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Abstract: Particulate matter (PM) pollution is a significant environmental and public health issue
globally. Exposure to high levels of PM, especially fine particles, can have severe health consequences.
These particles can come from a variety of sources, including natural events like dust storms and
wildfires, as well as human activities such as industrial processes and transportation. Although an
extensive development in air filtration techniques has been made in the past few years, fine particulate
matter still poses a serios and dangerous threat to human health and to our environment. Conven-
tional air filters are fabricated from non-biodegradable and non-ecofriendly materials which can
cause further environmental pollution as a result of their excessive use. Nanostructured biopolymer
aerogels have shown great promise in the field of particulate matter removal. Their unique properties,
renewable nature, and potential for customization make them attractive materials for air pollution
control. In the present review, we discuss the meaning, properties, and advantages of nanostructured
aerogels and their potential in particulate matter removal. Particulate matter pollution, types and
sources of particulate matter, health effect, environmental effect, and the challenges facing scientists
in particulate matter removal are also discussed in the present review. Finally, we present the most
recent advances in using nanostructured bioaerogels in the removal of different types of particulate
matter and discuss the challenges that we face in these applications.

Keywords: particulate matter removal; filtration; biopolymers; bioaerogels; nanostructured

1. Introduction

Air filtration biomaterials have recently become a research hotspot on account of the
increasing attention paid to the global air quality problem [1]. Particulate matter (PM) is
the pollution made up of particles (tiny pieces) of solids that are in the air that may include:
dust, dirt, etc. [2]. PM air pollutants result from both natural and anthropogenic sources.
Increased concentration of PM in the surrounding atmospheric environment devastates
human health [3]. Particulate matter has been divided into three different groups: the
first group is PM10, which includes coarse particles and relatively large particles. PM10
mostly describes inhalable particles, including those particles less than 10 micrometers
in diameters [4]. The second group is fine particle matter (PM2.5), which includes tiny
particles that can cause haziness to the air upon their elevation. PM2.5 are able to travel
deeply into the respiratory tract, reaching the lungs [5]. Exposure to fine particles can cause
short-term health effects such as eye, nose, throat, and lung irritation, coughing, sneezing,
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runny nose, and shortness of breath [6]. The third group is ultrafine particles (PM0.1),
which have an aerodynamic diameter of around 0.1 µm [7]. All three groups of PM form a
real danger to the human health since they have the ability to penetrate the human body
through the respiratory system. Therefore, the removal, or at least the reduction, of PM has
become a necessity for a safe environment.

Air filters have been used to capture different types of PM, including PM10 and
PM2.5 [8,9]. The PM filter industry has had tremendous progression, even though some
concerns and challenges still exist. First of all, the technology that has been used for existing
PM filters is lacking ecofriendly characteristics since remarkable amounts of solvents and
toxic materials are used for the electrospinning process that negatively influence human
health and the surrounding environment [10]. Moreover, the accumulating discarded
filters with high volumes of trapped PM constitute a direct threat to the environment.
Besides the toxicity, those PM filters were designed to capture PM at a small range of
concentration which is 1000 mg within the size of a cubic centimeter. In this case, those
filters are facing a great challenge to capture PM within highly polluted environments.
The capture of particulate matter via conventional and common purification technologies
basically focuses on size-dependent mechanisms, which in most cases is fairly difficult
due to the extremely small particle size of particulate matter and its ultra-low mass [11].
Conventional filters have been made of several materials such as fabrics, wool, cotton, etc.,
mostly without considering their pore size or removal efficiency. In the research of Liu
et al. [12], filters made of a polyamide-56 nanofiber/net had a high filtration effectiveness
of 99.995% for most of air pollutants. Although the filter was able to remove almost all
the particulate matter, the issue of using toxic and non-ecofriendly material is still present.
Other scientists have used PLA/PMMA composite nanofibers to solve the fine particle
matter issue and claim that they removed 99.5% of PM2.5 using synthetic stimulations [13].
Liu et al. [14] developed a superhydrophobic filter using a mix of synthetic polymers and
they were able to remove up to 96% of the PM2.5. Bioaerogels have been proposed for
PM filtration as ecofriendly and sustainable functional materials [15]. Bioaerogels are
known to have various advantages over synthetic-based materials such as regeneration,
biocompatibility, biodegradability, low density, high porosity, and a large specific surface
area [16,17]. They are three-dimensional nanoporous structures with high surface area and
porosity, derived from biopolymers such as chitosan, cellulose, alginate, or proteins [18,19].
These aerogels exhibit unique properties that make them attractive for various applications
across multiple industries. Thus, extensive studies have been conducted regarding the
fabrication, modification, and application of aerogels in the past few years, which can be
observed from the increased number of scientific publications in the past ten years together
with concerns about the adverse health effects of particulate matter pollution (Figure 1).

In the early periods of the air industrial revolution, filters were used to purify the
atmosphere from particulate matter [20]. Air filters were developed rapidly during that
period of time using different precursor materials. However, currently, there is growing
interest in finding inexpensive, abundant, and effective materials to use as effective air
filtration with much focus on natural organic polymers, mainly from agriculture. Several
researchers have prepared effective biopolymer-based aerogel filters for particulate matter
removal [21,22]. In this review, we discuss the meaning, properties, and advantages of
nanostructured aerogels and their potential in particulate matter removal. Particulate
matter pollution, types and sources of particulate matter, health effects, environmental
effects and the challenges facing scientists in particulate matter removal are also discussed
in the present review. Finally, we present the most recent advances in using nanostruc-
tured bioaerogels in the removal of different types of particulate matter and discuss the
challenges that we face in these applications. The review will conclude by summarizing
the potential of biopolymer aerogels as a sustainable and effective solution for PM removal.
It will emphasize the advantages of biopolymer aerogels over other materials, highlighting
their potential for further research and development in the field of air pollution control.
By critically evaluating the performance of biopolymer aerogels in comparison to other
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works, this review paper aims to provide a comprehensive understanding of their potential
for PM removal. The insights gained from this review will contribute to the develop-
ment of innovative and efficient materials in addressing the pressing issue of particulate
matter pollution.
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2. Nanostructured Bioaerogels

Nanostructured aerogels are a type of nanomaterial with porose diameters ranging
from 1 to 100 nm [23]. They are considered excellent alternative adsorbents and filters due
to their extremely large surface area, exceptional chemical surface properties, and broad
range of selectivity for pollutants [24]. The pore size of nanostructured aerogels can be
modified by changing the precursor material(s) or the fabrication technique or through
the addition of reinforcement materials. Nanostructured aerogels have been modified
using various materials including polymers, inorganic carbon, metal oxides, and silica [25].
Aerogels have been extensively synthesized from natural biomass to have ecofriendly
properties, but the hydrophilic nature of biomass and most biopolymers is still a great
challenge. Most prepared biomass aerogels including white protein, whey protein, starch,
Arabic gum, chitosan, alginate, and pectin lack hydrophobicity, which make aerogels lose
their architecture in very humid conditions [26,27]. Several researchers aimed to improve
the stability and mechanical properties of biopolymer aerogels by using different chemical
modifications, but this raises the cost of production and produces non-ecofriendly materials.

2.1. Preparation of Nanostructured Bioaerogels

In recent years, there have been notable developments in the formation of various
forms of aerogels, such as biomass-derived, inorganic carbon-based, polymer-based, and
silica-based aerogels, among others [25]. Aerogels can be made from a wide range of
materials, and the properties of the aerogel depend on the material used [28]. However,
the absence of unique characteristics in a single material restricts the versatility of many
pure aerogels. As a result, composite aerogels offer a solution for numerous potential
applications by allowing for the enhancement, introduction, and development of new
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materials for a variety of new uses. The past few years witnessed the development of
several techniques for the fabrication of biopolymer-based nanostructured bioaerogels. But
all of these techniques follow the same basic principle: the gelation of polymeric suspension,
aging, and finally drying (Figure 2) [29].
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Aerogels with different properties can be obtained by varying the precursor material(s)
and/or the parameters of these three steps [28,30]. The unique properties of nanostructured
bioaerogels arise from the extraordinary flexibility as well as the resilience of the sol–gel
process to form the polymeric wet gel, followed by the drying stage. Drying the wet gel
(hydrogel) is a critical process that affects the properties of the material. Different drying
methods have been reported to result in different forms of materials; supercritical and
freeze drying mostly result in the formation of hydrogel [31,32], while ambient drying
produces xerogel [33]. In the gelation phase, the dissolution of the biopolymer(s) in the
solvent occurs, which then leads to network formation (crosslinking) in the second phase
in the aging process, which is critical to form a homogenous nanostructured aerogel [34].
Some biopolymers are able to directly form networks in the gelation phase such as chitosan
and gelatin, while other biopolymers like cellulose require the addition of curing factors
or crosslinker(s) to form the network [35,36]. Finally, removing the solvent is known as
the drying phase, which is referred to as the gel–aerogel transition [37]. The fabrication
techniques of nanostructured aerogels can be divided into two categories; the first category
is conventional techniques which include freeze drying [16], gas foaming [38], phase
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separation [39], and electrospinning [40]. These techniques are extensively discussed by
Abdul Khalil et al. [41]. Recent years have witnessed the development of the second
category, faster and computer-aided techniques able to professionally design the properties
of nanostructured aerogels. These techniques are known as rapid prototyping techniques
and include 3D printing [42], fused deposition modeling [43], selective laser sintering [44],
and stereolithography [45]. These techniques offer facile fabrication without the need for
any complex tools or equipment where the biopolymers are used as ink (bio-injected ink).
The properties of nanostructured aerogels such as porosity, shape, pore size, and volume
as well as mechanical properties can be all adjusted by varying the ratio of the precursor
materials and changing the preparation conditions [46].

2.2. Properties of Nanostructured Bioaerogels

Nanostructured bioaerogels are a special type of porous materials that possess unique
properties depending on the precursor material(s). These aerogels are typically made from
polysaccharides like cellulose, starch, chitosan, alginate, and pectin, which are abundant
and renewable sources of materials that can replace petroleum-based products [47]. Due to
their abundance, biodegradability, regeneration, and sustainability, bioaerogels are gaining
popularity and are being developed as a replacement for traditional aerogels [27]. These
aerogels have also been reported to possess remarkable air-purifying properties [48]. How-
ever, the mechanical properties of bioaerogels require improvement, and there is potential
for the further exploration of their ability to adsorb PM2.5 [49]. Although natural materials
are low cost, abundant, ecofriendly, and support the proper utilization of waste, their
high water and moisture absorption is inferior compared to the efficiency of synthetic
materials [49,50]. Their main disadvantages stem from their poor oleophilic/hydrophobic
properties. In order to improve these characteristics, combined technologies, including
the sol–gel technique and plasma treatment for achieving hydrophobic biopolymeric aero-
gels, are hypothesized to be stable in water and to have higher capacity for PM removal,
especially in humid condition [51].

The specific properties of the aerogels depend on the type of biopolymer used and
the preparation method employed. Nanostructured cellulose aerogel has several unique
properties; it has an extremely low density, which makes it one of the lightest solid materials
available [52]. Its density typically ranges from 0.01 to 0.5 g/cm3, which is much lower than
most other materials [53]. Owing to its nanopores, nanostructured cellulose aerogel has an
extremely high surface area per unit volume. Nanostructured cellulose aerogel has excellent
thermal insulation properties, making it useful as a building insulation material or as a
protective coating for industrial equipment [54]. Despite its low density, nanostructured
cellulose aerogel has been reported to have high mechanical strength and can withstand
significant compression without breaking, in addition to high water absorption due to its
porous structure [55]. This property makes it useful in various applications such as water
treatment, where it can absorb contaminants from water. Nanostructured chitosan aerogel
has been reported to have high porosity, typically in the range of 80–99% depending on
the concentration and preparation approach. Takeshita et al. [56] reported that the porosity
of aerogel is determined by its preparation method and it can be controlled by adjusting
various factors such as the concentration of chitosan, the type and concentration of the
crosslinking agent, the solvent used, and the drying method. Despite its high porosity,
nanostructured chitosan aerogel has good mechanical strength and can withstand com-
pression without breaking [57]. Chitosan aerogel was also reported to have good thermal
insulation properties due to its low thermal conductivity in addition to moderate antimi-
crobial properties, which makes nanostructured chitosan aerogel useful for biomedical
applications [58]. Nanostructured alginate aerogel also has a similar porosity to cellulose
and chitosan in addition to good mechanical strength, and it can withstand compression
without breaking. Alginate can undergo ionotropic gelation, which means that it can form
a gel when exposed to divalent cations such as calcium [59]. Overall, these properties make
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nanostructured biopolymer aerogels a promising material for particulate matter removal
and air filtration applications.

2.3. Applications of Nanostructured Bioaerogel

Nanostructured bioaerogels have been experimented, used, and proposed for several
applications that require the special performance of functional materials. They have been
extensively used in many medical applications including drug delivery, tissue scaffolding,
biosensing, and wound-healing applications [60]. Nanostructured bioaerogels have also
been utilized in several environmental applications, especially in water treatment, for the
removal of different pollutants including organic dyes, heavy metals, toxic substances,
pesticides, herbicides, etc. [23]. Air purification has been also benefited from the develop-
ment of these functional materials. The ability to be modified and the unique properties
of their surface functional groups have promoted nanostructured bioaerogels in different
applications [23]. Refer to Table 1 for the illustration of using nanostructured bioaerogels in
different applications.

Table 1. Illustration of nanostructured bioaerogel applications in different fields of study.

Field Application Type of Aerogel Remark Ref.

Medical

Drug delivery Cellulose/sodium alginate
aerogels

The aerogel showed sustained release
of curcumin [61]

Tissue scaffolding Nanocellulose/chitosan
aerogel

The aerogel exhibited enhanced
biocompatibility to human cells [62]

Wound dressing Agar-based aerogel The aerogel significantly shortened
in vivo wound healing time [63]

Biosensing Chitosan/carbon nanotube
aerogel

The aerogel had multifunctional
biosensing applications [64]

Environmental

Air purification Carbonized cellulose
aerogel

The aerogel was able to remove all the
PM2.5 and PM10 [65]

Fertilizer delivery Alginate-based aerogel The aerogel exhibited sustained release
of N-fertilizer [66]

Heavy metal removal Chitosan-based aerogel An effective adsorption and desorption of
several heavy metals [67]

Water treatment Green porous
biochar aerogel

Complete removal of organic compounds
was achieved from water [68]

Industrial

Oil/water separation Lignin-mediated
fire-resistant aerogel

The aerogel was ultralight and had a high
strength oil absorption property [69]

Protein separation Nanofibrous aerogels Super-elastic aerogel was prepared for
efficient protein separation [70]

Food packaging Nanocellulose/citrus
pectin aerogel

The aerogels exhibited humidity control
system for active packaging [71]

Thermal insulator Cellulose nanofibril-based
aerogel

The aerogel was highly flexible and had
super thermal insulation properties [72]

Others

Flame retardancy Fully biomass-based
aerogels

High flame retardancy was achieved in
addition to excellent thermal insulation [73]

Supercapacitor Cellulose carbon aerogel High-performance supercapacitor
was achieved [74]

Energy storage Lignin/graphene/PEG
aerogel

The aerogel showed efficient solar thermal
energy storage [75]

3. Particulate Matter Pollution

Particulate matter is one of the hazardous pollutants is that inhaled by humans and
causes series health issues. Particulate matter, also known as particle pollution, refers to
tiny particles of solid or liquid matter that are suspended in the air we breathe [76]. These
particles can be of different sizes, shapes, and chemical compositions, and can come from
natural sources like dust and wildfires, as well as human activities like burning fossil fuels
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and industrial processes [77]. To reduce the risks associated with particulate matter, efforts
are underway to control and regulate emissions from industrial and transportation sources,
as well as to improve air quality monitoring and warning systems. In the early periods of
the air industrial revolution, filters were used to purify the atmosphere from PM [20]. Air
filters were developed rapidly during that period of time to avoid or eliminate the adverse
health effects of different types of particulate matter as described in the following sections.

3.1. Types and Sources of Particulate Matter

Particulate matter has been classified by aerodynamic diameter into three different
groups: PM10 (≤10 microns), PM2.5 (≤2.5 microns), and PM1.0 (≤1.0 microns) [78]. All
three types of PM form a real danger to human health since they have the ability to penetrate
the human body through the respiratory system [79]. The sources of particulate matter
significantly vary across locations for several reasons including the precursor material,
emission sources, dispersion patterns, and distinct climatic conditions [5,80]. However,
the source can be either natural or anthropogenic. It has been reported that PM2.5 levels
are highly affected by biomass burning, vehicle traffic, ship emissions, power plants, dust
resuspension, industrial emissions, and aircraft emissions [81]. It is well known that
this fine particulate matter is basically composed of several undetermined fractions with
different shapes and sizes. It is mostly formed from fuel emissions of vehicles in addition to
the wear and tear of many auto parts [82]. It has been reported that the main components
of particulate matter are polycyclic aromatic hydrocarbons [83], black carbon [84], volatile
organic hydrocarbons [85], aryl hydrocarbons [86], organic compounds [87], inorganic
ions [88], minerals [89], and biological materials [90]. These components are responsible
of more than 85% of the total mass of particulate matter in the air [91]. Incomplete fossil
fuel combustion was also reported to generate particulate matter in addition to biomass
burning, vehicle emissions, and industrial emissions, as presented in Figure 3 [92].

The composition of particulate matter can vary significantly depending on its source,
its location, and the time of the year [93]. Organic compounds including carbonaceous
materials derived from incomplete combustion processes, such as fossil fuel combustion,
biomass burning, and cooking, are the most common type of PM, which can be primary
(emitted directly into the atmosphere) or secondary (formed through chemical reactions in
the atmosphere) [93]. Elemental carbon is another type of solid carbonaceous component
of PM that is primarily emitted from the combustion of fossil fuels, biomass burning, and
industrial processes [94]. Particulate matter can also contain trace amounts of metals such
as lead (Pb), arsenic (As), cadmium (Cd), nickel (Ni), and others. These metals can originate
from industrial emissions, vehicle exhaust, combustion processes, and natural sources.
Other chemical species such as sulfates, nitrates, ammonium, carbonates, and chlorides
might also be present [77,95,96]. Other inorganic compounds are often associated with dust
and soil particles that are resuspended into the air. PM can also contain biological particles
such as pollen, spores, bacteria, and fungal spores. These particles are often associated
with seasonal variations and can cause allergies and respiratory issues in susceptible
individuals [97]. PM2.5 particles have been reported to have the ability to stay suspended
in the air longer than the bigger types (PM10) [5]. The smaller the particular matter, the
more toxic it is to humans due to its ability to penetrate into human bronchi and blood
vessels. Therefore, the morbidity, toxicity, and mortality of fine particulate matter are
significantly increased with long-term exposure to fine particulate matter [98].
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3.2. Health Effects of Particulate Matter

Particulate matter can pose a serious threat to human health, particularly if the particles
are small enough to penetrate deep into the lungs and enter the bloodstream [99]. Exposure
to high levels of particulate matter has been linked to a range of health problems, including
respiratory and cardiovascular diseases, lung cancer, and premature death [100,101]. PM
pollutants have been recently considered as a serious threat to public health due to their
adverse health effects [102]. The inhalation of particulate matter can lead to respiratory
diseases such as coughing, breathing difficulties, chronic bronchitis, and even cancer. The
level of danger posed by these particles is inversely related to their size. Particles ranging
from 5.5 to 9.2 µm in diameter can cause breathing difficulties by lodging in the nose and
throat, while particles smaller than 5.5 µm can penetrate the breathing passages and cause
more severe illnesses. The most perilous particles are those with a diameter of less than
1 µm, which can remain in air sacs and significantly increase the risk of lung cancer. PM has
been reported to form a real danger to the human health since it has the ability to penetrate
the human body through the respiratory system [103]. Exposure to fine particles can cause
short-term health effects such as eye, nose, throat and lung irritation, coughing, sneezing,
runny nose, and shortness of breath [2,104,105]. It was found that particulate matter
particles are able to inhibit the biophysical functions of the lung surfactants by impeding
molecular packaging in addition to the formation of surfactant–particle aggregates [106].
Fine particulate matter also can hinder and even prevent particle–cell interactions, which
could modify the toxicological impact of the inhaled particles [107,108]. Thangavel et al. [5]
extensively discussed the toxicity and adverse health effects of different types and sources
of particulate matter. Figure 4 illustrates the adverse impacts of particulate matter on
different parts of the human body.
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4. Applications of Nanostructured Bioaerogel in Particulate Matter Removal

Nanostructured bioaerogel filtration was introduced as a new concept to purify the
atmosphere that can overcome the limitations associated with conventional approaches.
Nanostructured bioaerogels exhibit unique properties such as huge surface area, high
porosity, and controlled pore size; biopolymer-based aerogels can be utilized in all types of
PM air filtration [25,47]. Multilayered aerogel filters differ from conventional monolayered
filters in that they can even eliminate ultrafine PM along with fine PM (Figure 5). For this
reason, they were widely used in synthesizing aerogel-based filters [109,110].

4.1. Biomass-Based Nanostructured Aerogel

Biomass aerogel is a type of aerogel material that is derived from biomass, which
refers to any organic material that is produced by living organisms or from their metabolic
processes. Biomass can be derived from a wide range of sources, such as plant matter, agri-
cultural waste, and industrial byproducts [111]. Biomass aerogels have several advantages
over traditional aerogels, including lower cost, increased sustainability, and reduced envi-
ronmental impact [112]. One of the key advantages of biomass aerogels is their potential to
provide a sustainable alternative to traditional aerogel materials, which are often derived
from non-renewable sources and can be expensive to produce. In a recent investigation,
Wang et al. [113] prepared a novel environmentally friendly nanostructured aerogel by
using konjac glucomannan as a precursor material and enhanced it with wheat straw. The
bioaerogel was prepared by using the conventional approach of sol–gel followed by a
freeze-drying process. The authors reported that the addition of wheat straw biomass into
the aerogel enhanced its porosity from 50% to more than 88%. The filtration capacity of the
aerogel also improved to 90.38%. Furthermore, the addition of wheat straw significantly
enhanced the mechanical properties of the aerogel, which reported compressive strength,
compression modulus, and elasticity of 501.56 Pa, 2000.66 Pa, and 0.603, respectively. By
utilizing biomass, which is often a waste product or byproduct of other processes, biomass
aerogels can be produced at a lower cost and with reduced environmental impact.
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Overall, biomass aerogels are a promising new material with a wide range of potential
applications and are an example of how sustainable biomaterials can be utilized in advanced
materials science. Biomass nanostructured aerogel have shown great potential in particulate
matter removal due to their high surface area, porous structure, and ability to adsorb
pollutants. Wang et al. [114] fabricated another konjac glucomannan nanostructured
aerogel for particulate matter removal using the conventional sol–gel and lyophilization
methods. The authors reported that the addition of starch and gelatin into the aerogel could
significantly enhance the filtration performance of the aerogel and increase its compressive
strength. These polysaccharides increase the porosity of the aerogel, reduce the pore size,
and thus enhance its filtration performance. The same authors also used wheat straw as a
filler in the aerogel and reported that its addition decreased the filtration resistance and
significantly enhanced the breathability of the aerogel. This could be attributed to the multi-
cavities of wheat straw [115]. Wheat-straw-enriched bioaerogel exhibited 93.5% filtration
efficiency of fine particulate matter (≥0.3 µm) and an air permeability 271.4 L/s·m2. Such
nanostructured bioaerogel possessed a water contact angle of 105.4◦, which shows its
potential in resisting moisture and its workability even in humid conditions as an air
filtration material. In a recent study, corn protein was used to fabricate nanostructured
bioaerogels with controlled structures for particulate matter removal [116] (Figure 6). The
authors enhanced the filtration properties of the aerogel by adding polyvinyl alcohol to
glue dispersed corn protein nanofibers and form the bioaerogel. The aerogel exhibited
high capturing properties for particulate matter; up to 99.52% of PM2.5 and 98.80% of
PM0.3. The authors also stated that their nanostructured bioaerogel was able to eliminate
formaldehyde by 87.41% at a low pressure drop. Overall, biomass aerogels have shown
great potential in particulate matter removal due to their unique properties and versatility.
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Further research is needed to optimize their use for different applications and to address
any potential limitations.
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4.2. Cellulose-Based Nanostructured Aerogel

Cellulose is the most abundant biopolymer on earth. Cellulose aerogels have been
extensively studied and used in several applications including particulate matter re-
moval [117]. Cellulose is considered a great alternative for plastics and other fossil-oil-based
materials that can alleviate environmental pollution [29]. Cellulose aerogels are made by
first extracting cellulose from plants and then dissolving it in a solvent. The cellulose
solution is then subjected to a process called gelation, where it is transformed into a gel-
like substance. The gel is then dried under controlled conditions to remove the solvent,
resulting in a highly porous, low-density aerogel material [118]. Cellulose aerogels are
known for their unique properties, including high thermal insulation, high mechanical
strength, and biodegradability. In the past few years, a huge number of functional cellu-
losed aerogels have been prepared, modified, and utilized in particulate matter removal.
Xie et al. [65] recently fabricated a carbonized cellulose-based aerogel using cotton wastes
as precursor materials. The authors claimed that their aerogel was able to significantly
filtrate the particulate matter due to the grown molybdenum disulfide. Owing to the high
specific surface area and the high electrical conductivity of the prepared bioaerogel, it forms
a strong electrostatic force between the particulate matter particles and the aerogel, with
more than 99.91% and 99.95% removal efficiency for PM2.5 and PM10, respectively [65].
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Bacterial cellulose-based aerogels were prepared using a directional ice-templated
approach and tested for PM removal [22]. The authors modified bacterial cellulose to
enhance the surface functional groups with reactive silane precursors. The aerogel exhibited
excellent quantitative removal of PM (more than 95%). In a different study, Lyu et al. [119]
used waste hemp oil in the fabrication of aerogel via dissolution in a precooled NaOH/urea
system (Figure 7). The aerogel was highly hydrophobic and highly porose and exhibited
elastic behavior. The authors reported that their aerogel had a high removal capacity
at 94% for both PM2.5 and PM10. Nanocellulose aerogels exhibit smooth fibers rich in
surface functional groups. After the filtration, these fibers were found to be fully covered
by particulate matter particles at the end of the filtering process, which proves the excellent
PM capturing ability of nanocellulose aerogels.
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4.3. Chitosan-Based Nanostructured Aerogel

Chitosan is another polysaccharide obtained from shrimp, shellfish, and other crus-
tacean shells [120]. It has been extensively used in different forms in air filtration due
to its polarization ability, strong polarity, antimicrobial properties, biodegradability, and
nontoxicity [121]. These unique properties make chitosan highly attractive in air filtration
applications. Chitosan aerogels are highly porous, lightweight materials that have a large
surface area and can be easily modified to have specific chemical and physical proper-
ties [122]. These properties make chitosan aerogels excellent candidates for air filtration
applications. The air filtration process with chitosan-aerogel-based filters involves passing
the contaminated air through the aerogel material, where particulate matters are trapped
and removed. The highly porous nature of chitosan aerogels allows for a high airflow
rate, resulting in efficient and effective air filtration [56]. Chitosan-aerogel-based air filters
have several advantages over conventional air filters, including high filtration efficiency,
low energy consumption, and a long service life. They also have potential applications
in various fields, such as indoor air purification, industrial air filtration, and medical air
filtration. Desai et al. [123] developed a chitosan-based nanofibrous filter through an elec-
trospinning technique. The authors reported that the filtration efficiency of their fabrication
was strongly associated with pore size and surface area. The authors claimed that their
fabrication was able to eliminate heavy metals along with a 2–3 log reduction in air bacteria.
In different study, Sun et al. [124] fabricated a chitosan-dipped nanostructured air filter and
claim its ability to eliminate most bacteria from the air. Chitosan was used with bacterial
cellulose to fabricate a nanostructured aerogel integrated with Ti-based metal–organic
frameworks [125]. The bioaerogel had significantly high removal efficiencies of particulate
matter even at low pressure drops. The authors stated that their fabrication had a filtra-
tion efficiency of more than 99.5% for PM2.5, with excellent stability even for a long time.
Venkatesan et al. [126] evaluated a chitosan–alginate-based aerogel membrane as an air
conditioner filter using an air-conditioner-like model and found that the chitosan–alginate
filter showed a better performance than conventional commercial filters. The authors
incorporated silver nanoparticles into their filtration system and reported a 1.5 times en-
hancement in filtration efficiency. Overall, chitosan nanostructured aerogels have great
potential in particulate matter removal, and further research and development could lead
to their widespread use in air filtration systems.

4.4. Alginate-Based Nanostructured Aerogel

Alginate is a natural polysaccharide extracted from brown seaweed. It is a highly
versatile biomaterial that has a wide range of applications in various fields, including air
filtration and particulate matter removal [127]. Alginate-based aerogels has been studied
as potential materials for air filtration due to their unique properties, including their
high porosity, biodegradability, and ability to capture particles [128]. Alginate-based air
filters work by using the electrostatic and adhesive properties of alginate to capture and
trap airborne particles, such as fine dust, pollutants, and allergens. The alginate is often
combined with other materials, such as activated carbon, to enhance its filtration efficiency
and remove gases and odors. One of the advantages of alginate-based air filters is their
low cost compared to other filter materials, making them a potentially affordable option
for indoor air purification [129]. Additionally, alginate is a natural, biodegradable material
that is considered safe for human use, which is a desirable property for air filtration
applications. Deng et al. [130] fabricated a high-performance, ecofriendly, and biosafe PVA–
sodium alginate–hydroxyapatite nanostructured composite using a green electrospinning
technique. Owing to the nanopores in their fabrication, the authors were able to remove
more than 99% of both types of fine particulate matter (PM0.3 and PM2.5). In order to
improve its particulate matter capture efficiency, the authors created a unique wrinkled
helical structure in their system, which promoted the physical interception of particulate
pollutants. In a different study, Wu et al. [131] developed self-supporting nanostructured
aerogels for efficient particulate matter removal. The authors introduced both organic or
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choline cations and 1-butyl-3-methylimidazolium into the alginate due to the electrostatic
interaction, and finally, freeze drying in liquid N2 was used for the fabrication of the aerogel
(Figure 8). The authors were able to remove up to 99.2%, 99.2%, and 93.4% of the PM10,
PM2.5, and PM0.3 respectively. The aerogel performed this removal at low pressure drops
of less than 10 Pa in a 15 h durability test. The use of alginate-based air filters is still
in the early stages of research and development, and more studies are needed to fully
understand their filtration efficiency and durability over time. Nonetheless, the potential of
alginate in air filtration highlights the versatility of this biomaterial and its potential use in
various applications.
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5. Challenges of Nanostructured Bioaerogels in Particulate Matter Removal

Nanostructured bioaerogels have shown potential for use in air filtration and specif-
ically particulate matter removal due to their high porosity; nanostructured pore size;
and volume, low density, and biodegradability [132]. However, there are also some chal-
lenges associated with their use including limited mechanical strength, as most biopolymer
aerogels including those derived from chitosan, cellulose, and alginate often exhibit low me-
chanical strength and can be easily damaged especially in humid conditions and where the
filters are subject to mechanical stresses [133,134]. This can pose challenges during handling,
transportation, and deployment in practical applications. The fragility of these materials
may limit their use in environments with high airflows or turbulent conditions. The syn-
thesis of nanostructured biopolymer aerogels is typically a complex and time-consuming
process, involving sol–gel chemistry, supercritical drying, and post-treatment steps. Scaling
up the production of these aerogels while maintaining their desirable properties can be
challenging and expensive, hindering their widespread adoption for PM removal [135].
Although nanostructured biopolymer aerogels have a high surface area, their adsorption
capacity for PM, especially for fine particles such as PM2.5 and nanoparticles, may be
limited. Their adsorption performance depends on factors such as their specific surface
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chemistry, pore size distribution, and interparticle interactions, which need to be carefully
optimized to enhance PM capture efficiency. Moisture absorption is another challenge of
bioaerogels as most biopolymers have a high affinity for moisture, which can cause them
to lose their structure and can reduce their filtration efficiency. This can be a particular
challenge in high-humidity environments. Despite the great advances in the fabrication of
bioaerogels, their manufacturing complexity is still a major challenge, especially in their
large-scale production. The manufacturing process of biopolymer aerogels can be complex
and may require specialized equipment and expertise [47]. To make biopolymer aerogels
economically viable for PM removal, their reusability is crucial. However, regenerating
these aerogels and restoring their original adsorption properties can be challenging. Tech-
niques such as thermal, solvent, or chemical regeneration may be required, which can
add complexity and cost to the overall process. The long-term stability of biopolymer
aerogels is another concern. Exposure to moisture, UV radiation, and pollutants in the
air can lead to degradation, structural collapse, or changes in surface chemistry, affecting
their performance over time. Ensuring the stability and durability of these aerogels under
real-world operating conditions is essential for their practical application [136]. The produc-
tion of nanostructured biopolymer aerogels can involve expensive precursors, specialized
equipment, and complex synthesis steps. These factors contribute to the overall cost of
the materials, making them less economically viable for large-scale PM removal appli-
cations compared to other conventional filtration methods. Addressing these challenges
requires further research and development efforts focused on improving the mechanical
strength, scalability, adsorption capacity, regeneration methods, long-term stability, and
cost effectiveness of nanostructured biopolymer aerogels for efficient particulate matter
removal. The use of biopolymer aerogels in air filtration may offer a more sustainable
and environmentally friendly alternative to traditional synthetic polymer-based filters.
Biopolymer aerogels can be combined with other materials, such as activated carbon, to
enhance their filtration efficiency.

6. Conclusions

Nanostructured biopolymer aerogels hold significant potential for PM removal due
to their unique properties and versatile nature. These materials offer high porosity, large
surface area, and tunable pore structure, which are crucial for efficient PM capture. De-
spite some challenges, ongoing research and development efforts are addressing these
limitations and exploring ways to enhance their performance. The high porosity and
large surface area of nanostructured biopolymer aerogels provide ample contact points
for PM adsorption, allowing the effective removal of various particle sizes, including fine
particles and nanoparticles. The composition and surface chemistry of these aerogels can
be tailored to enhance their adsorption capacity for specific pollutants. Furthermore, the
use of biopolymer aerogels derived from renewable sources such as chitosan, cellulose, and
alginate offers an ecofriendly alternative to traditional filtration materials. The sustainabil-
ity aspect of these materials aligns with the global drive toward green and environmentally
friendly solutions for air pollution control. While there are challenges associated with
their mechanical strength, scalability, regeneration, long-term stability, and cost, ongoing
research is focusing on overcoming these limitations. Advances in material engineering,
process optimization, and surface modification techniques are being explored to improve
the mechanical properties and stability of biopolymer aerogels. Efforts are also underway
to enhance their scalability and reduce production costs through innovative synthesis
methods. In addition, the potential integration of nanostructured biopolymer aerogels
with other filtration technologies or the development of composite materials can further
enhance their PM removal efficiency. Synergistic effects between different materials can
lead to improved performance, extending the application potential of biopolymer aero-
gels in PM control. Continued research, innovation, and collaboration between academia,
industry, and policymakers will be crucial to unlock the full potential of nanostructured
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biopolymer aerogels and accelerate their practical implementation for cleaner and healthier
air environments.
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