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Abstract: The binding of actinide ions (Am(III) and U(VI)) in aqueous solutions by hybrid
silica–hyperbranched poly(ethylene imine) nanoparticles (NPs) and xerogels (XGs) has been studied
by means of batch experiments at different pH values (4, 7, and 9) under ambient atmospheric condi-
tions. Both materials present relatively high removal efficiency at pH 4 and pH 7 (>70%) for Am(III)
and U(VI). The lower removal efficiency for the nanoparticles is basically associated with the compact
structure of the nanoparticles and the lower permeability and access to active amine groups compared
to xerogels, and the negative charge of the radionuclide species is formed under alkaline conditions
(e.g., UO2(CO3)3

4− and Am(CO3)2
−). Generally, the adsorption process is relatively slow due to the

very low radionuclide concentrations used in the study and is basically governed by the actinide
diffusion from the aqueous phase to the solid surface. On the other hand, adsorption is favored
with increasing temperature, assuming that the reaction is endothermic and entropy-driven, which
is associated with increasing randomness at the solid–liquid interphase upon actinide adsorption.
To the best of our knowledge, this is the first study on hybrid silica–hyperbranched poly(ethylene
imine) nanoparticle and xerogel materials used as adsorbents for americium and uranium at ultra-
trace levels. Compared to other adsorbent materials used for binding americium and uranium ions,
both materials show far higher binding efficiency. Xerogels could remove both actinides even from
seawater by almost 90%, whereas nanoparticles could remove uranium by 80% and americium by
70%. The above, along with their simple derivatization to increase the selectivity towards a specific
radionuclide and their easy processing to be included in separation technologies, could make these
materials attractive candidates for the treatment of radionuclide/actinide-contaminated water.

Keywords: Am-241 and U-232; dendritic polymers; silica xerogels; composites; dendrimers;
water purification; radioactive wastewater; radionuclide removal; thermodynamic; environmental
remediation; water decontamination

1. Introduction

Americium (Am) and uranium (U) are two elements belonging to the actinide series [1].
These elements exhibit different species when subjected to different pH environments and
oxidation states. In aqueous solutions, uranium forms various hydrolysis and carbonate
complexes, such as UO2

2+ in acidic conditions, UO2(OH)2 and UO2OH+ near neutral pH,
and UO2(CO3)2

2−, UO2(CO3)3
4− in alkaline environments [2,3]. On the other hand, for

americium, Am3+ dominates in acidic aqueous solutions and under normal conditions,
Am(III)-hydroxycarbonate (Am(CO3)(OH)) shows limited solubility, and Am(CO3)3

3− is
the dominant species in alkaline aqueous environments [4,5]. In the literature, there are
only a few studies that report on the adsorption of these two radionuclides by various
adsorbent materials such as microplastics [6] and aerogels [7]. According to those studies,
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the adsorption mechanism seems to depend on both the radionuclide speciation and the
surface-active sites, including charge/polarization and complex formation properties.

Due to the severity of the continuously increasing accumulation of these radioactive
ions in aquatic media, there has been extensive research on appropriate methods such
as cation exchange, precipitation, and extraction to address the problem. Adsorption,
though, is established as the most effective. The incorporation of radionuclides into the
substrates proceeds mainly via two mechanisms: (1) electrostatic attraction between the sol-
ubilized ion forms and oppositely charged adsorbents producing outer sphere complexes or
(2) formation of coordination compounds with the terminal functional groups of the ad-
sorbents (e.g., -COOH, -NH2, -OH) yielding inner-sphere complexes [8,9]. Effective and
specific pollutant retention materials were discovered to demonstrate extraordinary prop-
erties. More specifically, from a purely organic point of view, microplastics [10], biopoly-
mers [11], and conventional polymers [12] are the more promising representatives while
distinguished classes of inorganic compounds include metal oxides [13], minerals [14], and
carbon allotropes [15]. The combination of organic and inorganic moieties expectedly yields
a wider variety of prominent adsorbents such as, for instance, metal–organic frameworks
(MOFs) [16], aerogels [17–20], organic–inorganic composites [21,22], and hybrids [23,24].

The applicability of dendritic polymers [25–27] in water purification is nowadays
well established [28]. This fourth class of macromolecular architecture is generated by the
replacement of the typical linear polymerization, branching, or crosslinking with radial
propagation of the monomeric units [29]. Because of their noteworthy, branched architec-
ture, reminiscent of the tree-like structures commonly encountered in nature (roots and
branches of trees, arteries, and river deltas [30]), they may adapt to almost all conventional
pollutant removal methods. For this reason, there is a wealth of literature on adsorption [31],
catalytic degradation [32], and ultrafiltration [33] procedures. The efficacity of all main
dendritic classes relies on the three main structural components that define their architec-
ture: (a) The core or focal point in the case of dendrons; (b) the internal containing cavities
formed by the polymerized units: the “branches” of the “tree”. They define the adsorption
properties of the whole molecule and may be modified accordingly to incorporate the
majority of pollutants; (c) the peripheral groups that may undergo functionalization to
fine-tune solubility, electrostatic interactions, and any other desired property.

Since adsorption proved the more prosperous method for aquatic systems remediation
from industrial radioactivity pollution, research on the performance of dendritic polymers
in this particular domain attracted analogous interest that led to the development of
specialized solutions [34–37]. To extend the proof of concept to an economically feasible
implementation, the first requirement is diminishing the cost of the dendritic polymer. An
obvious approach is to replace the expensive dendrimers [38–42] with their non-symmetric
counterparts, hyperbranched polymers [43–49]. Their properties and overall behavior are
similar, and they have already taken the place of their monodisperse counterparts in many
implementations in diagnostics [50–52], biosensors [53,54], antimicrobial protection [55],
liquid crystals [56,57], and drug delivery [58].

A second necessity is a supporting substrate that protects the organic moieties from
chemical degradation and preferably also possesses pollutant retention capacity or other
separation capabilities such as magnetic susceptibility. The combination with porous inor-
ganic materials [59] is the most obvious formulation. There are three main approaches in
this direction: (a) simple impregnation of the carrier with a solution of the hyperbranched
polymer [60]; (b) chemical grafting of the dendritic polymer to the substrate [61,62];
(c) immobilization of a functionalized derivative by polymerization into the pores of
the supporting scaffold [63].

A fourth perspective that addresses both ecological and economic issues is based on
the ability of hyperbranched poly(ethylene imine) (PEI) to mimic the action of silaffins
and produce silica nanospheres [64]. Alternatively, the same molecules may intervene in
the hydrogen bond network that forms during the gelation of orthosilicic acid and thus
produce xerogels after drying. Both silica–PEI composites exhibited potent adsorbing
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capability for many aqueous pollutants [65,66]. The two synthesis procedures are very
simple and take place at room temperature with no involvement of toxic organic solvents
or byproducts. The present work aims to test these two species’ (nanospheres and xerogels)
radionuclide adsorption kinetics and thermodynamics. The binding efficiency has been
evaluated in terms of the linear adsorption constant Kd and the relative removal efficiency.
The study will be performed for factors such as pH and temperature for ultra-trace level
as well as in seawater to define the optimal uranium and americium removal conditions.
Although other studies on the removal of uranium, thorium [67], and other radionuclides
have been reported [68], to the best of our knowledge, this is the first study on hybrid
silica–hyperbranched poly(ethylene imine) nanoparticle and xerogel materials used as
adsorbents for americium and uranium present in the studied solutions at ultra-trace levels
(about nine orders of magnitude lower actinide concentration). We have also included
americium in the present study, because americium is present, like other trans-uranium
elements at very low levels, in marine environments because of global fallout from nuclear
bomb tests, accidental releases (e.g., the Fukushima accident), and effluent discharges from
irradiated fuel reprocessing [69–71]. However, studies dealing with americium removal
from radioactively contaminated waters are limited and mainly associated with the use of
inorganic adsorbents/exchangers from intermediate (waste)water solutions [68,72].

2. Results and Discussion
2.1. Xerogel and Nanoparticle Characteristics

As established in the experimental section, the two different forms of hybrid silica–PEI
composites arise by modification of the orthosilicic acid/hyperbranched PEI ratio. The
most profound difference thus is the dendritic polymer content of the nanoparticles, which
is more than double that of the xerogel [66]. The higher number of positively charged amino
groups has a secondary consequence. The external charge of both adsorbents at pH 3 is
similar. Their behavior though by increasing pH is completely disparate. The nanoparticles
remain positive even at pH 9, albeit of a much lesser charge. Their behavior is very
similar to that previously observed in a detailed investigation performed for analogous
nanoparticles formed by the mediation of hyperbranched PEI with Mw 5000 [65]. In
contrast, an abrupt reverse is observed for the xerogels that became negative even at
pH 4 (Figure 1). It is important to note that the ζ potential values of xerogels are in between
those of the hyperbranched-PEI silica nanoparticles and those of pure silica nanoparticles
that are slightly positive at pH 2 and became negative at pH 3.
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Besides the composition, the role of hyperbranched PEI is different in the creation of
the final hybrid material. In the case of nanoparticles, the dendritic polymer functions as a
catalyst and matrix and is positioned in the core of the composite enveloped by a shell of
the produced silica. In the case of gels, there are no indications that PEI promotes gelation.
Xerogel conformation has much lower anisotropy and consists both in the interior and the
exterior of “islands” of dendritic polymers surrounded by a “sea” of siloxane and silanol
groups. In this way, the cavities of the adsorbing polymer are more exposed to the radionu-
clides. Another significant variance is the pore structure. The xerogels have larger BET
surfaces but much smaller pores (BET surface for PEI 750,000 nanoparticles is 271.4 m2/g;
BET surface for PEI 750,000 xerogel is 139.0 m2/g; mean pore size dmean as 4000·TPV/SBET
is 6.8 nm for xerogel and 18.4 nm for nanoparticles) [66]. The most important advantage of
xerogels, though, is their capability to be readily formed in restricted media such as, for
instance, the pores of a ceramic support by simple immersion of the latter into a precursor
gel solution. Thus, in addition to the classical powder formulation that may be dispersed
into the contaminated water, there is also the option of coatings applied to continuous
filtration filters. Their stability will be secured due to the in situ polymerization.

Based on the above, the binding of the actinides by the nanoparticles and xerogels is
expected to occur via cation exchange between protons and the U(VI) or Am(III) cations
and inner-sphere complex formation between the actinide cations and the polyimine
moieties. Ion-exchange and inner-sphere complex formation occur successively, particularly
in the acidic pH region, where both studied actinides (Am(III) and U(VI)) are expected
to be positively charged. Specifically, when the actinide cations approach the protonated
imine groups, the proton is exchanged by the actinide ion (ion exchange), which is then
complexed by the imine groups through the interaction between the amine lone pair and
the empty actinide orbitals. In the neutral and alkaline pH region (due to the extremely low
actinide concentration), the actinide complexation may occur directly with the partially
de-protonated amino groups [67]. In the case of uranium (e.g., uranyl moiety), interaction
of the uranyl oxygens and ammonium protons is also possible, favoring surface binding of
U(VI) (Figure 2) [6,7].
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2.2. Adsorption Kinetics

The time evolution of the relative actinide ion binding at pH 4, pH 7, and pH 9
is graphically presented in Figure 3a–c. It is clear that the adsorption kinetics differ
significantly between the different adsorbents (e.g., nanoparticles and xerogels) and actinide
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ions (e.g., U(VI) and Am(III)) and that pH plays a main role since it determines both the
charge of the surface and the actinide speciation in solution. According to the kinetic
data, which have been obtained for the adsorption of uranium and americium by the
nanoparticle and xerogel adsorbents at three different pH regions, generally, uranium
presents higher adsorption rates compared to americium. Regarding the adsorbents, under
acidic conditions (pH 4) the nanoparticles present higher adsorption kinetics for both
radionuclides, whereas at pH 9 the xerogels show higher adsorption kinetics than the
nanoparticles. Under neutral conditions, the adsorption kinetics are almost similar, except
for the adsorption of americium by the nanoparticles, which present lower adsorption
kinetics. Moreover, the experimental kinetic data are well described by the Lagergren
equation (e.g., the pseudo-first-order kinetic model), indicating that the binding rate is
dependent only on the actinide concentration, which is expected for systems performed at
ultra-trace levels [73]. Following, the thermodynamic experiments were evaluated after
10 days of contact time in order to assure equilibrium conditions.
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ultra-trace levels at (a) pH 4, (b) pH 7, and (c) pH 9. Experimental conditions: 0.5 Bq/mL U-232 and
Am-241 in 10 mL total volume and ambient conditions.

2.3. pH Effect on the Actinide Binding Efficiency

The % relative actinide ion removal by the nanoparticle and xerogel adsorbents is
graphically presented in Figure 4 and indicates that in the case of xerogels, the pH does
not significantly affect the removal efficiency. On the other hand, the nanoparticle affinity
towards both radionuclides is considerably affected by pH. Specifically, the % relative
removal decreases with increasing pH, and at pH 9 the values of the relative removal are
below 50%. To understand this behavior, we must take into account the predominant
radionuclide species at each pH and their charges in conjunction with those of the adsor-
bents [7]. At low pH levels, the predominant ion species (Am3+, UO2

2+) are positively
charged and electrostatically rappelled by the homonymous charges of both adsorbents.
Yet, their removal from the aqueous solution proceeds smoothly and is almost complete
in the case of nanoparticles that exhibit a higher positive charge. This is a strong indica-
tion that adsorption proceeds mainly via the chelation mechanism affording inner-sphere
complexes. At neutral pH, the americium ions are positive (Am3+, AmCO3

+), justifying a
small improvement in their incorporation into the negatively charged hydrogels. Uranium
counterparts are neutral (UO2CO3) or positive (UO2OH+), and a possible explanation for
the slight drop in the adsorption must be sought to the larger ion sizes and the core–shell
structure of the nanoparticles. It seems that the bigger species are struggling to pass through
the porous silica entourage to form coordination compounds with the hyperbranched PEI
core. This effect becomes more intense in basic solutions where the negatively charged and
much bulkier actinide species (UO2(CO3)3

4−, Am(CO3)2
− present a slightly lower affinity

to the homonymous xerogels by repelling one another and experience a far greater steric
hindrance when crossing the silica periphery of the nanoparticles, resulting in considerably
lower removal efficiency. Moreover, the data indicate that both materials present a higher
affinity for U(VI) compared to Am(III). Compared to alginate aerogels, the xerogels present
significantly higher removal efficiency for both uranium and americium [7]. Similarly, the
nanoparticles show higher relative removal efficiencies, except for pH 9, where the relative
removal declines to values below 50%.

Regarding the Kd values (Figure 5), the highest values have been determined for
the U(VI) adsorption by XG, which reaches a maximum value in neutral solutions. This
behavior is attributed to the competitive reaction of protons in the acidic pH region, which
occupy binding sites on the composite surface and the UO2(CO3)3

4− species, the formation
of which is favored in the alkaline pH region (pH 9) stabilizing U(VI) in solution [74]. On



Gels 2023, 9, 690 7 of 16

the other hand, for the nanoparticles that present generally lower Kd values, the maximum
Kd value is observed in the weak acidic pH region (pH 4) and drops dramatically with
increasing pH. Regarding Am(III), the associated Kd values present similar behavior with
the corresponding Kd values of U(VI). However, the associated Kd values of Am(III) are
significantly lower than the corresponding Kd values of U(VI). The higher affinity of the
xerogels and nanoparticles for U(VI) is of particular interest regarding uranium separation
from trivalent actinide- and lanthanide-containing solutions. However, the associated Kd
values are orders of magnitude lower, indicating lower chemical affinity of the xerogels
and nanoparticles for the studied actinides compared to the alginate aerogels. This could
be associated with the lower density of the alginate aerogels but also with the fact that the
PEI xerogels and nanoparticles have a larger number of binding sites available for actinide
ion complexation compared to the alginate aerogels [5,22].
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The removal of actinides (including americium and uranium) from low and in-
termediate active solutions has been studied using inorganic adsorbents/exchangers
(e.g., titanosilicates, layered manganese oxides, iron and titanium oxides, and nano-cerium
vanadate [71,75–77]. The associated adsorption kinetics are significantly faster and the
adsorption efficiencies (% removal and Kd values) remarkably higher. However, both the
faster kinetics and the higher adsorption efficiencies could be ascribed to the significantly
higher actinide concentrations used in those studies, which are more than several orders of
magnitude higher than the uranium and americium levels used in the present study.

2.4. Adsorption Thermodynamics

The temperature effect on the relative actinide ion removal is shown in Figures 6 and 7
for uranium and americium, respectively. The temperature increase from 25 ◦C to 35 ◦C
generally results in an increase in the removal efficiency, indicating that the binding is
favored with increasing temperature and that the entropy governs the adsorption process.
However, at 45 ◦C the removal efficiency declines significantly due to changes in the
structure of the adsorbents, which is associated with solvent molecule release at the given
temperature. A similar effect was observed also in a previous study investigating the U(VI)
adsorption by the same type of adsorbents at increased uranium concentrations [66]. Hence,
the thermodynamic parameters ∆H◦ and ∆S◦ have been evaluated for the three different
pH areas using the experimental data obtained at 25, 30, 35, and 40 ◦C, and the associated
lnKd vs. 1/T are presented in the supplementary information (Figures S1–S3).
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Figure 6. % relative removal of U(VI) by nanoparticles (NPs) and xerogels (XGs) at ultra-trace levels
as a function of pH and temperature. Experimental conditions: 10 mL of the solution, with 0.5 Bq/mL
for both U-232 and Am-241 tracers, in different pH (pH = 4, 7, 9) and temperatures (25, 35, 45 ◦C).

The thermodynamic parameters ∆H◦ and ∆S◦ for the actinide ion adsorption by
the xerogels and nanoparticles at pH 4, pH 7, and pH 9 have been evaluated using the
linear form of the Van’t Hoff formula, and the associated data are graphically shown in
Figures 8 and 9, respectively. According to the data in Figure 8, the ∆Ho values are positive,
suggesting an endothermic process. The lowest ∆Ho values for uranium are observed in
the acidic pH area (pH 4) and the highest in the neutral pH area (pH 7) for the xerogels
and in the alkaline area (pH 9) for the nanoparticles. For americium, the lowest ∆H◦ values
have been determined at pH 7 and pH 4, for the xerogels and the nanoparticles, respectively.
On the other hand, the highest ∆H◦ values for americium have been determined at pH 4
and pH 9 for the xerogels and the nanoparticles, respectively. Moreover, the nanoparticles
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present significantly higher ∆H◦ values for both radionuclides at pH 9. The latter is most
probably associated with the formation of negatively charged species (e.g., UO2(CO3)3

4−

and Am(CO3)2
−) in the alkaline pH range, which are extensively stabilized in solution. The

endothermic character of the U(VI) surface binding at ultra-trace radionuclide levels has
also been observed for the U(VI) binding by oxidized biochar fibers at pH 4 [73]. However,
in the case of Am(III) binding by oxidized biochar fibers at pH 4, the adsorption process
was exothermic and close to the values observed for the Am(III) adsorption by nanoparticles
at pH 4.
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with 0.5 Bq/mL for both U-232 and Am-241 tracers, in different pH (pH = 4, 7, 9) and temperatures
(25, 35, 45 ◦C).
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Figure 8. ∆H◦ of the actinide ion adsorption by nanoparticles (NPs) and xerogels (XGs) at ultra-trace
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Figure 9. ∆S◦ of the actinide ion adsorption by nanoparticles (NPs) and xerogels (XGs) at ultra-trace
levels at pH 4, 7, and 9. Experimental conditions: 10 mL of the solution, with 0.5 Bq/mL for both
U-232 and Am-241 tracers, at different temperatures (25, 35, 45 ◦C).

2.5. Radionuclide Interaction in Seawater

The removal efficiency of the americium and uranium radionuclides from seawater
has been investigated after tracing seawater samples with americium-241 and uranium-232
and contacting them with the NP and XG adsorbents. The associated data are shown
in Figure 10 and point out that, in the case of XG, the adsorption efficiency for the two
actinides is similar (~90%). On the other hand, the NP adsorbents present slightly higher
adsorption efficiency for uranium (~80%) compared to americium (70%).
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Figure 10. % relative U(VI) and Am(III) removal by nanoparticles (NPs) and xerogels (XGs) at
ultra-trace levels from seawater samples. Experimental conditions: 10 mL of the seawater solution,
with 0.5 Bq/mL for both U-232 and Am-241 radionuclides.

The higher affinity of the adsorbents is depicted in Figure 11, which summarizes
the Kd values of NPs and XGs for uranium and americium. According to the data in
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Figure 10, the XGs possess higher chemical affinity for both radionuclides compared to the
NP adsorbents, and the latter present significantly higher affinity for uranium compared to
americium. This effect is similar to and has been observed also in laboratory/de-ionized
water solutions. Nevertheless, despite the relatively low Kd values, both materials present
far higher removal efficiency of americium and uranium from seawater than oxidized
biochar [72] or even X-alginate aerogels [7]. Xerogels could remove both actinide isotopes
from seawater by almost 90%, whereas nanoparticles could remove uranium by 80% and
americium by 70%. The above, along with their simple derivatization to increase the
selectivity towards a specific radionuclide and their easy processing to be included in
separation technologies, could make these materials very attractive for the treatment of
radionuclide/actinide-contaminated waters.
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Figure 11. Adsorption efficiency (log10Kd) of U(VI) and Am(III) by nanoparticles (NPs) and xerogels
(XGs) at ultra-trace levels from seawater samples. Experimental conditions: 10 mL of the seawater
solution, with 0.5 Bq/mL for both U-232 and Am-241 radionuclides.

3. Conclusions

The conclusions that can be drawn from this study are the following:

• Hybrid silica–hyperbranched poly(ethylene imine) nanoparticles and xerogels present
relatively high removal efficiency at pH 4 and pH 7 (>70%) for Am(III) and U(VI).

• Generally, the adsorption process is relatively slow due to very low radionuclide
concentrations and is governed by the actinide diffusion from the bulk solution to the
composite surface.

• The actinide binding by the NP and XG composites is favored by increasing tempera-
ture indicating an endothermic and entropy-driven binding reaction.

• Compared to other adsorbents, which have been investigated regarding the removal
of the studied actinide ions, both composites show far higher removal efficiency
from laboratory and seawater samples, which is for xerogels almost 90% and for
nanoparticles about 80% for uranium and 70% for americium.

• The simple derivatization of NPs and XGs to increase the selectivity towards specific ac-
tinides and other metal ions, along with their easy implementation in water treatment
technologies, could make these materials attractive candidates for the decontamination
of actinide-contaminated waters, including seawaters.
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4. Experimental Section
4.1. Synthesis of the Composite Silica–PEI 750,000 Nanoparticles

A variation of the method proposed by Knecht et al. [78,79] for poly(amidoamine)
PAMAM and poly(propylene imine) PPI dendrimers was employed for the preparation of
the silica–PEI nanocomposites, as reported in our previous work [65]. In brief, a solution
of hyperbranched PEI 750,000 (Mn = 750,000 BASF, Ludwigshafen, Germany) solution
20 mM in primary and secondary amines was prepared by dissolving 0.29 g PEI 750,000 in
250 mL 20 mM phosphate buffer pH 7.5 (K2HPO4 Carlo Erba Reagenti, Rodano, Milano,
Italy, KH2PO4 Merck Darmstadt Germany). Then, 1 mL of this solution was added to
10 mL orthosilicic acid (1 M) prepared from the hydrolysis tetra ethoxy silane (Sigma-
Aldrich, Steinheim, Germany) in 5 mM HNO3 under vigorous stirring for 15 min. Silica
precipitate was collected after centrifugation (10 min 12,000× g), washing with water, and
drying under vacuum over P2O5 (Sigma-Aldrich, Steinheim, Germany); yield 77%.

4.2. Synthesis of the Silica–PEI 750,000 Xerogels

This procedure is also described in detail in previous work [80]. Similar acid hydrolysis
of a 1 M tetraethoxysilane solution (Sigma-Aldrich, Steinheim, Germany) with 25 µL HNO3
under stirring for 15 min produced 1 M orthosilicic acid. To 5 mL of this solution, 5 mL
of PEI 750,000 (BASF, Ludwigshafen, Germany) aqueous solution (40 mM in primary and
secondary amine groups) was added. The pH of the gel precursor solution was adjusted to
7.5 by adding K2HPO4 powder (Carlo Erba Reagenti, Rodano, Milano, Italy). Hydrogel
formation was observed after about 1 to 2 h, and the reaction product was dried overnight
over phosphorus pentoxide (Sigma-Aldrich, Steinheim, Germany) under vacuum to yield
the silica–PEI 750,000 xerogel.

4.3. Adsorption Experiments

All adsorption experiments were conducted in 20 mL polyethylene vials under an
ambient atmosphere and at various temperatures (25, 30, 35, 40, 45 ◦C). The test and
reference solutions were prepared from the actinide standard solutions of uranium-232
(National Physical Laboratory, Teddington, UK) and americium-241 (North America Sci-
entific Inc., Los Angeles, CA, USA) with radioactivity levels of 4.923 and 12.05 kBq/g,
respectively. The composite adsorbents employed were based on dendritic poly(ethylene
imine) 750,000: silica–PEI 750,000 nanoparticles (NPs) and silica–PEI 750,000 xerogels (XGs).
The experiments were performed in de-ionized water solutions, and the pH was adjusted
to different values (pH 4, 7, and 9) using dilute aqueous solutions of NaOH and HCl and
seawater solution (SW). The seawater sample used in the present study was obtained from
a local beach in Cyprus, and the radioactive solutions were prepared after the SW was
filtered to remove any impurities. Radionuclides analysis was carried out using an alpha
spectrometer (Canberra) by using stainless steel discs previously deposited with the two
isotopes of U-232 and Am-241, as described elsewhere [81].

The adsorption experiments were performed in 10 mL of a mixture of
americium-241 and uranium-232 with an activity concentration of 0.5 mBq/mL for each
radioisotope, which corresponds to molar concentration, [U-232] = 8.6 × 10−14 mol/L and
[Am-241] = 8.17 × 10−13 mol/L. A small amount of 0.005 g for each material was added to
the solution, and the adsorption kinetics was studied for 10 days. The mixture in the flasks
was stirred (45 min−1) on a shaker (SK-R1807, DLAB). At specific time intervals, a 50 µL
sample was taken from the test solutions, and the actinide concentration was determined
by means of alpha-spectroscopy. The alpha-spectrometer was previously calibrated by
sample analysis using a standard reference source.

As the concentration of radionuclides is in the picomole range and the binding sites
(B) of the composite surface are in large excess compared to the initial concentration of
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radionuclides, the partition coefficient, Kd, adequately describes the equilibrium associated
with the sorption of U-232 and Am-241:

Kd = Cads/Caq (L/Kg) (1)

where Cads (Bq/g) is the activity concentration of the actinide absorbed, and Caq (Bq/L) is
the concentration of the actinide in solution. The amount of U-232 and Am-241 adsorbed is
calculated by subtracting the number of actinides adsorbed on the walls of the polyethylene
vial from the total amount of actinide adsorbed.

To calculate the standard enthalpy (∆H◦) and entropy (∆S◦) of the system, the follow-
ing formula was used:

ln Kd =
−∆Ho

RT
+

∆So

R
(2)

The value of Kd is directly affected by both ∆H◦ and ∆S◦ and is inversely influenced
by temperature. The slope of the relationship is determined by dividing the ∆H by the
temperature (in Kelvin), multiplied by the gas constants (R). On the other hand, the intercept
is determined by dividing the ∆S◦ by the R.

The experiments were carried out in duplicate, and the data evaluation was based
on the mean values calculated from the results from the two different experiments. The
relative uncertainty, which is basically determined by the measurement uncertainty, was
estimated to be below 10%.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/gels9090690/s1, Figure S1: lnKd vs. 1/T of the actinide ion adsorption by nanoparticles
(NP) and xerogels (XG) at ultra-trace levels at pH 4. Experimental conditions: 10 mL of the solution,
with 0.5 Bq/mL for both U-232 and Am-241 tracers, at different temperatures (25, 30, 35, 40 ◦C);
Figure S2: lnKd vs. 1/T of the actinide ion adsorption by nanoparticles (NP) and xerogels (XG) at
ultra-trace levels at pH 7. Experimental conditions: 10 mL of the solution, with 0.5 Bq/mL for both
U-232 and Am-241 tracers, at different temperatures (25, 30, 35, 40 ◦C); Figure S3: lnKd vs. 1/T of
the actinide ion adsorption by nanoparticles (NP) and xerogels (XG) at ultra-trace levels at pH 9.
Experimental conditions: 10 mL of the solution, with 0.5 Bq/mL for both U-232 and Am-241 tracers,
at different temperatures (25, 30, 35, 40 ◦C).
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