and k are the density, heat capacity, viscosity and thermal conductivity of nanofluid,
respectively, which depend on the nanoparticle volume fraction ϕ as,

ρ “ φρp ` p1´ φq ρb f (5a)
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Brownian and thermophoretic diffusion coefficients are given by
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3πµb f dp
(6a)

and
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µb f

ρb f
φ (6b)

respectively. Nanofluid thermophysical properties such as µ and k are considered as given functions
of ϕ. Equation (5c,d) proposed by Maiga et al. [24] are believed to be the most reliable correlations,
where the subscripts, p and bf refer to as nanoparticle and base fluid, respectively. Moreover, kBO is
the Boltzmann constant and dp is the nanoparticle diameter. dp can be anywhere of the order of 1 nm
to 100 nm. Li and Nakayama [25] investigated the effect of temperature-dependent thermophysical
properties on convective heat transfer rates, and found that variations of base fluid properties due to
temperature variation are small enough to be neglected as compared with those effects of nanoparticle
volume fraction and temperature. Aladag et al. [26] pointed out that nanofluids with high particle
volume fraction or within the range of low temperature may deviate from Newtonian characteristics.
Therefore, we shall not consider the nanofluids of very high volume fraction or of very low temperature.
Detailed discussions on these effects on the thermophysical properties may be found in Corcione [27].

A number of investigators, including Bianco et al. [28], concluded that the two-component mixture
model is quite capable of describing the nanofluid heat transfer, supporting the Buongiorno magnitudes
analysis [17]. It is interesting to note that the energy Equation (3) is identical to that of a pure
fluid, except that all properties are functions of ϕ. Naturally, nanoparticle conservation Equation (4)
must be solved simultaneously with Equations (1) to (3) for the other dependent variables, since
thermophysical properties strongly depend on spatial distribution of ϕ. In some previous analyses,
the spatial variations of thermophysical properties including Brownian and thermophoretic diffusion
coefficients are neglected for simplicity. As discussed in Yang et al. [23], however, such analytical
treatments result in substantial errors. Thus, in this study, all these variations will be considered.
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Some investigators proposed dynamical models accounting for the effect of nanoparticle random
motion on the effective thermal conductivity. However, as pointed out by Kleinstreuer and Feng [29],
such explicit modifications on the thermal conductivity are still being debated. This study is unique in
the sense that the spatial distribution of the nanoparticle volume fraction is determined by solving
the nanoparticle transport equation, and substituted into the empirical formulas as functions of
nanoparticle volume fraction to evaluate the local values of the thermal properties.

3. Clear Nanofluid Convective Flow in a Circular Tube

Before treating the cases of nanofluid saturated metal foam, we shall consider the fundamental
case of clear nanofluid convective flow (i.e., without a metal foam), namely, hydrodynamically and
thermally fully developed flow in a tube subject to constant heat flux. The problem may be descried
mathematically by writing the governing equations in the cylindrical coordinates (x, r) shown in
Figure 1 as

1
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˙
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Figure 1. Clear nanofluid convective flow in a tube: hydrodynamically and thermally fully 

developed flow in a tube subject to constant heat flux. 

Figure 1. Clear nanofluid convective flow in a tube: hydrodynamically and thermally fully developed
flow in a tube subject to constant heat flux.

Yang et al. [23] transformed the preceding equations into the set of ordinary differential equations.
This set of ordinary differential equations were integrated by using a versatile software SOLODE
based on the Runge–Kutta–Gill method [21]. The effects of the bulk mean particle volume fraction
φB on the velocity profile u{uB are shown in Figure 2a for the case of titania–water nanofluids in
a tube with NBT ” DBwTwφwkw{DTwqwR = 0.2 and γ ” qwR{kwTw = 0. Likewise, the temperature
profiles are presented in Figure 2b in terms of pTw ´ Tq { pTw ´ TBq. Furthermore, the distributions of
the particle volume fraction φ{φB are shown in Figure 2c. The figure indicates low volume fraction
of particles near the wall and high volume fraction of particles in the core. This uneven distribution
of the volume fraction of particles is caused by the thermopheresis, which drives the particles from
the high temperature region near the wall to the low temperature region in the core. The unevenness
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grows further as the thermopheretic diffusion dominates over the Brownian diffusion. Due to low and
high volume fractions of nanoparticles, the viscosity near the wall surface, as given by Equation (5c), is
much smaller than that in the core. This results in the increase in the velocity near the wall and the
decrease in the velocity in the core, as can be confirmed in Figure 2a. This tendency is amplified as
adding more particles. Figure 2b consistently shows that the increase in the dimensionless velocity
near the wall leads to a steeper dimensionless temperature gradient as compared with the one with
pure fluids (φB “ 0). The effects of γ on these profiles are found be almost negligible, as varying γ

from 0 to 0.1. Therefore, all calculations have been carried out with γ = 0.
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Figure 2. Effects of nanoparticle volume fraction on velocity, temperature and volume fraction profiles
in a tube with NBT = 0.2 and γ “ 0: (a) velocity profiles; (b) temperature profiles; and (c) volume
fraction profiles.

The Nusselt number based on the diameter Dh “ 2R and the nanofluid bulk thermal conductivity
kB “ k pφBq is given by

NuB ”
hDh
kB

“

ˆ

hDh
kw

˙ˆ

kw

kB

˙

(10)

The Nusselt number NuB is expressed in terms of the product of the Nusselt number based on
the thermal conductivity at the wall hDh{kw and the thermal conductivity ratio kw{kB. This thermal
conductivity ratio kw{kB is always less than 1. Hence, the anomalous heat transfer enhancement, in
which the heat transfer coefficient exceeds the level expected from the increase in the effective thermal
properties of nanofluids, is possible only when the Nusselt number hDh{kw is high enough to make its
product (i.e., NuB) more than that of pure fluid, namely, 4.36.

NuB for the case of alumina nanoparticles is shown in Figure 3, which the anomalous heat transfer
enhancement can be seen clearly. Such heat transfer anomaly is absent for the case of channel flow.
This difference observed in the heat transfer characteristic may be attributed to the geometrical (radial)
effects, namely, that events taking place near the peripheral walls, such as velocity and temperature
changes, reflect on bulk quantities more in a tube than in a channel. The maximum value of NuB is
achieved at NBT – 0.5 as shown in Figure 3. Figure 4 clearly shows that the degree of the anomalous
heat transfer enhancement in titania–water nanofluids is higher than in alumina–water nanofluids.
However, as in Figure 5, the heat transfer coefficient of the alumina–water nanofluids is much higher
than that of the titania–water nanofluids. This is simply due to the difference in kB.
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Figure 5. Comparison of the heat transfer coefficients of nanofluids in a tube.

The analysis based on the Buongiorno model equations for convective heat transfer in clear
nanofluid flows clearly indicates possible anomalous convective heat transfer enhancement. To be
precise, the anomalous heat transfer enhancement has been captured theoretically for various cases
of clear nanofluid flows, namely, the cases of titania–water nanofluids in a channel, alumina–water
nanofluids in a tube and also titania–water nanofluids in a tube. Comparatively low volume fraction
of particles near the wall is responsible for the anomalous heat transfer, because it yields a relatively
low viscosity field there, hence, leading to high velocity and steep temperature gradient, near the wall.
The maximum Nusselt number based on the bulk mean nanofluid thermal conductivity is observed
around at NBT – 0.5. This finding may be utilized for designing nanoparticles in view of heat transfer
enhancement. Moreover, the heat transfer coefficient for the case of alumina–water nanofluids in a
tube is seen almost twice higher than that of water in a tube. This substantiates the great potential of
nanofluids as a high-energy carrier.

4. Volume Averaging theory

Having confirmed high heat transfer enhancement associated with nanofluids, we shall combine
such nanofluids with metal foam, so as to form a passage filled with a nanofluid saturated metal foam.
As illustrated in Figure 6a, we expect heat transfer enhancement associated with nanofluids, namely,
the anomalous heat transfer resulting from both Brownian diffusion and thermophoretic diffusion,
while high effective thermal conductivity and thermal dispersion (i.e., mechanical mixing) can also
be expected from an embedded metal foam. These features, when combined together, may bring us
the synergy effects on convective heat transfer. Figure 6b clearly indicates that the anomalous heat
transfer enhancement in nanofluids, when taking place in a passage filled with a nanofluid saturated
metal foam, further leads us to an innovative heat transfer enhancement. The velocity overshooting
is expected in the near wall layer, which is partially responsible for the innovative heat transfer
enhancement. This interesting feature will be numerically predicted later.
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Figure 6. Innovative heat transfer enhancement: (a) synergy effects of nanofluid saturated metal foam
on heat transfer; and (b) possible mechanism of heat transfer enhancement.

In order to investigate such an innovative heat transfer enhancement, we shall introduce a volume
averaging procedure and seek a complete set of the macroscopic governing equations for convection
within a nanofluid saturated metal foam.

Consider a local averaging volume V in nanofluid saturated metal foam, as shown in Figure 7.
Its length scale V1{3 is much smaller than the macroscopic characteristic length, but, at the same time,
much greater than the microscopic characteristic length (see, e.g., [18–21]). This condition allows us to
define the volume average of a certain variable ϕ as

xϕy “
1
V

ż

Vf

ϕdV (11a)

Another average, namely, the intrinsic average, is given by

xϕy f
“

1
Vf

ż

Vf

ϕdV (11b)

where Vf is a volume space which nanofluid occupies. Obviously, two averages are related as
xϕy “ ε xϕy f , where ε “ Vf {V is the porosity, namely, local volume fraction of the nanofluid phase.
Let us decompose a variable into its intrinsic average and spatial deviation from it:
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ϕ “ xϕy f
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All dependent variables in the microscopic governing equations for the nanofluid and metal
phases are decomposed in this manner. The following spatial average relationships are used:

xϕ1 ϕ2y
f
“ xϕ1y

f
xϕ2y

f
` xrϕ1 rϕ2y

f (13)

B

Bϕ

Bxi

F

“
B xϕy

Bxi
`

1
V

ż

Aint

ϕnidA (14a)

or
B

Bϕ

Bxi

F f
“

1
ε

Bε xϕy f

Bxi
`

1
Vf

ż

Aint

ϕnidA (14b)

and
B

Bϕ

Bt

F

“
B xϕy

Bt
(15)

Aint represents the interfaces between fluid and solid matrix within a local averaging volume. Note
Ni is the unit vector pointing outward from nanofluid side to solid side. All dependent variables for
nanofluid and metal phases are decomposed according to Equation (12). Upon exploiting the foregoing
spatial average relationships, the microscopic Equations (1) to (4) are integrated over a local averaging
volume. The set of macroscopic governing equations thus obtained for nanofluid and metal phases in
a nanofluid saturated metal foam with uniform porosity ε may be given as follows:

Bρ
@

uj
D f

Bxj
`

1
Vf

ż

Aint

ρujnjdA “ 0 (16)

Bρ xuiy
f

Bt
`
Bρ

@

uj
D f
xuiy

f

Bxj

“ ´
B xpy f

Bxi
`
B

Bxj

˜

µ

˜

B xuiy
f

Bxj
`
B
@

uj
D f

Bxi

¸

`
µ

Vf

r
Aint

`

uinj ` ujni
˘

dA´ ρ
@

ruiruj
D f
¸

`
1

Vf

r
Aint

˜

µ

˜

Bui
Bxj

`
Buj

Bxi

¸

´ pδij

¸

njdA´
1

Vf

r
Aint

ρujuinjdA

(17)
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εc

˜

Bρ xTy f

Bt
`
Bρ

@

uj
D f
xTy f

Bxj

¸

“
B

Bxj

˜

εk
B xTy f

Bxj
`

k
V

r
Aint

TnjdA´ ερc
A

rTruj

E f
¸

`
1
V

r
Aint

k
BT
Bxj

njdA´
c
V

r
Aint

ρTujnjdA (18)

p1´ εq cs
B xTys

Bt
“

B

Bxj

˜

p1´ εq ks
B xTys

Bxj
´

ks

V

ż

Aint

TnjdA

¸

´
1
V

ż

Aint

ks
BT
Bxj

njdA (19)

B xφy f

Bt
`
B
@

uj
D f
xφy f

Bxj

“
B

Bxj

˜

DB
B xφy f

Bxj
`

DT

xTy f
B xTy f

Bxj
`

DB
Vf

r
Aint

φnjdA`
DT

Vf xTy
f

r
Aint

TnjdA´
A

rφruj

E f
¸

`
1

Vf

r
Aint

˜

DB
Bφ

Bxj
`

DT

xTy f
BT
Bxj

¸

njdA´
1

Vf

r
Aint

ujφnjdA

(20)

Equation (19) is obtained integrating the conduction equation in a metal phase. In the foregoing
equations, many interfacial terms vanish due to no-slip and no-particle flux conditions on the
nanofluid–metal interface, namely,

uj “
Ñ

0 and (21a)
˜

DB
Bφ

Bxj
`

DT
T
BT
Bxj

¸

nj “ 0 (21b)

As these surface integral terms vanish, the equations reduce to

Bρ
@

uj
D f

Bxj
“ 0 (22)

Bρ xuiy
f

Bt
`
Bρ

@

uj
D f
xuiy

f

Bxj
“ ´

B xpy f

Bxi
`
B

Bxj

˜

µ

˜

B xuiy
f

Bxj
`
B
@

uj
D f

Bxi

¸

´ ρ
@

ruiruj
D f
¸

`
1

Vf

r
Abint

˜

µ

˜

Bui
Bxj

`
Buj

Bxi

¸

´ pδij

¸

njdA (23)

εc

˜

Bρ xTy f

Bt
`
Bρ

@

uj
D f
xTy f

Bxj

¸

“
B

Bxj

˜

εk
B xTy f

Bxj
`

k
V

r
Aint

TnjdA´ ερc
A

rTruj

E f
¸

`
1
V

r
Aint

k
BT
Bxj

njdA (24)

p1´ εq cs
Bρ xTys

Bt
“

B

Bxj

˜

p1´ εq ks
B xTys

Bxj
´

ks

V

ż

Aint

TnjdA

¸

´
1
V

ż

Aint

k
BT
Bxj

njdA (25)

ε

˜

B xφy f

Bt
`
B
@

uj
D f
xφy f

Bxj

¸

“
B

Bxj

˜

εDB
B xφy f

Bxj
`

εDT

xTy f
B xTy f

Bxj
`

DB
V

r
Aint

φnjdA`
DT

V xTy f

r
Aint

TnjdA´ ε
A

rφruj

E f
¸

(26)

In the foregoing equations, the correlations associated with deviations, ´ρ
@

ruiruj
D f , ερc

A

rTruj

E f

and ´ε
A

rφruj

E f
, correspond with mechanical dispersion terms, whereas the surface integral terms,

k
V

r
Aint

TnjdA,
DB
V

r
Aint

φnjdA and
DT

V xTy f

r
Aint

TnjdA, correspond with the tortuosity terms.

5. Mathematical Modeling

As usual, Forchheimer-extended Darcy law is introduced to describe the internal flow resistance:

1
Vf

ż

Aint

˜

µ

˜

Bui
Bxj

`
Buj

Bxi

¸

´ pδij

¸

njdA
B

Bx
ρ
@

ruiruj
D f
“ ´

εµ

K
@

uj
D f
´ ρε2b

b

xuky
f
xuky

f @uj
D f (27)
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while tortuosity in nanoparticle volume fraction transport is neglected since

DB
Vf

ż

Aint

φnjdA –
DB
Vf

φ

ż

Aint

njdA “
Ñ

0 (28)

Tortuosity terms in two energy equations may be modeled introducing the Yang–Nakayama
effective porosity ε˚ ([12,14]) as

εk
B xTy f

Bxj
`

k
V

ż

Aint

TnjdA “ ε ˚ k
B xTy f

Bxj
(29a)

p1´ εq ks
B xTys

Bxj
´

ks

V

ż

Aint

TnjdA “ p1´ ε˚q ks
B xTys

Bxj
(29b)

where the effective porosity may easily be evaluated from

ε˚ “
ks ´ kstag

ks ´ k f
(30)

where kstag is the stagnant thermal conductivity of saturated porous medium, which can readily
be measured using a standard method. However, for the cases of high conductivity porous media
such as metal foams, satisfying the condition, ks{k ąą 3{p1´ εq, there is no need to measure the
stagnant thermal conductivity of saturated porous medium, since the effective porosity may well be
approximated by

ε˚ “
2` ε

3
(31)

according to Yang and Nakayama (2010). For example, in the case of aluminum foam and water
combination, we typically have ks{k – 330 and ε “ 0.90. Thus, ks{k ąą 3{p1´ εq is satisfied such that
ε˚ “ p2` 0.9q {3 “ 0.97. Furthermore, Newton’s cooling law may be adopted for the interstitial heat
transfer between nanofluid phase and metal foam as

1
V

ż

Aint

k
BT
Bxj

njdA “ hv

´

xTys ´ xTy f
¯

(32)

where hv is the volumetric interstitial heat transfer coefficient. Upon implementing the foregoing
mathematical models, the equations reduce to

Bρ
@

uj
D

Bxj
“ 0 (33)

1
ε

Bρ xuiy

Bt
`

1
ε2

Bρ
@

uj
D

xuiy

Bxj
“ ´

B xpy f

Bxi
`
B

Bxj

˜

µ

ε

B xuiy

Bxj

¸

´
µ

K
xuiy ´ ρb

a

xuky xuky xuiy (34)

εc
Bρ xTy f

Bt
` c
Bρ

@

uj
D

xTy f

Bxj
“

B

Bxj

˜

ε˚k f
B xTy f

Bxj
´ ερc

A

rTruj

E f
¸

´ hv

´

xTy f
´ xTys

¯

(35)

p1´ εq ρscs
B xTys

Bt
“

B

Bxj
p1´ ε˚q ks

B xTys

Bxj
´ hv

´

xTys ´ xTy f
¯

“ 0 (36)

ε
B xφy f

Bt
`
B
@

uj
D

xφy f

Bxj
“

B

Bxj

˜

εDB
B xφy f

Bxj
`

ε˚DT

xTy f
B xTy f

Bxj
´ ε

A

rφruj

E f
¸

(37)

Note that Equation (29a) is exploited to express the particle tortuosity term as

εDT

xTy f
B xTy f

Bxj
`

DT

V xTy f

ż

Aint

TnjdA –
εDT

xTy f
B xTy f

Bxj
` pε ˚ ´ εq

DT

xTy f
B xTy f

Bxj
“

ε˚DT

xTy f
B xTy f

Bxj
(38)
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In the foregoing equations, Darcian velocity vector
@

uj
D

“ ε
@

uj
D f is used in place of the intrinsic

velocity vector
@

uj
D f .

6. Thermal Dispersion

Our next task in mathematical modelling is to mathematically model mechanical dispersion terms,

namely, ´ερcxrTrujy
f

and ´εxrφrujy
f
, in terms of determinable variables. Measurement of mechanical

dispersion, however, is quite formidable. Only a limited number of correlations for metal foams are
available only for the case of transverse thermal dispersion. Empirical information is not available for
longitudinal thermal dispersion in metal foams. As for the nanoparticle mechanical dispersion, neither
theoretical nor empirical information exits so far.

Yang and Nakayama [14] claimed that volumetric interstitial heat transfer coefficient is
comparatively easy to measure, using a standard method such as the single blow method [30].
Thus, they conducted an analytical consideration in a pore scale, and derived a theoretical
relation to estimate thermal dispersion from the volumetric interstitial heat transfer coefficient, as
illustrated below.

Along the macroscopic flow direction x, the nanofluid phase energy Equation (35) at steady state
may be written as

cρ xuy
B xTy f

Bx
– ´hv

´

xTy f
´ xTys

¯

(39)

where we have dropped diffusion term, since convection term on the left hand side predominates over
axial diffusion term. A magnitude analysis [14] tells us that the diffusive term in Equation (35) is small
and may well be neglected for the first approximation. This is usually true when an external scale of
the flow system is much larger than a pore scale.

Let us consider a pore scale passage as illustrated in Figure 8. Longitudinal thermal dispersion
term may be evaluated using microscopic velocity and temperature profiles prevailing in this pore
scale passage as follows:

´ ερc
A

rTru
E f
“ ´ρc xuy

´

xTy f
´ xTys

¯

xp f ´ 1q pg´ 1qy f
“
pρc xuyq2

hv
xp f ´ 1q pg´ 1qy f B xTy

f

Bx
(40)

where the volume averaged temperature difference between two phases has been replaced by the
volume averaged temperature gradient, exploiting the preceding macroscopic Equation (39). Hence,

´ ερc
A

rTru
E f
“ εkdisxx

B xTy f

Bx
(41)

where

εkdisxx “
pρc xuyq2

hv
xp f ´ 1q pg´ 1qy f (42)

which is consistent with what is known as gradient diffusion hypothesis [31]. For the volumetric
interstitial heat transfer coefficient hv in Equation (42), the following empirical correlation proposed by
Calmidi and Mahajan [3] may be used:

Nuv “
hvdm

2

k f
“ 8.72 p1´ εq1{4

˜

1´ e´p1´εq{0.04

ε

¸1{2
ˆ

xuy dm

ν

˙1{2
Pr0.37 (43)

where dm is the pore diameter. The correlation is based on the one developed by Zhukauskas [32]
for cylinders in laminar cross flow. Note that the functions f pηq and g pηq describe the velocity and
temperature profiles, respectively, in a pore passage of diameter dm as illustrated in Figure 8.

u “ xuy f f pηq (44a)
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and

T´ xTys “
´

xTy f
´ xTys

¯

g pηq (44b)

where the dimensionless radial coordinate η normal to the pore wall is defined as

η “ 2r{dm (45)

Any reasonable functions may be used for f pηq and g pηq in Equation (42) to estimate kdisxx such
as laminar fully developed velocity and temperature profiles in a tube with its diameter dm:

f pηq “ 2
´

1´ η2
¯

(46a)

and

g pηq “
3
4

´

3´ 4η2 ` η4
¯

(46b)

Note that x f pηqy f
“
ş1

0 2η f pηq dη “ 1 and xg pηqy f
“
ş1

0 2ηg pηq dη “ 1. Substituting the foregoing
profiles into Equation (42) along with Equation. (43), we readily obtain Longitudinal (laminar):

εkdisxx

k
“
pρc xuyq2

hvk
xp f ´ 1q pg´ 1qy f

“
3

8Nuv

ˆ

ρc xuy dm

k

˙2
“

3
8

ˆ

ρc xuy dm

k

˙3{2
Pr0.13

8.72 p1´ εq1{4

˜

1´ e´p1´εq{0.04

ε

¸1{2
(47)
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Figure 8. Pore scale passage consideration: pore scale distributions of velocity, temperature
and nanoparticles.

A similar relationship can be derived for the transverse thermal dispersion. Let us consider the
energy Equation (35) close enough to a heated wall surface for convection to be negligible, but at the
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same time, sufficiently away from the wall surface, so that the transverse thermal dispersion dominates
over the stagnant thermal diffusion:

εkdisyy

d2 xTy f

dr2 – hv

´

xTy f
´ xTys

¯

(48)

which may be integrated to yield

d xTy f

dr
“ ´

d

hv

εkdisyy

´

xTy f
´ xTys

¯

(49)

such that

´ερcp

A

rvrT
E f
” εkdisyy

d xTy f

dr
“ ´ρcp xuy

´

xTy f
´ xTys

¯

xF pg´ 1qy f
“ ρcp xuy

d

εkdisyy

hv
xF pg´ 1qy f d xTy f

dr
(50)

Hence,

εkdisyy “
pρc xuyq2

hv

´

xF pg´ 1qy f
¯2

(51)

where

v “ rv “ xuy f F pηq (52)

such that xF pηqy f
“ xvy f

{ xuy f
“ 0. Equation (51) obtained for the transverse thermal dispersion

conductivity is the same as Equation (42) obtained for the longitudinal thermal dispersion conductivity,

except the difference in the multiplicative constants, namely,
´

xF pg´ 1qy f
¯2

and xp f ´ 1q pg´ 1qy f .
It is understood that |F pηq|<<1. In fact, the experimental data on packed bed reported by Fried and

Combarnous [33] suggest that
´

xF pg´ 1qy f
¯2

is much smaller than xp f ´ 1q pg´ 1qy f . In this study,

we assume
´

xF pg´ 1qy f
¯2
– xp f ´ 1q pg´ 1qy f

{152, such that Transverse (laminar):

εkdisyy

k
“
pρc xuyq2

hvk

´

xF pg´ 1qy f
¯2

“
3

152 ˆ 8

ˆ

ρc xuy dm

k

˙3{2
Pr0.13

8.72 p1´ εq1{4

˜

1´ e´p1´εq{0.04

ε

¸1{2
“ 0.00019

ˆ

ρc xuy dm

k

˙3{2
Pr0.13

p1´ εq1{4

˜

1´ e´p1´εq{0.04

ε

¸1{2

(53)

In order to estimate the longitudinal thermal dispersion for the case of fully turbulent flow, a
similar procedure is used along with the wall laws as

u “ uτ

ˆ

1
κ

lnn` ` B
˙

(54a)

and

T´ xTys “ ´
qwσT

uτρ f cp f

ˆ

1
κ

lnn` ` A
˙

(54b)

where uτ and qw are friction velocity and wall heat flux, respectively, and n` “ uτn{ν is a dimensionless
distance measured from the wall surface (n “ pdm ´ 2rq {2). Moreover, κ is the von-Karman constant
while both B and A are empirical constants. It is easy to find

ru “
uτ

κ

ˆ

ln ς`
3
2

˙

(55a)
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and

rT “ ´
qwσT
uτρcκ

ˆ

ln ς`
3
2

˙

(55b)

where

ς “ 1´ η (56)

Hence,

´ερc
A

rTru
E f
“ εkdisxx

B xTy f

Bx
“

qwσT

κ2

C

ˆ

lnς`
3
2

˙2
G f

“
σT

κ2

C

ˆ

lnς`
3
2

˙2
G f

ρc xuy
a f

d xTy f

dx

“
σT

4εκ2

ˆ

5
4

˙

ρc xuy dm
d xTy f

dx

(57)

where we used Equation (39) to eliminate the wall heat flux qw “ ´

´

hv{a f

¯´

xTy f
´ xTys

¯

with
specific surface a f “ 4ε{dm in favor of the temperature gradient. Setting κ and σT to 0.41 and 0.9,
respectively, according to Launder and Spalding [34], we obtain for the turbulent regime.

Longitudinal (turbulent regime):

εkdisxx

k
“

σT

4εκ2

ˆ

5
4

˙

ρc xuy dm

k
“

1.67
ε

ˆ

ρc xuy dm

k

˙

(58)

Law of the wall was introduced by Taylor [35] to explain high Peclet number dependence observed
in dispersion of matter in a pipe flow. The same linear relationship between the thermal dispersion
conductivity and Peclet number (as observed experimentally) may easily be deducted using an
interstitial heat transfer coefficient correlation, which increases linearly with Peclet number. This linear
relationship between the thermal dispersion coefficient and Peclet number was explained theoretically
by Nakayama et al. [36] for high Peclet number flow through a consolidated porous medium.

As for the transverse dispersion, we again assume kdisyy ” 152kdisxx, such that Transverse
(turbulent regime):

εkdisyy

k
“

σT

4εκ2

ˆ

5
4

˙

ρc xuy dm

k
“

1.67
152ε

ˆ

ρc xuy dm

k

˙

“
0.00742

ε

ˆ

ρc xuy dm

k

˙

(59)

As for experimental data on metal foams, only those of transverse thermal dispersion are available.
The data for transverse dispersion coefficient have been correlated by Calmidi and Mahajan [3]
as follows:

Transverse (Calmidi–Mahajan):

εkdisyy

k
“ 0.00162

ˆ

ρc xuy dm

k

˙

¨

˝p1´ εq0.224

˜

1.18
1´ e´p1´εq{0.04

c

1´ ε

3π

¸1.11
˛

‚

1{2
(60)

Thus, in Figure 9, Equation (53) for the laminar case and Equation (59) for the turbulent case are
plotted together to form a solid curve for the case of ε = 0.95. In the figure, the foregoing empirical
correlation Equation (60) is also plotted to examine the validity of the present expressions for the
transverse dispersion coefficient. The figure shows fairly good agreement between the solid line based
on the present analysis and the dashed empirical line reported by Calmidi and Mahajan. It is noted that
Calmidi and Mahajan’s correlation is valid only when the Peclet number pρc xuy dm{kq is sufficiently
large. Taylor [37] analytically proved that the dispersion coefficient is in proportion to pρc xuy dm{kq2,
that is consistent with our Equation (47) for the case of small Peclet number, in which the interstitial
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heat transfer coefficient stays constant. It is also interesting to note that Gelhar and Axness [38] and
Wang and Kitanidis [39] investigated macrodispersion in heterogeneous porous media such as aquifers
and geologic formations. They reported Peclet number dependence similar to what is observed
in Figure 9. Moreover, Ohsawa [40] in his MS thesis carried out direct numerical simulations for
nanofluid forced convection using a numerically generated periodic open-cell. The thermal dispersion
numerically predicted by him closely follows the empirical correlation Equation (60) up to Peclet
number up to 10,000, or even more. Therefore, the empirical correlation Equation (60) may well be
valid in the range as indicated in Figure 9.
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7. Nanoparticle Mechanical Dispersion

For the first time, we shall introduce a mathematical model for the nanoparticle mechanical
dispersion. The nanoparticle conservation Equation (37) at steady state is written along the macroscopic
flow direction x, as

B xuy xφy f

Bx
“
B

Bx

˜

εDB
B xφy f

Bx
`

ε˚DT

xTy f
B xTy f

Bx
´ εxrφruy

f
¸

(61)

As illustrated in Figure 8, we consider nanoparticle conservation along a pore scale conduit with

its diameter dm. Thus, nanoparticle mechanical dispersion flux ´εxrφrujy
f

can be expressed as

´ ε
A

rφru
E f
“ ´xuy xφy f

xp f ´ 1q pG´ 1qy f (62)

where

φ “ xφy f G pηq (63)

Function G pηq for the nanoparticle profile may be estimated by solving Equation (4) in a
pore conduit:

DB
dφ

dr
`

DT
T

dT
dr
“ 0 (64)
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which can easily be solved with Equations (6a) and (6b) being substituted:

φ pηq

φ p1q
“ exp

˜

DT
φDB

ˇ

ˇ

ˇ

ˇ

η“1

ˆ

xTys

T pηq
´ 1

˙

¸

– 1`
xTys ´ xTy f

xTys
DT

φDB

ˇ

ˇ

ˇ

ˇ

η“1
g pηq (65)

since
´

xTys ´ xTy f
¯

{ xTys ăă 1. Thus,

G pηq “
φ p1q

xφy f

˜

1`
xTys ´ xTy f

xTys
DT

φDB

ˇ

ˇ

ˇ

ˇ

η“1
g pηq

¸

“

1`
xTys ´ xTy f

xTys
DT

φDB

ˇ

ˇ

ˇ

ˇ

η“1
g pηq

1`
xTys ´ xTy f

xTys
DT

φDB

ˇ

ˇ

ˇ

ˇ

η“1

(66)

Using Equation (46a,b) for velocity and temperature profiles, respectively, we readily obtain

xp f ´ 1q pG´ 1qy f
“

3
8 p1` nBTq

–
3

8nBT
(67)

Thus
´ ε

A

rφru
E f
“ ´

3
8nBT

xuy xφy f (68)

where

nBT

´

xTy f , xTys
¯

“
xTys

xTys ´ xTy f
φDB
DT

ˇ

ˇ

ˇ

ˇ

η“1
(69)

is a dimensionless function of local volume averaged temperatures, describing the ratio of Brownian
and thermophoretic diffusions within a pore conduit, as introduced by Yang et al. [23]. Note that
absolute value of nBT in most cases is very large, and that, under local thermal equilibrium condition,
namely, xTys “ xTy f , grows infinitely. Equation (68) may be substituted into Equation (61) to yield

B xuy xφy f

Bx
–

1

1`
3

8nBT

B

Bx

˜

εDB
B xφy f

Bx
`

ε˚DT

xTy f
B xTy f

Bx

¸

(70)

Hence, nanoparticle mechanical dispersion works either to suppress or to enhance effective
diffusion, as can be seen from the denominator p1` 3{8nBTq. It suppresses effective diffusion where
the local temperature of metal foam phase is higher than that of nanofluid phase (i.e., nBT > 0). On the
other hand, it enhances the diffusion where the local temperature of metal foam phase is lower than
that of nanofluid phase (i.e., nBT < 0). However, this effect of nanoparticle mechanical dispersion on
the effective diffusion is limited only to a moderate range of nBT , where local thermal non-equilibrium
is discernible. In the region where nBT is very large under nearly local thermal equilibrium, the

nanoparticle mechanical dispersion flux ´ε
A

rφru
E f

, vanishes, and only stagnant particle diffusion
remains. In this way, nanoparticle mechanical dispersion flux varies across the channel, depending on
the degree of local thermal non-equilibrium there.

We shall again consider the nanoparticle conservation Equation (37) close enough to the wall
surface for convection to be negligible:

B

By

˜

εDB
B xφy f

By
`

ε˚DT

xTy f
B xTy f

By
´ ε

A

rφrv
E f

¸

–
B

By

˜

εDB
B xφy f

By
`

ε˚DT

xTy f
B xTy f

By

¸

– 0 (71)

The nanoparticle mechanical dispersion flux ´ε
A

rφrv
E f

near the wall surface may be estimated
as follows:
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´ε
A

rφrv
E f
“ ´ε

A

rφru
E f xF pG´ 1qy f

xp f ´ 1q pG´ 1qy f „
xuy xφy f

120nBT
(72)

Thus, the transverse nanoparticle mechanical dispersion is so small that it can totally be neglected,
irrespective of the degree of local thermal non-equilibrium. Due to no-flux condition at the wall,
Equation (71) naturally reduces to

εDB
B xφy f

By
`

ε˚DT

xTy f
B xTy f

By
“ 0 (73)

Unfortunately, no experimental data are available for either transverse or longitudinal coefficients
of nanoparticle mechanical dispersion.

8. Mathematical Model for Hydro-Dynamically and Thermally Fully Developed Flows

We shall refer to Figure 10, and consider hydrodynamically and thermally fully developed flows
in both channel and tube subject to constant heat flux, filled with a nanofluid saturated metal foam.
The walls are subject to axially constant heat flux and circumferentially constant wall temperature (i.e.,
constant heat flux everywhere).Fluids 2016, 1, 8 20 of 36 
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Figure 10. Fully developed flow subject to constant heat flux: (a) channel; and (b) tube.
Hydrodynamically and thermally fully developed flow is established in a channel /tube subject
to constant heat flux, filled with a nanofluid saturated metal foam, where Darcian velocity is higher
close to the wall since the viscosity there is lower.

The macroscopic momentum Equation (34) can be numerically solved along with the macroscopic
continuity Equation (33) for the case of fully developed flow in a tube. Such a volume averaged
velocity profile is presented in Figure 11, in which the velocity is seen higher close to the wall, since the
viscosity there is lower. This overshooting of the velocity works to carry heat effectively away from the
heated wall.

In the following analytical treatment, however, the momentum Equation (34) is simplified using
Forchheimer extended Darcy law, in which Brinkman term (i.e., macroscopic viscous diffusion term) is
dropped, allowing the Darcian velocity slip on the wall. This Forchheimer extended Darcy law is valid
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for most of metal foams except for the case of extremely high permeability. Thus, for this case of the
channel flow, the volume average Equations (33) to (37) reduce to:

´
d xpy f

dx
“

µ f

K
xuy ` ρb xuy2 (74)

ρc xuy
B xTy f

Bx
“
B

By

´

ε˚k f ` ζkρcdm xuy
¯

B xTy f

By
´ hv

´

xTy f
´ xTys

¯

(75)

B

By
p1´ ε˚q ks

B xTys

By
´ hv

´

xTys ´ xTy f
¯

“ 0 (76)

B

By

˜

εDB
B xφy f

By
`

ε˚DT

xTy f
B xTy f

By

¸

“ 0 (77)

Following Equations (59), transverse thermal dispersion coefficient may be evaluated from

ζk “
0.00742

ε
(78)
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Figure 11. Velocity overshooting in a tube flow: numerical results based on the full
momentum equation.

Moreover, the interstitial volumetric coefficient hv is evaluated from Equation (43). Note that the
continuity equation yields B xuy{Bx “ 0 and xvy “ 0.

The origin of vertical coordinate y is set on the lower wall. The boundary conditions are given by

q0 “ ´
´

ε˚k f ` ζkρcdm xuy
¯

B xTy f

By

ˇ

ˇ

ˇ

ˇ

ˇ

y“0

´ p1´ ε˚q ks
B xTys

By

ˇ

ˇ

ˇ

ˇ

y“0
(79)

εDB
B xφy f

By

ˇ

ˇ

ˇ

ˇ

ˇ

y“0

`
ε˚DT

xTy f
B xTy f

By

ˇ

ˇ

ˇ

ˇ

ˇ

y“0

“ 0 (80)

B xφy f

By

ˇ

ˇ

ˇ

ˇ

ˇ

y“H

“ 0 (81a)
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B xTy f

By

ˇ

ˇ

ˇ

ˇ

ˇ

y“H

“
B xTys

By

ˇ

ˇ

ˇ

ˇ

y“H
“ 0 (81b)

Kuwahara et al. [12] considered two extreme cases for possible wall temperature difference
between solid and fluid phases, namely, locally uniform heat flux wall and locally thermal equilibrium
wall, and concluded that the locally thermal equilibrium wall is much closer to the reality. Hence,
we assume:

xTys
ˇ

ˇ

y“0 “ xTy f
ˇ

ˇ

ˇ

y“0
” T0 pxq : wall temperature (82)

where T0 pxq is the wall temperature. T0 pxq increases linearly downstream under constant heat flux.
Nanoparticle conservation Equation (77) indicates that diffusion mass flux of nanoparticles is constant
across the channel. Since the wall is impermeable, the boundary condition Equation (80) holds such that
effective Brownian diffusion flux and effective thermophoretic diffusion flux cancel out everywhere
across the channel. Energy Equations (75) and (76) may be added together and integrated over the
lower half channel from y = 0 to H with boundary conditions Equations (79) and (80) to give

ρc xuy
dTB
dx

“
q0

H
(83)

where the subscript 0 refers to the wall at y “ 0, and

ϕ ”
1
A

ż

A
ϕdA “

1
H

ż H

0
ϕdy (84)

denotes the average value over the cross-section such that

TB ”
ρc xuy xTy

ρc xuy
(85a)

is the bulk mean temperature. Likewise, quantities with subscript B denote bulk quantities such as

φB ” xuy xφy
f
{xuy (85b)

uB ” ρ xuy{ρ pφBq (85c)

The foregoing considerations on both nanoparticle diffusion flux and axial temperature gradient
will be implemented to obtain analytical expressions in a dimensionless form. The momentum
Equation (74) may be arranged in a dimensionless form as

u˚ py˚q “

d

1` 4Da2Hg
pρ{ρ0q

pµ{µ0q
2 ´ 1

2DaHg
pρ{ρ0q

pµ{µ0q

(86)

Thus, for the case of Forchheimer extended Darcy flow (i.e., Da ăă 1), the velocity profile is
described algebraically as the viscosity of nanofluid is provided as function of the nanoparticle volume
fraction. The other governing equations are given in differential forms as follows:

ρcu˚

ρcu˚
“ ´

d
dy˚

ˆ

ε˚
k

kstag0
` ζkPe

ρc
pρcq0

u˚
˙

dT˚ f

dy˚
` Nuv

´

T˚ f ´ T˚s
¯

(87)

p1´ ε˚q
ks

kstag0

d2T˚s

dy˚2 ´ Nuv

´

T˚s ´ T˚ f
¯

“ 0 (88)

d xφy f

dy˚
“

ε ˚ xφy f

εNBT
`

1´ γT˚ f
˘2

dT˚ f

dy˚
(89)
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Dimensionless coordinate, velocity and temperature are defined as

y˚ “ y{H (90)

u˚ “ xuy {

˜

H2

µ0

˜

´
d xpy f

dx

¸¸

(91a)

T˚ f “
kstag0

´

T0 ´ xTy
f
¯

q0H
(91b)

T˚s “
kstag0

`

T0 ´ xTy
s˘

q0H
(91c)

NBT ”
DB0T0φ0kstag0

DT0q0H
“

DB0φ0

DT0γ
(92a)

γ ”
q0H

kstag0T0
(92b)

Furthermore, Darcy, Lewis, Peclet, and Hagen numbers are defined as follows:

Da ” K{H2 (93a)

Le ” kstag0{ pρcq0 DB0 (93b)

Pe ”
ρ0c0

?
K

kstag0

H2

µ0

˜

´
d xpy f

dx

¸

(93c)

Hg ”
ρ0bH4

µ02

˜

´
d xpy f

dx

¸

(93d)

where the properties with subscript 0 should be evaluated at the wall according to
Equations (5a) to (6b), (30) and (31). For example, the stagnation thermal conductivity at wall where
xφy f

ˇ

ˇ

ˇ

y˚“0
“ φ0 may be evaluated according to Equations (5d), (30) and (31) as

kstag0 “ ε ˚ k|y˚“0 ` p1´ ε˚q ks “
2` ε

3

´

1` 2.72φ0 ` 4.97φ0
2
¯

kb f `
1´ ε

3
ks (94)

The dimensionless parameter NBT is related to the ratio of macroscopic Brownian and
thermophoretic diffusivities. NBT can range over a wide range from 0.1 to 10 for typical cases of
alumina and copper nanoparticles with dp ~10 nm and the bulk mean particle volume fraction
φB ~0.01. The ratio of wall and fluid temperature difference to absolute temperature, namely,
γ „

´

T0 ´ xTy
f
B

¯

{T0, is usually much smaller than unity, as estimated by Buongiorno [17]. Similarity
between “microscopic” ratio nBT (Equation (69)) and “macroscopic” ratio NBT (Equation (92a)) is
worth noting, since the former describes the local ratio of microscopic Brownian and thermophoretic
diffusivities in a pore scale, whereas the latter describes the ratio of macroscopic Brownian and
thermophoretic diffusivities in a channel filled with a nanofluid saturated metal foam.

In reality, the bulk mean particle volume fraction φB is given, while that at the wall φ0 is unknown.
However, for the sake of computational convenience, φ0 is prescribed and φB is calculated later to find
out φ0 as a function of φB.

The energy Equations (87) and (88) can be combined to form a third order Ordinary Differential
Equation (O.D.E.) with respect to T˚s as
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d3T˚s

dy˚3 “ Nuv

ˆ

kstag

kstag0
` ζkPe

ρc
pρcq0

u˚
˙

dT˚s

dy˚
´

r 1
η

ρcu˚

ρcu˚
dy˚

ˆ

ε˚
k f

kstag0
` ζkPe

ρc
pρcq0

u˚
˙

p1´ ε˚q
ks

kstag0

(95)

where

T˚ f “ T˚s ´
p1´ ε˚q

Nuv

ks

kstag0

d2T˚s

dy˚2 (96)

and Equation (89) can easily be integrated with xφy f
ˇ

ˇ

ˇ

y˚“0
“ φ0 to obtain

xφy f

φ0
“ exp

˜

ε ˚T˚ f

NBTε
`

1´ γT˚ f
˘

¸

(97)

The foregoing third order O.D.E. Equation (95) may easily be solved by using a standard
integration scheme such as Runge–Kutta–Gill method (e.g., [21]). Appropriate boundary conditions
for the equation are given by

T˚s|y˚“0 “
d2T˚s

dy˚2

ˇ

ˇ

ˇ

ˇ

y˚“0
“ 0 (98a)

and
dT˚s

dy˚

ˇ

ˇ

ˇ

ˇ

y˚“1
“ 0 (98b)

which are based on the original boundary conditions given by Equations (81b) and (82).
A similar procedure based on the cylindrical coordinate system as shown in Figure 10b readily

yields the following set of transformed equations for the case of circular tube:

d3T˚s

dy˚3 ´
1

1´ y˚
d2T˚s

dy˚2 ´
1

p1´ y˚q2
dT˚s

dy˚
“ Nuv

˜

kstag

kstag0
` ζkPe

ρ f c f

ρ f 0c f 0
u˚

¸

dT˚s

dy˚
´

2
1´ y˚

r 1
y˚

ρ f c f u˚

ρcu˚
p1´ y˚q dy˚

˜

ε˚
k f

kstag0
` ζkPe

ρ f c f

ρ f 0c f 0
u˚

¸

p1´ ε˚q
ks

kstag0

(99)

where

T˚ f “ T˚s ´
p1´ ε˚q

Nuv

ks

kstag0

ˆ

d2T˚s

dy˚2 ´
1

1´ y˚
dT˚s

dy˚

˙

(100)

The boundary conditions in the cylindrical coordinate are the same as those given by
Equation (98a,b). Moreover, Equation (97) for the volume averaged nanoparticle volume fraction
holds also for the case of cylindrical coordinate system. However, note that the average value ϕ for the
case of the tube is computed by

ϕ ”
1
A

ż

A
ϕdA “

1
πR2

ż R

0
2πrϕdr “ 2

ż 1

0
p1´ y˚qϕdy˚ (101)

where y˚ “ pR´ rq {R. The corresponding dimensionless quantities u˚ to Nuv are defined just as
presented in Equations (91a) to (93d) replacing the channel half height H by the tube radius R.

9. Results and Discussion

The foregoing set of equations may be integrated numerically using the Runge–Kutta–Gill method
for the case of channel with ε = 0.9, Da = 10´4, NBT = 0.5 and φB = 0.02. Figure 12 shows the effects of
the interstitial Nusselt number Nuv on fluid and solid temperature profiles.

The temperature profile of nanofluid and that of metal foam tend to get closer each other for
sufficiently large Nuv, in which local thermal equilibrium holds. Usually, the solid temperature is
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higher than the nanofluid temperature (i.e., T˚s “ kstag0
`

T0 ´ xTy
s˘
{q0H is smaller and flatter than

T˚ f “ kstag0pT0 ´ xTy
f
q{q0H ).
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Figure 12. Effects of Nuv on the temperature profiles in a channel filled with a nanofluid saturated
metal foam.

The corresponding particle volume fraction and velocity profiles in the channel are shown in
Figures 13 and 14 respectively. The nanoparticle volume fraction distribution becomes somewhat
flatter as increasing Nuv, since the nanofluid temperature tends to follow the solid temperature, as
witnessed in Figure 13. As can be seen from Figure 13, the nanoparticle volume fraction gradually
converges to a profile corresponding to the case of Nuv Ñ8 . Figure 14 clearly shows that the velocity
is higher near the heated wall where viscosity is less, as thermophoretic diffusion dominates over
Brownian diffusion, driving nanoparticles away from the wall.
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Figure 13. Effects of Nuv on the nanoparticle distribution in a channel filled with a nanofluid saturated
metal foam.
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metal foam.

By changing the value NBT , another series of computations were conducted with ε = 0.9, Da = 10´4.
Nuv = 1 and φB = 0.02, so as to investigate the effect of the ratio of macroscopic Brownian and
thermophoretic diffusivities, NBT , on nanoparticle volume fraction profile, velocity profile and both
fluid and solid temperature profiles.

As shown in Figure 15, the nanoparticle volume fraction becomes uniform for large NBT . Because
Brownian diffusion dominates over thermophoretic diffusion, nanoparticles are dispersed evenly for
large NBT . Figure 16 shows that the velocity profile becomes completely flat under such a uniform
nanoparticle volume fraction distribution, resulting in a plug flow.
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Figure 16. Effects of NBT on the velocity distribution in a channel filled with a nanofluid saturated
metal foam.

In Figure 17, both nanofluid temperature and metal foam temperature are plotted for a range of
NBT . Nuv is only at a moderate level such that a substantial difference can be observed between two
temperatures. As can be confirmed from the figure, however, the effects of NBT on the temperature
profiles are rather limited.
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9.1. Asymptotic Solutions for the Case of Nearly Uniform Nanoparticle Distribution (NBT ąą 1)

Brownian diffusion overwhelms thermophoretic diffusion for the case of sufficiently small
nanoparticle diameter, such that its macroscopic ratio NBT becomes much greater than unity.
Equation (97) under such cases yields
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xφy f

φ0
“ exp

˜

ε ˚T˚ f

NBTε
`

1´ γT˚ f
˘

¸

– 1`
ε˚

NBTε
T˚ f (102)

where γ ăă 1. The foregoing equation indicates that the profile of volume averaged nanoparticle
volume fraction xφy f

py˚q becomes similar to that of nanofluid phase temperature T˚ f py˚q. Moreover,
it tends to be uniform for sufficiently large NBT , as consistently observed in Figure 15. Under such
uniform distribution of volume averaged nanoparticle volume fraction, all thermophysical properties
become uniform across the channel.

9.1.1. Channel Flows

Thus, the third order O.D.E. Equation (91) and nanofluid temperature Equation (96) with the
boundary conditions Equations (98a) and (98b) yields the following analytic solutions:

T˚s “

y˚ ´
1
2

y˚2 ´
1
ξ2

ˆ

1´
cosh pξ p1´ y˚qq

coshξ

˙

1` ζkPeuB
˚ (103)

and

T˚ f “

y˚ ´
1
2

y˚2 `

1´ ε˚
k pφBq

kstag0
ˆ

ε˚
k pφBq

kstag0
` ζkPeu˚B

˙

ξ2

ˆ

1´
cosh pξ p1´ y˚qq

coshξ

˙

1` ζkPeu˚B
(104)

where

ξ “

g

f

f

f

e

1` ζkPeu˚B

p1´ ε˚q
ks

kstag0

ˆ

ε˚
k pφBq

kstag0
` ζkPeu˚B

˙Nuv (105a)

and

u˚B “

a

1` 4Da2Hg´ 1
2DaHg

(105b)

Nusselt number of our interest is given by

NuH “
q0H

k pφBq pT0 ´ TBq
“

1
k pφBq

kstag0
T˚B

“
1

k pφBq

kstag0
T˚ f

“
kstag0

k pφBq

1` ζkPeu˚B

1
3
`

1´
2` ε

3
k pφBq

kstag0
ˆ

2` ε

3
k pφBq

kstag0
` ζkPeu˚B

˙

ξ2

ˆ

1´
tanhξ

ξ

˙

(106)

The ratio of heat transfer coefficient for convection in a nanofluid saturated metal foam to that for
the case of base fluid convection without a metal foam is given by

h pφBq

hb f
“

4
p140{17q

kstag0

kb f

1` ζkPeu˚B

1
3
`

1´
2` ε

3
k pφBq

kstag0
ˆ

2` ε

3
k pφBq

kstag0
` ζkPeu˚B

˙

ξ2

ˆ

1´
tanhξ

ξ

˙

(107)

9.1.2. Tube Flows

The corresponding set of solutions for the case of tubes may be obtained by solving
Equation (99) as
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T˚s “

y˚ ´
1
2

y˚2 ´
2
ξ2

ˆ

1´
I0 pξ p1´ y˚qq

I0 pξq

˙

1` ζkPeu˚B
(108)

where I0 is the modified zero order Bessel function of the first kind. The dimensionless nanofluid
temperature is obtained substituting Equations (108) into (100) as

T˚ f “

y ˚ ´
1
2

y˚2 `

2
ˆ

1´ ε˚
k pφBq

kstag0

˙

ˆ

ε˚
k pφBq

kstag0
` ζkPeu˚B

˙

ξ2

ˆ

1´
I0 pξ p1´ y˚qq

I0 pξq

˙

1` ζkPeu˚B
(109)

where the dimensionless bulk velocity is given by Equation (105b). The corresponding Nusselt number
may be numerically evaluated as

NuR “
q0R

k pφBq pT0 ´ TBq
“

1
k pφBq

kstag0
T˚B

“
1

k pφBq

kstag0
T˚ f

(110)

The ratio of heat transfer coefficient for convection in a nanofluid saturated metal foam to that for
the case of base fluid convection without a metal foam is given by

h pφBq

hb f
“

2
p48{11q

kstag0

kb f

1

T˚ f
(111)

9.2. Asymptotic Solutions for the Case of Nearly Local Thermal Equilibrium (Nuv ąą 1)

Equation (96) for the channel flow case and Equation (100) for the tube flow case clearly indicate
T˚ f – T˚s when the interstitial volumetric coefficient is sufficiently high (i.e., Nuv ąą 1). Thus, local
thermal equilibrium holds everywhere over the cross-section.

9.2.1. Channel Flows

Equation (87) readily yields analytic solutions.

T˚ f – T˚s “

y˚
w

0

r 1
y˚

ρcu˚

ρcu˚
dy˚

kstag

kstag0
` ζkPe

ˆ

ρc
ρ0c0

˙

u˚
dy˚ (112)

This integral equation can be approximated very well by

T˚ f – T˚s “
y˚ ´

1
2

y˚2

kstag pφBq

kstag0
` ζkPe

a

1` 4Da2Hg´ 1
2DaHg

(113)

Substitution of the foregoing temperature profile into Equation (97) readily gives the profile of
volume averaged nanoparticle volume fraction. The corresponding Nusselt number is given by

NuH “
q0H

k pφBq pT0 ´ TBq
“

1
k pφBq

kstag0
T˚B

“
1

k pφBq

kstag0
T˚ f

“ 3

˜

1`
kstag0

k pφBq
ζkPe

a

1` 4Da2Hg´ 1
2DaHg

¸

(114)

The ratio of heat transfer coefficient for convection in a nanofluid saturated metal foam to that for
the case of base fluid convection without a metal foam is given by
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h pφBq

hb f
“

12
p140{17q

˜

k pφBq

kb f
`

kstag0

kb f
ζkPe

a

1` 4Da2Hg´ 1
2DaHg

¸

(115)

9.2.2. Tube Flows

The corresponding set of the solutions for the case of tubes may be obtained from Equation (99) as

T˚ f – T˚s “

y˚
ż

0

r 1
y˚ 2 p1´ y˚q

ρcu˚

ρcu˚
dη

p1´ y˚q

˜

kstag

kstag0
` ζkPe

ˆ

ρc
ρ0c0

˙

u˚
¸dy˚ (116)

which may well be approximated by

T˚ f – T˚s “
y˚ ´

1
2

y˚2

kstag pφBq

kstag0
` ζkPe

a

1` 4Da2Hg´ 1
2DaHg

(117)

Thus, the profile of volume averaged temperature given by Equation (117) and that of nanoparticle
volume fraction given by its substitution into Equation (97) for the tube are similar to those for the
channel. Accordingly, Nusselt number for the tube is given by

NuR “
q0R

k pφBq pT0 ´ TBq
“

1
k pφBq

kstag0
T˚B

“
1

k pφBq

kstag0
T˚ f

“ 4

˜

1`
kstag0

k pφBq
ζkPe

a

1` 4Da2Hg´ 1
2DaHg

¸

(118)

The ratio of heat transfer coefficient for convection in a nanofluid saturated metal foam to that for
the case of base fluid convection without a metal foam is given by

h pφBq

hb f
“

8
p48{11q

˜

kstag pφBq

kb f
`

kstag0

kb f
ζkPe

a

1` 4Da2Hg´ 1
2DaHg

¸

(119)

Heat transfer enhancement in a nanoparticle saturated metal foam can be partly due to an increase
in its stagnant thermal conductivity, which results from both highly conductive nanoparticles and
consolidated meal foam, and partly due to intensified nanofluid mixing resulting from mechanical
dispersion within a foam. This enhancement can best be illustrated in the foregoing Equation (119).
The first term in the right hand side gives the heat transfer rate increase due to embedding of metal
foam and addition of nanoparticles, while the second term describes heat transfer enhancement due to
thermal dispersion.

9.3. Heat Transfer Performance Evaluation

Figure 18 shows heat transfer coefficient ratios h pϕBq {hb f for given φB against a dimensionless
pumping power:

P.P. pHg; Daq ”

˜

´
d xpy f

dx
uB

¸

ˆ

ρ0
2b2R6

µ03

˙

“

a

1` 4Da2Hg´ 1
2Da

Hg (120)

h pφBq {hb f is plotted in a possible range of P.P. = 6.0 ˆ 109 ´ 1.3 ˆ 1015 (corresponding to
xuy= 0.01 to 1 m/s, 2R = 0.02 m, dm = 0.001 m) for the tube. The figure clearly indicates that heat
transfer coefficient for the tube filled with a nanofluid saturated metal foam is much higher than that
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for a tube filled with a base fluid. The ratio increases towards 80 as increasing the pumping power
P.P., in which thermal dispersion becomes significant. Naturally, higher volume fraction of nanofluid
results in higher heat transfer coefficient, especially when P.P. is large such that thermal dispersion is
quite significant.
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Figure 18. Effects of φB on the heat transfer coefficient ratio in a channel filled with a nanofluid
saturated metal foam.

Figure 19 shows the effects of NBT on the heat transfer ratio h pφBq {hb f . As expected from Figure 17
showing the temperature profiles, which are fairly insensitive to NBT , the heat transfer ratios obtained
with different values of NBT almost coincide one another. Figure 20, on the other hand, shows effects
of Nuv on the heat transfer coefficient ratio h pφBq {hb f , which clearly indicates that higher interstitial
heat transfer coefficient yields higher macroscopic heat transfer coefficient. Therefore, combination of
metal foams and nanofluids is believed to bring unconventionally high heat transfer coefficients.Fluids 2016, 1, 8 31 of 36 
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Figure 19. Effects of NBT on the heat transfer coefficient ratio in a channel filled with a nanofluid
saturated metal foam.
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Figure 20. Effects of Nuv on the heat transfer coefficient ratio in a channel filled with a nanofluid
saturated metal foam.

The experimental verification is underway using the experimental set-up, as shown in Figure 21.
The experimental results obtained from the program partially supported by the JSPS Grants-in-Aid for
Scientific Research B, will be available near future.Fluids 2016, 1, 8 32 of 36 
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10. Concluding Remarks

A rigorous derivation of the macroscopic governing equations was presented for analyzing
convective heat transfer in nanofluid saturated metal foam. A volume averaging theory was introduced
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to integrate the microscopic set of the modified Buongiorno equations over a local control volume.
The unknown correlation terms resulting from the volume averaging were mathematically modeled
so as to close the set of governing equations. A pore scale conduit model was used to investigate
both thermal dispersion term and particle mechanical dispersion term analytically. Upon assuming
microscopic distribution profiles for velocity and temperature within a pore, dispersion coefficients
were evaluated for thermal dispersion and particle mechanical dispersion. The present analytical
expression for the transverse thermal dispersion based on the pore scale analysis was found to closely
follow the Calmid–Mahajan empirical correlation. The longitudinal particle mechanical dispersion was
found to work either to suppress or to enhance effective diffusion depending on the sign of local phase
temperature difference, while the transverse counterpart is insignificant and therefore can be neglected.
Moreover, it has been found, conducting a comparison under equal pumping power, that a high level
of the heat transfer rate (about 80 times more than the case of base fluid convection without a metal
foam) is possible using a combination of metal foam and nanofluid. Thus, we can conclude that the
nanofluid saturated metal foams can be utilized for conceiving a new generation of high performance
heat exchangers.

It should finally be pointed out that possible nanofluid fouling due to nanoparticles coagulation
on the internal wall of solid matrix has been neglected in this study. Sarafraz et al. [41] conducted
experiments to investigate the role of nanofluid fouling on thermal performance of a thermosiphon,
and pointed out that the form of the deposited layer can be affected by nanofluid concentration,
applied heat load, inclination of thermosiphon and operation time. Their experimental data clearly
indicate that the existence of the deposited layer increases the thermal resistance, deteriorating heat
transfer performance. Naturally, more power loss is expected since the deposited layer blocks the
transport path of nanofluid.
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Abbreviations

List of Symbols
A surface area (m2)
a f specific surface (1/m)
Aint interfacial area between the fluid and solid (m2)
c specific heat of nanofluid (J/kgK)
cp specific heat of nanoparticle (J/kgK)
cs specific heat of solid phase (J/kgK)
Da Darcy number (-)
DB Bronwian diffusion coefficient (m2/s)
DT thermophoretic diffusion coefficient (m2/s)
dm mean pore diameter (m)
dp nanoparticle diameter (m)
f , F, g, G profile functions (-)
Hg Hagen number (-)
h wall heat transfer coefficient (W/m2K)
hv volumetric heat transfer coefficient (W/m3K)
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H channel height (m)
k thermal conductivity of nanofluid (W/mK)
kBO Boltzmann constant (J/K)
kdis dispersion thermal conductivity (W/mK)
kstag stagnant thermal conductivity (W/mK)
K permeability (m2)
Nuv Interstitial Nusselt number (-)
Le Lewis number (-)
nj unit vector pointing outward from fluid side to solid side (-)
nBT microscopic Brownian and thermophoretic diffusivity ratio (-)
NBT macroscopic Brownian and thermophoretic diffusivity ratio (-)
NuH,R Nusselt number (-)
Nuv Interstitial Nusselt number (-)
p pressure (Pa)
Pe Peclet number (-)
Pr Prandtl number of nanofluid (-)
P.P. dimensionless pumping power (-)
q0 wall heat flux (W/m2)
r radial coordinate (m)
R tube radius (m)
t time (s)
T absolute temperature (K)
ui velocity vector (m/s)
V representative elementary volume (m3)
xi Cartesian coordinates (m)
x, y, z Cartesian coordinates (m)
γ parameter associated with temperature ratio (-)
ε porosity (-)
ε˚ effective porosity (-)
ςk transverse thermal dispersion coefficient (-)
ηpζ “ 1´ ηq dimensionless radial coordinate (-)
µ viscosity (Pa¨ s)
ν kinematic viscosity of nanofluid (m2/s)
ρ density of nanofluid (kg/m2)
φ nanoparticle volume fraction (-)
Special Symbols
rϕ deviation from intrinsic average
ϕ average over the cross-section
ϕ˚ dimensionless variable
xϕy Darician average
xϕy f ,s intrinsic average
Subscripts and Superscripts
B bulk mean
bf base fluid
dis dispersion
f fluid phase
p nanoparticle
s solid phase
w wall
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