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Abstract: Hydrogels are widely used in wound dressings due to their moisturizing properties and
biocompatibility. However, traditional hydrogel dressings cannot monitor wounds and provide
accurate treatment. Recent advancements focus on hydrogel dressings with integrated monitoring
and treatment functions, using sensors or intelligent materials to detect changes in the wound
microenvironment. These dressings enable responsive treatment to promote wound healing. They
can carry out responsive dynamic treatment in time to effectively promote wound healing. However,
there is still a lack of comprehensive reviews of hydrogel wound dressings that incorporate both
wound micro-environment monitoring and treatment functions. Therefore, this review categorizes
hydrogel dressings according to wound types and examines their current status, progress, challenges,
and future trends. It discusses various wound types, including infected wounds, burns, and diabetic
and pressure ulcers, and explores the wound healing process. The review presents hydrogel dressings
that monitor wound conditions and provide tailored treatment, such as pH-sensitive, temperature-
sensitive, glucose-sensitive, pressure-sensitive, and nano-composite hydrogel dressings. Challenges
include developing dressings that meet the standards of excellent biocompatibility, improving
monitoring accuracy and sensitivity, and overcoming obstacles to production and commercialization.
Furthermore, it provides the current status, progress, challenges, and future trends in this field,
aiming to give a clear view of its past, present, and future.

Keywords: wound monitoring; treatment; hydrogel; wound dressing

1. Introduction

Skin is an organ covering the entire surface of the human body, one that is in direct
contact with the external environment. It registers external stimulation, regulates body tem-
perature, and protects the human body from external damage [1]. Being in direct contact
with the external environment, the skin is a vulnerable tissue that is susceptible to trauma
from injury or disease. Treating chronic wounds caused by bacterial infections poses a
significant challenge in skin injury repair. The healing process of chronic wounds com-
prises four interrelated stages: hemostasis, inflammation, proliferation, and remodeling.
Hemostasis involves the formation of clots to stop bleeding, followed by an inflammatory
response that works to clear debris and combat pathogens. Proliferation entails the gen-
eration of new tissue, while remodeling involves the maturation and realignment of the
healed wound. Understanding these sequential processes is crucial for developing targeted
therapies to optimize wound repair and minimize complications [2]. However, the above
methods generally cannot be carried out in a quick and orderly fashion, and various factors
may lead to abnormal wound healing at any stage [3]. When problems with wound healing
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occur, infection can lead to delayed wound healing and even death [4]. Therefore, effective
wound management is the key to promoting wound healing.

At present, researchers have successfully developed wound dressings with good self-
healing, injectable, and antibacterial properties, such as sponges [5,6], freezing glue [7,8],
membranes [9,10], aerogels [11,12], electro-spun scaffolds [13,14] and hydrogels [15,16].
Hydrogels are the preferred wound dressing material due to their excellent characteristics
of hydropathy, biocompatibility, and resemblance to the extracellular matrix (ECM). Their
hydrophilic nature allows the efficient absorption of wound exudate, while their three-
dimensional pore structure supports cell migration, proliferation, and tissue regeneration.
Hydrogels have, thus, become popular for wound management [17]. In recent years, hydro-
gel wound dressings fulfilling wound monitoring and treatment functions have become a
research hotspot in the field of wound dressings because they can simultaneously assess the
wound microenvironment and treat the wound on demand. Hydrogel wound dressings
with built-in sensors or intelligent materials have been developed and offer a novel wound
monitoring and treatment approach. These dressings utilize stimulus-responsive and self-
healing materials to interact with the wound microenvironment, allowing the real-time
sensing of wound conditions and any changes. By integrating sensors and intelligent
materials, these hydrogel dressings enable the delivery of precise and targeted treatment
interventions, based on the specific needs of the wound. This innovative technology holds
promise for enhancing wound care by providing accurate monitoring and tailored therapeu-
tic approaches for improved healing outcomes. Since the wound healing process is divided
into different stages, and each phase has its unique microenvironment characteristics, the
use of dressings to respond to changes in the wound microenvironment (such as tempera-
ture, pH, and blood sugar concentration) ensures that prompt and precise treatment can
meet the treatment needs at each stage of wound healing. Thus, the goal of preventing
infection, shortening treatment time, and reducing treatment costs can be achieved [18].
However, a comprehensive review of wound monitoring and therapeutic hydrogel wound
dressings has still not been reported. This review provides an overview that first briefly
introduces the preparation, properties, and applications of hydrogels, then discusses the
types of skin wounds and the wound healing process, and subsequently delves into the
realm of registered wound monitoring and therapeutic hydrogel dressings. These dressings’
current development status, progress, challenges, and prospects are thoroughly examined,
emphasizing their role in wound monitoring and treatment. Furthermore, the review
presents a forward-looking perspective by discussing the future development trends of
hydrogel dressings that are equipped with wound monitoring and treatment functions.
By encompassing these key aspects, this review aims to comprehensively understand the
subject matter while highlighting the potential advancements and research opportunities
of hydrogel wound dressings.

2. Preparation, Properties, and Applications of Hydrogels

Hydrogel is a highly hydrophilic gel with a three-dimensional network structure
that can swell without dissolving in water [19–21]. Based on the hydrophilic chain seg-
ments (–OH, –COOH, and –NH2) in the polymer network, hydrogels have strong water
absorption, swelling, and water retention abilities. Water molecules lose mobility; hence,
hydrogels are also a kind of solid [22]. The preparation methods of hydrogels can be
divided into chemical and physical cross-linking, according to their linkage mode [23].
Chemical cross-linking is achieved in the form of covalent bonds, while physical cross-
linking is in the form of non-covalent bonds, such as ionic interactions, hydrogen bonds, or
hydrophobic interactions. The polymers used to prepare hydrogels can be either natural,
such as chitosan, carboxymethyl cellulose, sodium alginate, gelatin, etc., or synthetic, such
as polyacrylic acid, polymethacrylic acid, N-isopropyl acrylamide, etc.

Wound dressings play a crucial role in safeguarding and fostering the healing process
of injuries, encompassing trauma, burns, diabetic foot complications, and postoperative
incisions. Hydrogels stand out among the various options as they fulfill most of the
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criteria for an ideal wound dressing. These criteria encompass absorbing surplus wound
exudate, upholding a moist environment that encircles the wound, facilitating proper
gas exchange, providing insulation, and delivering antibacterial properties. Additionally,
they ensure safety, ease of removal from the wound’s surface, painless alteration during
dressing changes, and simple application. These hydrogels also possess the necessary
mechanical strength and viscoelastic attributes, including storage and loss modulus and
suture retention strength, rendering them suitable for wound surface suturing or direct
application to the wound area [24–27]. The hydrogel can form a semi-closed protective
film at the injured area, providing a moist and breathable environment for healing and
preventing the tissue from drying. At the same time, the hydrogel can absorb the wound
exudate and promote the hydration of the wound, promote wound healing, and reduce
the discomfort and possible infection of patients. Hydrogel dressings are often used
in wounds such as pressure ulcers, local lesions of skin tissue, and tissue inactivation
and are very effective for superficial wounds. Hydrogels can also be loaded with anti-
inflammatory or bioactive substances that are slowly released in the vicinity of the patient’s
wound, accelerating the healing process. The hydrogel has a particular mechanical strength,
consistent with the biomechanical and viscoelastic properties (storage modulus and loss
modulus, and the suture retention strength) of the wound surface or when applied to the
wound [28–32]. In conclusion, a hydrogel dressing is an ideal wound dressing.

A search of the PubMed database for “hydrogel” revealed an increasing trend in the
published articles [33]. Especially noteworthy is the literature’s substantial growth post-
2004, as depicted in Figure 1. A comprehensive examination encompassing the creation,
categorization, and utilization of all hydrogels would necessitate a more in-depth and spe-
cialized investigation exceeding the confines of this present review. The primary emphasis
of these endeavors revolves around a thorough evaluation of the diverse facets associated
with hydrogel dressings, featuring wound monitoring and treatment functionalities. De-
picted in Figure 2 is a chronological progression of hydrogels, spotlighting the most recent
advancements in hydrogel dressings with wound monitoring and treatment capabilities, as
disclosed in this review article, spanning the period from 1950 to 2023 [34–40].
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3. Types of Skin Wounds and Wound Healing
3.1. Overview of Skin Trauma

The skin is the primary physical barrier between the human body and the environment
into which it comes in contact. It is crucial for thermoregulation and defense against foreign
pathogens [41]. In general, the physiological structure of normal skin is divided into the
epidermis and dermis. The epidermis layer, which is directly related to the outside world,
mainly includes the keratinocyte layer and the germinal layer and has functions such as
preventing tissue fluid outflow, anti-friction, and anti-infection. The dermis comprises
dense connective tissue with papillary and reticular layers, from superficial to deep. Among
them, the papillary layer of the skin is rich in capillaries, lymphatic vessels, nerve endings,
tactile bodies, and other receptors, contributing to sensory perception and vascular supply.
In contrast, the reticular layer predominantly comprises collagen, elastic, and reticular fibers,
providing mechanical strength to the skin [42]. A wound is a defect or damage of the skin
caused by external injury-causing factors (such as external force, surgery, thermal injury,
chemical substances, etc.) or internal factors of the human body (such as physiological
lesions of the body itself), which is usually accompanied by the breakdown of the structural
integrity of the skin and the impairment of its functionality.

3.2. Types of Wound

There are numerous types of skin trauma, and wounds can be classified according
to various methods [43]. Wounds can be classified into open wounds (such as abrasions,
punctures, and lacerations) and closed wounds (such as crush injuries, contusions, blast
injuries, and hematomas), depending on their location and exposure [44]. The wound’s
depth can be divided into superficial wounds, partial cortical injury wounds, and entire
cortical injury wounds. External wounds involving only the skin’s epidermis entirely
heal within ten days. For some wounds that include cortical injury, the healing process
is accompanied by scar formation and re-epithelialization, which basically takes 10 to
21 days. However, entire cortical injury wounds exhibiting damage to the dermis and
subcutaneous tissue sites take longer to heal. According to the contamination status,
wounds can be divided into clean, contaminated, and infected. The classification “clean
wound” generally refers to a sterile surgical incision without contamination, such as the
incisions made for liver and kidney surgery and thyroid surgery, or a blister that has not
yet been contaminated, such as a wound formed by the removal of blister skin via a sterile
operation in the complete blister of a second-degree scald. Contaminated wounds refer to
injuries contaminated with bacteria that have not yet become infected, involving wounds
of the digestive, respiratory, or reproductive systems, including acute trauma wounds. An
infected wound is when the surrounding bacteria or pathogenic bacteria in the environment
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enter the body after the skin is damaged, causing infection. There is then inflammatory
secretion at the wound, accompanied by local symptoms of swelling, heat, or pain [45].

Wound healing can be categorized into the healing of acute and chronic wounds,
based on their healing time. Acute wounds are caused by sudden trauma and typically heal
within a relatively short period. Conversely, chronic wounds are characterized by a delayed
healing process that does not follow the standard and orderly repair sequence, resulting in
the incomplete restoration of normal tissue. Various factors contribute to the development
of chronic wounds, including conditions such as diabetic ulcers, venous ulcers, arterial
ulcers, traumatic ulcers, and pressure ulcers. These wounds pose significant challenges
due to their impaired healing potential and require specialized management strategies
to promote successful wound closure [46]; chronic wounds significantly burden patients
and the healthcare system [47]. Chronic wounds can be divided into infection wounds,
burn injuries, diabetic ulcers, and pressure ulcers. They share standard features such as
the upregulation of protease levels, elevated proinflammatory cytokines, excessive reactive
oxygen species (ROS) levels, the persistence of senescent fibroblasts, prolonged infection,
and stem cell dysfunction or insufficiency [48]. However, the characteristics of different
types of chronic wounds and the underlying pathological mechanisms are diverse. This
section will describe the features of several common types of chronic wounds.

3.2.1. Infected Wounds

In chronic wound repair, a bacterial infection often occurs at the wound site. Once
the wound is infected, bacteria will trigger persistent inflammation in the infected area,
affecting the healing process or even causing the injury to fail to heal [49]. The clinical
manifestations of infected wounds are erythema, edema, warmth, and the aggravation
of pain. There is increased exudation or drainage from the wound and a growing stench.
If the patient develops systemic symptoms, such as fever, chills, and leukocytosis, the
infection will progress to bacteremia or sepsis [50]. Therefore, controlling wound infection
is considered one of the most crucial challenges in bioengineering applications.

3.2.2. Burn Wounds

Burns are one of the most common and devastating forms of wounds, and the eval-
uation of burn patients involves two key parameters: wound depth and total burn area.
First-degree burns affect the superficial layer of the epidermis, while superficial second-
degree burns involve the epidermis and dermis. Deep second-degree burns extend through
the entire epidermis and dermis. Third-degree burns are the most severe, affecting the
epidermis, dermis, and subcutaneous tissue. The classification of burns into these degrees
aids in assessing the severity of the injury and guiding appropriate treatment strategies
for optimal healing and recovery [51]. Second-degree and third-degree burns impair many
vital functions of the epidermis and dermis. Severe burns, characterized by extensive tissue
damage, can be life-threatening due to factors such as severe infection, hyperinflammation,
reduced angiogenesis, insufficient production of the extracellular matrix, and inadequate
stimulation of vascular growth factors (GFs). When the skin is affected by heat, rapid and
dangerous fluid loss occurs in the body, along with condensation and the loss of proteins,
including immunoglobulins, potentially leading to irreversible tissue damage and raising
susceptibility to infection. In addition, cell membrane dysfunction can cause severe changes
in the distribution of water and sodium in the body, while the loss of extracellular fluid and
sodium consumption can further reduce blood volume and alter the electrolyte balance,
leading to the death of burn patients [52–54].

3.2.3. Diabetic Wounds

Diabetes mellitus, a prevalent metabolic disorder, has become a significant global
health concern. Diabetic wounds exhibit distinct characteristics that are caused by hyper-
glycemia, chronic inflammation, hypoxia, inadequate vascularization, cellular infiltration,
and fragile granulation tissue. These factors collectively impair the normal skin regen-



Gels 2023, 9, 694 6 of 26

eration process, resulting in challenges for physiological wound healing. Consequently,
treating diabetic wounds poses considerable difficulties in achieving successful closure
and restoration. The intricate interplay of these pathophysiological factors underscores the
need for specialized approaches to address the unique healing complexities associated with
diabetic wounds. As a result, diabetic wounds take longer to heal than ordinary chronic
wounds, and severe diabetic wounds, such as diabetic foot ulcers, can require amputa-
tion. Moreover, diabetic wounds often exhibit prolonged healing periods, with some cases
persisting for an average duration of 12 to 13 months. Additionally, there is a general
trend of diabetic wounds having a recurrence rate of 60 to 70%. However, it is essential
to note that individual cases may vary regarding healing time and recurrence risk [55].
Treating diabetic wounds constitutes at least 12–15% of the total expenditure for diabetes
treatment, contributing to 40% of the national healthcare costs. The complex pathogenesis,
pathogen invasion, and high incidence increase the cost and difficulty of treatment and
seriously affect the comfort and health of patients [52,56–58]. Treating diabetic wounds is
particularly difficult since the wound requires the highly ordered and continuous residency
and recruitment of cells, GFs, and cytokines to facilitate healing [59].

3.2.4. Pressure Ulcers

Pressure ulcers, also known as pressure sores, usually occur in areas where the bones
protrude, such as the sacrum (the base of the spine), buttocks, and heels [60]. Pressure ulcers
are caused by prolonged pressure, friction, or shear forces that impair the blood supply
to the affected area and cause tissue malnutrition. This type of pressure ulcer is common
in patients with reduced mobility, paralysis, coma, or the long-term bedridden. In such
patients, it is not possible to release pressure areas adequately. The prolonged exposure
of an area of the body to pressure interrupts local blood circulation and triggers a series
of biochemical changes that may lead to tissue damage and ulceration [50]. According
to the severity of the wound, pressure ulcers can be divided into four stages. The first
stage is congestion and redness, mainly in the form of local skin swellings, pain, and
numbness. The second stage is the inflammatory infiltration stage; the skin will turn
purple, and the affected area has induration and is accompanied by pain. Stage three is
the superficial ulcer stage, where the affected area will be ulcerated, and the subcutaneous
tissue will be exposed. Stage 4 is the necrotic ulcer stage; patients will develop symptoms
of necrosis in the affected area, and this may even cause sepsis. Pressure ulcers that
cannot be staged in this way are typically characterized by a full-thickness loss of tissue, a
covering of the decaying flesh at the base of the ulcer (yellow, tan, gray, green, or brown),
or an eschar attachment to the wound bed (carbon, brown, or black) [61]. The patients
themselves experience malnutrition, long-term bed rest, and even paraplegia, along with
some nerve loss, leading to difficult wound healing. Some patients are also in difficult
economic situations; therefore, it is difficult to heal the wounds of such patients with
pressure ulcers. In the early stages, systematic and standardized treatment plans should be
formulated, including strengthening the nutrition of patients, with sequential treatment
and the treatment of wounds.

3.3. The Process of Wound Healing

When skin tissue is injured, the body’s immune system immediately initiates a cascade
of chemical signals between the different tissue cells, including immune function cells. At
the same time, human biological signal-triggering molecules will immediately start the
subsequent wound repair process [62]. As shown in Figure 3, the healing process of chronic
wounds is mainly divided into four stages, namely, the hemostasis stage, the inflammation
stage, the tissue proliferation stage, and the tissue remodeling stage [63].
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During the hemostasis phase, tissue coagulation is triggered immediately after skin
trauma. Platelets in the blood components come into contact with exposed collagens and
other elements of the body’s natural extracellular matrix. This contact quickly triggers
the release of platelet coagulation factors, after which many endothelial cells gather. The
dynamic balance between platelet-induced coagulation and fibrinolysis collaborates to
regulate the hemostatic responses, vasoconstriction, and the exudation of blood and tissue
fluid [65,66]. During the inflammatory phase, white blood cells will enter the wound
area from the capillaries around the wound tissue and absorb a large amount of tissue-
inflammatory substances. The inflammatory cells will then release a large amount of growth
factors. The signal factors will immediately stimulate macrophages and other immune
cells and will continue to migrate to the wound to phagocytose cell debris. The injury will
appear red, swollen, hot, and painful, in a pathological phenomenon [43]. In the stage of
tissue proliferation, along with the migration of fibroblasts, new ECM tissue structures are
continuously synthesized at the wound site, and a large amount of ECM accumulation
will further promote cell migration [67]. Finally, during the stage of tissue remodeling, the
newly generated collagen matrix becomes more directional, and new epithelial tissue and
scar tissue gradually form [68].

4. Hydrogel Dressings with Wound Microenvironment Monitoring and
Treatment Functions

Wound healing is a complex process that is influenced by changes in the wound
microenvironment, including acid and alkaline levels, temperature, blood glucose, and
pressure. Developing a hydrogel dressing system with intelligent monitoring and dynamic
treatment functions is significant. This system would enable the collection of wound
parameters and provide targeted interventions during healing. Integrating monitoring
and treatment capabilities in a hydrogel dressing can enhance wound healing outcomes by
offering personalized and precise interventions that are based on specific wound needs.
This integration represents an important advancement in the field, allowing for real-time
parameter collection and targeted treatment within a hydrogel dressing system [69]. This
part of the paper will review pH-sensitive, temperature-sensitive, glucose-sensitive, and
pressure-sensitive hydrogel dressings, and their research progress will be introduced.
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4.1. pH-Sensitive Hydrogel Dressing

The pH of healthy skin is slightly acidic, with a range of 4.8 to 5.7, showing a weakly
acidic appearance [70]. When skin is damaged, exudate will appear at the wound site, and
the pH value of the exudate will change along with a series of pathological changes, such
as inflammation, collagen formation, and angiogenesis. In the inflammatory stage, the
contraction of blood vessels in the local tissue of the wound will cause insufficient blood
supply, resulting in a lack of nutrition and oxygen. At the same time, glycolysis leads to
increased lactic acid and CO2, eventually leading to a decreased pH. If infection is present
in the wound, the pathogen breaks the extracellular matrix and produces ammonia, which
makes the wound alkaline. Without the corresponding intervention measures, neutrophils
will rapidly aggregate and release excessive elastase, which will interact with necrotic and
inactivated tissues in the wound, leading to increased metabolic load at the injury and
prolonged wound healing. An acidic environment can increase the oxygen supply, induce
fibroblast proliferation, and facilitate wound healing. Clinical studies have shown that the
pH value of chronic wounds can range from 7.15 to 8.90, providing an alkaline environment
that can support the growth and proliferation of certain bacteria. For example, the pH
value for the survival of Staphylococcus aureus is 7.0–7.5 [71]. Therefore, when a wound is
infected, one of the essential indicators of the wound microenvironment is an increase in
pH (as shown in Figure 4) [72].
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Figure 4. The pH value in the wound microenvironment changes with time [72].

Researchers mainly use the colorimetric response method to prepare pH-sensitive
hydrogel dressings. The specific process used is to sense the acid-base microenvironment
of the wound by adding pH discoloration materials to the dressing, producing a color
change. Bahram Mirani et al. [36] incorporated pH-responsive color-changing mesoporous
resin beads into alginate fibers. They utilized 3D printing to construct hydrogel dressings
with porous pH sensor arrays, as illustrated in Figure 5. This innovative approach enables
real-time pH monitoring within the hydrogel dressings, facilitating precise interventions for
optimal wound healing. This developed hydrogel dressing provided real-time wound data,
such as the degree of bacterial infection and antibiotic release, through color changes. The
dressing enabled digital remote diagnosis and treatment when it was connected to an image
acquisition device. This technology enhances wound care by offering comprehensive moni-
toring and interventions based on accurate and timely wound information. Furthermore,
this dressing demonstrated non-toxicity upon contact with human primary keratinocytes
and fibroblasts. This attribute positions it as a viable option for addressing dermal injuries
effectively and safely. However, considering that there may be too little or too much wound
exudate during clinical use, or the exudate itself may be discolored (in bloody, suppurative
wounds, etc.), the clinical promotion of this dressing is still being promoted.
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Figure 5. An advanced multi-purpose dressing for wound monitoring and management.
(A) Schematic representation of dressing treatment of epidermal wounds, with pH-sensitive and
drug-eluting components. (B-i) Porous sensors were fabricated using a 3D bioprinter equipped
with a co-axial flow microfluidic nozzle. (B-ii) Schematic of fiber deposition using the co-axial flow
system. (B-iii) 3D printer can be programmed to produce arrays of porous sensors for fabrication of
large-scale dressings. (C) Dressings can be lyophilized and sterilized for storage and transportation.
(D) Synthetic Brilliant Yellow and naturally derived cabbage juice were used as model pH indicators
for the fabrication of the sensors. Sensor arrays enable detecting spatial variations of pH on the
wound site. Drug-eluting scaffolds release high doses of antibiotics at the wound site to eradicate the
bacteria that may remain on the wound site each time the dressing is replaced. (E) The multi-purpose
dressing can maintain a conformal contact with irregular surfaces [36].

Lirong Wang et al. [73] developed a multifunctional hydrogel wound dressing by
incorporating colorimetric reagent litmus into a hydrogel that is composed of polyacry-
lamide and the quaternary ammonium salt of chitosan (HACC-PAM). The preparation
process and working principle of this multifunctional hydrogel are illustrated in Figure 6.
By utilizing a smartphone, the chromaticity signal is converted into a pH-sensing image.
The color variation between the wound edge and normal skin is then used to generate pixel
cloud data for wound image generation. A convolutional neural network machine-learning
algorithm is employed to provide personalized wound management feedback, based on
a wound management model. The pH distribution of the wound is analyzed using the
colorimetric signal of the hydrogel, enabling the evaluation and prediction of wound
healing and infection status. The intelligent wound monitoring process comprises wound
recognition, real-time status monitoring, and personalized wound management. Online
wound scanning and offline intelligent printing enable the accurate fitting of irregularly
shaped wounds with the prepared wound dressing. This hydrogel dressing has the poten-
tial to help prevent or reduce the risk of bacterial infection due to its properties and design.
The Cell Counting Kit-8 (CCK-8) assay and the live/dead staining method were used to
investigate the viability of fibroblast cells (NHDF) that were exposed to the multifunctional
hydrogel. The living cells co-cultured with the hydrogel were indistinguishable from the
control group, which were spindle-shaped, and the cell density increased considerably
with the duration of culture time. These results confirmed the excellent biocompatibility
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of these multifunctional hydrogels for wound dressings. Moreover, resource waste is
caused by wound exposure or excessive coverage, whereas this procedure successfully
realized the integration of wound identification and the precise matching of treatment
by accurately locating the active ingredients in the wound. This hydrogel dressing could
monitor the state and progression of wound infection, providing valuable information
about the presence and severity of the infection, but the solvent replacement method used
in the preparation of hydrogels is time-consuming, which is not conducive to their clinical
promotion and application.
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Figure 6. Schematic representation of multifunctional hydrogels for wound management. (a) Illus-
tration demonstrating the preparatory steps involved in the synthesis of multifunctional hydrogels.
(b) Schematic diagram showcasing multifunctional hydrogels’ intelligent wound monitoring capabili-
ties when employed as wound dressings. This includes the processes of wound recognition, real-time
condition monitoring, and personalized wound management [73].

Haoping Wang et al. [38] synthesized an intelligent hydrogel that was integrated with
the in situ visual diagnosis of bacterial infection and photothermal therapy, as shown
in Figure 7. The synthesized BTB/PTDBD/CS hydrogel, achieved by incorporating pH-
sensitive bromothymol blue (BTB) and near-infrared absorption conjugated polymer (PT-
DBD) into a heat-sensitive chitosan (CS) hydrogel, demonstrated the potential for diagnos-
ing the acidic microenvironment of Staphylococcus aureus biofilms and infected wounds by
visualizing color changes. This hydrogel enabled rapid diagnosis, allowing immediate local
hyperthermia of the infected site when subjected to near-infrared laser (808 nm) irradiation.
Moreover, it offers the potential for treating refractory biofilms that are challenging to
eradicate. The unique combination of BTB, PTDBD, and CS within the hydrogel provides a
promising approach for diagnosing and treating infected wounds, facilitating efficient and
targeted therapy. This hydrogel will guide the development of intelligent and convenient
platforms for diagnosing and treating bacterial infections, but there are still problems, such
as imprecise monitoring ability and the easy leaching of dyes. Similarly, Asmaa Ahmed
Arafa et al. [74] employed the pH-sensitive natural dye, Curcuma longa extract (CLE), as a
cost-effective and straightforward pH-sensitive indicator, which was loaded into a hydrogel
composed of hydroxyethyl cellulose grafted with itaconic acid. This preparation yielded a
transparent, soft, and pH-sensitive wound dressing. Experimental findings indicated that
the material exhibited a distinct color change when the hydrogel matrix was applied to
cotton yarn and then exposed to various pH buffer solutions. These results highlight the
potential of a pH-sensitive hydrogel dressing for the visual detection and monitoring of
pH changes in wound environments. When the pH was ≤7, the dressing appeared yellow;
it changed to dark red when the pH was >7. This wound dressing offers the therapeutic
effect of CLE and can visually display the wound’s pH value. However, it also has some
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problems, such as inaccurate monitoring ability, the easy leaching of dye, and poor wound
healing effects.
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4.2. Thermo-Sensitive Hydrogel Dressing

For chronically infected wounds, chronic burn wounds, and pressure sores, the tem-
perature of the injury will also differ from that of the intact tissue, despite changes in the
pH of the injury. Body temperature is average (36 to 37.5 ◦C) when the skin is healthy
but increases when infection or inflammation develops in the wound (Figure 8). Both
internal physiological factors and external environmental conditions, including ambient
temperature, surface moisture, and body position, influence skin temperature. In wound
infection, elevated temperatures are observed due to the body’s immune response, com-
prising vasodilation, induced by inflammatory cytokines, and increased tissue metabolism.
It is worth noting that near-normal temperatures within the wound environment promote
cellular division and facilitate optimal wound-healing processes. The interplay between
temperature regulation and wound healing underscores the importance of monitoring and
maintaining the appropriate temperature conditions for effective wound management. An
increase in temperature at any point after surgery can indicate wound infection. However,
the timing of temperature changes can vary, depending on factors such as the type of
surgery and individual patient characteristics [75]. In a clinical context, the skin tempera-
ture difference between a specific target site and a symmetrical contralateral reference point
is usually used as a reference. The presence or absence of infection in the wound in one
study was determined using validated assessment tools and clinical judgment [76]. To this
end, researchers have developed temperature-sensitive and thermally responsive hydrogel
dressings to monitor the state of the wound and deliver drugs and factors that promote
wound healing [77].
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For burn wounds, hydrogel dressings with temperature-responsive drug release
systems have been developed. Min Hee Kim et al. [78] synthesized a thermo-sensitive
methylcellulose hydrogel containing nano-silver oxide using a one-pot method, by taking
advantage of the salting-out effect of silver acetate precursor (CH3COOAg) in methylcellu-
lose solution. At the same time, silver nanoparticles have excellent antibacterial activity to
promote the healing of burn wounds. However, the development of this hydrogel dressing
was primarily focused on the treatment aspect of burn wounds, rather than on monitoring
the wound microenvironment. In addition, the preparation of thermosensitive hydrogels
using isopropyl acrylamide (NIPAM) monomers has been widely reported because the
minimum critical solution temperature of NIPAM monomers is approximately 32 ◦C, which
is close to the physiological temperature [79]. A.S. Montaser et al. [80] developed a hydrogel
using alginate grafted with N-isopropyl acrylamide (NIPAM) and polyvinyl alcohol. The
hydrogel was further encapsulated with the anti-inflammatory drug, diclofenac sodium
(DS). Notably, the release of DS from the hydrogel occurred in distinct stages at different
temperatures, as depicted in Figure 9. At approximately 25 ◦C, the drug exhibited continu-
ous release from the hydrogel. However, when the temperature increased to 37 ◦C, a second
phase of drug release was observed, which was attributed to the temperature-responsive
behavior of NIPAM within the hydrogel; this temperature-dependent release mechanism
demonstrates the potential of the developed hydrogel for controlled and targeted drug
delivery, particularly in response to changes in temperature. This temperature-triggered
stepwise drug release method shows the feasibility of preparing thermosensitive hydro-
gel dressings. However, thermo-sensitive wound dressings require proper contact with
the wound site to sense temperature changes accurately, enabling them to exhibit their
thermosensitive properties and provide reliable temperature data.
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When thermo-sensitive hydrogel dressings are connected to image acquisition devices,
the temperature sensitivity of wound dressings is improved, and digital remote diagnosis
and treatment can be realized. Qian Pang et al. [81] designed an intelligent, flexible elec-
tronic integrated wound dressing composed of flexible electronic components, temperature
sensors, UV light-emitting diodes in the upper layer, and UV-responsive antibacterial
hydrogel in the lower layer. The developed dressing incorporated integrated sensors to
enable the real-time monitoring of wound temperature, serving as an early predictor of
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pathological infection. Notably, the drug release from the heat-responsive vector within the
dressing was triggered when a maximum temperature of 40 ◦C persisted for more than 6 h,
which indicates the presence of infection. This integrated system demonstrates the efficacy
of real-time monitoring, early diagnosis, and controlled drug delivery, as illustrated in
Figure 10. The wound dressing in this study possessed numerous desirable characteristics,
including flexibility, compatibility, high monitoring sensitivity, and durability, making
it a promising solution for wound management. The assessment of hydrogel dressing
cytotoxicity involved evaluating the viability of NIH 3T3 cells, cultured using the extraction
medium. With increased culture time, the viabilities of the NIH 3T3 cells exhibited an
upward trend across all groups. This trend suggests that the hydrogel dressing did not
exert any adverse effects on the proliferation of NIH 3T3 cells. This way of combining
hydrogels with temperature sensors to monitor the wound microenvironment and dynami-
cally deliver drugs according to real-time needs represents the development direction of a
new generation of intelligent sensors. However, due to the high cost and short service life
of the response elements, most can only be used as disposable dressings.
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Figure 10. Schematic diagram of the structure and working principle of intelligent, flexible, elec-
tronic integrated wound dressing. (a) The integrated system consists of a polydimethylsiloxane-
encapsulated flexible electronic layer and an UV-responsive antibacterial hydrogel. The flexible
electronic device is integrated with a sensor for monitoring temperature and four UV-LEDs for
emitting UV light (365 nm) to trigger the release of antibiotic from the UV-responsive antibacterial
hydrogel when needed; a Bluetooth chip is also integrated for wireless data transmission in real time.
(b) Conceptual view of the integrated system for infected-wound monitoring and on-demand treat-
ment: (i) real-time monitoring of wound temperature and providing an alert of hyperthermia caused
by infection; (ii) turning on UV-LEDs to trigger the release of antibiotics; (iii) infection inhibition by
the released antibiotics, resulting in decreased wound temperature [81].

By integrating temperature and pH sensors into a flexible bandage,
Pooria Mostafalu et al. [82] designed a flexible, intelligent, and automated wound dressing,
as depicted in Figure 11, with the aim of real-time wound status monitoring. The dressing
incorporated a stimulus-responsive system comprising a hydrogel loaded with a thermosen-
sitive drug carrier and an electronically controlled flexible heater to facilitate on-demand
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drug delivery. The dressing also featured a microcontroller that processed sensor data and
enabled personalized treatment by programming the drug release protocol. The flexible
wound dressing was attached to the precisely shaped medical tape to ensure practicality
and comfort, resulting in a wearable material of less than 3 mm thick. The design empha-
sizes the cost-effectiveness and disposability of the sensing module and the integrated
heater, while the electronics are designed for reusability. This intelligent, flexible wound
dressing offers promising personalized and efficient wound management capabilities.
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4.3. Blood Glucose-Sensitive Hydrogel Dressing

For diabetic wounds, hyperglycemia can lead to changes in the cellular microenvi-
ronment around the wound, including a series of complex changes. These detrimental
effects include a significant reduction in the macrophages, the accumulation of advanced
glycation end products, and the production of reactive oxygen species (ROS), which lead
to the weakening of wound resistance and proliferation ability. In addition, high blood
glucose will also make the blood glucose concentration around the wound higher, causing
bacteria to breed and making the wound more susceptible to infection after the injury [83].

To address the specific needs of diabetic wounds that are associated with high blood
glucose levels, it is essential to develop hydrogel wound dressings that respond to changes
in blood glucose concentration. Lingling Zhao et al. [84] successfully established a glucose-
triggered drug release system using a Schiff base and the phenyl borate reaction, as depicted
in Figure 12. The hydrogel developed in this study exhibited responsiveness to pH and
glucose levels as a proof of concept; insulin and fibroblasts were employed as model drugs
and cells, respectively. The insulin-fibroblast dual-loaded smart hydrogel was utilized
as an active dressing for treating diabetic ulcer wounds. Since the Schiff base bonds are
unstable in an acidic environment, they can easily be hydrolyzed, leading to the bonds
breaking. The phenyl borate binds glucose more quickly than the hydroxyl group; there-
fore, lowering the pH in the wound microenvironment or increasing the glucose level will
lead to the hydrolysis of the Schiff base bonds in the hydrogel matrix and accelerate the
release of insulin. As high glucose levels are characteristic of chronic diabetic ulcer wounds,
this hydrogel dressing was designed to respond to the specific needs of diabetic wounds
associated with elevated glucose levels. Moreover, due to the sustained release of insulin
in the hydrogel and the hypoglycemic function of chitosan, the blood glucose level at the
wound site was controlled. The glucose-responsive wound dressing developed in their
study offers benefits beyond wound healing by actively contributing to regulating blood
glucose levels. This innovative approach presents a new perspective on wound healing
and diabetes treatment. By responding to changes in glucose levels, the dressing not only
aids in accelerating wound healing but also provides a means of managing blood glucose
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levels. Furthermore, the reported cell viability and proliferation experiment display the
good viability of the cells cultivated in the hydrogel matrix. Shuangli Zhu et al. [40] pre-
pared a composite hydrogel with self-healing capabilities, good injectability, and adhesive
properties by the dynamic phenyl borate ester bonding of dopamine-modified gelatin and
phenylboronic acid-modified hyaluronic acid, along with the incorporation of metformin
and copper-loaded dopamine nanoparticles into ECM-simulated hydrogel. The release of
metformin from the hydrogel dressing demonstrated suitable pH and glucose responsive-
ness, enabling the intelligent treatment of diabetic wounds. This responsive drug delivery
mechanism allowed metformin’s targeted and controlled release in response to specific pH
and glucose conditions within the wound environment. By leveraging this intelligent drug
release system, hydrogel dressings offer a promising approach for the tailored and effective
treatment of diabetic wounds.
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High blood glucose levels can impair the normal wound-healing process by reducing
the oxygen and nutrient supply to cells, resulting in a significantly slower healing rate of
diabetic wounds. Therefore, some researchers have loaded glucose oxidase (GOx) to lower
blood glucose around the wound. Yingnan Zhu et al. [37] developed a multifunctional
zwitterionic hydrogel to simultaneously detect two dynamic wound parameters, namely,
pH and blood glucose levels, to monitor the status of diabetic wounds, as illustrated in
Figure 13. This hydrogel system encapsulated a pH-indicating dye (phenol red), along
with two glucose-sensitive enzymes, glucose oxidase (GOx) and horseradish peroxidase.
These components were incorporated into a bio-repellent and biocompatible zinc–ionic
polycarboxy betaine alkali hydrogel matrix. The wound parameters were quantified by
analyzing an RGB signal that was converted from visual images. This multifunctional
wound dressing could effectively monitor and detect pH changes within a specific range
that is relevant to wound healing, such as a pH of 5 to 7 and blood glucose levels ranging
from 0.10 to 10 × 10−3 mol/L. This type of multifunctional wound dressing is expected to
open up the prospect of chronic wound management and guidance for the clinical use of
diabetes. Based on zwitterionic carboxy betaine, Hongshuang Guo et al. [69] developed
a multi-responsive zwitterionic skin hydrogel sensor system (SB-N-MB) by combining
temperature-sensitive N-isopropyl acrylamide (NIPAM) with glucose-sensitive methyl
acrylamide phenyl boric acid. The resulting sandwich structure enabled continuous real-
time monitoring and the differentiation of temperature, glucose concentration, and wound
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strain. This innovative sensor system facilitated wound monitoring and showed the
potential of promoting the healing of diabetic wounds. The zwitterionic skin-sensing
system holds significance in wound management and opens new avenues for artificial
intelligence by providing a platform for multiple signal discrimination.
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Figure 13. Visualization of a zwitterionic PCB hydrogel dressing, coated with a pH indicator (phenol
red) and glucose-sensitive enzymes (GOX and HRP), for pH and glucose concentration detection
in wound exudate. (a) Scheme of PCB hydrogel dressing for the detection of pH value and glucose
concentration in wound exudate. (b) Functionalized wound dressing for simultaneous detection of
pH values (under visible light) and glucose concentrations (under UV light) [37].

4.4. Pressure-Sensitive Hydrogel Dressing

Pressure ulcers pose significant challenges in healthcare settings, leading to prolonged
hospital stays, severe pain, and increased mortality rates. This places immense pressure
on both patients and medical institutions. As a result, preventing and treating pressure
ulcers in long-term bedridden patients have become urgent issues to address. Researchers
have developed multifunctional wound dressings that integrate pressure sensing, real-
time monitoring, and wound treatment capabilities to address secondary pressure injuries
sustained during treatment.

Dongrun Li et al. [39] utilized the antibacterial properties and electrical conductivity
of imidazolidine ionic liquids to develop a polyvinyl alcohol/acrylamide ionic liquid hy-
drogel dressing, as depicted in Figure 14. This hydrogel demonstrated excellent pressure
sensitivity, real-time responsiveness, a stable signal output, and superior mechanical prop-
erties. The integration of these features enabled the hydrogel to monitor human movement
on a large scale and promptly transmit the pressure status of the patient’s wound to the
nursing staff. This real-time monitoring would help to prevent secondary pressure injuries.
The versatile nature of this hydrogel dressing allows for its application in chronic wound
management and pressure-sensing monitoring, enhancing patient care and promoting
wound healing. The toxicity of the PAIL hydrogels to L929 mouse fibroblasts was evaluated
using the MTT method and the Calcein-AM/PI live/dead cell double-staining kit. Dur-
ing the entire incubation period, the cells proliferated rapidly, and most of the cells were
spindle-shaped, without noticeable damage. The cells showed excellent survival viability
(green) except for the apoptotic cells of normal metabolism (red). By observing the staining
of live/dead cells with an inverted fluorescence microscope, the cell live/dead staining
experiments showed that PAIL hydrogels had good biocompatibility and offered a promis-
ing material for wound dressing and pressure sensor monitoring. Huifeng Dong et al. [85]
successfully developed a multifunctional hydrogel dressing to treat infected pressure ulcer
wounds and monitor human health. The hydrogel dressing was created using alginate
and polycation via in situ free radical polymerization and solvent displacement techniques.
This hydrogel exhibited electrical responsiveness to stress, strain, and temperature. With
its potential for multimodal sensing, the hydrogel demonstrated stable electrical signals for
both large-scale human movements and small-amplitude movements. The multifunctional
nature of these hydrogel dressings holds promising applications in promoting wound
healing and monitoring human health effectively.
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Figure 14. Observation of the AIL−C8 hydrogel pressure sensor for manual monitoring. Tracked
movements included: (a) shoulder movement, (b) elbow movement, (c) wrist movement, (d) waist
movement, (e) leg movement, (f) elbow bends at 90◦ and 120◦ angles, and (g) writing [39].

4.5. Nano-Composite Hydrogel Dressing

Polymer composite hydrogels have demonstrated extensive utilization within the
realm of biomedicine, serving as materials for sustained drug release, wound dressings,
and scaffolds for tissue engineering. Their prevalence can be attributed to their exceptional
biocompatibility, moldability, and similarities to the extracellular matrix. Despite these
advantages, their inherent mechanical limitations impede the hydrogels’ advancement.
To address this issue, incorporating diverse nanoparticle variants, encompassing carbon-
based, polymer-based, inorganic-based, and metal-based nanoparticles, within the hydrogel
framework has emerged as a common strategy. This approach yields nanocomposite
hydrogels that are characterized by their superior properties and have the ability to be
tailored to specific functionalities [86,87]. In recent years, researchers have introduced
nanoparticles or nanorods into hydrogel networks to obtain nanocomposite hydrogel
dressings, which can not only enhance the mechanical properties, self-healing properties,
and antibacterial properties of the hydrogels but can also ensure the monitoring and
treatment functions of the hydrogel dressings themselves. Therefore, nanocomposite
hydrogel dressings have good application prospects as biomaterials [88–91].

Ji Jiang et al. [92] designed a polymer-based wound dressing in the form of a conduc-
tive, soft, temperature-responsive, antibacterial, and biocompatible hydrogel (Figure 15),
which was composed of polyacrylic acid (PAA)-grafted poly(N-isopropyl acrylamide) (PNI-
PAM), vinyl-based polyacrylamide (PAM) and silver nanowires (AgNWs). PAA-grafted
PNIPAM acted as a conformal interface and intrinsic temperature-responsive matrix in
this hydrogel dressing. PAM helped to construct semi-penetrating polymer networks
(SIPNs) to improve the hydrogel’s mechanical properties. Simultaneously, incorporating
silver nanowires (AgNWs) established a three-dimensional conductive hydrogel network
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with inherent antibacterial and sensing attributes. This engineered hydrogel framework
was seamlessly integrated with a Bluetooth module, enabling the wireless transmission
of temperature fluctuations to a smart device. This innovative amalgamation of a con-
ductive hydrogel dressing with wireless transmission capabilities achieved the seamless
and real-time monitoring of wound temperature. This capability would contribute to
the early identification of potential infections. The demonstrated feasibility of this con-
cept presents a compelling avenue for advancing novel approaches in enhancing wound
care and facilitating advancements in various pathological diagnostics and treatments.
Huiwen Pang et al. [93] developed a temperature-responsive adhesive hydrogel based
on mussel-inspired dopamine chemistry and core–shell nanoparticle-regulated dynamic
cross-linking. Poly (N-isopropyl acrylamide) (PNIPAM) was used as the hydrogel skele-
ton, endowing the hydrogel with intelligent thermal sensitivity. Core-shell nanoparticles
(NPs), characterized by precise size control, were synthesized via the method of reversible
addition-fragmentation chain transfer (RAFT) dispersion polymerization. These nanoparti-
cles functioned as dynamic crosslinking cores, leading to a notable enhancement in both
the adhesion and mechanical attributes of the resulting hydrogel structure.
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Figure 15. Formulation approaches for a thermo-responsive hydrogel dressing, embedded with
a wireless Bluetooth module to facilitate the continuous real-time monitoring of wound tempera-
ture [92].

In recent years, photothermal therapy is an area of rapid development in treating
wound infection and cancers, due to its advantages of spatiotemporal control,
non-invasiveness, few side effects on normal tissues, and low cost. Photoresponsive
nanocomposite hydrogels have been widely used in photothermal therapy [94–99].
Xin Yang et al. [100] developed an innovative hydrogel system, based on MXene, that
was engineered to possess responsive characteristics to both light and magnetism, along
with the ability to control drug delivery. This design was specifically tailored to address the
challenges of healing deep, chronically infected wounds (depicted in Figure 16). A novel
class of intelligent drug carriers was developed by incorporating MNPs@MXene magnetic
colloids into a dual-network hydrogel composed of PNIPAM and alginate. This carrier was
further enriched with the inclusion of AgNPs (silver nanoparticles). The resulting MXene-
based hydrogel system, which was capable of responding to specific stimuli, demonstrates
the considerable potential for effectively addressing the healing of deep, chronic wounds
and holds promise for use in various biomedical applications.
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Figure 16. Schematic depiction of the fabrication and utilization of a responsive MXene-based
hydrogel system. (a) The formation and drug release process of the MXene−based hydrogel sys-
tem. (b) Deep chronic infected wound treated with NIR responsive AgNPs−loaded MXene−based
hydrogel system [100].

A summary of these hydrogel dressings with wound monitoring and treatment func-
tions can be found in Table 1.

Table 1. Hydrogel dressings with wound monitoring and treatment functions for different chronic
wound types and their advantages and limitations.

Types of
Chronic Wound

Types of
Monitoring

Monitoring and Treatment
Components Advantages Limitations Ref.

Infected wound

pH

Brilliant Yellow, cabbage
juice, and

gentamicin-loaded alginate
fibers

Offer comprehensive
monitoring and treatment

based on accurate and
timely wound information

The exudate itself may be affected
by color [36]

pH Litmus, convolutional
neural network

Prevent or reduce the risk
of bacterial infection

The wound cannot be treated
accurately, and the solvent

replacement method used in the
preparation of hydrogels is

time-consuming

[73]

pH

Bromothymol blue,
near-infrared absorption

conjugated polymers,
chitosan

In situ visual diagnosis of
bacterial infection and
photothermal therapy

Easy leaching of dyes [38]

pH Curcuma longa extract Visual detection,
antibacterial

Inaccurate monitoring ability, easy
leaching of dye, and poor wound

healing effect
[74]

Temperature Temperature sensor and
four UV-LEDs, gentamicin

Flexibility, compatibility,
high monitoring sensitivity,

and durability

High cost, short service life of
response elements, and can only be

used as disposable dressings
[81]

pH,
temperature

Potentiometric pH sensors,
NIPAM

Dual response of pH and
temperature, precise

monitoring, and treatment
High-cost and complex preparation [82]
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Table 1. Cont.

Types of
Chronic Wound

Types of
Monitoring

Monitoring and Treatment
Components Advantages Limitations Ref.

Burn wound

Temperature Silver nanoparticles Excellent antibacterial
activity

Cannot monitor the wound
microenvironment [78]

Temperature NIPAM, diclofenac sodium Controlled and targeted
drug delivery

Inaccurate perception of
temperature changes [80]

Diabetic wound

pH, glucose Schiff base, phenyl borate
base, insulin, fibroblasts

Effective control of blood
glucose levels treats

diabetic wounds

The rate of insulin release is not
well controlled [84]

pH, glucose
Phenyl borate ester bond,
metformin, copper-loaded
dopamine nanoparticles

pH and glucose responses
to controlled treatment,

self-healing, good
injectability, and adhesive

properties

The rate of metformin release is not
well controlled [40]

pH, glucose
Phenol red, glucose oxidase

(GOx), horseradish
peroxidase

Effectively monitor pH and
glucose changes Horseradish peroxidase is needed [37]

Temperature,
glucose

NIPAM, methyl acrylamide
phenyl boric acid

Continuous real-time
monitoring and

differentiation of
temperature, glucose

concentration, and wound
strain

Inaccurate perception of
temperature changes [69]

Pressure ulcers

Pressure
Imidazolidine ionic liquids,

polyvinyl alcohol,
acrylamide

Excellent pressure
sensitivity, real-time

responsiveness, stable
signal output, and superior

mechanical properties

Complex preparation process [39]

Pressure

2-(methacryloyloxy)-
N,N,N-trimethyl

ethylamine chloride,
dopamine hydrochloride

Effectively monitor human
health

The solvent displacement method is
time-consuming [85]

5. Commercial Hydrogel Dressings

While numerous hydrogel dressing products are currently available on the market,
hydrogel dressings integrating wound monitoring and treatment functionalities have not
been introduced thus far. For reference, Table 2 provides an overview of several hydrogel
dressing products that are commercially available [101,102].

Table 2. Some commercially available products incorporating hydrogel-based dressings.

Hydrogel Company City and Country Main Constituent

Algisite M Smith & Nephew London, United Kingdom Alginate

Amniomatrix®4 Derma Sciences Inc. Pennsylvania, United States Amniotic membrane and fluid
constituents

Comfeel® Plus Contour Dressing Coloplast Corp. Guangdong, China Carboxymethylcellulose
CovaWound™ Hydrocolloid

dressing
Covalon Technologies, Ltd. Georgia, United States Hydrocolloids

Cutimed® Gel Bsn Medical Gmbh Hamburg, Germany Carbomer 940
DermaFilm® DermaRite Industries, LLC New Jersey, United States Hydrocolloids
Helix3-cm® Amerx Health Care Corp. Florida, United States Collagen

Inadine™ Systagenix Nevada, United States Polyethylene Glycol
Kaltostat® Convatec Shanghai, China Alginate

Kendall™ Hydrogel Dressing Cardinal Health Ohio, United States Glycerin formulation
Sofargel Sofar Guangdong, China Carbopol 974P

Tegaderm™ Hydrocolloid
Dressing

3 M Health Care Leicestershire, United Kingdom Hydrocolloids
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6. Conclusions and Prospects

Chronic wounds encompass various types, each exhibiting distinct characteristics
that are influenced by changes in the wound microenvironment. Parameters such as
temperature, pH value, blood glucose concentration, and pressure undergo fluctuations
depending on the type and condition of the wound. Hydrogels, composed of hydrophilic
polymers, are promising materials for constructing multifunctional platforms. These
hydrogels possess several advantageous properties, including a 3D network structure,
high permeability to water and oxygen, and biocompatibility. By utilizing hydrogels as
substrates, it is possible to design hydrogel dressings with pH-sensitive, temperature-
sensitive, glucose-sensitive, and pressure-sensitive properties. In this paper, several types
of wound monitoring and therapeutic hydrogel wound dressings have been introduced
in detail, including a pH-sensitive hydrogel dressing, thermo-sensitive hydrogel dressing,
blood-glucose sensitive hydrogel dressing, pressure-sensitive hydrogel dressing, and nano-
composite hydrogel dressing. These hydrogel dressings with wound-monitoring functions
can also facilitate treatment, based on the monitoring results.

Nonetheless, the development of wound monitoring and therapeutic hydrogel dress-
ings presents several significant challenges. Firstly, enhancing the precision of monitoring
hydrogel dressings for parameters such as pH, temperature, and blood glucose is imper-
ative. Achieving greater accuracy in these aspects is crucial. Furthermore, the real-time
acquisition of dynamic data from monitored wounds poses a time-sensitive challenge. An
instance of this is the use of hydrogel dressings employing pH-sensitive dyes to gauge
wound microenvironment changes; measurements such as alterations in color could be
susceptible to interference from wound exudate, thereby affecting monitoring precision.
Secondly, the biocompatibility of hydrogel dressings must be meticulously addressed.
Notably, the nanoscale constituents utilized in nanocomposite hydrogel dressings, such
as nanoparticles, necessitate thorough scrutiny. Although these nanomaterials impart
remarkable antibacterial attributes and facilitate controlled drug release, concerns arise
regarding the potential impact of releasing nanoparticles into the human circulatory system
via wound sites. The accumulation of nanoparticles in the body might trigger adverse
reactions such as blood clot formation. Lastly, the commercialization of hydrogel dressings
that are embedded with wound monitoring and treatment capabilities represents another
formidable hurdle. The utilization of newly designed materials in the majority of contempo-
rary hydrogel dressings necessitates sustained testing prior to market launch. Furthermore,
many wound-monitoring hydrogel dressings are still in the experimental phase. The ma-
jority of these products are disposable, and their journey toward commercialization is
lengthy and intricate. Addressing these multifaceted challenges requires interdisciplinary
collaboration, rigorous testing, and continual innovation to ultimately realize the successful
integration of wound monitoring and therapeutic functionalities into hydrogel dressings
on a commercial scale.

The future prospects regarding hydrogel dressings with wound monitoring and treat-
ment functions can be summarized as follows:

1. The development of multifunctional hydrogel dressings is promising. For example,
hydrogel dressings can monitor the wound microenvironment and also have excellent
antibacterial, anti-inflammatory, antibleeding, mechanical properties, injectable, and
self-healing properties;

2. The need for the preparation of hydrogel dressings that can meet all the requirements
in the whole process of wound healing is urgent. Since the wound repair process is
complex and involves dynamic changes in various parameters, providing functionality
on demand is a direction for further research;

3. The integration of wound microenvironment monitoring and telemedicine is an
important direction. It is of great interest to develop a hydrogel wound dressing that
can simultaneously monitor the state of the wound’s microenvironment and inform
the physician. A hydrogel dressing with wound monitoring and treatment functions
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can guide doctors to remotely control the treatment of wounds, which may be the
future trend.
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