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Abstract: Protein engineering allows for the programming of specific building blocks to form func-
tional and novel materials with customisable physical properties suitable for tailored engineering
applications. We have successfully designed and programmed engineered proteins to form cova-
lent molecular networks with defined physical characteristics. Our hydrogel design incorporates
the SpyTag (ST) peptide and SpyCatcher (SC) protein that spontaneously form covalent crosslinks
upon mixing. This genetically encodable chemistry allowed us to easily incorporate two stiff and
rod-like recombinant proteins in the hydrogels and modulate the resulting viscoelastic properties.
We demonstrated how differences in the composition of the microscopic building blocks change the
macroscopic viscoelastic properties of the hydrogels. We specifically investigated how the identity
of the protein pairs, the molar ratio of ST:SC, and the concentration of the proteins influence the
viscoelastic response of the hydrogels. By showing tuneable changes in protein hydrogel rheology,
we increased the capabilities of synthetic biology to create novel materials, allowing engineering
biology to interface with soft matter, tissue engineering, and material science.

Keywords: hydrogels; protein engineering; biomaterials; SpyTag–SpyCatcher

1. Introduction

Hydrogels are an important class of materials widely used as adsorbents, drug de-
livery depots, biosensors, and microfluidics devices [1–3]. Depending on the nature of
the application, the physical properties of the hydrogels must be controlled, fine-tuned,
and customised. For example, hydrogels used for the regeneration of tissue must mimic
the physical and biological properties of the native tissue, prompting the field of tissue
engineering to pivot towards the development of biological rather than synthetic hydro-
gels due to their biocompatibility and tunability [4,5]. Recently, hydrogels composed of
recombinant proteins have gained interest due to the precise control over the structure
and features offered by protein engineering. In particular, using amino acids as building
blocks allows one to encode the desired hydrogel features in the protein sequence that
specifies the structure, achieving great customisation in the macroscopic hydrogels [6].
Our design is based on protein-only hydrogels that are covalently crosslinked using the
SpyTag–SpyCatcher system. The SpyTag–SpyCatcher system was developed from a bacte-
rial protein that naturally forms an intramolecular covalent bond, the CnaB2 domain of the
FbaB protein from Streptococcus pyogenes [7]. Howarth and co-workers were able to split the
protein in two, creating the two reactive protein partners SpyTag (ST) and SpyCatcher (SC),
whilst maintaining their ability to form the covalent bond [7]. What makes this system
particularly unique is that the covalent bond between ST and SC forms spontaneously upon
mixing under mild conditions, such as aqueous media and pH 7 [7]. We have shown that ST
and SC can be successfully used to form biocompatible covalent molecular networks with
distinct physical properties that allow for the encapsulation of mammalian cells without
loss of cell viability [8]. Herein, we focussed on the systematic characterisation of how the
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rheological properties of the protein hydrogels change depending on the ratio of ST:SC and
the protein concentration. Understanding the relationship between the chemical structure
and rheology of protein hydrogels is crucial to master the versatility of the system and
tailor the recombinant production of the protein precursors to suit a specific application.
We elected to exploit the use of a chemically crosslinked system based on the recreation
of the covalent bond between ST and SC, as opposed to physically crosslinked systems
where the polymer chains entangle via transient and reversible junctions [9]. Covalently
crosslinked hydrogels are characterised by stronger mechanical properties and irreversible
bonds. These characteristics translate into different rheological behaviours observable in
frequency sweeps. In particular, physically crosslinked systems will only present suit-
able viscoelastic properties within a short timescale (i.e., high frequencies) due to the
reversibility of their bonds, whilst chemically crosslinked hydrogels will present the same
viscoelastic properties towards infinitely low frequencies, indicative of the stability of
their bonds [9]. There are plenty of accounts in the literature investigating the rheological
properties of synthetic polymer-based materials or naturally occurring protein hydrogels,
such as collagen or agarose [10,11]. However, to the best of our knowledge, there are no
accurate accounts detailing the changes in viscoelastic behaviour of chemically crosslinked
hydrogels based on recombinant proteins. Given the recent advances in protein engineering
and the consequent interest in recombinant protein hydrogels, we sought to determine
how the rheological properties of recombinant hydrogels change based on the protein
concentration and the ratio between the components. Our approach to hydrogel design,
development, and optimisation is not only straightforward, as ST–SC forms a hydrogel at
room temperature without the need for an additional chemical crosslinker, but also clear
and uncomplicated, as we demonstrate how the rheological properties of the hydrogels
can be modified only by rationally adding or removing the protein components. The
viscoelastic behaviour of hydrogels investigated via bulk rheology is crucial to determine
the suitability of protein-based hydrogels for tissue engineering applications, but, most
importantly, the rational and direct modification of the viscoelastic properties of protein-
based hydrogels is an advantageous predictive tool to move towards the identification of
proteins with the desired physical properties, such as mechanical stability and elasticity,
that could be able to expand the scope of the SpyTag–SpyCatcher system beyond this study
and increase the sophistication of protein-based biomaterials.

2. Results and Discussion
2.1. The Protein Building Blocks

S. aureus surface protein G, SasG, is an elongated, stiff, rod-like protein formed by
tandem repeats of two structurally related domains: E (50 residues) and G (78 residues) [12].
The structure of SasG (GEG) has been previously determined by X-ray crystallography
(PDB ID: 3TIQ) and longer SasG arrays, composed of up to 7 EG repeats following the core
monomer GEG, have been characterised in solution by small angle X-ray light scattering
(SAXS) and atomic force microscopy (AFM) [13]. In this study, we used SasG composed of
the core monomer GEG as a crosslinker to form strong hydrogels. We also created a longer
version of the crosslinker, which we named SasGlong, by combining the core SasG monomer
GEG with three tandem repeats of EG, resulting in ((GEG) + 3x(EG)). Previous physical
characterisation via SAXS and AFM indicated that the longer version of SasG, SasGlong,
shares its rod-shaped, elongated, and stiff properties [13]. Both SasG and SasGlong were
engineered to carry two SpyTag (ST) motifs, one at each end of the chain, resulting in two
constructs: ST–SasG–ST and ST–SasGlong–ST (Figure 1A). The final length of each construct
was ~17 nm end-to-end for SasG and ~51.5 nm end-to-end for SasGlong. The SC arrays
were engineered by fusing three or four SC units together via a flexible glycine rich linker,
(GGS)2RS (Figure 1A). Our previous SAXS characterisation showed that the SC arrays
behave like extended flexible structures, comparable to beads on a string, with no evidence
of intra- or inter-chain aggregation [8]. Upon mixing at room temperature, a covalent
cross-link spontaneously forms between dissolved ST and SC, resulting in a percolated
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network (Figure 1B). The quick and spontaneous formation of the hydrogel network is the
first advantage of the crosslinking method we chose. Indeed, whilst chemical crosslinking
methods are usually characterised by strong mechanical properties, they usually require
the use of a chemical crosslinking agent, such as copper for the click-chemistry copper-
catalysed alkyne–azide cycloaddition reaction, that hinders the biocompatibility and the
efficiency of the reaction [9]. Instead, the ST–SC reaction does not require the addition of a
chemical crosslink, as the covalent bond between the unprotonated lysine of SpyCatcher
and the aspartic acid in SpyTag is simply catalysed by the neighbouring glutamic acid [7].
Moreover, the ST–SC reaction has been shown to be stable in a wide variety of conditions,
including temperatures, pHs, and buffers [7], and we did not observe any sensitivity to
any of the aforementioned conditions during hydrogel preparation. Notably, the proteins
involved in the ST–SC reaction must be folded, as protein denaturation with urea after
gelation leads to a change in the viscoelastic properties of the resulting hydrogels [8]. This
simple gelation system has already been exploited elsewhere to encapsule mammalian
cells thanks to the uncomplicated gelation kinetics [14,15]. Here, we sought to investigate
further how the ratio of ST–SC units and the total protein concentration modulate the
viscoelastic properties of the resulting hydrogels. In particular, we wanted to determine
the suitability of ST–SC hydrogels as scaffolds for mammalian cell growth as a bioink for
3D printing applications. For the former, it has been clearly established that for successful
encapsulation and growth of cells onto a matrix, that matrix has to mimic the viscoelastic
properties of the native tissue [16], demonstrating how the viscoelastic properties of our
agnostic ST–SC hydrogels are crucial for tailoring them to different organs characterised
by different viscoelasticity, i.e., liver (10,000 Pa) or brain (1000 Pa) [17]. For the second
requirement, 3D printing, the resulting viscoelastic properties and the speed of gelation of
our ST–SC hydrogels were crucial to determine the right combination to use. For instance,
for 3D printing, we needed a combination that did not gel too quickly, as this would have
led to the clogging up of the nozzle and unsuccessful 3D printing, whilst also gelling
fast enough to maintain its structural integrity whilst the second layer was printed on
top. Moreover, we needed to ascertain that the resulting viscoelastic properties were still
suitable for tissue engineering applications. Before investigating the rheological properties
of our hydrogels, we investigated their swelling properties to determine if changes in the
molar concentrations led to changes in the swelling behaviour. We determined this not to be
the case, as all of our hydrogels showed similar swelling of ~50% after 24 h (Supplementary
Materials, Figure S1).
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Figure 1. Schematic illustration of the components of the SpyTag (ST)—SpyCatcher (SC) hydrogels. 
(A) Top: Ribbon representation of the ST–SC complex, with the ‘yellow triangle and pink crown’ 
cartoon used to indicate ST and SC, respectively. Left: pink crowns depicting the SC arrays linked 
by glycine-rich flexible linkers (green). Right: ribbon representation and cartoon of the two cross-
linkers SasG (GEG) and SasGlong (GEG + 3x(EG); blue line) with a single ST at the terminals. (B) 
Schematic representation of the crosslinking between the SC3 array and ST–SasG–ST, resulting in a 
covalently crosslinked hydrogel. 
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tion and names of the hydrogels described in this paper. 
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Figure 2 summarises our findings and illustrates the trends in the viscoelastic prop-
erties of the hydrogels. Regardless of the proteins used to make the hydrogels, when SC 
is present in great molar excess compared to ST, the mixture results in a viscous liquid, 
rather than a hydrogel (G’ < G”). Conversely, when the ST component is present in great 
molar excess compared to SC, a hydrogel is formed with G’ = 1000 Pa, which does not 
yield to 100% strain. When ST and SC are approximately equimolar, the resulting hydro-
gels exhibit G’ = 10,000 Pa and critical yield stress at 10%. As the total concentration of 
equimolar ST: SC is increased, a hydrogel with G’ = 1000 which does not yield at 100% 
strain is formed. 

During the rheological investigation of the protein hydrogels, we observed that the 
identity of the protein components, the molar ratio between the ST and SC units, and the 
total protein concentration were all determining factors in the resulting rheological prop-
erties. Below, we discuss this behaviour in detail for each variable. 

Figure 1. Schematic illustration of the components of the SpyTag (ST)—SpyCatcher (SC) hydrogels.
(A) Top: Ribbon representation of the ST–SC complex, with the ‘yellow triangle and pink crown’
cartoon used to indicate ST and SC, respectively. Left: pink crowns depicting the SC arrays linked by
glycine-rich flexible linkers (green). Right: ribbon representation and cartoon of the two crosslinkers
SasG (GEG) and SasGlong (GEG + 3x(EG); blue line) with a single ST at the terminals. (B) Schematic
representation of the crosslinking between the SC3 array and ST–SasG–ST, resulting in a covalently
crosslinked hydrogel.

2.2. Viscoelastic Properties of the Protein Hydrogels

Naming convention: we will refer to the composition of a hydrogel based on the
molar ratio of ST to SC. For example, a hydrogel made from ST–SasG–ST at 2 mM and SC3
at 1 mM has 4 moles of ST (2 mM × (2 SpyTags in each SasG chain)) and 3 moles of SC
(1 mM × 3 SC units); therefore, the network is defined as ST:SC 1.3:1. Table 1 shows the
composition and names of the hydrogels described in this paper.

Table 1. Composition of the hydrogels based on the molar content of ST and SC.

ST

1 mM
(2 ST Units)

2 mM
(4 ST Units)

3 mM
(6 ST Units)

3.5 mM
(7 ST Units)

4 mM
(8 ST Units)

1 mM SC3
(3 SC units) 0.6:1 1.3:1 2:1 2.3:1 2.6:1

1 mM SC4
(4 SC units) 0.5:1 1:1 1.5:1 1.75:1 2:1

Figure 2 summarises our findings and illustrates the trends in the viscoelastic proper-
ties of the hydrogels. Regardless of the proteins used to make the hydrogels, when SC is
present in great molar excess compared to ST, the mixture results in a viscous liquid, rather
than a hydrogel (G′ < G′′). Conversely, when the ST component is present in great molar
excess compared to SC, a hydrogel is formed with G′ = 1000 Pa, which does not yield to
100% strain. When ST and SC are approximately equimolar, the resulting hydrogels exhibit
G′ = 10,000 Pa and critical yield stress at 10%. As the total concentration of equimolar ST:
SC is increased, a hydrogel with G′ = 1000 which does not yield at 100% strain is formed.

During the rheological investigation of the protein hydrogels, we observed that the
identity of the protein components, the molar ratio between the ST and SC units, and
the total protein concentration were all determining factors in the resulting rheological
properties. Below, we discuss this behaviour in detail for each variable.
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SasG–ST combined with SC3 (black); (B) ST–SasG–ST combined with SC4 (pink); (C) ST–SasGlong–
ST combined with SC3 (black); (D) ST–SasGlong–ST combined with SC4 (pink). The insert shows 
an example of the self-standing mouldable protein hydrogels we developed. The hydrogel was
made from 30 µL of ST–SasG–ST at 4 mM and 30 µL of SC3 at 1 mM. 

2.3. Effects of the ST:SC Ratio on the Viscoelastic Properties of the Resulting Hydrogels 
2.3.1. SC3 Combined with ST–SasG–ST and ST–SasGlong–ST 

The combination of ST–SasG–ST:SC3 0.6:1 showed G’ < G”, indicating that the combi-
nation remained a viscous liquid. ST–SasG–ST:SC3 1.3:1 showed G’ = 10,000 Pa, G’ > G”, and 
G’ independent of frequency. This hydrogel showed critical yield stress at 10% strain. More-
over, the hydrogels formed at all tested ratios between 1.3:1 and 2.6:1 showed G’ of 1000 Pa
with G’ > G”, and G’ was independent of frequency. These gels did not yield up to 100% 
strain (Figure 3). Combinations of SC3 with ST–SasGlong–ST, at all ratios and concentrations 
analysed, exhibited G’ = 10,000 Pa and critical yield stress at 10% strain (Figure S2).

Figure 2. Hydrogel formation and viscoelastic properties of the ST–SC protein hydrogels. (A) ST–
SasG–ST combined with SC3 (black); (B) ST–SasG–ST combined with SC4 (pink); (C) ST–SasGlong–ST
combined with SC3 (black); (D) ST–SasGlong–ST combined with SC4 (pink). The insert shows an
example of the self-standing mouldable protein hydrogels we developed. The hydrogel was made
from 30 µL of ST–SasG–ST at 4 mM and 30 µL of SC3 at 1 mM.

2.3. Effects of the ST:SC Ratio on the Viscoelastic Properties of the Resulting Hydrogels
2.3.1. SC3 Combined with ST–SasG–ST and ST–SasGlong–ST

The combination of ST–SasG–ST:SC3 0.6:1 showed G′ < G′′, indicating that the combina-
tion remained a viscous liquid. ST–SasG–ST:SC3 1.3:1 showed G′ = 10,000 Pa, G′ > G′′, and G′

independent of frequency. This hydrogel showed critical yield stress at 10% strain. Moreover,
the hydrogels formed at all tested ratios between 1.3:1 and 2.6:1 showed G′ of 1000 Pa with
G′ > G′′, and G′ was independent of frequency. These gels did not yield up to 100% strain
(Figure 3). Combinations of SC3 with ST–SasGlong–ST, at all ratios and concentrations
analysed, exhibited G′ = 10,000 Pa and critical yield stress at 10% strain (Figure S2).
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Figure 3. Viscoelastic changes in response to ST–SasG–ST and SC3 ratio variation in frequency (A)
and strain sweeps (B). At the ratio of 1.3:1, the network showed G′ = 10,000 Pa and critical yield stress
at 10% strain. Meanwhile, the 2.6:1 network showed G′ = 1000 Pa and no yield up to 100% strain.
The angular frequency SD values of G′ and G′′ are 6.02% and 4.01% for the 1.3:1 ratio, and 9.7% and
7.09% for the 2.6:1 ratio, respectively. The strain SD values of G′ and G′′ are 19.2% and 8.09% for the
1.3:1 ratio, and 8.39% and 9.21% for the 2.6:1 ratio, respectively.

2.3.2. SC4 Combined with ST–SasG–ST and ST–SasGlong–ST

The combination of ST–SasG–ST:SC4 0.5:1 showed G′ < G′′, indicating the permanence
of a viscous liquid. The hydrogel formed by ST–SasG–ST:SC4 1:1 showed G′ = 10,000 Pa
and yielded at 10% strain, whereas at all molar ratios beyond ST:SC 1:1, up to 2:1, the
hydrogels exhibited G′ = 1000 Pa, G′ > G′′, and no yield up until 100% strain (Figure S3).
ST–SasGlong–ST plus SC4 at 1:1 resulted in a gel with G′ = 10,000 Pa and yield at 10% strain,
and at 2:1 resulted in a gel with G′ = 1000 Pa and no yield up to 100% strain (Figure S4).
Therefore, ST–SasG–ST and ST–SasGlong–ST behaved similarly when combined with
SC4. ST–SasG–ST combined with SC3 also followed this behaviour, but ST–SasGlong–ST
combined with SC3 deviated from the observed trend.

2.3.3. Effects of the Total Protein Concentration on the Viscoelastic Properties of the
Resulting Hydrogels

We investigated the dependence of the viscoelastic properties on total protein concen-
tration by performing strain and frequency sweeps on hydrogels where the ST:SC ratio was
kept constant at 1:1, but the total protein concentration was increased 1.5× at each step.
Table S1 details the specific concentrations analysed.

2.3.4. SC3 Combined with ST–SasG–ST and ST–SasGlong–ST

For SC3 and ST–SasG–ST, the frequency sweeps showed that at low mM concentra-
tions, G′ < G′′, indicative of viscous liquid behaviour (Figure S5). At a higher concentration
of SC3 (1.6 mM) and ST–SasG–ST (2.5 mM), the combination formed a hydrogel charac-
terised by G′ > G′′, G′ = 10,000 Pa, and yielding at 10% strain. Further increase in the
total protein concentration of both SC3 (2.5 mM) and ST–SasG–ST (3.7 mM) led to the
formation of a hydrogel with G′ = 1000 Pa and no yielding until 100% strain (Figure 4A). By
contrast, in hydrogels formed by SC3 and ST–SasGlong–ST, the physical properties did not
change (G′ = 10,000 Pa and critical yield stress at 10% strain) despite increasing the protein
concentration (Figure S6).
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2.3.5. SC4 Combined with ST–SasG–ST and ST–SasGlong–ST

Similarly, for SC4 and ST–SasG–ST, the frequency sweeps showed the permanence
of a viscous liquid, G′ < G′′, at low mM concentrations (Figure S7). By increasing the
concentration of ST–SasG–ST + SC4 to 2.5 mM + 1.2 mM and 3.7 mM + 1.8 mM, respectively,
the resulting hydrogels exhibited G′ = 1000 Pa and no yielding up to 100% strain (Figure 4B).
Hydrogels formed by combinations of ST–SasGlong–ST (2.5 mM) and SC4 (1.2 mM) showed
G′ = 10,000 Pa and critical yield stress at 10% strain, whilst hydrogels formed by ST–
SasGlong–ST (3.7 mM) and SC4 (1.8 mM) exhibited G′ = 1000 Pa and no yielding up to
100% strain (Figure S8).

The importance of protein-based hydrogels in tissue engineering, biophysics, and
soft matter is steadily growing due to the precise control offered by protein engineering
over the resulting hydrogel properties. Herein, we present the results of systematically
investigating how the properties of the hydrogels can be modulated in response to changes
in the ratio of the components and the total protein concentration.

By varying the ratio between the ST and SC units, we found that when the SC units
are in excess of the ST units, a viscous liquid results and a gel is not formed. We rationalise
this result with an excess in protein binding sites (SCs) available, where the majority of
the protein–protein interactions will not lead to productive crosslinking and the formation
of a percolating network. Intuitively, when SC and ST units are mixed in approximately
equimolar concentrations and at a relatively low concentration, the strongest gel forms, with
G′ = 10,000 and critical yield stress at 10% strain. This is because we maximised crosslinking
between ST and SC, and no extra moieties influence the behaviour of the system. Finally,
when ST is present in excess compared to SC, the hydrogels weaken (G′ = 1000 Pa), but
the resistance to deformation is increased (no yielding up until 100% strain). We ascribed
this phenomenon to an excess in ST, that yields a heterogeneous network. Others have
reported similar phenomena, where protein hydrogels do not form (G′ < G′′) when one
component is present in great excess compared to another, as well as a sharp decrease in
elastic modulus when the ratio between components is unbalanced [6,18,19]. Moreover,
it has been previously shown that steric hinderances caused by large chains induce the
formation of weak gels and further increases in steric congestion hinder their formation
completely [20,21]. Therefore, we propose that our ST–SC system presents the same
characteristics as the ones highlighted before, where steric hindrances result in some of
the crosslinking units (the ST–SasG–ST, in our case) not being available to form the second
cross-link after the first has formed or binding only one SC array, creating a heterogenous
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network. Therefore, an excess of ST units over SC units leads to the formation of weaker
hydrogels. The same steric hindrances affect the hydrogels characterised by higher total
protein concentration with equimolar concentrations of SC and ST units (G′ = 1000 Pa and
no yielding up to 100% strain). In this case, the increased viscosity acts as the limiting
factor, weaking the hydrogels as some crosslinking units are unable to form a covalent
bond [21]. Of note, we carried out additional experiments above the 4 mM concentration
(ST–SasG–ST = 6 mM), but we realized that the viscosity of the solution was too high, and
the viscoelastic properties of the hydrogels were further reduced. Therefore, we did not
present any data above 4 mM as we believe this to be the threshold above which the
mechanical properties of the hydrogels are extremely limited.

We also investigated the gelation kinetics of the protein hydrogels using microrheology
and identified that the 1:1 combination had relative slow kinetics (complete gelation was
achieved in ~45 min), whilst increasing the ST units led to progressively faster gelation
kinetics until complete gelation was recorded in less than 10 min (Figure S9). A similar
behaviour was also reported elsewhere [6,21,22], demonstrating how the speed of gelation
influences the macroscopic mechanical properties of the hydrogels. Interestingly, the com-
binations of ST–SasGlong–ST and SC3 showed slower and incomplete gelation, supporting
the idea of underlying steric hinderances limiting the formation of a percolating network
(Figure S10).

In addition, we speculate that lengthening the SC array lowers the ST–SC threshold
needed to form a hydrogel, in terms of both the ST:SC ratio and protein concentration. This
can already be seen in Figure 2, where at the same 1:1 concentration, ST–SasG–ST exhibited
G′ = 10,000 Pa when combined with SC3, but G′ = 1000 Pa when combined with SC4. The
same can also be observed for combinations of ST–SasGlong–ST with SC3 or SC4. Therefore,
we predict that further lengthening the SC array by genetically engineering a longer version
of the protein could push the formation of a hydrogel at a very low protein concentration.
However, we acknowledge that it is not trivial to genetically engineer longer versions of
the SC arrays due to their very repetitive sequence. Finally, the G′ of these networks are
in good accordance with those of medium viscoelastic organs, such as livers and kidneys,
highlighting the suitability of these hydrogels for tissue engineering applications [17].

3. Conclusions

In summary, the rheological results presented here offer a clear blueprint of rheological
behaviour for protein hydrogel applications. We determined the molar ratio and the size
of the proteins needed in order to create a hydrogel with the desired characteristics. For
example, an excess of ST compared to SC will result in a weak gel structure exhibiting high
yield stress, whilst the opposite combination is unlikely to form a self-sustaining network.
We also showed that increasing the protein concentration of the hydrogels at the same
ST:SC ratio showed a similar behaviour, where the increased viscosity acts as a limiting
factor, weaking the hydrogels. Finally, we determined that the rheological properties of the
protein hydrogels are suitable for tissue engineering applications.

4. Materials and Methods
4.1. Bacterial Strains, Plasmids, Culture Conditions

The bacterial strains and plasmids used in this study are listed in the supplementary
information.

4.2. Recombinant Protein Expression and Purification

E. coli cells harbouring the appropriate plasmid were grown at 37 ◦C with 250 rpm
shaking in Luria Bertani broth to an optical density of 0.6–0.8 at 600 nm. Protein expression
was induced with 1 mM IPTG and growth continued for a further 20 h at 18 ◦C. Cells were
harvested and collected by centrifugation at 10,000 rpm for 10 min and pellets were stored
at −20 ◦C until needed. The His-tagged proteins were purified from the frozen cells using
ion metal affinity chromatography (Ni-NTA resin; Qiagen, China) using a batch method.
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Briefly, after cell disruption, whole cell lysate was incubated with 8 mL of Ni-NTA resin
for an hour at 4 ◦C on a shaking platform. The resin was washed twice with Tris–HCl,
Imidazole 20 mM buffer, pH 8, and the protein of interest was eluted using Tris–HCl,
Imidazole 200 mM buffer, pH 8. Protein expression and purification were assessed by
SDS–PAGE. The purified protein was then dialysed extensively against distilled water at
4 ◦C for 12 h, frozen at −80 ◦C, and then lyophilised. Lyophilised proteins were stored
at −80 ◦C until use. Protein purification was verified via Comassie Blue staining on an
SDS-PAGE. We observed no significant variation between batches.

4.3. Preparation of the ST–SC Hydrogels

Lyophilised proteins were individually dissolved in distilled water to give stock solu-
tions of the desired concentration. The appropriate concentrations were determined via
A280 and the extinction coefficient calculated from the sequence (detailed in the Supple-
mentary Materials). The ST and SC components were mixed at room temperature by gentle
pipetting at the predetermined molar ratio. Gelation occurred spontaneously upon mixing.

4.4. Water Intake

A combination of 30 µL of ST–SasG–ST and 30 µL of SC at the appropriate mM con-
centrations were manually mixed together to initiate spontaneous gelation. After gelation
was complete, 1 mL of ultrapure water was added to each Eppendorf tube containing a
hydrogel, and the mixture was incubated overnight at room temperature. Excess water
was removed, and the hydrogels were weighed (Ww). Subsequently, the hydrogels were
freeze-dried and weighed again (W0). The percent water intake was calculated using:
(Ww −W0) × 100/W0.

4.5. Dynamic Shear Rheology and Data Analysis

Rheological measurements were carried out using a stress-controlled Discovery Hy-
brid Rheometer DHR-2 (TA Instruments, New Castle, DE, USA) with a standard steel
parallel plate geometry (8 mm diameter). The linear viscoelastic region (LVR) was de-
termined via a strain sweep with strain amplitude increasing from 0.01 to 100% and a
frequency of 100 rad/s. Following each strain sweep, frequency sweeps were carried out in
the established LVR by holding the strain at 1% and decreasing the oscillatory frequency
ω from 100 to 0.1 rad/sec. The storage (G′) and loss moduli (G′′) were determined as a
function ofω at 25 ◦C. Three independent measurements were recorded, and the mean is
reported. Graphs were made using Prism 9 for MacOS, version 9.3.1.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels9060481/s1, Figure S1: swelling properties of the protein
hydrogels. Figure S2: SasGlong and SC3. Figure S3: SasG and SC4. Figure S4: SasGlong and SC4.
Figure S5: Frequency sweep of ST-SasG-ST:SC3 at progressively increasing total protein concentra-
tions, with ST:SC = 1. Figure S6: Frequency sweep of ST-SasGlong-ST:SC3 at progressively increasing
total protein concentrations, with ST:SC = 1. Figure S7: Frequency sweep of ST-SasG-ST:SC4 at
progressively increasing total protein concentrations, with ST:SC = 1. Figure S8: Frequency sweep
of ST-SasGlong-ST:SC4 at progressively increasing total protein concentrations, with ST:SC = 1. Mi-
crorheology methods. Figure S9: Gelation kinetics of ST-SasG-ST and SC3 1.3:1 and 2.6:1. Figure S10:
Gelation kinetics of ST-SasGlong-ST and SC3 1.3:1 and 2:1; Table S1: Molar concentration of SC3 and
SC4 in combination with the ST crosslinkers SasG or SasGlong; 1. Plasmids used in this study: DNA
and protein sequences; 2. Strains used in this study; 3. Raw data provided as a separate excel file.
References [21,23–26] are cited in the supplementary materials.
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